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Abstract
This article explores the application of a wind farm layout optimization framework using a particle swarm optimizer to three
benchmark test cases. The developed framework introduces an increased level of detail characterizing the impact that the
wind farm layout can have on the levelized cost of energy by modelling the wind farm’s electrical infrastructure, annual
energy production, and cost as functions of the wind farm layout. Using this framework, this paper explores the application
of a particle swarm optimizer to the wind farm layout optimization problem considering three different levels of wind farm
constraint faced by modern wind farm developers. The particle swarm optimizer is found to yield improvements in the layout
with respect to the levelized cost of energy for the three benchmark cases when compared to two past studies. This highlights
both applicability of the particle swarm optimizer to the problem and the ways in which a wind farm developer could make
use of the present framework in the development and design of future wind farms.

Keywords Offshore wind · Layout optimization · Particle swarm optimization · Wind farm design

1 Introduction

As the world transitions to a more sustainable energy sector,
wind energy and in particular offshore wind farms represent
a significant means for reducing the greenhouse gas emis-
sions of electricity generation. As the offshore wind energy
industry has grown, both the size of wind farms and the
size of individual turbines have grown significantly. Wind
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farms now represent much larger projects both in terms of
the area they cover and their generational capacity than the
early projects of the past decade. With many projects cur-
rently in development, it has become increasingly important
to ensure that these wind farms are designed in a sophisti-
cated manner making use of the available area as efficiently
as possible.

To meet this need, tools have been developed exploring
the optimal placement of wind turbines, offshore substa-
tions, and intra-array cables within an offshore wind farm.
The original work in wind farm layout optimization done
by Mosetti et al. (1994) laid the ground work for this field
introducing a general approach that following work has con-
tinued to utilize. This approach includes the assessment of
both the energy produced by a wind farm and the cost of
the wind farm over the lifetime of the project. More recent
work in the field of offshore wind farm layout optimization
has explored the applicability of different optimization algo-
rithms as well as the inclusion of additional constraints and
more detailed cost functions that a developer may face. The
most frequent optimization algorithm applied to the wind
farm layout optimization problem has been the genetic algo-
rithm with several studies exploring its applicability to the
problem as posed by Mosetti et al. (1994) and to more com-
plex extensions (Chen et al. 2013; Couto et al. 2013; Elkinton
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2007; Elkinton et al. 2008; Geem and Hong 2013; Grady
et al. 2005; Huang 2009; Mittal 2010; Shakoor et al. 2016;
Zhang et al. 2014). In a similar vein, recent studies have
also explored optimization algorithms such as viral based
optimization (Ituarte-Villarreal and Espiritu 2011), pattern
search (DuPont and Cagan 2012), mixed-integer linear pro-
gramming (Fagerfjäll 2010),MonteCarlomethod (Marmidis
et al 2008), and random search (Feng and Shen 2015) applied
to the wind farm layout optimization problem.

An optimization algorithm that has emerged as rele-
vant to this problem and has frequently been deployed for
variations on this problem is the particle swarm optimizer
(PSO) (Chowdhury et al. 2012, 2013; Hou et al. 2017;
Pookpunt and Ongsakul 2013; Wan et al. 2010a, b). These
existing studies have included various considerations beyond
the problemoriginally defined in the seminalwork in the field
byMosetti et al. (1994) such as hub height variations, turbine
capacity variations, and intra-array cable routing (Chowd-
hury et al. 2013; Feng et al. 2016; Hou et al. 2017). However,
these have still not considered several elements that would
be important to a real wind farm developer.

The present work, therefore, builds on the standard
paradigm in wind farm layout optimization by considering
not only the impact the wind farm layout has on the energy
produced by the wind farm, but also the impact of layout
design and turbine placement on the electrical infrastructure
and the wind farm’s lifetime costs. Extending the previous
work in this field as well as that of the authors (Pillai et al.
2016b), the present work presents this optimization problem
with the inclusion of three constraint sets of interest to wind
farm developers and applies these to a series of benchmark
cases in which the levelized cost of energy (LCOE), a single
metric that considers the wind farm energy output and costs
over the wind farm’s lifetime, is used to compare layouts.

This paper introduces increased detail in the evaluation a
wind farm layout as well as additional constraint levels that
a developer will face in the design of a real offshore wind
farm, thereby striving to capture the impacts the wind farm
layout can have on the LCOE and explores the optimiza-
tion of wind farm layouts using a cooperative population
based metaheuristic optimization approach1, particle swarm
optimization. This, therefore, involves returning to the key
reference work by Mosetti et al. (1994) and Grady et al.
(2005) and demonstrating that with the increased level of
detail in the evaluation function and the three different con-
straint sets, a particle swarm optimizer is not only a relevant
optimization algorithm, but is also capable of identifying
improvements to the layouts regardless of the size of wind
farm.

1 A metaheuristic optimization approach is a general strategy that is
applicable to a wide range of optimization problems by making few or
no assumptions about the problem (Burke and Kendall 2013).

Section 2 introduces the approach of the wind farm lay-
out optimization framework describing the components and
the optimization algorithm deployed. Section 3 introduces
the specific cases explored in this paper with the results pre-
sented in Sect. 4. Section 5 analyses these results before the
conclusions of this study are summarized in Sect. 6.

