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Review Article

Transcriptional regulators of redox balance and
other homeostatic processes with the potential to
alter neurodegenerative disease trajectory
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Diverse neurodegenerative diseases share some common aspects to their pathology,
with many showing evidence of disruption to the brain’s numerous homeostatic pro-
cesses. As such, imbalanced inflammatory status, glutamate dyshomeostasis, hypometa-
bolism and oxidative stress are implicated in many disorders. That these pathological
processes can influence each other both up- and downstream makes for a complicated
picture, but means that successfully targeting one area may have an effect on others.
This targeting requires an understanding of the mechanisms by which homeostasis is
maintained during health, in order to uncover strategies to boost homeostasis in disease.
A case in point is redox homeostasis, maintained by antioxidant defences co-ordinately
regulated by the transcription factor Nrf2, and capable of preventing not only oxidative
stress but also inflammation and neuronal loss in neurodegenerative disease models. The
emergence of other master regulators of homeostatic processes in the brain controlling
inflammation, mitochondrial biogenesis, glutamate uptake and energy metabolism raises
the question as to whether they too can be targeted to alter disease trajectory.

Introduction
Reactive oxygen species (ROS) are oxygen-containing molecules which are primarily formed as a
result of incomplete oxygen reduction [1–3]. These substances can be broadly split into two main sub-
groups: free-radicals, such as superoxide, hydroxyl and nitric oxide, which contain one or more
unpaired electrons, and non-radical compounds such as hydrogen peroxide. Although low-level basal
ROS generation is essential for various fundamental biological roles, in particular protection against
infectious/inflammatory damage as well as cell signalling, an imbalance in ROS production versus
opposing antioxidant detoxification can lead to disruptions in cellular redox homeostasis [1–3]. Such
disturbances often arise as a function of mitochondrial dysfunction and increased transition metal
catalysis [3,4]. An increase in global ROS concentrations promotes the destructive interaction of these
species with important cell functional components in a process leading to oxidative stress.
The aggregate effects of oxidative stress are largely determined by the critical interaction of ROS

with four key cellular constructs inducing lipid peroxidation, glycoxidation, protein oxidation and spe-
cific DNA oxidation events, which, in turn, tend to worsen cellular dysfunction in a vicious cycle of
cause and effect [1,3,5]. Within the brain, neurons are particularly vulnerable to oxidative stress, due
to their high rates of mitochondrial electron transport, non-regenerative post-mitotic status, weak
intrinsic antioxidant defences and high lipid content [1,6]. Indeed, lipid peroxidation is generally one
of the earliest features of oxidative stress to occur, commonly initiating a series of harmful down-
stream chain reactions, inactivating vital protein ion channels and reducing overall membrane integ-
rity, accumulatively resulting in significant cellular apoptosis, neuronal excitotoxicity and
neurodegeneration over time [7]. As such, neurons require a complex network of antioxidant enzymes
and detoxifying species which can work synergistically to mitigate ROS accumulation and maintain a
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steady redox environment. This involves intrinsic systems, as well as metabolic support and coupling from
other cells in the brain, most notably astrocytes [8]. Despite these systems, however, oxidative stress increases in
the brain with age. The accumulation of injury, through decades of poor post-mitotic self-repair and modest
central antioxidant defence mechanisms which too deteriorate with time [1], suggests a possible explanation for
why even low-level oxidative stress infers a propensity towards general age-related declines in cognitive func-
tion. This theory has been consistently backed up by numerous in vivo models with antioxidant gene knockout
commonly affecting a shortened lifespan [9].

Oxidative stress and Alzheimer’s disease
Oxidative stress and mitochondrial dysfunction have, for some time, been associated with the patho-
progression of neurodegenerative diseases, including Alzheimer’s disease (AD), the commonest cause of
dementia worldwide. AD is an age-related, incurable neurodegenerative disorder, characterised by a progressive
decline in cognitive function severely affecting daily functional capacity. Both early-onset familial and late-onset
sporadic AD are essentially defined by the same histological hallmarks, that is amyloid-beta (Aβ) plaques,
neurofibrillary tangles (NFTs) of hyperphosphorylated-tau protein and a loss of synaptic and eventually neur-
onal integrity. Mechanistically, the pathological cascade leading to synaptic and neuronal loss is thought to
involve loss of homeostasis at multiple levels leading to impaired extracellular glutamate regulation and excito-
toxicity, inflammation, bioenergetic and metabolic compromise, proteotoxicity as well as oxidative stress
[1,5,7,10–12]. These processes are features of several neurodegenerative disorders and involve interactions
between multiple cell types in the brain: the vasculature, macro- and microglia, as well as neurons. The involve-
ment of oxidative hypothesis is supported by numerous post-mortem AD findings, with many showing marked
escalations in OS as evidenced by increased 4-HNE carbonyls (protein oxidation), parietal 8-OHDG (DNA
damage), F2-isoprostanes/MDA (lipid peroxidation), as well as evidence of hypometabolism and ROS scavenger
deficits [1,5,7,10,11].

