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Abstract

Background

This paper presents the development of an agent-based model (ABM) to incorporate climatic

drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease

transmission. The model was used to gain a greater understanding of how tsetse populations

fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhode-

siense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a

greater understanding of disease dynamics. Such an understanding is essential for the devel-

opment of appropriate, well-targeted mitigation strategies in the future.

Methods

The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km tran-

sect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect

pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale

demographic data such as ethnicity, age and gender for the human population in the region,

as well as an animal census and a sample of daily routines, we create a detailed, plausible

simulation model to explore tsetse population and disease transmission dynamics.

Results

The seasonally-driven model suggests that the number of infections reported annually in the

simulation is likely to be a reasonable representation of reality, taking into account the high
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levels of under-detection observed. Similar infection rates were observed in human (0.355

per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025))

populations, likely due to the sparsity of cattle close to the tsetse interface. The model sug-

gests that immigrant tribes and school children are at greatest risk of infection, a result that

derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This

result could not be inferred using alternative population-level modelling approaches.

Conclusions

In producing a model which models the tsetse population at a very fine resolution, we were

able to analyse and evaluate specific elements of the output, such as pupal development

and the progression of the teneral population, allowing the development of our understand-

ing of the tsetse population as a whole. This is an important step in the production of a more

accurate transmission model for rHAT which can, in turn, help us to gain a greater under-

standing of the transmission system as a whole.

Author summary

African trypanosomiasis is a parasitic disease which affects humans and other animals in

36 sub-Saharan African countries. The disease is transmitted by the tsetse fly, and the

human form of the diseases is known as sleeping sickness. In an attempt to improve our

understanding of the mechanisms which contribute to sleeping sickness transmission, a

detailed, seasonally driven model of the tsetse fly has been produced, with the theory that

a greater understanding of the disease vector’s life cycle will allow developments in our

knowledge of disease transmission. The model incorporates previously developed spatial

data for the Luangwa Valley case study, along with demographic data for its inhabitants.

Tsetse and potential human and animal hosts are modelled at the individual level, allow-

ing each contact and infection to be recorded through time. Through modelling at a fine-

scale, we can incorporate detailed mechanisms for tsetse birth, feeding, reproduction and

death, while considering what demographics, and which locations, have a heightened risk

of disease.

Introduction

The tsetse fly (genus: Glossina) is the vector for human African trypanosomiasis (HAT) or

sleeping sickness, a neglected tropical disease caused by two sub-species of the protozoan para-

site Trypanosoma brucei s.l.: T. b. rhodesiense, in eastern and southern Africa and T. b. gam-
biense in West Africa [1]. T. b. rhodesiense HAT (rHAT) is a zoonosis, affecting a wide range of

wildlife [2,3] and domestic animals, particularly cattle [4], presenting in humans as an acute

disease [5]. The history of HAT in sub-Saharan Africa is characterised by long periods of

endemicity where the disease self-sustains at low background levels, with periodic epidemics

in regional foci [6]. As sleeping sickness is a neglected tropical disease, treatments are often

out-of-date, difficult to administer, physically invasive and partially validated, with the pros-

pect for future developments of more effective treatments being limited (e.g. [7–11]). Further-

more, where tools are available, HAT is rarely prioritised due to competing public health

interests [12]. In terms of disease prevention, there is currently no immunological prophylaxis

to stop infection in humans [13], made difficult to produce due to the parasite being able to
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evade the host’s immune response by altering the antigenic character of its glycoprotein sur-

face coat [14]. Given these difficulties with preventing and treating HAT infection in humans,

it is not surprising that mitigation strategies focused on vector control have seen success (e.g.

[15–18]), given that the tsetse fly is not only required for transmission, but also for several

stages of parasite development [19,20]. Despite such efficacy, the control of the disease in tsetse

(and, therefore, wildlife) in game reserves and other protected areas is complicated by ecologi-

cal, conservationist and environmental considerations [21–23].

Gaining a greater understanding of the population dynamics in a tsetse population appears

to be an attractive goal, considering that such an understanding could lead to the development

of more targeted vector control strategies which have a less adverse ecological impact, while

also allowing a more plausible understanding of the rHAT transmission system. For the latter,

demographic growth (through the availability of food and habitat) and climate changes (affect-

ing tsetse development and mortality rates) are two factors which could affect tsetse population

dynamics, and ultimately affect the transmission system [24,25]. As a result of the significant

role that a tsetse population has in determining the rate and distribution of rHAT transmis-

sion, this paper considers the tsetse sub-component of the larger rHAT transmission system in

detail, with the ultimate goal being the creation of a more accurate representation of the trans-

mission system as a whole.

Collecting comprehensive data on populations of tsetse in the field is expensive, complex

and time consuming and, consequently, numerous attempts have been made to model tsetse

populations as part of vector control or HAT transmission studies (e.g. [26–29]). Some models

incorporate climatic drivers which create fluctuations in the tsetse population through the sea-

sons (e.g. [30–33]). One recent example used agent-based modelling (ABM) techniques to sim-

ulate a simple fluctuation in tsetse population size through different seasons by altering the

length of a predetermined lifespan for tsetse, depending on whether the tsetse emerges in the

dry (2 months) or wet season (3 months) [31]. Incorporating more detail, [33] used known

relationships between temperature and different life events and processes, such as mortality

and the length of the pupation period, as parameters when constructing a population model

for vector control.

ABMs are “a computerized simulation of a number of decision-makers or agents, and insti-

tutions, which interact through prescribed rules” [34]. ABMs have been described as a “third

way” of conducting scientific research, incorporating both deductive since ABMs start with

basic assumptions, and inductive approaches, as they produce simulation data to analyse [35].