2 Approach

In general, wind farm layout optimization requires two prin-
cipal components, one for assessing the quality of a given
wind farm layout and a second for altering the layouts in
an effort to improve them. The standard paradigm for the
optimization of wind farm layouts makes use of the LCOE
for assessing the quality of the layout, integrating wind farm
wake models and cost models in order to ascertain the LCOE
for a given layout. In this application, lower LCOE values
represent better layouts. The present methodology expands
on the standard paradigm by including the electrical infras-
tructure as the initial step in the determination of the LCOE.
The location of the offshore substations and the design of
the intra-array cable network impacts both the annual energy
production (AEP) and the costs and is, therefore, an important
step in assessing the impact of changes to the turbine layout.
The modular design of the approach, shown in Fig. 1, has
allowed different wake, cost, and optimization algorithms to
be implemented as part of the development of the tool. Prior
to integration through the optimization algorithm, each of
the components of the evaluation function have been inde-
pendently validated (Pillai et al. 2014, 2015, 2016a). The
optimization algorithm, the PSO in the present work, then
makes use of the LCOE values in order to advise the next
iteration of proposed layouts.

Existingoffshorewind farmshavegenerally beendesigned
using simple spacing rules with turbines laid out along reg-
ular grids. Though this is the preferred approach from the
perspective of search and rescue practitioners and helps to
maintain navigational routes through the wind farm, it does
limit the designs that a developer could deploy (NOREL

Start Layout 
Op�miza�on

Ini�al Turbine 
Posi�ons

Evalua�on 
Func�onAEP Module Cost Module Compute LCOE

Termina�on 
Criteria MetFALSEOp�miza�on 

Module
New Turbine 

Posi�ons

Electrical 
Module

Process 
Results

End Layout 
Op�miza�on TRUE

Fig. 1 Modular approach to wind farm layout optimization
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Group 2014). In order to explore the different levels of con-
straints underwhichwind farms are currently being designed,
allowing greater flexibility to the wind farm developer, three
constraint sets are implemented each requiring a different
optimization problem to be implemented. Under these con-
straints, the wind turbine positions are either on a fixed grid
defined by the optimizer, one of a set of pre-defined allow-
able turbine positions, or anywherewithin thewind farm area
that satisfies the seabed constraints. These varying degrees
of constraint on the wind farm design represent the different
approaches taken by European regulators in order to offer
flexibility to the wind farm developers while still accounting
for the interests and concerns of other marine stakeholders.

2.1 Evaluation of LCOE

As described, the wind farm layout optimization tool com-
pares layouts on a basis of LCOE as this is a single metric
which represents the cost effectiveness of a layout. The
LCOE, measured in energy generation per unit cost, takes
into account both the lifetime energy production of the wind
farm and the lifetime costs of the project and is a common
metric used by project developers to compare designs and
competing projects. The energy production and costs are
both discounted in order to represent the total lifetime energy
production and lifetime costs in present value terms. In this
way, the LCOE represents the ratio of the present value of
the inputs to the present value of the outputs of the wind
farm (Tegen et al. 2012, 2013).

LCOE =
∑n

t=1

Ct

(1 + r)t
∑n

t=1

AEPt
(1 + r)t

(1)

where Ct is the total costs incurred in year t , n is the project
lifetime, AEPt , is the annual energy production in year t , and
r is the discount rate of the project.

2.1.1 Electrical infrastructure design

The first step in the evaluation of a layout as shown in Fig. 1 is
the design of the necessary electrical infrastructure to support
the given layout considering any seabed restrictions which
may be present at the site. As the electrical infrastructure
impacts the energy produced by the wind farm due to losses
through the electrical system, and changes to the electrical
infrastructure can impact the project costs, the inclusion of
this step helps quantify the impact on the LCOEof changes to
the wind farm layout. The methodology for this is described
in greater detail by the authors in Pillai et al. (2015). The
majority of existingwind farm layout optimization tools have
not considered the impact of the turbine layout on either

the intra-array cable collection networks or substation posi-
tions and the impact that these changes will have on the
LCOE (Chen et al. 2013; Chowdhury et al. 2013; Couto
et al. 2013; DuPont and Cagan 2012; Elkinton 2007; Elk-
inton et al. 2008; Geem and Hong 2013; Grady et al. 2005;
Huang 2009; Ituarte-Villarreal and Espiritu 2011; Marmidis
et al 2008; Mosetti et al. 1994; Réthoré et al. 2011; Shakoor
et al. 2016; Zhang 2013; Zhang et al. 2014). The existing
tools that have included this step in the optimization of awind
farm layout, have, however, omitted bathymetric constraints
which a real-world developer would face (Feng et al. 2016;
Hou et al. 2017). Furthermore, existing standalone tools have
explored the optimization of the intra-array cable network
for an offshore wind farm as an independent problem. These
approaches have similarly, also not considered the irregu-
lar seabed exclusion areas for intra-array cables which arise
from both bathymetric and regulatory constraints that the
developer may face at sites. As these exclusion areas are
often non-convex polygons in shape, their accurate inclu-
sion in previous work has proven challenging (Bauer and
Lysgaard 2015; Dutta andOverbye 2013; Lindahl et al. 2013;
Rodrigues et al. 2016).

The optimization of the electrical infrastructure as devel-
oped in Pillai et al. (2015) uses of a series of heuristics and
is, therefore, not guaranteed to identify the proven optimal
solution; however, it has been found to identify good qual-
ity solutions in an acceptable runtime thereby representing
a pragmatic approach to this real-world problem. This opti-
mization process identifies not only the substation positions,
and cable paths given the bathymetric constraints, but also
the conductor sizes for each electrical cable in the network.
This methodology to optimize the electrical infrastructure is
shown in Algorithm 1.