Oxidative stress and interactions with other pathological
processes
Importantly, oxidative stress can play the role of upstream activator and/or downstream effector of many of
these other pathological processes common to neurodegenerative disease. For example, ROS imbalance can
promote pro-inflammatory phenotypes in innate and adaptive immune cells, which, in turn, can generate ROS
as part of their phenotypic switch [12,13]. Impaired glutamate homeostasis leads to inappropriate activation of
NMDA receptors, leading to excessive neuronal Ca2+ influx, triggering NO and superoxide production by the
Ca2+-dependent activation of nNOS and NADPH oxidase, respectively [14]. Mitochondrial dysfunction can
lead to excessive ROS production due to electron leakage from the electron transport chain (ETC), while ROS
itself can damage the ETC components, further exacerbating the problem [15,16]. More generally, metabolic
dysfunction, due to cerebrovascular pathology or reduced glucose uptake capacity, also can lead to oxidative
stress due to an inadequate supply of glucose to neurons, ordinarily key for NADPH regeneration through the
pentose phosphate pathway [8,17]. In AD, oxidative stress can additionally act as both upstream regulator and
downstream effector of APP pathology through influences on APP processing, protein clearance, as well as the
downstream signals that oligomeric Aβ trigger [1,5,7,10–12].

Issues surrounding the therapeutic modulation of
antioxidant defences
Despite the attractiveness of the oxidative stress hypothesis for neurodegenerative diseases as a key regulatory
node to target, trials with common antioxidants, such as vitamins E and C, in a variety of disorders including
AD showed no benefit for patients [5,18]. While this could mean that oxidative stress is not a strong regulator
of disease trajectory, there is little evidence that these interventions attained therapeutically relevant levels in
the brain or successfully ameliorated disease-associated oxidative stress. Preclinical and clinical studies of other
antioxidant molecules with different substrate profiles and pharmacokinetics are ongoing: prominent candidates
include the flavonoid apigenin, α-lipoic acid, coenzyme-Q10 and N-acetyl cysteine [19]. However, these com-
pounds may suffer conceptually similar issues as earlier vitamin studies.
One issue is the subcellular localisation of the desired increase in antioxidant capacity. Mitochondria are

both the site of substantial ROS production and the location of damage. The importance of mitochondrial
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antioxidant systems is reflected in the fact that mammalian mitochondria possess specialised antioxidant
systems, including mitochondrially localised isoforms of superoxide dismutase, glutathione peroxidase and per-
oxiredoxin [6,20,21]. AD, in particular, is associated with mitochondrial defects, functional analysis of which
has been driven by cybrid technology, whereby mitochondria from AD patients (usually platelet-derived) are
incorporated into special cell lines (termed ρ0 lines) lacking all mitochondrial DNA [22]. Cybrid studies have
revealed AD-associated reduction in cytochrome oxidase activity and expression (critical for efficient oxygen
reduction), damaged mitochondrial DNA, and impaired membrane potential and ROS overproduction [22].
Mitochondria from AD patient brains are also deficient in α-ketoglutarate dehydrogenase, a key TCA cycle
enzyme which generates ROS and is highly sensitive to inhibition by ROS [23]. Thus, targeting mitochondria
to limit damage at the source of production is an attractive strategy. The prototypical mitochondrially targeted
antioxidant, MitoQ, utilises the positively charged lipophilic triphenylphosphonium (TPP) ion to target the
antioxidant ubiquinone moiety to polarised mitochondrial inner membranes [16]. When oxidised to ubiquinol,
it is then reduced back to ubiquinone by ETC complex II. MitoQ protects strongly against lipid peroxidation
and reduces overall oxidative stress and pathology in a variety of animal models, including ischaemic–reperfu-
sion injury and Alzheimer’s and Parkinson’s diseases. In vitro analysis of neuronal N2a cells incubated with Aβ
peptide indicates that introduction of MitoQ can prevent abnormal peroxiredoxin enzymatic expression and
maintain a stable mitochondrial configuration while also increasing neurite growth despite pathological predis-
position [24]. Likewise, assimilation into a Caenorhabditis elegans AD model was shown to extend lifespan,
delay Aβ-induced paralysis and amend mitochondrial depletion of lipid membrane and cytochrome complex I/
IV [25]. In humans, a phase II clinical trial in Parkinson’s disease failed to show efficacy, though it did show
that such TPP-targeted therapeutics could be safe (a potential issue since TPP ions can, in theory, depolarise
mitochondria when in excess).
Another issue for all antioxidant therapies is whether any single antioxidant molecule can be in the correct