However, Epstein [36] suggests that rather than inductive or deductive, ABMs should be con-

sidered as “generative” tools in that, through the initialisation of a population of autonomous

agents in a relevant spatial environment, one can allow the agents to interact given a simple set

of local rules, and generate, from the bottom up, the macroscopic behaviour and regularity of

the population as a whole. Such an approach lends itself well to both the investigation of the

HAT transmission system as a whole and the tsetse populations and their dynamics as a com-

ponent. Starting with tsetse population dynamics, much is written about how varying climatic

conditions have different impacts on various tsetse life events and processes e.g.: pupal period

duration (e.g. [37]), probability of pupal death (e.g. [38,39]), and time between oviposition

(e.g. [40,41]). Representing observations made from samples acquired both in the field and

laboratory studies, these patterns provide us with a solid framework to model the larger popu-

lation, for which comprehensive data are much more difficult, if not impossible, to acquire.

By initialising a tsetse population as individuals, each abiding by rules set by the above beha-

vioural patterns (and others relating to feeding, mating and age-dependent mortality), plausi-

ble population level outcomes such as fluctuations in population size should be observable as

the simulation progresses.

An agent-based model of tsetse fly response to seasonal climatic drivers
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When the HAT transmission system is incorporated into an ABM for acquiring preliminary

knowledge of the disease transmission system, the constructed model becomes a representation

of a complex system (e.g. [42–44]), given that the prevalence of the disease is a complicated

emergent phenomenon produced by relatively simple, individual specific rules (both vector and

host) concerning movement and resource acquisition. In a complex system, the causes of emer-

gent phenomena cannot easily be decoupled and explained by specific parts of the system [45]

with, in this case, the model landscape and agent behaviour creating variation in the timing,

location and probability of infection as a result of their influence on variability in contact pat-

terns between vector and host [46,47]. In this way, ABMs could be considered the most appro-

priate way to investigate both the HAT transmission system, and tsetse fly dynamics as a sub-

component, allowing the representation of interdependent processes such as how individuals

interact with each other and their environment through space and time more easily than is pos-

sible through more traditional epidemiological techniques [48].

In previous work, an ABM of rHAT transmission was produced using a spatialized

approach, incorporating factors often overlooked (e.g. human behaviour and activity-based

movement; density and mobility of vectors; and the contribution of additional hosts) [27].

This paper presents the first ABM which considers the effect of climatic factors on individual

tsetse and their life processes in detail, while also considering the effect this has on rHAT

transmission in a large study area in Eastern Province, Zambia. Through the incorporation of

seasonality parameters into an existing fine spatial and temporal scale ABM of rHAT transmis-

sion in the region [27], the aim was to develop a greater understanding of tsetse population

dynamics through simulation, and subsequently produce a more plausible model of rHAT

transmission. The incorporation of such data is vital where transmission rates, and indeed the

transmission system as a whole, are to be explored over multiple years. The existing model

provided a suitable starting point for the simulation of these seasonal parameters by modelling

tsetse flies at the individual level, along with different life events for which durations and prob-

ability of occurrence can be climatically constrained. Ultimately, the modified model was

implemented with the aim of answering the following research questions: throughout the year,

how does the tsetse fly population fluctuate both as a whole, and within different life stages

(e.g. pupal, teneral, mature)? Under the caveat that a plausible model has been produced, what

rates of disease transmission are observed, and how do these vary seasonally? Such a model

will allow for future exploration of long-term mitigations strategies, alterations to the demo-

graphic make-up of the study area, and climate change scenarios.

Methods

Study area

Eastern Province, Zambia is situated in southern Africa, sharing borders with Malawi (to the

East) and Mozambique (to the South). The Luangwa Valley is an extension of the Great Rift

Valley of East Africa, traversing the Zambian Eastern, Northern and Muchinga Provinces. The

valley is characterised as a flat bottomed valley bounded by steep, dissected escarpments which

rise to a plateau at approximately 900–1000 m [49]. Different types of vegetation are observed

at different altitudes, with valley areas consisting mainly of mopane woodland and patches of

grassland, while the natural vegetation on the escarpment and plateau is miombo woodland,

interspersed with munga woodland [50].

The study area spans a sparsely populated region of the Luangwa Valley. Villages are small

(between 5 and 20 households) and inhabitants are predominantly subsistence farmers. The

data collection area and region to be modelled consists of a 75 km transect which starts close

to Mfuwe airport in the north, and runs southwards along the Lupande River and its

An agent-based model of tsetse fly response to seasonal climatic drivers
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distributaries (Fig 1). Average monthly temperature and rainfall measurements collected at the

Mfuwe airport (1982–2012) weather station are reproduced in Fig 2 [51]. There are three main

seasons in Zambia’s tropical climate: the rainy season spans November to April (wet and

Fig 1. Map of the study area size and location. Households from the census included in this modelling study are

indicated as white circles and Mfuwe airport, the location of the region’s weather station, is visible in the north

(produced using Landsat 7 imagery from USGS), after [27].

https://doi.org/10.1371/journal.pntd.0006188.g001
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warm) with mean monthly rainfall peaking at 210 mm in January. After the rains, a cold and

dry period occurs prior to August, in which May is the hottest and wettest month, with mean

temperatures below 23˚C and mean rainfall below 3 mm. The hot and dry season usually

spans August, September and October, with mean temperatures reaching 28˚C in October

accompanied by 17 mm of rainfall on average, the first after four dry months in succession

[49,51]. The Luangwa River and its main tributaries are perennial, and although flash flooding

occurs in all rivers during the wet season, the smaller rivers which drain the valley floor dry

out during the dry season and flow during the rains [52].

rHAT is endemic in the Luangwa Valley, first being reported in 1908 [53]. G. m. morsitans
was not originally considered a vector of rHAT in the valley, despite 50% of domestic and

game animals in the Valley having been observed to harbour trypanosomes [54]. In the early

1970s, a large rHAT outbreak occurred in Isoka (241 case in 3 years) attributed to fly encroach-

ment from Luangwa [55]. Wildlife had been observed to reside in Isoka for several months

during the rainy season, migrating away during the dry season. In 1973, early diagnosis and

improved treatment methods were introduced, and case numbers fell [56].