The first step in this process is the determination of the
substation positions by clustering the turbine positions. By
making use of a modified clustering algorithm based on
k-means++ (Arthur and Vassilvitskii 2007), the clustering
process is capable of generating substation positions which
adhere to the seabed constraints and their own capacity con-
straints while still minimizing the distance to the turbines.
From here, a pathfinding algorithm is executed to generate
the fully connected set of cable paths for the given turbine
and substation positions. The pathfinding algorithm is used
in order to consider the seabed obstacles which define where
the cables cannot be placed. Using the accurate lengths of
cables determined by the pathfinding algorithm, a capaci-
tatedminimum spanning tree (CMST) problem is formulated
and solved using a commercial MILP solver, Gurobi (Gurobi
Optimization Inc. 2015). The solution to the CMST identifies
which of the cables should be deployed in the final network.
In thisway, the pathfinding step defines all the possible cables
to consider and their accurate lengths, while the construction
of the CMST selects which of these cables should be used
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Algorithm 1Offshore wind farm intra-array cable optimiza-
tion
Require: The turbine positions, the GIS obstacles, and the number of

substations
1: Given the number of substations assign each turbine to a substa-

tion and compute the substation positions using the Capacitated
kmeans++ Clustering

2: for all substations do
3: for all turbines assigned to substation do
4: Identify the 10 closest turbines
5: Identify the constrained shortest path between the turbine and

substation using Delaunay Triangulation Based Navigational
Mesh Pathfinding.

6: for 10 closest turbines do
7: Identify the constrained shortest path between turbine pair

using Delaunay Triangulation Based Navigational Mesh
Pathfinding.

8: end for
9: end for
10: Formulate mixed-integer linear program for substation and its

assigned turbines given the 11 possible arcs for each turbine com-
puted above

11: repeat
12: Solve mixed-integer linear program
13: if any cables in mixed-integer linear program solution cross

then
14: Add individual crossing constraints
15: end if
16: until No cables cross
17: end for
18: return substation positions, cable paths, cable flows, and cable

types

to minimize the cost of the infrastructure. Following this,
the pathfinding algorithm is again deployed to determine the
export cable path from each substation now considering the
intra-array network as constraint regions to ensure that the
export cable does not cross any of the intra-array cables.

Using this sub-tool, the electrical constraints of the cables
and substations are not only taken into account, but seabed
features dictating where this equipment cannot be placed are
also considered. As intra-array cables can exceed £500,000
per km installed, it is important that the impact the wind
farm layout has on the amount of cable needed is included in
the assessment of the layout’s cost (Gaillard 2015). Further-
more it is not uncommon for large offshore wind farms to be
characterized by a number of constraint regions which can
significantly impact the design of the intra-array collection
network (Pillai et al. 2015).

2.1.2 AEP estimation

It is well understood that any device extracting energy from a
natural flux has some impact on that flux. Wind turbines are
no different, and directly behind an operating wind turbine,
the air flow is affected due to the extraction of energy. In
this region, known as the wake, the wind is characterized by
reduced speeds and increased levels of turbulence compared

to the conditions upstream of the turbine (Barthelmie et al.
2006, 2009; Makridis and Chick 2013; Renkema 2007). The
layout of a wind farm can, therefore, have a major impact on
the wind speeds that each individual wind turbine within the
wind farm experiences and thereby the energy production
of the farm as a whole. As a result of this, it is important
for the wind turbine wakes to be accounted for both when
estimating wind farm production figures and the LCOE of a
given layout.

The calculation of the AEP within this tool is done using
an industry standard analytic approach in which the wake
losses are accounted for using theLarsenwakemodel (Larsen
1988). This model has been selected as validation using site
data demonstrated that it represented a good compromise
between computational intensity and accuracy (Gaumond
et al. 2012; Pillai et al. 2014). The Jensenwakemodel used in
previous layout optimization work has been found in valida-
tion studies to under-estimate the AEP and is, therefore, not
as well suited for this work as the Larsen model (Gaumond
et al. 2012).

To compute the AEP, each wind speed and direction com-
bination are stepped through in turn. For each freewind speed
and wind direction the analytic wake model is used to update
each turbine’s experienced wind speed based on the perfor-
mance of all upwind turbines. From this, the wind turbine
power curve is used to convert the incident wind speed to the
energy generated under the given conditions. For each wind
speed and direction combination, the energy losses through
the electrical cable network are then computed based on each
turbine’s individual contribution to the AEP and the total
wind farm contribution to AEP under the given free-stream
wind speed and direction is updated. This total production for
each wind speed and direction combination is then scaled by
the probability of occurrence of this combination for the site
in question before being added to the AEP.

AEP = 8766×
∑

di

∑

vi

P(di , vi )×[E(di , vi )−L(E(di , vi ))]

(2)

where di is the wind direction; vi is the wind speed; P(di , vi )
is the joint probability of di and vi ; E(di , vi ) is the energy
production for the wind farm for the combination of inci-
dent wind speed and direction considering the wake losses;
and L(E(di , vi )) is the electrical losses associated with the
wind speed and direction as a result of the intra-array cable
network. These electrical losses are assessed using an IEC
loss calculation based on IEC 60228 and IEC 60287 (IEC
2006a, b). This methodology is similar to that used by com-
mercial tools such as WindFarmer and WindPRO which
include both the losses due to wakes and within the intra-
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Table 1 Cost contribution to
CAPEX and OPEX

Cost element CAPEX OPEX DECEX Inclusion of layout

Turbine supply � – – Low

Turbine installation � – – Medium

Foundation supply � – – Medium

Foundation installation � – – Medium

Intra-array cables � – – High

Operations and maintenance (O&M) – � – Medium

Decommissioning – – � Medium

Offshore transmission assets � � – Low

array cable network (DNV GL—Energy 2014; Thøgersen
2005).

