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Many pathogens evade host immunity by periodically changing the proteins they express
on their surface — a phenomenon termed antigenic variation. An extreme form of
antigenic variation, based around switching the composition of a variant surface glyco-
protein (VSG) coat, is exhibited by the African trypanosome Trypanosoma brucei, which
causes human disease. The molecular details of VSG switching in T. brucei have been
extensively studied over the last three decades, revealing in increasing detail the machinery
and mechanisms by which VSG expression is controlled and altered. However, several key
components of the models of T. brucei antigenic variation that have emerged have been
challenged through recent discoveries. These discoveries include new appreciation of the
importance of gene mosaics in generating huge levels of new VSG variants, the contribu-
tions of parasite development and body compartmentation in the host to the infection
dynamics and, finally, potential differences in the strategies of antigenic variation and host
infection used by the crucial livestock trypanosomes T. congolense and T. vivax. This
review will discuss all these observations, which raise questions regarding how secure
the existing models of trypanosome antigenic variation are. In addition, we will discuss
the importance of continued mathematical modelling to understand the purpose of
this widespread immune survival process.

Introduction
Pathogens face a key challenge for their long-term survival, ensuring transmission between hosts. An
approach adopted frequently by pathogens to enhance transmission is to persist as chronic infections,
increasing the likelihood of transfer to a new host. To maintain a chronic infection in mammals, the
substantial obstacle of prolonged exposure to the acquired and innate immune systems must be over-
come. One widespread strategy to avoid immune elimination, found in viruses, bacteria, fungi and
protozoans, is antigenic variation, where exposed pathogen antigens are periodically replaced. In all
cases, the generation of host immune effectors that recognise an exposed antigen will eliminate most
pathogens, but by switching the expressed surface antigen, a subpopulation of the infecting pathogen
avoids host recognition and killing. Repeated rounds of immune recognition, killing and outgrowth of
switched subpopulations can lead to waves of increasing and decreasing pathogen loads (Figure 1A).
Antigenic variation has shared features in pathogens including Neisseria, Borrelia, Anaplasma,
Giardia, Plasmodium, Babesia and African trypanosomes [1–5], such as gene expression control to
ensure a single antigen is expressed in a single cell at one time, a repertoire of antigen genes and a
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means to elicit a switch in the singularly expressed antigen gene among the repertoire. However, because anti-
genic variation evolved separately in these organisms, the mechanisms dictating the shared features are highly
diverse.
In African trypanosomes, antigenic variation involves switches in the expression of variant surface glycopro-

tein (VSG) [6,7], which is thought to form a dense protective coat across the whole parasite cell, shielding
necessarily invariant antigens [8]. Loss of the VSG coat is lethal even in culture [9], underlining its importance
to Trypanosoma brucei growth and survival in even the most forgiving environments. The genetic components
of antigenic variation in T. brucei have been known for nearly 40 years [10]. Since then, sequencing the
genome of T. brucei [11] allied to the development of a wide range of genetic tools (e.g. gene knockout, RNAi,
overexpression and genome-wide screens) has provided effective strategies to perturb the system, which has
revealed detailed information on the molecular basis of VSG expression switching. What has emerged is a
system of remarkable mechanistic flexibility (Figure 1) and a potentially unparalleled capacity for new coat gen-
eration. Monoallelic expression, such that each T. brucei cell expresses a single VSG variant at one time, relies
upon VSG genes only being expressed when present in specialised telomeric VSG expression sites (ESs).
Unusually, the ESs are not transcribed by RNA Polymerase (Pol) II, but by RNA Pol I (Figure 1B). The
T. brucei genome contains multiple ESs [12] and so one route to execute a VSG coat switch is to silence the
actively transcribed ES and activate one previously silent ES (Figure 1C). A range of factors have been described

Figure 1. Antigenic variation in Trypanosoma brucei.

