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Understanding how topological constraints affect the dynamics of polymers in solution is at the
basis of any polymer theory and it is particularly needed for melts of rings. These polymers fold
as crumpled and space-filling objects and, yet, they display a large number of topological con-
straints. To understand their role, here we systematically probe the response of solutions of rings at
various densities to “random pinning” perturbations. We show that these perturbations trigger non-
Gaussian and heterogeneous dynamics, eventually leading to non-ergodic and glassy behaviours. We
then derive universal scaling relations for the values of solution density and polymer length marking
the onset of vitrification in unperturbed solutions. Finally, we directly connect the heterogeneous
dynamics of the rings with their spatial organisation and mutual interpenetration. Our results
suggest that deviations from the typical behaviours observed in systems of linear polymers may
originate from architecture-specific (threading) topological constraints.

Introduction – The behaviour of unknotted and mu-
tually unlinked ring polymers in dense solutions and
melts is a yet unsolved issue in Polymer Physics [1], and
it has stimulated much theoretical [2–18] and experimen-
tal [19–24] work in last decades. One of the most elusive
aspects of this problem is the interplay between topo-
logical constraints (TCs) and both, structure and dy-
namics of the rings, which looks far more intricate than
in their linear analogs. In the latter case, TCs induce
slow dynamics through the reptative motion of the chain
ends [25–27] without affecting the average chain size or
gyration radius, Rg, which remains essentially random-
walk-like [28, 29] and scales with the polymerization in-
dex N as Rg ∼ Nν with ν = 1/2. In the former case, the
polymers have no ends to “reptate” [1] and global topo-
logical invariance requires that all rings remain perma-
nently unlinked at the expense of some entropic loss [30].
As a result, TCs affect both, dynamics and conforma-
tions of the rings whose gyration radius is characterized
by a non-trivial exponent predicted to be in the range
between ν = 1/4 [2] and ν = 2/5 [30].

In recent years, more accurate computational work [6,
7, 11] has provided evidence that in the limit of large N ,
ν → 1/3, in agreement with a picture in which rings fold
into “crumpled-globule”-like conformations [31] whose
compaction increases with solution density [32]. In spite
of this, the surface of each ring, i.e. the fraction of con-
tour length in contact with other chains, is “rough” [32]
and scaling as Nβ with β . 1 [7, 12, 33, 34]. In
fact, crumpled rings do not fully segregate or expel
neighbouring chains from the occupied space [7], rather,
they fold into interpenetrating or “threading” conforma-
tions [14, 35] that are akin to interacting “lattice ani-
mals” [11] with long-range (loose) loops [18, 36].

Threadings are architecture-specific TCs that uniquely
characterize systems of polymers whose contours display
(quenched) closed loops (see Fig. 1(A)). By exploiting
the abundance of these peculiar interactions, it has been
shown recently [17] that a novel “topological freezing”
can be induced in rings solutions at any temperature T .

This putative glassy state, inherently driven by the topol-
ogy of the constituents, is achieved by randomly pinning
a fraction of rings, fp, above an empirical “critical” value
(see Fig. S1(A) in Supplemental Material (SM)):

f†p(N) = −fN log

(
N

Ng

)
, (1)

where Ng is the theoretical length required for sponta-
neous (i.e., fp → 0) vitrification and fN a non-universal
parameter [37].

Topological freezing is the consequence of the prolif-
eration of inter-ring constraints [14, 17], with the latter
depending either on the polymerization index, N , or the
density of the solution, ρ. While it has been shown that
longer rings generate more TCs [17], it remains unclear
how they behave if solutions become denser, rings more
crumpled [32] and less space is available to threading.

Motivated by these considerations, in this Letter we
study the effect of TCs by “randomly pinning” solutions
of semi-flexible ring polymers, and probe the dynamic
response of the rings for different solution densities and
chain lengths. We show that the threshold pinning frac-
tion f†p obeys an empirical relation akin to Eq. (1) and
we derive universal scaling relations for the values of Ng
and ρg at which spontaneous (fp → 0) glassiness is ex-
pected. We further discuss the dynamics of rings in terms
of ensemble- and time-average observables and report, for
the first time, numerical evidence for ergodicity breaking
effects and pronounced heterogeneous non-Gaussian dy-
namics, even in unperturbed (fp = 0) solutions.
Results – We present the results of large-scale molec-

ular dynamics (MD) simulations of solutions of semi-
flexible ring polymers made of N = 250 and N = 500
beads, for monomer densities ρσ3 = 0.1, 0.2, 0.3, 0.4 (see
SM for details). For each combination of N and ρ, we run
a single, independent realisation of the system in which
a random fraction fp of rings have been “pinned”, i.e.
permanently frozen in space and time.