2.1.3 Cost assessment

The final step in the evaluation of the LCOE as shown in
Fig. 1 is the estimation of the costs over the lifetime of the
project. Whereas previous tools have assumed a cost which
scales with the number of turbines, the approach used in this
tool seeks tomore accurately capture the impact that thewind
farm layout has on the lifetime costs. Layouts with the same
number of turbines may, therefore, have different costs using
this model as opposed to the cost model frequently deployed
in layout optimization which represents the cost as a function
of only the number of turbines.

The project costs are divided into eight principal cost cen-
tres with varying degrees of dependency to the wind farm
layout as shown inTable 1. The capital expenditure (CAPEX)
elements are incurred either in the construction stage of the
project or in the case of decommissioning at the end of the
project life and discounted appropriately while the opera-
tional expenditure (OPEX) elements are incurred in each year
of operation following the construction period and prior to
the decommissioning period. The decommissioning costs are
categorized as decommissioning expenditure (DECEX) and
are incurred at the end of life during the decommissioning
period during which there is no OPEX incurred.

Each of these cost elements considers not only the turbine
positions relative to one another, but also the turbine posi-
tions relative to the construction and O&M ports, as well as
the depth at each individual turbine’s position. Relevant cost
centres also consider the vessel parameters, cable parame-
ters, and design parameters of the substations. The specific
cost relationships have been developed in discussions with
wind farm developers and suppliers in order to ensure that
the costs are representative of the costs to be incurred by
future projects in European waters and accurately capture
the impact that the turbine layout can have on these costs.

Turbine supply The cost associated with the supply of the
turbines is based entirely on a price per turbine supplied by
turbine manufactures. This cost is, therefore, independent of
the layout of the wind farm and factor only of the number of
turbines or installed capacity of the wind farm.

Turbine installationUsing market values for vessel costs and
their capacities, the turbine installation costs are modelled by
assessing the total amount of time required to install the tur-
bines at their specific locations within the wind farm. This,
therefore, includes the calculation of the time required for
each installation operation, the travel time between turbines,
and the travel time to and from the construction port. In order
to determine the optimal vessel installation route, the turbines
are clustered based on the capacity of the installation vessel,
and for each cluster a shortest path is computed between
the port, each turbine in the cluster, and the port again. This
approach, therefore, accurately computes the distance that
the vessel must travel over the installation process. From
this, the total time is computed based on assumed weather
availability and the costs computed based on the vessel and
equipment day rates. The turbine layout, therefore, has a
direct impact on the time needed to travel between turbine
positions as well as to and from the port.

Foundation supply Foundation costs are found to be highly
dependent on the site conditions where the foundation is to
be installed. To account for this dependence, previous cost
models have attempted a bottom up approach based on the
soil characteristics at the installation site to model the costs.
Unfortunately, this approach has proven difficult to validate
for all foundation types (Elkinton 2007). For the present tool,
therefore, a depth dependency has been developed from dis-
cussions with manufacturers and the specific soil conditions
are not included. Detailed bathymetry of a site is, therefore,
necessary in order to accurately estimate the variation in
foundation supply costs as a function of the turbine layout.
As the original cases defined by Mosetti et al. (1994) did not
include bathymetric data, a constant depth has been assumed
across the site.
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Foundation installation The foundation installation process
like the turbine installationmodule is based on estimating the
time needed to complete the operations and converting this
time to a cost. Unlike the turbine installation though, this is
modelled as three distinct phases which each uses a different
vessel to complete.

Regardless of the foundation type (gravity-based,
monopile, or jacket), some seabed preparation is necessary.
For a gravity-based foundation this might be the necessary
dredging and levelling of the seabed,while formonopiles and
jackets this would more likely be pre-pilling works including
surveying and drilling. After this step, the foundations will
be installed as a separate operation following which some
kind of scour protection will often be added. The installa-
tion of scour protection is again modelled as a separate step
involving a different vessel from either the site preparation
or foundation installation processes. In some conditions, the
scour protection will not be necessary; however, for the time
being the present model assumes that all turbines will require
scour protection.

Intra-array cable costs The total horizontal length of intra-
array cables required is computed from the intra-array cable
optimization tool described earlier. This tool is described in
detail in previouswork by the authors (Pillai et al. 2015). This
tool has the support for optimizing the layout for different
cable cross-section sizes and, therefore, can output not only
the total length of cable, but the horizontal lengths required
for each segment and the required cross-section. From this,
the intra-array cable cost module computes the necessary
vertical cable and the necessary spare cable before computing
the costs.

Following the calculation of the supply cost, the installa-
tion cost is computed in a similar manner to the turbine and
foundation installation modules. This is done based on data
available for cable trenching vessels and, therefore, assumes
that all cables are trenched and buried.

Operations and maintenance The operations and mainte-
nance costs are based on a tool developed by EDF Energy
R&D UK Centre which models the anticipated operations
and maintenance cost of a project to vary with the projects
distance from the operations and maintenance port and the
capacity of the project. As this term is affected by distance
of the wind farm to the operations and maintenance port,
this too is affected by the layout. The operations and mainte-
nance costs are classed as operational expenditure (OPEX)
as these are incurred each year of operation as opposed to
the preceding cost elements which are only incurred during
the construction period and are, therefore, classed as CAPEX
elements.

Decommissioning The decommissioning costs include the
removal of the turbines and foundations. At the moment, it
is unclear what will happen to the transmission and export
cables at the end of a wind farm’s life. The model, there-
fore, assumes that these cables are not removed at the
time of decommissioning, but simply cut at the turbines
and substation, leaving the buried lengths as they are. The
decommissioning costs are, therefore,modelled similar to the
installation processes with the time each vessel is required
first computed before this is converted to a cost. Like the
installation processes it is assumed that the vessels have some
finite capacity and must return to the decommissioning port
during the overall operation. The turbines and foundations
are assumed to be decommissioned in separate steps requir-
ing separate vessels. Like the installation phases, this term is,
therefore, dependent on the turbine positions and is affected
by the proposed layout.