(A) A view of a trypanosome infection profile, where progressive waves of parasitaemia are composed of trypanosome

populations with antigenically distinct VSG coats. For simplicity, each wave is shown to contain a population expressing a

single VSG coat (different coloured cells; variants A, B, C, etc.), which results in antibodies against that variant; however,

normally many parasites with different VSGs are found per wave. (B) A depiction of a VSG ES that is used when T. brucei is

found in the mammal. Multiple expression site-associated genes (ESAGs; white arrows) are co-expressed with the VSG (green

arrow), which is adjacent to the telomere and downstream from 70 bp repeats. Multigenic transcription across the ES is derived

from an RNA Pol I promoter. (C) Transcriptional VSG coat switching, where transcription (green arrow) from the single active

VSG ES is silenced, and transcription is up-regulated across a previously silent VSG ES (blue arrow and VSG). (D and E) VSG

coat switching by recombination, of which two forms of gene conversion are shown. In one reaction (D), an intact, silent VSG

gene copy (blue arrow) in a minichromosome, sub-telomeric VSG array or silent ES (not shown) is recombined into the active

ES based on upstream and downstream sequence homology. In the second reaction (E), segmental gene conversion occurs

between multiple silent VSGs and VSG pseudogenes (yellow and orange arrows) in the VSG arrays to form a novel, patchwork

VSG mosaic; for simplicity, this event is shown to occur in the VSG ES, but the location of the mosaic assembly is unknown.
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that ensure singular ES expression [13–16], and a few have been implicated in the co-ordination of transcrip-
tional switching [17–19].
Trypanosomes can also execute a VSG coat switch by genetic recombination (Figure 1D,E), and it is this

strategy of gene rearrangement that maintains chronic infections. The T. brucei genome contains thousands of
transcriptionally silent VSG genes [11,20,21], found as arrays in the sub-telomeres of the diploid megabase
chromosome and at the telomeres of hundreds of minichromosomes [22]. Only a minority of the VSG archive
is composed of functional VSGs [11,20,21], but these are preferentially activated early in infections [23] and
extensive genetic analyses indicate that homologous recombination (HR), a general genome repair pathway, cat-
alyses a VSG switch [24]. How this reaction is initiated is still being examined, but it seems likely the actively
transcribed ES is preferentially targeted [25–30]. Later in infections, activation of VSG pseudogenes predomi-
nates, with VSG recombination operating by a potentially distinct route to that used for intact VSGs: highly
flexible segmental gene conversion occurs (Figure 1E), which reassorts multiple VSGs using intra-open reading
frame homology to yield novel patchwork ‘mosaic’ VSGs [21,31,32]. This reaction appears to be the key to
chronic infections [33], but the nature of how it is executed is mysterious (see below).
The burgeoning and ongoing dissection of antigenic variation has revealed a wealth of new biology, but

several recent studies (Figure 2) suggest that our view of the nature and purpose of the process need to be
reconsidered in the light of chronic infections, in terms of transmission, and with regard to how well the reac-
tions described in T. brucei reflect what occurs in other trypanosome species. Below we summarise the emer-
ging data and the questions raised regarding antigenic variation in trypanosomes.

How dynamic is the expressed and genomic VSG repertoire,
and how is VSG coat switching catalysed?
The textbook paradigm of each expressed VSG coat type being encoded by its own intact VSG gene, selected
from an archive of such genes and activated one at a time by gene conversion (Figure 1), is now recognised as
oversimplistic. VSG coat variants do not arise in a simple homogeneous procession. Instead, longitudinal sam-
pling of the expressed VSG RNA repertoire during mice infections by targeted cloning [31] or RNAseq [32] con-
firmed predictions [23,34] that VSG variants arise semi-stochastically and revealed that each wave of parasitaemia
comprises populations of trypanosomes expressing many distinct VSGs, with grossly differing abundance.
Moreover, the flexibility of segmental VSG gene conversion predicts that the expressed repertoire hugely exceeds
the genomic VSG archive [31,35,36]. The predominance of mosaic VSG formation later in infections raises a
range of questions (Figure 2, Q.1). What is the true scale of expressed VSG diversity, and does antigen expression
increase in complexity over time? Do lineages of related (but antigenically distinct) mosaic VSGs form during
infections due to inherent differences in the activation rates of VSG (pseudo)genes, what proportions of such
mosaics are antigenically distinct, and how does putative lineage diversity vary between infections?