Fig 2. Average annual climate data for the study area, collected at Mfuwe airport weather station. Produced using data from [51].

Background colours represent typical seasons found in the study area.

https://doi.org/10.1371/journal.pntd.0006188.g002
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Today, cases of rHAT continue to be reported in the Luangwa Valley. Mid-Luangwa

Valley has recently experienced increased immigration of people seeking fertile land. Land

pressure has resulted in human settlement in increasingly marginal, tsetse-infested areas,

previously avoided for fear of disease risk to introduced livestock. Households grow cotton

as a cash crop and maize and groundnuts for home consumption [49]. These anthropogenic

changes have the potential to destabilise current trypanosomiasis transmission cycles, result-

ing in increasing prevalence of trypanosomiasis in both human and animal hosts, and the

spread of rHAT into previously unaffected areas. Risk factors include human proximity to

the large wildlife reservoir in the South Luangwa National Park to the north-west [2], and

ever-increasing livestock and human density on the plateau. Little is known concerning

tsetse-trypanosome-human interaction in the region. Therefore, the ABM has the potential

to enable exploration of contact risk within communities. Furthermore, with climate changes

expected to occur in the near future, such as reduced annual rainfall, increased storm events

and increased temperature [57][58], it is becoming increasingly important to understand

how climate factors can affect tsetse populations, particularly in areas such as this, where

increases in temperature could see the tsetse habitat spreading further up the valley to more

populous areas.

Adding seasonality–The exploration of climatic drivers

This paper describes a new, seasonally sensitive ABM for rHAT/animal African trypanosomia-

sis (AAT), based on an earlier, non-seasonal model that was constructed using data derived

from a detailed rHAT, AAT, and G. m. morsitans ecological survey, undertaken in 2013, in

Eastern Province, Zambia [27]. Due to the fine spatial and temporal scales used to model the

system, and the number of mechanisms incorporated (e.g., tsetse reproduction, tsetse feeding,

human agent movements using real-world routines and pathfinding techniques [59]), the

model was complex and its data inputs were numerous. As a result, only new data and modifi-

cations to the original model are described here. A detailed description of the original, non-

seasonal model framework, and the data used to construct it, can be found in [27].

Temperature data. Annual mean temperature data collected at Mfuwe airport are pre-

sented in Fig 2. Fig 3 shows the interpolation of these data into daily temperatures using a

four-term, sum of sines method, produced using Matlab’s curve-fitting tool. This method pro-

duced the best fit to the mean monthly data (r2 = 0.97), while also producing limits which join

when wrapped, allowing multiple years to be considered. Future mention of temperature in

this section refers to the daily temperatures derived from this curve. The temperature model is

presented starting in August as this reflects the month in which the present simulation com-

mences, chosen as the midpoint between the tsetse surveys used to estimate the tsetse popula-

tion (June and November–see [27]).

Seasonal variation in oviposition. The non-seasonal model used the expectation that a

female tsetse would give birth 18 days after mating, and every 10 days thereafter for the dura-

tion of their life [60]. However, data collected in Zimbabwe in 1994 suggest that in warmer

conditions (~30˚C), the time taken to produce a first pupa can be as low as 15 days [40], with

extrapolations of the data suggesting that subsequent offspring could be produced at an inter-

val of 16 days at 16˚C, and 7 days at 31˚C [41] (see Fig 4) using Eq 1 [41]:

Birth Interval ¼
1

k1 þ k2ðT � 24Þ
; Eq 1

Where: T = temperature, k1 = 0.061 and k2 = 0.0020 for the initial birth interval, and k1 =

0.1046 and k2 = 0.0052 for further births.
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Although extrapolation should be treated with caution, the tsetse species under investiga-

tion, along with the vegetation, are consistent in both studies. Furthermore, the temperatures

in the region of the present study are largely in the range of temperatures for which field exper-

imental data were collected to produce these curves (22˚C to 30˚C) and, as a result, are used to

dictate birthing intervals in the current simulation.

Temperature and pupal duration

The previous iteration of the model included a longer pupal duration in males than in females,

as suggested in the literature (e.g. [37,60]), and so for each larva deposited during the simula-

tion, a 35 and 30 day pupal period was included for males and females, respectively, repre-

sented as a period of inactivity. However, pupation is known to be temperature sensitive with

pupal periods decreasing with increasing temperature, a relationship observed by Phelps and

Burrow’s laboratory experiments at constant temperatures [37]. Hargrove [41] utilised the

data to present a near perfect fit for pupal duration at temperatures between 16˚C and 32˚C

Fig 3. Interpolation of meanmonthly temperature data using sum of sines technique (r2 = 0.97).

https://doi.org/10.1371/journal.pntd.0006188.g003
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(r2 = 0.998) (see Fig 5), represented by Eq 2:

r ¼
k3

1þ eðaþbtÞ
;

pupal duration ¼
1

r
; Eq 2

Where: t = temperature, for males: a = 5.3, b = -0.24 and k3 = 0.053 and for females: a = 5.5,

b = -0.25 and k3 = 0.057.

Given the excellent fit to the data and the large variation in pupal periods expected within

the temperature range found in the study area (19˚C = ~60 days, 28˚C = ~20 days), variation

in pupal duration with temperature is clearly an important factor to incorporate in the model.