Offshore transmission assets The final cost element of this
cost model is the inclusion of the offshore transmission
asset transfer fees. In the UK, the offshore substation, export
cables, and onshore substation must be owned and operated
by a separate company from the wind farm operator. Practi-
cally, therefore,mostwind farmdevelopers build these assets,
and then transfer them to a transmission operator before com-
missioning the wind farm. As a result, only some of the
CAPEX is incurred by the project, and the rest is incurred
as a component of the transmission fee along with region-
ally based costs set by the network operator; in the UK
this is National Grid. Both the CAPEX and OPEX compo-
nents of theOffshore TransmissionOwners’ assets have been
computed in discussion with National Grid and equipment
manufacturers based on the capacity of the assets.

2.2 Particle swarm optimization

The particle swarm optimization algorithm is a population-
based metaheuristic based on the behaviour of flocking birds
or shoaling fish (Eberhart and Kennedy 1995; Kennedy
and Eberhart 1995). In this respect, the algorithm treats
the candidate solutions as particles within a swarm which
are exploring the search space cooperatively. Each particle
(solution) changes its position in the search space between
iterations based on a velocity vector defined by the knowl-
edge of both the swarm’s past position and the individual
particle’s historical positions within the search space. For
iteration i of the process, this velocity, v, for a given particle
is given by:

vi = C1 × vi−1 + C2 × r1 (p − xi ) + C3 × r2 (g − xi ) ,

(3)
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where C1, C2, and C3 are coefficients representing the
weighting of each of the contributors determined by tuning
the PSO; p is the best position that the particle has histori-
cally occupied within the search space; g is the best position
that any individual within the swarm as a whole has ever
occupied; x is the solution under consideration; and r1 and
r2 are two random numbers between 0 and 1 selected using a
uniformdistribution.With this velocity the particle’s position
the next iteration is given by:

xi+1 = xi + vi (4)

Once each particle’s position is updated, the evaluation
function is used to determine the corresponding LCOE for
each of the proposed layouts. Each particle’s historical best
position p is then updated if needed, and the best p value is
used to define g. These updated p and g values are needed
in the determination of the updated particle velocities for the
next iteration of the process.

Compared to the genetic algorithm or alternate meta-
heuristics which have been applied to the wind farm layout
optimization problem, the PSO is of interest as in opti-
mization benchmarking studies it has been found to find
high-quality solutions in less time than a similar genetic algo-
rithm (Eberhart et al. 2001; Hassan et al. 2005). Given the
complexity of future wind farms, this is of interest to wind
farm developers as the PSO could, therefore, identify better
solutions than the industry standard approaches using com-
mercial software tools thereby leading to more efficient wind
farm layouts. Furthermore, whereas the genetic algorithm is
seen as a competitive metaheuristic in which individual solu-
tions compete for survival, the PSO fosters a cooperative
environment where the individual solutions directly impact
one another. In this way, all members of the swarm are made
aware of the improvements found by each individual parti-
cle, using this information to inform their future movements
within the search space.

The parameters of the present PSO are given in Table 2.
Due to the available computational power, this study used
a constant swarm size of 100 particles. In order to ensure
that the velocity vector does not take a particle outside of the
search space, a dynamic velocity clamping approach was
used in which velocity limits are imposed in each direc-
tion based on the location of the particle. This is similar
to the trajectory constriction approach described by Clerc
and Kennedy (2002) and Van Den Bergh and Engelbrecht
(2006). For the binary constraints described below, a binary
implementation of the PSO in which all decision variables
are binary variables is necessary. As the velocity in the binary
implementation must correspond to a specific decision vari-
able being either a 1 or a 0, a velocity transfer function is
required to convert the velocity for each decision variable
into a probability that the decision variable should be a 1.

Table 2 Particle swarm parameters

Parameter Description

Swarm size 100

Velocity clamping Dynamic

Velocity transfer function
(binary encoding)

T (x) = ∣∣ 2
π

× arctan
(
x · π

2

)∣∣

Neighbourhood topology Global (gBest)

Stop criteria Diversity < 10%

Maximum generations reached

No improvement over 50 generations

In the original study byMosetti et al. (1994), thewind farm
areawas discretized into 100 allowable turbine positions. The
optimizer is, therefore, tasked with the selection of which of
these positions to use for the deployed wind turbines. This,
therefore, represents a constraint on the turbine placement
and it would be expected that better layouts could be achieved
if this constraint was relaxed. To explore this, three different
constraints on the turbine placement are used in the present
study:

1. Array constraints: The turbine positions are constrained
to being on a regular grid with constant downwind and
crosswind spacings. The decision variables of the opti-
mization problem define the spacing and orientation of
the regular grid of turbine positions with constant down-
wind and crosswind spacing throughout the site.

2. Binary constraints: The turbine positions are limited
to being one of a predefined set of allowable turbine
positions. For the present study, the wind farm area is dis-
cretized into 100 allowable turbine positions as defined
(Mosetti et al. 1994) and the decision variables of the opti-
mization problem are binary variables representing the
presence of a turbine in a particular cell. This represents
the case in which the wind farm developer, regulator, and
stakeholders define a set of acceptable turbine positions
and the wind farm is designed by selecting turbine posi-
tions form this set.

3. Continuous constraints: The turbine positions can be
anywhere within the wind farm boundary that is tech-
nically feasible. The decision variables directly define
the turbine coordinates and may, therefore, occupy any
value within the wind farm area. This represents a situa-
tion inwhich thewind farm developer is free to design the
wind farm as they see best limited only by the technical
constraints of the site.