Figure 2. Emerging questions in trypanosome antigenic variation.

Five areas of emerging trypanosome biology, and some questions that arise regarding antigenic variation are highlighted in the

boxes. Each box is discussed in greater depth in the text of the article.
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Answering such questions will require further and bigger datasets spanning the great length of chronic infec-
tions, allied to robust mathematical modelling, not least to quantify expressed VSG diversity (see below).
Beyond the impact of segmental VSG gene conversion on expressed diversity, we currently have no insights
into the recombination pathway that directs the reaction. For instance, while it is clear that RAD51-catalysed
recombination, guided by BRCA2 [37,38], acts to recombine intact VSGs, no study has evaluated the effect of
loss of these factors on the extent and pattern of VSG diversity as infections progress, and so we cannot rule
out that a non-HR reaction catalyses segmental gene conversion. In addition, whether novel mosaic VSG genes
are assembled within the VSG ES, or whether the reaction occurs within the silent sub-telomeric VSG archive
(with subsequent recombination into the VSG ES) is unknown. Changes in the VSG archive are known to
cause variation in chromosome size between T. brucei isolates [39], but the nature of the underlying rearrange-
ments and their link to VSG switching during chronic infections has not been evaluated. All these aspects of
VSG switching and archive stability have implications for onward transmission.

How does antigenic variation operate if most parasites are
non-proliferative?
The infection dynamic of T. brucei does not simply derive from antigenic variation, but is critically shaped by
the parasite’s development in the bloodstream. Specifically, in each wave of parasitaemia, the parasites prolifer-
ate as ‘slender forms’ until a density threshold is reached, whereupon they differentiate to ‘stumpy forms’,
adapted for transmission to the tsetse fly vector (Figure 2, Q.2). At least one pathway of this developmental
transition represents a form of quorum-sensing generated by a parasite-derived signal, termed the ‘stumpy
induction factor’ (SIF) [40,41]. Although SIF remains unidentified, its signal transduction pathway(s) has been
dissected by genome-wide RNAi screening and targeted mutation analysis, identifying components, such as
protein kinases and phosphatases, as well as gene regulators, whose loss renders the parasites unresponsive to
SIF [42–47]. Cytological markers that distinguish slender and stumpy forms have allowed the quantification of
each cell type throughout the course of infection [48]. In chronic mouse infections, this tool has been used to
establish that irreversibly cell-cycle arrested stumpy forms predominate [49]. With only a subset of the parasite
population (slender forms) proliferating, the frequency of productive antigenic variation, generated through
DNA recombination, may be lower than expected and the outgrowth of new variants is inevitably restricted,
raising questions about how differentiation and VSG switching interact to influence expressed VSG diversity
[50]. Indeed, this may have wider implications for infection dynamics, since it has been shown that SIF can be
exchanged between T. congolense and T. brucei [51], meaning co-infection dynamics may not be simple compe-
titions between different infecting parasites.