place(s) and the correct time(s) and have the right substrate profile to limit ROS-induced damage and subse-
quent patho-progression. Mammalian cells contain hundreds of gene products directly or indirectly involved in
the reduction of ROS of distinct types, in distinct subcellular or extracellular regions, and yet more involved in
the detoxification or reversal of damage. Expecting a single molecule to mimic these defences is perhaps expect-
ing too much.

The Nrf2 pathway, a conceptually different way to boost
antioxidant defences
As an alternative approach, attention has turned to pathways and mechanisms that control the expression of
endogenous cytoprotective gene clusters en masse. A key master regulator of antioxidant defence and detoxifi-
cation genes is the transcription factor Nrf2, which acts as a hub onto which several stress-associated signals,
including oxidative stress and heavy metal toxicity, converge [26,27]. By default, Nrf2 is held in the cytoplasm
and targeted for ubiquitin-mediated proteasomal degradation by its interactor/inhibitor Keap1. However, under
conditions of oxidative stress, one or more redox-sensitive cysteine residues on the Nrf2 interaction region of
Keap1 become oxidised, interfering with the degradation process. Nrf2 then accumulates in the nucleus where
it co-operates with small Maf proteins and activates genes containing an antioxidant response element (ARE)
in their promoter. ARE-containing genes include catalase and core components of the glutathione and thiore-
doxin/peroxiredoxin systems, as well as detoxification enzymes like glutathione-s-transferases, and so its activa-
tion boosts expression of diverse antioxidant systems, potentially more desirable than relying on a single
small-molecule antioxidant. Thus, the Nrf2 pathway acts as an endogenous stress response, activated by insults
such as mild ischaemic conditions, and contributing to the resulting neuroprotection [28,29].
Importantly, the Keap1-mediated Nrf2 degradation can also be inhibited by small molecules, which are often

electrophilic and act by modifying key Keap1 cysteine residues, particularly cysteine-151 [30]. A range of phar-
maceuticals and phytochemicals are able to activate Nrf2-mediated gene expression by this method, reviewed
elsewhere, and are protective in several animal models of neurodegenerative disease [26,30]. However, the
mechanism of Nrf2-mediated neuroprotection may well be non-cell-autonomous, since forebrain neurons
express very little Nrf2 when mature and thus their response to Nrf2 activators is weak or non-existent
[31–33]. It is likely that activation of Nrf2 in astrocytes is a key mechanism of neuroprotection, since they
support robust Nrf2-mediated responses, and astrocytic Nrf2 is sufficient to promote neuroprotection through
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the induction of glutathione production, which is then released for breakdown and neuronal uptake and usage
[31,33,34].
Of translational relevance, Tecfidera, the pharmacological brand name of the fumaric acid ester dimethyl