The three approaches represent differentways inwhich the
problem can be defined all of which are used by wind farm
developers to design and explore the available options in the

123



Journal of Ocean Engineering and Marine Energy

20%
40%

60%
80%

100%

0%  EW

N

S

Wind Speeds in m/s
u ≥  18
16 ≤  u < 18
13 ≤  u < 16
11 ≤  u < 13
9 ≤  u < 11
7 ≤  u < 9

(a) Case 1

0.6%
1.2%

1.8%
2.4%

3%

0%  EW

N

S

Wind Speeds in m/s
u ≥  18
16 ≤  u < 18
13 ≤  u < 16
11 ≤  u < 13
9 ≤  u < 11
7 ≤  u < 9

(b) Case 2

1.2%
2.4%

3.6%
4.8%

6%

0%  EW

N

S

Wind Speeds in m/s
u ≥  18
16 ≤  u < 18
13 ≤  u < 16
11 ≤  u < 13
9 ≤  u < 11
7 ≤  u < 9

(c) Case 3

Fig. 2 Wind roses for the three different resource cases

design of an offshore wind farm. The array and binary con-
straint sets are of interest to a wind farm developer in regions
where the regulator imposes some degree of symmetry as
a result of navigational and search and rescue safety con-
cerns (NORELGroup 2014).As the three constraint sets have
fundamentally different degrees of complexity and represent
different design spaces the optimizers were tuned individ-
ually for each of the problems in an attempt to maximize
the performance though the same swarm size was used for
all cases. Regardless of the placement constraints used, the
technical seabed constraints such as the position of wrecks,
unexploded ordnance, and the seabed slope are considered.
For all three constraint sets, a minimum separation constraint
is applied to ensure that turbines do not risk colliding and the
wind farm boundary explicitly defines the limits of the wind
farm.

3 Definition of cases

In the development of layout optimization tools three case
studies have been defined by Mosetti et al. (1994). These
three cases have been commonly used in order to evaluate
the performance and demonstrate the capabilities of wind
farm layout optimization tools. In order to demonstrate the
capabilities of the present framework, which makes use of a
more detailed layout evaluation function, the three cases are
approached using the original constraints as well as under
two different sets of relaxed constraints. Through this, the
capabilities of the present framework using a PSO are high-
lighted.

The three cases all consider a 2 km by 2 km area in which
turbines must be placed; however, they differ with regards to
thewind resource. Case one considers a case of constantwind
speed and constant wind direction in which the wind is con-
stantly 12m s−1 and from the 10◦ sector centred on 0◦. The
second case is described as the case of constant wind speed

and variable direction in which the wind is again constantly
12m s−1, but now has an equal probability of blowing from
any of the 36 discrete wind directions. Finally, the third case,
the case of variable wind speed and direction, describes a
case inwhich both thewind speed andwinddirection are vari-
able and most closely resembles a true wind farm. All three
cases describe the resource using 36 discrete wind directions
(Fig. 2) which are each used in the calculation of the AEP
and the modelling of the wakes in the evaluation function.
Validation studies of analytic wake models have found that
these models are not necessarily more accurate when using
narrower wind direction sectors, and discrete wind sectors of
10◦ to 30◦ in size should be used when deploying analytic
wakemodels such as the Jensen or Larsenmodels (Gaumond
et al. 2013; Pillai et al. 2014).

The original cases do not define the water depth nor are
the locations of the relevant ports defined. In order to allow
comparison with existing results for these case studies, the
water depth has been assumed constant across the site and
the ports have been placed far away relative to the size of the
wind farm.

4 Results

In order to demonstrate the capabilities of the present frame-
work using a PSO, the final layouts from the original study
by Mosetti et al. (1994) and the final layouts from a subse-
quent study by Grady et al. (2005) are evaluated using the
present evaluation function in order to offer a fair comparison
to the new layouts proposed. These two studies used differ-
ent numbers of turbines for each resource case and, therefore,
cannot be directly compared to one another. Likewise, much
of the literature has also allowed the number of turbines to
vary thereby making direct comparisons challenging. In the
present framework, the number of turbines is fixed, thereby
allowing a direct comparison on the same number of tur-
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Fig. 3 Original optimized layouts proposed by Mosetti et al. (1994) on the top row and Grady et al. (2005) on the bottom row for the three resource
cases

bines against both the reference case study and the different
constraint sets.

The original layouts produced in the studies by Mosetti
et al. (1994) and Grady et al. (2005) for all three resource
cases are shown in Fig. 3. The studies performed by Mosetti
et al. (1994) and Grady et al. (2005) both allowed the number
of turbines to vary and, therefore, for each of the resource
cases, the two studies present different wind farm sizes. In
the present study, each wind farm resource is executed with
all three sets of constraints and at same the wind farm sizes
as reported in the two past studies in order to fairly compare
to the reference studies. The binary constraint set represents
the most similar case to the problem originally defined by
Mosetti et al. (1994); however, the present tool uses a fixed
number of turbines, while the original studies allowed this to
change. Each of the presented optimization results represents
the converged results after a maximum of 100 generations.
In general, less than 60 generations were required to reach
the converged results presented.

4.1 Case 1: constant wind speed, constant direction

The results presented in Table 3 and Fig. 4 shows the outputs
from re-evaluating the original layouts proposed in the pre-
vious studies (Grady et al. 2005; Mosetti et al. 1994) as well
as the outputs from the execution of the PSO for this case. As
the developedmethod uses the number of turbines as an input
to the optimization process, it was necessary to execute the
optimizer for two different wind farm sizes corresponding to
the studies originally performed by Mosetti et al. (1994) and
Grady et al. (2005), respectively, allowing the results to be
directly compared to these past studies (shown in Fig. 3a, d).
As described above, each of the wind farm sizes was run with
three different types of constraints corresponding to different
requirements on the placement of the turbines.