What is the contribution of extravascular tissues to
antigenic variation?
Recent work has reshaped our view of T. brucei as being a parasite that lives and proliferates mainly in the
bloodstream and lymphatic systems. While trypanosome movement between the blood and tissues has long
been recognised, methods for the isolation and quantitation of parasites have revealed that a significant portion
— perhaps a majority — of the population resides extravascularly in the adipose tissue [52] and skin [53]
(Figure 2, Q.3). Both these sites may be immune-privileged [54], perhaps providing significant reservoirs for
maintaining infections and facilitating transmission. While slender and stumpy forms of T. brucei can be found
in the skin and adipose tissue, it has not yet been established if differentiation occurs in these tissues.
Nonetheless, at least in the adipose tissue, the cells exhibit a distinct metabolism to circulating bloodstream
form cells [52,55], indicating they represent a discrete, adapted population. Importantly, the rates and mechan-
isms of antigenic variation in these locations are unknown, as is the capacity for flux of variants between the
blood and body niches, meaning existing strategies to evaluate expressed VSG diversity need to be revisited.
Moreover, the ability of immune responses to select the enormous diversity of antigen types in circulation and
in different body compartments, and thereby shape the infection dynamic, also requires mechanistic and
population-scale analysis. Finally, the intravascular behaviour of at least one other Trypanosoma species, T.
congolense, appears distinct from T. brucei [56,57], questioning whether intra-host infection dynamics are
shared across African trypanosomes. Indeed, T. equiperdum, which is more closely related to T. brucei [58],
may represent an extreme case of tissue tropism, where the bloodstream as a habitat has been substantially
abandoned [59].
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How does antigenic variation operate in livestock
trypanosome infections?
Broader questions relate to the widespread use of T. brucei in mice as the infection model. T. brucei gambiense
and T. brucei rhodesiense are the causative agents of increasingly scarce human infections [60–63], which can
be modelled in mice using T. brucei brucei, even though this subspecies is not human infective [64]. However,
mice are an unnatural host, and the most significant impact associated with trypanosomiasis is that caused by
livestock infections, which are predominantly caused by T. congolense and T. vivax, each being more prevalent
and pathogenic in cattle than T. brucei [65]. Though both of these trypanosome species rely on VSG switching
for immune evasion, unlike other bovine-infective Trypanosoma species [66], genome comparisons have
revealed a much smaller proportion of VSG pseudogenes relative to T. brucei, differences in conserved coding
and non-coding sequences that flank VSG loci relative to T. brucei, and distinct patterns of inferred recombin-
ation among VSGs relative to T. brucei [67] (Figure 2, Q.4). All these findings raise questions about the extent
to which the mechanisms for VSG switching described in T. brucei apply to T. vivax and T. congolense. Indeed,
a striking expansion in the number of functional BRC motifs in T. brucei BRCA2, which directs VSG recom-
bination, is not found in the BRCA2 homologues of T. congolense and T. vivax, perhaps consistent with differ-
ing recombination routes for VSG switching or diversification [37,38]. Any underlying differences in VSG
switch mechanism or usage will be most readily evaluated by comparing VSG expression diversity during
chronic infections by the different trypanosomes, as well as by extrapolating targeted genetic mutants from T.
brucei to T. congolense and T. vivax.

Have we adequately modelled antigenic variation?
Experimental analysis of antigenic variation is critical, but frequently focuses on aspects of mechanism and
biology that are amenable to genetic perturbation. Given the huge size of the T. brucei VSG archive, the realisa-
tion of high levels of expressed VSG diversity [largely due to segmental VSG (pseudo)gene conversion] and the
emergence of differentiation and tissue compartmentalisation having an influence on the infection dynamics, it
is clear that we must continue to evaluate our mechanistic understanding of antigenic variation with mathemat-
ical modelling (Figure 2, Q.5). Only modelling approaches have the capacity to integrate distinct empirical
advances in such a way that we can evaluate the extent to which the biological processes discussed above inter-
act to shape the overall infection dynamic, and to understand how this influences the expressed VSG diversity
within and between species. Existing models that have used known infection parameters and VSG switch rates
[34,68] may need to be re-examined in the light of the above emerging data. In addition, evaluation of the gene
sequences associated with VSG gene conversion [69] needs to consider the potential for different homology
requirements and recombination mechanisms during intact VSG gene conversion and segmental VSG
(pseudo)gene conversion, as well the possibility that the reaction constraints and usage may differ between
Trypanosoma species. Finally, though antigenic variation is a strategy to maintain chronic infections, it is very
likely that it is also needed to allow pathogens to counter the emergence of herd immunity and thereby infect
pre-infected hosts. Innovative modelling of VSG switching is needed to make testable predictions regarding
how antigenic variation operates at the cellular, within-host and between-host scales [70], and ultimately how it
contributes to pathogen transmission.

Summary
• Understanding of the roles and mechanisms of mosaic VSG switching is incomplete.

• How infection dynamics and antigenic variation are shaped by density-dependent differenti-
ation needs to be determined.

• The roles and impact of tissue compartmentalisation needs to be evaluated.

• Comparison must be made of antigenic variation in human and livestock trypanosomes.

• Continued modelling remains central to understanding antigenic variation.
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