fumarate (DMF), was approved in 2013 for the treatment of relapsing–remitting multiple sclerosis, following
significant therapeutic efficacy in clinical testing on an easily maintained safe oral regimen [35]. Preclinical
studies showed that the cytoprotective, antioxidant and anti-inflammatory actions of DMF were via
Nrf2-dependent mechanisms [36,37]. Aside from demyelination models, DMF has shown efficacy in animal
models of Parkinson’s disease [38] and in chronic cerebral hypoperfusion [39]. These disease models may be
particularly amenable to Nrf2-activating therapy due to the strong association of oxidative stress in their patho-
progression: in Parkinson’s disease, ROS production from dysfunctional mitochondria is elevated, and further
production as a result of neuroinflammation and dopamine metabolism puts further strain on antioxidant
defences [40]. In cerebral hypoperfusion (a rough approximation of small vessel disease, [41]), chronic hypoxia
can increase ROS generation from complex III, and further ROS production from inflammation may also con-
tribute [41,42]. The key cell types mediating the effects of DMF are unclear, but nevertheless the fact that DMF
dampens pathological pathways common to multiple disorders points to clinical trials of DMF for neurodegen-
erative diseases being an attractive proposition. DMF is not the only Nrf2 activator being pursued clinically.
For example, Omaveloxolone (Reata Pharmaceuticals) is a synthetic oleanane triterpenoid compound and a
potent Nrf2 activator in clinical trials for Friedreich’s ataxia, and autosomal recessive inherited disorder that
causes degeneration of spinal and dorsal root ganglia neurons (particularly sensory ones) as a result of mito-
chondrial dysfunction and ROS overproduction due to the reduced expression of the mitochondrial protein
Frataxin [43,44].

Beyond Nrf2: exploiting other master regulators of
homeostasis?
While targeting antioxidant defences driven by Nrf2 offers potentially huge benefits over conventional antioxidant
therapy in combatting neurodegenerative disease, there are some caveats. As noted above, the Nrf2 pathway in fore-
brain neurons is weak, and neurons use other mechanisms to adapt their antioxidant defences and so its effective-
ness may be limited by this. Forebrain neurons retain the ability to dynamically regulate many ARE-containing
antioxidant genes, but do so via Nrf2-independent mechanisms [45–48]. Synaptic activity controls the expression
of ARE-containing genes xCT, Gclc, Gclm, Gsr and Srxn1 among others via other transcription factors that can be
recruited to these genes’ promoters, including AP-1 and ATF4 [49,50]. Neuronal activity also down-regulated the
thioredoxin inhibitor Txnip, by driving the nuclear export of its regulator FOXO [50,51].
A separate, translational issue is the fact many Nrf2 activators are electrophilic, so there is a danger that

excessively reactive compounds at excessive concentrations lead to non-specific modifications leading to an
exacerbation, rather than amelioration, of oxidative damage [52]. Moreover, chronic administration of Nrf2
activators will trigger robust Nrf2 responses in peripheral organs where the pathway is highly active. This is of
potential concern since somatic mutations in Keap1 and Nrf2, resulting in a constitutively active Nrf2 pathway,
have been reported in some cancers and confer high tolerance to anti-cancer drugs [53].
Even setting these issues aside, boosting the brain’s intrinsic antioxidant defences may only, at best, offer a

partial amelioration of patho-progression, due to incomplete rescue of other homeostatic deficits such as glu-
tamate, metabolic or inflammatory imbalance. These are features of many neurological disorders as well as oxi-
dative stress, and imbalance in one area often leads to imbalance in another area (Figures 1 and 2), and so
devising ways of manipulating these processes may offer alternative or complementary ways of altering disease
trajectory. Identification of major control nodes of these complex homeostatic processes is the first step towards
this. For example, in the context of glucose uptake/metabolism and bioenergetic homeostasis, there is good evi-
dence that this is impaired in the AD brain, through human imaging and PM studies, as well as animal models
[54,55]. Hypoxia-inducible factor HIF-1α is a master regulator of both neuroprotective and metabolic genes,
including glycolytic pathway genes and glucose transporters, whose expression is reduced in AD, along with
HIF-1α itself [54]. Moreover, ectopic HIF-1α is neuroprotective in models of AD [54]. Manipulation of
HIF-1α activity can be achieved by inhibiting prolyl hydroxylase domain-containing (PHD) enzymes, which
ordinarily target HIF-1α for ubiquitin-mediated degradation. Many classes of PHD inhibitors exist, but several
act by chelating iron (PHD is an iron-containing protein) and have a protective effect attributable to HIF-1α
stabilisation [54,56].
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Figure 1. Some transcription factors controlling homeostatic gene expression programmes in neurons.