The dynamics of a single non-frozen ring can then be
captured by the mean-square displacement of its centre

ar
X

iv
:1

70
3.

09
68

8v
1 

 [
co

nd
-m

at
.s

of
t]

  2
8 

M
ar

 2
01

7



2

A

101

102

103

104

105

104 105 106 107

101

102

103

104

105

104 105 106 107

104 105 106 107
101

102

103

104

105

C

B

D

FIG. 1: Random Pinning Triggers Slowing Down and
Glassiness. (A) Typical melt structure for rings of N = 250
monomers with fp = 0 and ρ = 0.2σ−3. Inset: Two rings iso-
lated from the melt and showing mutual threading. (B,C,D)
Mean-square displacement of rings centre of mass, 〈g3(∆)〉
(Eq. (3)) as a function of lag-time ∆ for ring solutions with
selected N and ρ. Rings display glassy behaviour (suppressed
diffusion, 〈g3(∆)〉 ∼ ∆0) for fp > f†p where f†p is found to
decrease with both, N and ρ. Dashed horizontal lines are for
the mean-square ring diameter, 4〈R2

g〉.

of mass, g3(T,∆), as a function of the lag-time ∆ and
measurement time T :

g3(T,∆) ≡ 1

T −∆

∫ T−∆

0

[rCM (t+ ∆)− rCM (t)]
2
dt .

(2)
The time-average displacement can be defined as g3(∆) ≡
g3(T,∆) while its ensemble average as

〈g3(T,∆)〉 ≡ 1

Mf

∑′
g3(T,∆) , (3)

with
∑′

indicating that the average is performed over
the set of Mf “free”, i.e. not explicitly pinned, rings.
Accordingly, we indicate the time- and ensemble-average
displacement as 〈g3(∆)〉.

Fig. 1(B,C,D) directly compare the behaviour of
〈g3(∆)〉 in response to the random pinning of different
fractions fp of rings (see also SM Fig. S2 for more cases).
For unperturbed solutions (fp = 0), the data repro-
duce the known [8, 12, 22] crossover from sub-diffusive
(〈g3(∆)〉 ∼ ∆3/4) to diffusive (〈g3(∆)〉 ∼ ∆) behaviour.
Perturbed systems, instead, display a reduced average
diffusion, the more severe the higher the value of fp. In
particular, for fp larger than f†p(ρ,N), the average dis-
placement remains well below one ring diameter (marked
by the horizontal dashed lines) and does not diverge in
time, indicating [17] a solid-like (glassy) behaviour. Fur-
thermore, we find that f†p(ρ,N) decreases as a function
of both, ring length N [17] and, unexpectedly, monomer
density ρ.

In order to obtain the functional form of
f†p(ρ,N), the asymptotic diffusion coefficient
D(ρ, fp) ≡ lim∆→∞〈g3(∆)〉/6∆ at given (N , ρ, fp)
is computed by best fit of the long-time behaviour of the

corresponding 〈g3(∆)〉 to a linear function (for details,
see SM). Fig. 2(A) (N = 250) and SM Fig. S1(B)
(N = 500) show plots for D(ρ, fp)/D0(ρ) – where
D0(ρ) ≡ D(ρ, fp = 0) – as a function of fp. Corre-
sponding datasets are well fitted by the exponential
function d(fp) = exp (−kfp), in agreement with previous
results [17]. We thus extract f†p(ρ,N) by finding the
intersection of d(fp) with a convenient small value
of 0.01 [17]. The obtained “critical” lines f†p(ρ,N)
(see SM Fig. S1(C)) separate regions of the parameter
space (ρ, fp) with finite (liquid) and vanishing (glassy)
diffusion coefficients.