Climatic drivers for pupal mortality. Due to the difficulty in finding pupae in the field,

population estimates, and ultimately estimates of pupal death rates are rare [41]. Although

observations suggest temperature may not affect pupal mortality until extremes are reached

(>35˚C) [39], pupal mortality in tsetse flies is shown to vary seasonally [61]. Similar to Vale

Fig 4. Tsetse reproduction intervals in response to temperature (produced using data from [41]).

https://doi.org/10.1371/journal.pntd.0006188.g004
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and Torr’s [29] climate independent tsetse model, the previous iteration of this ABM assumed

a pupal mortality rate of 26%, after field observations by Jackson [62]. However, as a result of

the implementation of a variable pupal duration in the current version, it seems appropriate to

apply pupal mortality rate on a daily basis. While the 1% daily pupal mortality rate field esti-

mates presented by Rogers and Randolf [63] were used as a starting point here, Ackley and

Hargrove [61] found that mortality rates in immature fly stages peak before and after the rainy

season, with model output for G. pallidipes reporting a peak mortality rate of 0.12 during

March in Rekomitjie, Zimbabwe. To capture this apparent variability, the pattern presented

was adapted and applied to the current investigation. Modifications were required as the pat-

tern of mortality presented by Ackley and Hargrove considers pupae and immature flies

together, while the model in this study models pupae separately–resulting in a risk of double

counting mortality in immature flies. In addition, the species of tsetse fly under investigation

here is G. m. morsitans rather than G. pallidipes—G. pallidipes pupae are found to show greater

susceptibility to extreme temperatures (e.g. [64]). As a result of these factors, simply applying

the same mortality rates to the current investigation would overestimate pupal mortality, with

tests showing that the values of daily mortality reported by Ackley and Hargrove needed to be

Fig 5. Tsetse pupal intervals in response to temperature (produced using data from [41]).

https://doi.org/10.1371/journal.pntd.0006188.g005
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scaled to 60% to provide stability in the current investigation. Mortality rates were applied

such that each day, each pupa had a probability of dying based on these scaled mortality rates.

Combining age and temperature dependent mortalities. The first iteration of the model

included a tsetse death function to deal with mortality not captured by starvation of individual

tsetse, or pupal mortality. Represented as a scaled-down version of Hargrove’s age-dependent

mortality model [65], no climatic impact was incorporated. To ensure the tsetse agents are sen-

sitive to temperature in the current iteration of the model, the previous age-dependent mortal-

ity rate (Eq 3) [65] was adapted to reflect the relationship reported by Hargrove in Eq 4 [41], a

modelled estimate of daily mortality rate in response to temperature based on mark-recapture

data collected on Antelope Island in Zimbabwe in 1980 and 1981. Eqs 3 and 4 are visualised

for both male and female tsetse in Fig 6.

l1ðtÞ ¼ k4ðk5e
� k5aðtÞ þ k6e

k6aðtÞÞ; Eq 3

Fig 6. The upper two plots present an observed relationship between tsetsemortality rate (MR) and temperature (produced using data from [41]). The lower two
plots illustrate a modelled relationship between tsetse age and mortality rate (produced using data from [65]). Blue = male tsetse.Red = female tsetse.

https://doi.org/10.1371/journal.pntd.0006188.g006
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Where: t is a point in time, a(t) is fly age at time t, and k4, k5, k6 are gender-specific constants

(Male: k4 = 0.389, k5 = 0.395, k6 = 0.0583 and female: k4 = 0.605, k5 = 0.201, k6 = 0.0119) [65].

l2 tð Þ ¼
e� k7þðk8TðtÞÞ

100:0
; Eq 4

Where: T(t) is the temperature at time t, and k7, k8 are gender-specific constants (Male: k7 =

0.19, k8 = 0.071 and female: k7 = 0.85, k8 = 0.083) [41].

Both Eqs 3 and 4 are hazard functions, which define the likelihood that something will sur-

vive to a certain point in time based on its survival at an earlier time, each taking a different

factor into account. Examples of combining hazard functions are well recorded in reliability

engineering, where “failure” is used in place of “hazard” or “mortality”, and the failure rate of a

series system is calculated as the sum of the failure rates of its components [66]. While more

complicated methods are required to calculate failure rates of parallel and combined systems,

in complex systems, where relationships between two components cannot be defined easily,

the system’s failure rate is pessimistically taken to be the sum of the individual failure rates of

its components. Since the relationship between age and temperature on the tsetse mortality

rates are not well defined, the latter method has been implemented for this study (Eq 5).

LðtÞ ¼
Pn

i¼1
liðtÞ; Eq 5

where, λi (t) is the hazard rate for ‘component’ i.
While the temperature-dependent mortality rate (λ2(t)) will have been determined across a

range of fly ages, the age-dependent mortality rate (λ1(t)) was determined during a relatively

small window in which the temperature was likely to be constant. To avoid ‘double counting’

the mortality rate due to temperature, the age-dependent mortality rate was decoupled from

temperature to remove any associated effects, via the new function in Eq 6. While this is rela-

tively crude, this was used as a starting point in the absence of a more detailed understanding

of the relationship between temperature and age in the mortality of the tsetse fly.

l1 tð Þ ¼ k4 k5e
� k5aðtÞ þ k6e

k6aðtÞ
� �

�
e� k7þðk8TcÞ

100:0
; Eq 6

where, Tc is a constant temperature, which could be considered as the ‘base’ temperature.

Using this equation and the constant values reported previously, the daily mortality rate of

a tsetse fly at a given age and temperature can be visualised as in Fig 7 for males and Fig 8 for

females.