Loss of homeostasis at multiple levels (labelled in black) is a hallmark of a variety of neurological disorders associated with

synapse loss, axonal damage or neuronal death. These disorders, which include stroke, traumatic brain injury, Alzheimer’s

disease, motor neuron disease and the progressive phase of multiple sclerosis, as well as others, have some common features

centred on core inter-dependent pathological processes involving loss of glutamate homeostasis and excitotoxicity,

inflammation, oxidative stress and metabolic/mitochondrial dysfunction [13,40,55]. These common features contrast with the

diverse nature of the pathological triggers (in red). As described in the text, genes whose function is to counter or resolve

homeostatic challenges in neurons are under the control of many key transcription factors, labelled here in yellow boxes.

Figure 2. Some transcription factors controlling homeostatic gene expression programs in astrocytes.

As described in the text, genes whose function is to counter or resolve homeostatic challenges in astrocytes are under the

control of many key transcription factors, labelled here in yellow boxes.

© 2017 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 1299

Biochemical Society Transactions (2017) 45 1295–1303
https://doi.org/10.1042/BST20170013

https://creativecommons.org/licenses/by/4.0/


In neurons, another important regulator of metabolism is the co-activator PGC-1α. PGC-1α is a regulator of
the brain’s antioxidant defences, neuronal mitochondrial biogenesis [57] and also influences synaptic versus
extrasynaptic NMDAR localisation [58] (a key determinant of excitotoxicity). Human post-mortem AD brain
tissues have shown significant reductions in PGC-1α mRNA as a function of clinical AD progression [59] and
levels are also lower in Huntington’s disease, and PGC-1α has been shown to be protective in models of HD and
PD [60–65]. PGC-1α is itself regulated by the transcription factor CREB, which controls multiple neurotrophic
and neuroprotective genes in neurons, reducing their vulnerability to both excitotoxic and apoptotic insults [66–
68]. Npas4 is another activity-responsive transcription factor implicated in promoting homeostasis and neuro-
protection in neurons which promotes resistance to apoptotic and excitotoxic insults [69,70]. Npas4 drives the
transcriptional repression of the mitochondrial calcium uniporter Mcu, preventing mitochondrial Ca2+ overload
after chronic NMDA receptor activity [70], as well as the induction of synaptotagmin 10 which mediates resist-
ance to seizure-induced neuronal damage [71]. Neuronal Npas4 also appears to play an immunomodulatory role
following trauma, since its knockdown increases astrocyte and microglial activation following stroke in mice [72].
Thus, key transcription factors play key roles in regulating the homeostatic capacity of neurons (Figure 1).
In the context of astrocytes, transcription factors other than Nrf2 are likely to play an important role in dis-

tinct aspects of homeostasis (Figure 2). The transcription factor CREB has recently been identified as a master
activity-responsive regulator of astrocytic glucose metabolism and lactate export [73] and is neuroprotective
when driven in astrocytes [74]. CREB can control many genes in the glycolytic pathway in astrocytes and its
constitutive activation up-regulates the capacity of astrocytes to utilise glucose [73]. Since CREB in neurons
controls PGC-1α and other neuroprotective genes like Bdnf and Bcl2, stimulation of CREB activity in the brain
may have protective effects at multiple levels acting via multiple cell types [75]. There is emerging evidence that
other transcription factors in astrocytes also regulate important homeostatic processes relevant to neurodegen-
erative disease and are the topic of ongoing investigation. For example, it was recently shown that NFAT in
astrocytes is an important regulator of their reactive status, and that astrocyte-specific inhibition of NFAT
improved outcomes and reduced plaque load in APP/PS1 mice [76]. Another astrocytic transcriptional pro-
gramme, regulated by Notch, has been shown to control the expression of glutamate uptake and metabolism
genes and functional glutamate uptake capacity [73]. Given that impaired glutamate uptake capacity and trans-
porter expression are associated with ageing and AD [77], the capacity to correct this through altering signal-
ling in astrocytes is an attractive proposition.

Concluding remarks
The longevity of the human brain is testament to its remarkable capacity for homeostasis. Multiple cell types
within the brain are capable of mounting adaptive protective responses to potentially challenging situations in
order to maintain the health and function of post-mitotic neuronal circuits. The resolution of homeostatic chal-
lenges often occurs on the second scale, involving existing capacity and conduits. However, it is clear that
longer term adaptions to homeostatic capacity (arguably a form of allostasis) involving new gene expression
also take place. Harnessing the mechanisms that co-ordinate and facilitate brain homeostasis in health may
pave the way to maintain this in the face of age or disease-causing agents.
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