Interestingly, we find that the functional form of f†p(ρ)
is akin to Eq. (1), i.e.

f†p(ρ,N) = −fρ log

(
ρ

ρg

)
, (4)

and that our data for N = 250 and N = 500 collapse
onto a master curve f†p(x = ρ/ρg(N))/fρ = − log (x)
with fρ = 0.43 (Fig. 2(B)). Given that both, Eqs. (1)
and (4), describe the same quantity, one may argue that
the right-hand-side of both equations must be equal. By
combining them [38] under the assumption that the only
dependence on ρ is contained in Ng, the values of ρg
and Ng for spontaneous topological vitrification obey the
following universal scaling relations

ρg(N) ∼ N−η

Ng(ρ) ∼ ρ−1/η , (5)

with η = fN/fρ ' 0.7 (using fN = 0.303 and fρ = 0.43).
Eqs. (4) and (5) provide quantitative predictions that
may readily be tested in computer simulations and future
experiments on melts of rings.

Having determined the empirical functional form of f†p
and the generic behaviours of Ng and ρg, we now turn
our attention on the role of TCs in the dynamics of single
rings. To this end, we consider the distribution of 1d
displacements ∆x [39]

P (∆x) = 〈δ(∆x− |x(t+ ∆)− x(t)|)〉 , (6)

which corresponds to the self-part of the van-Hove func-
tion [40, 41] at given lag-time ∆. The distribution of
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FIG. 2: Exponential Slowing Down and Universal
Phase Diagram. (A) D(ρ, fp)/D0(ρ) is compatible with
exponential decay (dashed line) in fp. An arbitrarily small
(0.01) value is chosen to determine the transition to glassy
behaviour [17]. (B) Curve for f†p(ρ,N)/fρ as a function of
ρ/ρg(N) (see Eq. (4)) showing collapse onto the universal
curve − log (x) for N = 250 and N = 500 data.
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rescaled displacements X ≡ ∆x/
√
〈∆x2〉 is expected to

be described by the universal Gaussian function with zero
mean and unit variance [40]. This is indeed the case for
unperturbed solutions of short rings (fp = 0, Fig. 3(A)),
whereas both, perturbed solutions (Fig. 3(B,C)) and
even unperturbed ones with long rings and high den-
sity (Fig. 3(D)), distinctly deviate from the Gaussian be-
haviour (see also SM Figs. S3-S5).

Two novel features emerge from these plots: First,
a prominence of rings with short “cage-like” displace-
ments, identified by the narrow region centred around
X = 0 where P (X) remains above the Gaussian. Sec-
ond, the appearance of a population of rings travelling
faster than the average ring, giving rise to “fat” expo-
nential tails. Both features are akin to those observed in
generic systems of particles close to glass and jamming
transitions [41] where each component alternates cage-
like motion and large-scale rearrangements.

The non-Gaussian behaviour detected in our systems
is clearly triggered by pinning perturbations (Fig. 3(C)),
arguably through threading TCs. We conjecture that
threading configurations may also be at the basis of
the (weaker) non-Gaussian behaviour observed in unper-
turbed (fp = 0) solutions at large densities and N = 500
(Fig. 3(D)). In particular, threadings may in general be
the reason of the cage-like, non-Gaussian, motion of large
ring polymers seen in experiments [22]. Although not
permanent as in the case of pinned solutions, threadings
between rings may in fact act as transient cages, and our
results suggest that they may be the more long-lived the
denser the solutions and the longer the rings.

In order to better understand the observed devi-
ations from Gaussian behaviour, we now investigate
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FIG. 3: Distributions of Displacements are non-
Gaussian. Distribution functions, P (X), of 1d scaled dis-
placements of the centers of mass of non-pinned rings, X ≡
∆x/