ABM framework

The previous, non-seasonal ABM provided the majority of the methods and data used in the

current version of the simulation, and so readers are referred to [27] for greater detail and only

a summary is provided here. Census data were used to locate and initialise the human and ani-

mal populations living in the households shown in Fig 1. A sample of resource-seeking rou-

tines sorted by gender and age was taken in the field (see supplementary information of [27]),

and a set of plausible paths from each village to each resource was created using a pre-process-

ing A� pathfinding technique [59]. For tsetse, an estimate of the total apparent population size,

density and distribution was provided. Four agent types were included in the ABM, together

with an areal representation of wildlife. Humans, cattle, other domestic animals and tsetse

used in the ABM were constructed as four separate classes, with populations modelled 1:1 with

the data collected in the census (e.g. 16,024 human agents) and the estimated tsetse population

discussed previously. Each class had its own initial information and storage structures for
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events that occurred through the simulation. The ABM was written in Python 2.7 using an

object-oriented framework, and run on the Lancaster University High End Computing (HEC)

Cluster, with all spatial data being processed using Quantum GIS 1.8.0.

The subsequent sections draw attention to any modifications between the original, non-sea-

sonal modelling framework and the new ABM model, while also describing how the climatic

drivers affecting the tsetse population were incorporated into the model.

Temporal resolution and wildlife feeds

The initial iteration of the model was split into 2,400 time-step (or tick) days, as the more fre-

quent the tick, the smaller the jumps made by agents as the simulation updates, and the less

chance of missing potential interactions. However, this method was restrictive in terms of

memory usage and CPU time required to run just six months of the simulation. Further tests

were carried out to establish how coarse the temporal resolution could be made before the

number of simulated domestic host-vector contacts was reduced, and a greater daily probabil-

ity of wildlife feed was required to maintain the tsetse population levels. It was established that

600 ticks per day (2.4 minutes per tick) allowed the simulation to progress with no obvious

effect on human, cattle and other domestic animal bite numbers, while requiring a very similar

daily wildlife bite probability to produce a stable tsetse population (37% chance per day of a

hungry tsetse taking a wildlife bite, compared with 35% in the previous version). As a result,

600 ticks per day were used to produce the results of this investigation, which required approx-

imately 4.5 GB of RAM per simulation run on the high performance machine, and 24 hours of

CPU time per simulated year.

Fig 7. Male tsetse mortality rate dependent on age and temperature.

https://doi.org/10.1371/journal.pntd.0006188.g007
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Climatic driver additions

To capture the effect of seasonality on the tsetse fly population, daily temperature was calcu-

lated every 24 hours using the interpolation method discussed previously, and set as a global

variable for the simulation.

Tsetse births

For each female, once mated, the number of days since mating was compared with the birth

interval calculated using Eq 1 and the daily temperature. If and when the number of days since

mating exceeded the interval calculated on a given day, a pupa was deposited. A count of the

number of days since mating was replaced with a count of the number of days since last off-

spring, and Eq 1 was used again on a daily basis (using the alternative constants for further

births), until another birth occurred. This process was repeated for the duration of a female

tsetse fly’s lifespan. There was an equal chance of each tsetse offspring being male or female,

and each pupa was deposited in a bush area in which the female tsetse rested during the previ-

ous night.

Pupal duration and death

A rolling average of the temperature that each pupa has experienced since birth was calculated

and attributed to each individual. This temperature was used to determine each individual’s

pupal duration, given that if a pupa’s age exceeded the pupal duration calculated using Eq 2,

the pupa would emerge as a teneral fly. It was considered important to use a rolling average of

Fig 8. Female tsetse mortality rate dependent on age and temperature.

https://doi.org/10.1371/journal.pntd.0006188.g008
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temperature here as the length of a pupal period can span months with quite different temper-

atures. As described previously, rather than a single probability used to decide whether a pupa

would die during its entire pupal period, a variable daily probability of pupal death was

included, increased in some months to account for losses observed in the rainy season. Should

the probability be exceeded for a pupa, that tsetse was removed from the simulation.

Teneral and mature tsetse death

Death could result from pupal mortality, starvation, or if a tsetse fly exceeded the daily mortal-

ity rate calculated by sex, age and temperature (Eq 6, Figs 7 and 8). The mortality rate was cal-

culated individually for each teneral and mature fly, and if the probability was exceeded, the

tsetse was removed from the simulation. Starvation occurred if a tsetse tried and failed to feed

before a given period of time had elapsed. The starvation element was more strict for teneral

flies (3 days instead of 5 days) highlighting their increased vulnerability and reduced flight

strength. In the previous version of the simulation, 75 teneral files were added to the simula-

tion for the first 35 days to account for pupae deposited prior to the start of the simulation. As

this version of the simulation started in August, and the simulated climate quickly became hos-

tile for teneral flies as temperature increased, 500 teneral tsetse were required per day for the

first 45 days, which is representative of average simulated pupal maturation rates during Sep-

tember as the simulation progressed (see Results). In the original model, in the absence of cli-

matic factors, a scaling factor for adult fly mortality was required to offset fly starvation within

the simulation. This value was set at 55%. Although this scaling factor is still required in this

iteration of the model due to the same starvation element, the incorporation of temperature

dependent mortality, and more detailed mechanisms for modelling pupae, has reduced the

required level of scaling to 80%

To allow the model to initialise and stabilise, the simulation was run for a year before the

results for this paper were produced, allowing a ‘burn-in’ period. For example, the results pre-

sented below are representative of years 2–4 of the simulation. 100 repeat simulations were

used to produce the results presented here.

Results

Tsetse population

At the end of the three year simulation, a relatively stable population record was observed in

both the male and female tsetse populations, with both exhibiting a double peak in response to

the climatic driver (Fig 9).

Each year, until peak temperature was reached in October and November, the population

slowly increased, with each gender’s population size increasing by approximately 2000 flies.

Such population increases during this hot and dry season could be attributable to the absence

of a boosted pupal mortality which is observable during the rainy season [61], with increasing

temperatures having a greater impact in reducing pupal duration and the period between

births, than increasing tsetse teneral and mature tsetse mortality. During the rainy season

(November-April), this population gradually fell to an annual low, a result of peaks in pupal

mortality at the start of the rainy season, and high temperatures causing increased mortality in

the annual peak population of teneral flies (see Fig 10) (now emerged after a high period of

births discussed previously—birth numbers can be seen in Fig 11).