From the results presented in Table 3 it can be observed
that for both wind farm sizes, the PSO either finds improve-
ments or the same solution proposed by the references cases
regardless of which constraint set was used. Specifically,
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Table 3 Layout optimization
results: constant wind speed,
constant direction

Study Number of
Turbines

Lifetime cost (£) AEP (MWh) LCOE (£/MWh)

Mosetti et al. (1994) 26 4.42 × 108 9.90 × 104 522.87

Array constraints 26 4.39 × 108 1.18 × 105 434.87

Binary constraints 26 4.41 × 108 1.01 × 105 510.46

Continuous constraints 26 4.42 × 108 1.16 × 105 447.18

Grady et al. (2005) 30 4.77 × 108 1.13 × 105 496.29

Array constraints 30 4.76 × 108 1.33 × 105 419.61

Binary constraints 30 4.77 × 108 1.13 × 105 496.29

Continuous constraints 30 4.78 × 108 1.33 × 105 421.64

Bold denotes the solutions that have the lowest LCOE values for the given wind farm sizes

using the binary constraint set for the larger wind farm size
resulted in the same layout presented by Grady et al. (2005),
whereas for each of the other five cases, improvements were
highlighted compared to the relevant reference case. As is
highlighted in Table 3, for both wind farm sizes, the varia-
tion in costs as a result of the changes in layout are very small
as the micrositing within the 4 km2 wind farm area results
in very minimal changes in the installation costs. In fact, as
the port position was not defined in the original case, it was
necessary to place the port very far away relative to the size
of the wind farm in order to remove any bias to the port’s
position. As a result of this, there are relatively large tran-
sit times to the wind farm included in each installation cost
which are unaffected by the wind farm layout, but a function
of the wind farm’s distance from the installation port.

4.2 Case 2: constant wind speed, variable direction

The results for each of the constraint sets and wind farm sizes
are summarized in Table 4 and the corresponding layouts
are shown in Fig. 5. The original layouts proposed by the
reference studies are shown in Fig. 3b, e. From Table 4, it
can be seen that similar to the results for Case 1, the newly
developed layout optimization framework for offshore wind
farms is capable of identifying improvements using the PSO
under all three constraint sets for both wind farm sizes.

4.3 Case 3: variable wind speed, variable direction

The results of executing the current framework with the PSO
are found in Table 5with the corresponding layouts plotted in
Fig. 6 and the original reference layouts in Fig. 3c, f. Similar
to the previous cases, the PSO using any of the constraint sets
was capable of identifying improved layouts with regards to
the LCOE. Similar to the previous cases, the best results were
found using the array constraints.

5 Discussion

Using the present tool, cost variations as a result of changes
to the wind farm layout are captured and included in the
calculation of the layout’s LCOE. For a small wind farm
such as those considered here, it is, however, the increase in
AEP which drives the decreases in LCOE, which is why for
many cases an increase in lifetime cost is observed; however,
the corresponding increase in AEP is sufficiently large to still
result in a net reduction of the LCOE.

As would be expected, relaxing the turbine positioning
constraints by designing arrays within the boundary or by
treating the wind farm area as a continuous domain results
in significant improvements in the LCOE as the shape of
the layout can be designed to best utilize the characteristics
of the site. Somewhat surprisingly, the continuous optimizer
which represents the most unconstrained case was unable
to consistently find improvements over the array optimizer.
However, both were consistently able to find improvements
compared to the binary optimizer which made use of the
discretized wind farm area. Interestingly, the array optimizer
appears more capable than the others to adjust the shape of
the wind farm layout to take advantage of the wind resource.

As the array optimizer and continuous optimizer did not
identify similar solutions it suggests that further tuning of
the PSO is necessary in order to ensure that the optimizers
are not prematurely converging to a local solution. Fur-
thermore, given the results it indicates that moving from
the binary or array optimizers to the continuous optimizer
increases the size of the problem quite significantly. In the
present case, all three constraint sets were solved using the
same size of swarm; however, it might be more prudent for
the swarm size to change depending on which constraint
set is used thereby allowing the more complex problem to
be solved with a larger swarm in order to avoid prema-
ture convergence. With a sufficiently large swarm, it should
be possible for the PSO to converge to a higher quality
solution closer to that of the global optimum. It should be
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Fig. 4 Optimized layouts for the case of a constant wind speed and constant direction with 26 turbines (top row) and 30 turbines (bottom row)
using both optimization algorithms and all three constraint sets

Table 4 Layout optimization
results: constant wind speed,
variable direction

Study Number of
turbines

Lifetime cost (£) AEP (MWh) LCOE (£/MWh)

Mosetti et al. (1994) 19 3.77 × 108 8.17 × 104 540.25

Array constraints 19 3.77 × 108 8.32 × 104 530.79

Binary constraints 19 3.77 × 108 8.21 × 104 537.49

Continuous constraints 19 3.77 × 108 8.19 × 104 538.29

Grady et al. (2005) 39 5.62 × 108 1.57 × 105 419.13

Array constraints 39 5.61 × 108 1.61 × 105 408.07

Binary constraints 39 5.61 × 108 1.59 × 105 413.00

Continuous constraints 39 5.62 × 108 1.58 × 105 417.29

Bold denotes the solutions that have the lowest LCOE values for the given wind farm sizes

noted, however, that metaheuristic algorithms like the PSO
cannot guarantee, especially for a complex objective func-
tion such as the LCOE, that the optimization process will
converge to the global optimum. Given the computational
power allocated for this study, however, it was not possible

to execute the optimizers with larger swarms. With swarms
of 100 individuals as used in this study, each optimiza-
tion took between one and three days to execute depending
on the wind farm size and the selected constraints when
executed on a desktop computer with an Intel Xeon 8-
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Fig. 5 Optimized layout for the case of a constant wind speed and variable direction with 19 and 39 turbines using both optimization algorithms
and all three constraint sets