√
〈∆x2〉, at lag-times ∆. P (X) is described by a Gaus-

sian function with zero mean and unit variance (dashed lines)
in non-pinned systems (A), while it displays caging and fat,
exponential tails (solid lines) in pinned solutions (B,C). (D)
Deviations from Gaussian behaviour (exponential tails) are
also observed in unperturbed solutions with N = 500 and
ρσ3 ≥ 0.3.
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FIG. 4: Heterogeneous Dynamics and Ergodicity
Breaking. (A,B) Single curves for g3(T,∆) at fixed lag-
time ∆ = ∆ = 1.2 105 τLJ as a function of measurement time
T . Representative results for ρσ3 = 0.1 and N = 250 and
ρσ3 = 0.4 and N = 500. Thick horizontal lines represent
the mean 〈g3(∆)〉. (C,D) Plots for the ergodicity-breaking
(EB) parameter (Eq. (7)). A decay ∼ T−1 is expected for
standard diffusive processes, whereas ∼ T 0 indicates strong
ergodicity-breaking. Rings with N = 500 at the highest den-
sity ρσ3 = 0.4 display non-Gaussian decay even at fp = 0.

time-average quantities of single ring trajectories. In
Fig. 4(A,B) we report g3(T,∆), i.e. the centre of mass
displacement of single rings at fixed lag-time ∆ = ∆ and
increasing measurement time T (see also SM, Figs. S6-
S7). Unperturbed solutions of short rings show that
limT→∞ g3(T,∆) = 〈g3(∆)〉, i.e. every ring tends to
travel at the same average speed (see Fig. 4(A), fp = 0).
Conversely, perturbed systems display heterogeneously-
distributed trajectories which can be partitioned into two
sub-populations having small and large displacements,
respectively. The former reflect the above-mentioned
presence of caged rings and we also notice examples of
single rings with temporally-heterogeneous dynamics, al-
ternating slow and fast diffusion (see Fig. 4(A), fp = 0.3).
These observations are in agreement with the concept of
permanent or transient caging due to threading TCs.

Constraints with diverging life-times have been shown
to trigger non-ergodic behaviours [42]. We quantify these
deviations form ergodic diffusion through the ergodicity
breaking parameter [43]

EB(T ) ≡
[
〈g3(T,∆)2〉 − 〈g3(T,∆)〉2

]
〈g3(T,∆)〉2

, (7)

which captures how fast the single-ring trajectories
g3(T,∆) narrow around the mean 〈g3(∆)〉. For standard
diffusive solutions, EB(T ) ∼ T−1 [43, 44] whereas non-
ergodic systems display EB(T ) ∼ T 0 [45]. As shown in
Fig. 4(C) (see also SM Figs. S6-S7) ergodicity breaking
can indeed be triggered by random pinning. Remark-
ably, even unperturbed (fp = 0) solutions of rings with
N = 500 and monomer density ρ = 0.4σ−3 (Fig. 4(D))
display slower convergence to ergodic behaviour, thereby
suggesting non-standard statistics in the waiting (so-
journ) times of diffusing rings [44, 45].
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FIG. 5: Slowing Down of Overlapping Rings. (A) Aver-
age number of overlapping chains per ring, 〈mov(ρ)〉. Dashed
lines correspond to power-law behaviors determined from best
fits to the data. Plotted values are listed in Table SI in
SM. (B) Abstract network representation for rings solutions:
nodes (which represent rings) are colour coded according to
corresponding diffusion coefficients, D ≡ lim∆→∞ g3(∆)/6∆.
Edges between nodes are drawn if their weight is larger than
0.5, for clarity. Slow-moving rings overlap with frozen ones,
whereas fast rings show little or no persistent overlap.

Taken together, these results assemble into a picture
where pinned rings induce a form of “quenched disorder”,
turning into “traps” with very large life-times [42], for the
other rings. To our knowledge, this is the first instance
that spontaneous caging and deviations from standard
ergodic behaviour is directly observed in unperturbed so-
lutions of polymers (of any topology).