During this period, with a reduced number of pupae to develop, and teneral tsetse to

mature and start reproducing, the higher temperatures no longer aided a growth in population

as there were fewer pupal maturations and birth rates to ‘accelerate’ (Fig 11) At the end of the

rainy season, the tsetse population gained a small boost due to a plateau in temperature, and
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the drop in population slowed through the cool and dry season (May to July), although recov-

ery did not start during this period as temperatures were too low to aid rapid repopulation of

the tsetse, and the pupal population was still recovering (Fig 10).

Fig 12 presents the different possible modes of tsetse death included in the model, and how

the rates varied as the simulation progressed. Non-starvation death represented the deaths

attributable to the age-temperature dependent mortality model defined by Eq 6, and was con-

sistently responsible for the largest number of daily deaths, peaking in the period of highest

temperature with approximately 350 deaths per day. Unsurprisingly, given its temperature

dependency, the mortality shape closely aligned to mean monthly temperature, except for a

period in February and March after the pupal population was reduced by a period of high

pupal mortality during the rainy season, resulting in a reduced teneral population and, there-

fore, fewer adult deaths. Deaths due to starvation followed closely the general pattern of popu-

lation size, with teneral starvations being particularly low–likely a result of the low daily

teneral population size (ranges between 100 and 400 –Fig 10) and the teneral tsetse population

having the highest age-temperature dependent mortality rate. Using the Ackley and Hargrove

model [61] for pupal mortality produced peaks prior to the rainy season and, to a lesser extent,

after the wettest months (Fig 12).

Fig 9. Average daily population size of adult tsetse flies by sex (+/- standard deviation), overlain on mean monthly temperature and precipitation for

the three year simulation period.

https://doi.org/10.1371/journal.pntd.0006188.g009
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The ratio of pupae to mature tsetse was approximately 2:1 at any given time, with the

mature to teneral population ranging between 15:1 at the peak of population size and 25:1

when population sizes were generally lower.

Fig 10. Average daily population size of tsetse flies at different life stages, overlain on mean monthly temperature and precipitation for the three year

simulation period.

https://doi.org/10.1371/journal.pntd.0006188.g010
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rHAT transmission

Across the three year simulation, the approximate incidence rate for human and cattle rHAT

infections was 0.355 per 1000 person-years (SE = 0.013), and 0.281 per 1000 cattle-years

Fig 11. Average daily numbers of population transitions within the tsetse population, including initial birth, the development from a pupa to teneral

fly, and the development from teneral to mature fly on first feed.

https://doi.org/10.1371/journal.pntd.0006188.g011
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(SE = 0.025). There were 11 human infections each year on average (i.e. per year, per run), and

2 cattle infections.

Fig 13 illustrates how these infections clustered spatially and by season. The aggregate num-

ber of infections across all years and each of the 100 repeats was used to produce this heat map

Fig 12. Average daily deaths by class for the tsetse population, including starvation of both teneral and mature flies, pupal mortality, and other

deaths attributable to the age and temperature dependent mortality model discussed previously. Error bars represent the standard deviation.

https://doi.org/10.1371/journal.pntd.0006188.g012
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due to the low infection numbers. There was not much spatial variability through the seasons

despite the variation in tsetse population size.

Fig 13. Heat surface representing aggregate number of infections across the 100 repeat simulations, by season,

with pixel values taking the units of infections per square kilometre.

https://doi.org/10.1371/journal.pntd.0006188.g013
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However, the number of infections reduced during the second half of the rainy season with

the lowest density of infections observed during the cool and dry months. Two hotspots are

visible in each of the seasons, each with elongated elements suggesting that frequently used

paths were sources of interaction between vector and human host. This is possibly most visible

in the north as east-to-west movement here could represent movement between villages and

the river, a hypothesis which is given support by observations of infection by activity (Table 1)

which suggest that in each season, water collection accounted for approximately 25% of

human infections, second only to school trips which accounted for 49% to 51% of infections.

No human infections were acquired whilst watering or grazing cattle, while the third highest

number of infections occurred when farming. There was little variation in infections by activ-

ity between the seasons.

With the observed high proportion of infections coming from school trips, it is unsurpris-

ing that 5–10 year olds and 10–18 year olds had the highest infections rates (Table 2). Infection

rates were generally lower in the cool and dry season, peaking in the hot and dry season.

Table 3 shows that the highest incidence rates were observed amongst immigrant tribes,

with the only indigenous tribe (the Kunda) exhibiting one of the lowest infection rate across

each time period, despite making up over 70% of the population.

Infection rates observed by gender and cattle ownership were comparable across time peri-

ods, with males and cattle owning households exhibiting marginally higher infections rates in

comparison to females and households without cattle (Table 4).

Infections acquired and matured within the tsetse population fluctuated as the three year

simulation progressed, with a small year-on-year increase in average infections both in the

midgut and salivary gland (Fig 14). On average, the peak time of salivary gland infection devel-

opment was at the beginning of the rainy season, which reflects the period of highest tsetse

densities plus a time-lag for development of mature infections in the fly.

Table 1. Average proportion of human infections attributable to each activity, for each season, represented as a percentage.

Total (3 years) Hot, Dry Season Hot, Wet Season Cool, Dry Season

State Average SE Average SE Average SE Average SE
School 50.0% 1.2% 49.5% 2.1% 50.1% 1.7% 51.1% 2.8%

Resting 3.2% 0.3% 3.7% 0.8% 3.4% 0.5% 2.4% 0.6%

Market 0.1% 0.1% 0.4% 0.2% 0.1% 0.1% 0.0% 0.0%

Firewood 5.8% 0.5% 5.9% 1.0% 6.0% 0.7% 3.8% 0.7%

Farm 15.3% 0.8% 14.8% 1.5% 16.0% 1.1% 16.9% 2.2%

Water 25.5% 1.2% 25.7% 1.9% 24.4% 1.6% 25.8% 2.3%

Graze Cattle 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Water Cattle 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

https://doi.org/10.1371/journal.pntd.0006188.t001

Table 2. Approximate incidence rates by season for different age groups.