Table 5 Layout optimization
results: variable wind speed,
variable direction

Study Number of
turbines

Lifetime cost (£) AEP (MWh) LCOE (£/MWh)

Mosetti et al. (1994) 15 3.40 × 108 6.89 × 104 576.94

Array constraints 15 3.39 × 108 6.93 × 104 571.51

Binary constraints 15 3.39 × 108 6.91 × 104 573.87

Continuous constraints 15 3.39 × 108 6.91 × 104 574.22

Grady et al. (2005) 39 5.62 × 108 1.74 × 105 377.14

Array constraints 39 5.63 × 108 1.75 × 105 375.50

Binary constraints 39 5.62 × 108 1.75 × 105 376.72

Continuous constraints 39 5.62 × 108 1.75 × 105 376.72

Bold denotes the solutions that have the lowest LCOE values for the given wind farm sizes

CPU processor rated at 3.3 GHz. As the three different
constraint sets lead to three different instances of the prob-

lem with different decision variables, the design spaces are
not directly comparable and each of the three optimizers
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Fig. 6 Optimized layout for the case of a variable wind speed and variable direction with 15 and 39 turbines using both optimization algorithms
and all three constraint sets

should be tuned independently in order to ensure the best
performance.

Looking at Case 1, it can be seen that both the binary
and continuous optimizers use the majority of the available
space, while the array optimizer is capable of identifying
that it should sacrifice a close spacing in the direction per-
pendicular to the single wind direction. The binary optimizer
is unable to find a similar solution due to the resolution of
the discrete grid used in the binary optimization. This sug-
gests that the discretization of the wind farm area should be
done at a higher resolution to afford the optimizer a greater
degree of flexibility. The present study used the 100 allow-
able turbine positions as this is what had been used in past
studies. Increasing the number of allowable turbine positions
through a higher resolution would, however, increase the size
of the problem and potentially slow the rate of convergence.

The continuous optimizer should, however, be capable of
identifying a similar solution, and the fact that it does not
highlights that further work remains to be done with this
optimizer in order to ensure that high quality solutions are
reached.

The results from Case 2, however, indicate that the binary
optimizer is placing more turbines on the edge of the wind
farm in order to take advantage of the symmetrical wind
resource, especially in the larger wind farm case. For this
resource case and the larger wind farm, compared to the full
continuous optimizer the binary optimizer results in better
AEP values, demonstrating that additional constraints on the
problem can reduce the search space without sacrificing the
quality of the ultimate layouts.

Limiting the turbine positions to 100 possible positions
significantly constrained the search space such that the
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solutions had inferior fitness values compared to the more
relaxed constraint sets. This indicates that moving to the
binary constraints with a discretized set of turbine positions
over-constrains the problem, eliminating high-quality valid
solutions. Considering the Mosetti cases, the impact of this
on the LCOE varied from £1 to £70 per MWh increases, cor-
responding to 0–16% potential improvements in LCOE from
relaxing the constraints. Given some of the assumptions, the
percentage difference is smaller than it would be if this were
a real site, as there are some fixed costs which are intention-
ally overestimated.As described earlier, the port locationwas
defined as far away relative to the size of the wind farm in
order to avoid the optimizer clustering turbines close to the
installation port. The installation costs are, therefore, larger
than they would be for a real case thereby increasing the
LCOE. For these cases, it is, therefore, more valuable to
analyse the absolute difference in LCOE rather than the per-
centage reduction.

Interestingly, Case 3 which represents the most realistic
wind resource case finds very small variations in AEP across
the three different constraint sets demonstrating that for a
more varied wind speed and wind direction combinations
all three constraint sets have merit and are capable of find-
ing good solutions. The choice of which constraint set to
use, therefore, becomes a function of what constraints are
imposed on the site developer by consenting agencies or other
stakeholders. The results from this case also demonstrate that
there are several different layouts with similar AEP, cost, and
LCOE values showing the complexity of the search space.
Given that there are different layouts which can result in
similar solutions the tuning of the optimizer becomes more
important and further work will need to further explore this
in order to ensure that the optimization process is not over-
looking significant improvements and that the optimizer is
operating in appropriate time scales.

6 Conclusion

This paper has presented the first results of an extended
wind farm layout optimization framework making use of a
more detailed LCOE evaluation function than existing layout
optimization tools. This frameworkwhichmakes use of a pre-
viously validatedLCOEevaluation function has been applied
to three different case studies using three different sets of
placement constraints and two different wind farm sizes for
each resource case in order to highlight both the applicabil-
ity of a PSO given the increased detail and the improvements
that can be made relative to the reference studies. The PSO
applied to these three benchmark case studies have presented
layouts with improved LCOE compared to past studies using
a genetic algorithm.Furthermore, the results shownhere indi-
cate that the PSO is of interest to this area of research as the

results can be obtained at a lower computational cost com-
pared to a genetic algorithm.

By using multiple constraint sets it is also shown that
by limiting the optimizer to create gridded layouts does not
result in poor solutions, though the observed trends highlight
the need for further tuning of the PSO in order to insure that
the optimizer does not prematurely converge. Further work
should explore both using multiple runs rather than single
runs in order to avoid any seeding bias as well as using addi-
tional computational power thereby allowing larger swarms
to be tested.
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