Total (3 years) Hot, Dry Season Hot, Wet Season Cool, Dry Season

Age Average SE Average SE Average SE Average SE
age1-5 0.0241 0.0037 0.0231 0.0072 0.0262 0.0058 0.0210 0.0070

age5-10 0.7000 0.0302 0.7535 0.0484 0.7153 0.0365 0.6117 0.0504

age10-18 0.6456 0.0277 0.7038 0.0437 0.6323 0.0323 0.6107 0.0445

age18-60 0.2396 0.0116 0.2697 0.0223 0.2365 0.0150 0.2151 0.0168

age60+ 0.1850 0.0246 0.3169 0.0581 0.1717 0.0331 0.0792 0.0282

https://doi.org/10.1371/journal.pntd.0006188.t002
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Discussion

Tsetse population

The first plausible individual-based model representation of a real world tsetse population was

created allowing a simulation of the system over multiple years. The model was specified using

temperature-dependent parameters derived from the literature, detailed human and animal

information from acquired datasets, and expert opinion, and an estimate of the initial tsetse

population size and distribution. For example, the pupal population which was completely

emergent from the model (as no initial pupae data were inputted) corresponded with literature

findings that pupae are comparatively difficult to find in the rainy season, and that the pupal

population will be greater than that of the developed flies [38], unsurprising considering that

the parameters suggest that pupae are ‘safer’ than teneral flies, pupal duration is at least 3

weeks, and a constant flow of developing pupae is required to replace teneral files which are

dying or maturing. In addition, the ratio of female-to-male tsetse fluctuated around 2:1, a

change from the simpler, non-seasonal model [27], but more in line with estimates in the liter-

ature [67], possibly as a result of running the simulation for longer, and with the addition of

climate-driven parameters. The shape of the mature population was comparable to samples of

tsetse collected in the region of the South Luangwa National Park (Regional Tsetse and Try-

panosomiasis Control Programme (RTTCP) data reported in [22]), Eastern Province, Zambia

[68], G. pallidipes in neighbouring Zimbabwe [61], and similar, yet less detailed, ABM studies

[31].

The peak adult population of around 6500 flies suggests that the relatively crude technique

used to extrapolate sample data from tsetse surveys for initial model construction (see [27] for

more detail) produced a reasonable estimate with 5250 flies. Furthermore, the small teneral

population observed is perhaps not a surprise, given that the teneral stage is a brief transition

with a gradual input of developing pupae, and high mortality rates coupled with maturation to

adult fly on first feed as outputs.

Table 3. Approximate incidence rates by season for different ethnicities.

Total (3 years) Hot, Dry Season Hot, Wet Season Cool, Dry Season

Ethnicity Average SE Average SE Average SE Average SE
Chewa 0.7678 0.0391 0.8605 0.0597 0.7503 0.0474 0.7051 0.0513

Kunda 0.2451 0.0106 0.2733 0.0176 0.2410 0.0125 0.2245 0.0151

Ngoni 2.3535 0.1939 2.4461 0.3039 2.5108 0.2432 1.8931 0.2944

Nsenga 0.0688 0.0117 0.0669 0.0214 0.0632 0.0159 0.0818 0.0234

Bemba 0.4128 0.0719 0.5654 0.1539 0.4481 0.1097 0.1888 0.1147

lenje 0.2424 0.1194 0.2424 0.2424 0.2424 0.1706 0.2424 0.2424

No Data 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

https://doi.org/10.1371/journal.pntd.0006188.t003

Table 4. Approximate incidence rates by season for different sexes and cattle ownership.

Total (3 years) Hot, Dry Season Hot, Wet Season Cool, Dry Season

Gender Average SE Average SE Average SE Average SE
Male 0.3623 0.0146 0.3877 0.0222 0.3627 0.0172 0.3351 0.0240

Female 0.3486 0.0148 0.4012 0.0243 0.3453 0.0167 0.3015 0.0202

Cattle House

TRUE 0.3979 0.0250 0.4160 0.0353 0.4150 0.0306 0.3443 0.0365

FALSE 0.3464 0.0133 0.3901 0.0205 0.3410 0.0143 0.3124 0.0189

https://doi.org/10.1371/journal.pntd.0006188.t004
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The decrease in pupal population during the rainy season, combined with a consistently

small teneral population highlights how one or two years with a very hot and wet rainy season

could have serious consequences for a tsetse population, with a reduction in pupal develop-

ment during periods of high mortality, and high temperatures killing more teneral tsetse

reducing the birth rate over subsequent months. Similarly, such a relationship could occur

over the coming years in response to climate change, with IPCC reports suggesting that more

Fig 14. Average and range of tsetse midgut and salivary gland infections as the three year simulation progresses, overlain on a colour-

coded background representing the seasons.

https://doi.org/10.1371/journal.pntd.0006188.g014

An agent-based model of tsetse fly response to seasonal climatic drivers

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0006188 February 9, 2018 23 / 29

https://doi.org/10.1371/journal.pntd.0006188.g014
https://doi.org/10.1371/journal.pntd.0006188


extreme rainfall events could occur, along with a rise in temperature over the next 50 years

(e.g. [57,58]). As a result, it is not surprising that some studies have suggested that certain tsetse

fly populations could face extinction within the next 50 years [69]. Future studies will consider

using the present model as the basis to test future climate change scenarios and examine the

response in the tsetse population to such perturbations.

rHAT transmission

The model suggested similar incidence rates for rHAT infection in humans and cattle, which

is likely to be a response to both the fact that the majority of the cattle were in households at

the south of the transect, away from the tsetse zone (only approximately 550 of 2925 cattle

were within close proximity of the tsetse zone) [27], and that humans were modelled to be

much more active than cattle in the simulation, travelling more frequently away from the

home. The latter point is corroborated by similar observations of human incidence rate in

both cattle owning and non-cattle owning households, particularly as no human infections

occurred while tending to cattle in the field or by the river. As with observations in the previ-

ous study, collecting water and school attendance provided the highest proportion of infec-

tions by some margin, and is likely to be in response to the high frequency of both trips within

the simulation and, for schools, the longer distances travelled to a sparse resource, and the

time of day of the trips coinciding with tsetse activity. In support of these simulated observa-

tions, a recent study of rHAT infections in Zambia found that almost half of the observed

female infections were found in school-age children [70]. The data for males suggested fewer

infections in children. This perhaps reflects that school attendance in the model is overesti-

mated for the male population, and, in reality, young men may be needed to work to provide

for the family at a younger age. The high incidence rates observed in immigrant tribes gives

weight to the suggestion that as populations move down the plateau and into the valley, people

are increasingly occupying marginal land, and increasing their exposure to the tsetse fly. As a

result, future studies using the model will look to investigate how influxes of people into the

region and the associated development affects the tsetse fly population in terms of habitat

availability, but also how infection patterns respond to the perturbation of the system.

Six cattle infections were used to seed the model at the beginning of the simulation (along

with five goats, one dog and two pigs), to reflect the estimated prevalence of T. b. rhodesiense
in the sample of animals from the study transect. The model was also implemented with 10

humans infected at the simulation start, to take into account information from medical teams

in the region, who suggested that there had been two reported cases in the past year, and the

known high levels of under-reporting and under-detection in the area, and further afield (e.g.

[22]). For example, one study suggested that levels of under-detection of rHAT could be as

high as 12 cases for every one identified [71]. Furthermore, the recent study in Zambia found

that, when a period of more active surveillance was adopted, the number of diagnoses

increased dramatically, suggesting high levels of under-detection in the region. In addition,

the investigation found that no action was taken by approximately one quarter of people show-

ing symptoms of rHAT infection prior to diagnosis in the study, and less than half sought

medical care from a health facility on first sign of symptoms [70]. As a result, given that there

is no under-detection in a simulation, two cattle and 11 human infections on average per year

appears plausible, especially when considering that there is currently no removal of infection

from the simulation (and no reduction in activity when infected), creating a gradually increas-

ing reservoir of infection, and an increase in tsetse infections (Fig 14).

Despite extensive effort to incorporate seasonality accurately into the simulated system,

there are some omissions which were largely unavoidable here, but which should be noted.
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Firstly, in reality, the spatial distribution of tsetse will change through the seasons, with tsetse

concentrated in the dense woodland vegetation in the hot dry season, and more widely dis-

persed in the wet and cool seasons since tsetse use microhabitats to evade extremes in tempera-

ture [60,72]. Using an interpolated temperature gradient across a study area through time may

allow this behaviour to be simulated, although there would be limitations as temperatures

would not reflect sheltered areas utilised by tsetse. As a result, such an implementation should

be used in conjunction with a variable land classification, highlighting changes in vegetation

with seasons. In addition, no data were available on how human movements vary seasonally

in this region at the temporal resolution being modelled, and therefore, the daily routines

used are consistent through the year. Finally, it is understood that maturation rate and

transmissibility of trypanosomes in tsetse varies with temperature [60], with early work in

Zambia suggesting that higher trypanosome infection rates occurred in G. morsitans in the hot

season than in the cold season [54]. However, very little research has been carried out on this

subject and, within this study, transmission rates should be low enough for this to have little

impact.

Bigger picture

For the first time in the field of rHAT transmission research, data produced and relationships

identified in different studies, focusing on different aspects of the tsetse life-cycle and tsetse-cli-

mate interactions, have been incorporated into a single detailed ABM, creating a plausible, sta-

ble model, which can ultimately produce a reasonable estimate for transmission rates. While

providing an element of validation to these individual entomological studies, through the pro-

duction of tsetse population curves which closely follow those produced from data collected in

the nearby South Luangwa National Park, the model represents a step towards a greater under-

standing of disease transmission for rHAT in this case, while also being adaptable to gHAT

foci in the future. As with all models, the ABM is not without its limitations, for example, vari-

ability in tsetse feeding behaviour and preference has been incorporated, but at a basic level.

However, through working towards an accurate model representation of the disease landscape

one can expect to achieve a greater understanding of the rHAT transmission system, which in

turn can help the devising of spatially and temporally targeted mitigation strategies in the

future, to help those in need with sustainable solutions, and are more appropriate for spatially

marginal communities susceptible to neglected tropical diseases.

Conclusion

The dynamics of a tsetse population are difficult to model due to difficulties in acquiring data,

and the complexity of the system, but are important to understand due to their importance in

rHAT transmission. Gaining a greater understanding of tsetse population dynamics may lead

to greater understanding of rHAT transmission and aid future mitigation strategies. This

paper presented the first seasonally-varying rHAT transmission model, defined at a fine reso-

lution and modelling directly individual flies, with the full tsetse life cycle as a sub-component.

By incorporating numerous parameters estimated from the literature, from data and from

expert opinion into such a detailed model, a range of outputs were created which can be used

by scientists to analyse and evaluate our current understanding of tsetse fly dynamics and the

rHAT disease transmission system, and by decision-makers to investigate alternative mitiga-

tion strategies. In its current state, including seasonally varying effects, the model lends itself to

modelling future scenarios, including insecticide application and other vector control strate-

gies, the incorporation of a changing climate, the effects of landcover change and human

development adjacent to, and within, the biodiverse tsetse habitat.
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