Having investigated the heterogeneous dynamics of sin-
gle rings, we conclude by connecting the observed non-
Gaussian behaviour to the spatial organisation of the
chains. By analogy with [30], one may argue that a ring
of size Rg experiences an entropic penalty proportional
to the average number of overlapping neighbours 〈mov〉

S

kBT
∼ 〈mov〉 ∼

ρ

N
R3
g ∼ ρα , (8)

where we assume that [6, 7, 11], in the large-N limit, the
number of chains in a volume R3

g converges to a (den-
sity dependent) constant characterized by an exponent
α < 1 [32], i.e. R3

g/N ∼ ρ−(1−α). In Eq. (8), 〈mov〉 is
defined as the average number of chains whose centres of
mass are within 2Rg from the centre of mass of any other
ring and we find that 〈mov〉 achieves a N -independent
value with α ' 0.60− 0.74 (see Fig. 5(A)). Importantly,
Eq. (8) implies that higher monomer densities lead to
a larger number of overlapping neighbours [32] and, in
turn, larger entropic penalties [30], which consequently
drive more compact conformations. On the other hand,
results from Figs. 1-2 suggest that denser systems are
more susceptible to random pinning, and display glassy
behaviour at lower values of fp.

This apparent contradiction can be reconciled by re-
sorting to the following picture. We model rings as nodes
of an abstract network, and a link between any two nodes
indicates that the two corresponding rings overlap for a
total time longer than half of the overall simulation run-

time. An example of such a network is given in Fig. 5(B),
where nodes have been ordered and coloured accord-
ing to the corresponding single-ring diffusion coefficients,
D ≡ lim∆→∞ g3(∆)/6∆. This representation intuitively
shows that slow rings are connected (overlap) either with
other slow rings or with frozen ones. On the other hand,
mobile rings (i.e., rings with large diffusion coefficient)
have virtually zero degree. This representation thus di-
rectly connects static and dynamic features of rings in
solution and, in particular, indicates that overlapping
rings, arguably exerting TCs on one another, slow down
the respective motion.

To obtain then a quantitative estimation of how TCs
affect the dynamics of rings, we approximate the net-
work as a Bethe lattice [27] of coordination (i.e., number
of neighbours per node) 〈mov〉. Due to the hierarchical
nature of the network, the maximum number of shells, ḡ,
is given by

ḡ =
log
(
〈mov〉−2
〈mov〉 (M − 1) + 1

)
log(〈mov〉 − 1)

, (9)

where M is the total number of nodes (rings) of the
network. We now assume that the effect of pinning a
single ring results in the caging of its first neighbours
with an unknown probability pc, of its second neighbours
with probability p2

c , and so on. The whole process there-
fore results in a “caging cascade” producing a fraction of
trapped rings equal to

f ′c = pc〈mov〉
(pc (〈mov〉 − 1))

ḡ − 1

pc (〈mov〉 − 1)− 1
. (10)

For small fp, all pinned rings may be assumed to act inde-
pendently on their neighbours. Then, the total fraction
of caged rings, fc, is

fc = fp f
′
c . (11)

Interestingly, Eqs. (10)-(11) link a measurable quan-
tity (fraction of caged rings, fc) to an imposed quan-
tity (fraction of pinned rings, fp) and, by inversion, al-
lows to determine the caging (or threading) probabil-
ity between close-by rings, pc [14, 17]. In particular,
Eq. (10) implies that the system becomes “critical” when
pc = p†c ≡ 1/(〈mov〉 − 1), for there exists a finite fraction
fc of caged rings even in the limit fp → 0.

By combining Eqs. (10)-(11) and evaluating fc at
fp = 0.3 as the rings displaying a single-ring diffusion
coefficient D/Dmax ' 0 (see SM Fig. S8), we can nu-
merically extract values for pc at any given ρ (see Ta-
ble SI). Interestingly, pc increases with ρ up to where pc
is approximately given by the predicted p†c. Although we
employ a crude approximation, we find that, curiously,
the only two cases for which pc > p†c are the ones dis-
playing spontaneous (fp = 0) deviations from Gaussian
behaviour (Fig. 3(D), N = 500 and ρσ3 ≥ 0.3).
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Conclusions – In this work, we have shown that dense
solutions of semi-flexible ring polymers display rich, non-
Gaussian behaviours under random pinning perturba-
tions. Glassiness is observed at pinned fractions fp larger
than a “critical” value f†p(ρ,N), which obeys an empirical
dependence on ρ similar to the one previously reported
for N [17] (Fig. 2). As a consequence, we obtained novel,
generic, and surprisingly simple, scaling relations for the
threshold ρg(N) and Ng(ρ) marking the onset of sponta-
neous topological vitrification (Eqs. 5).

We have reported the first evidence of strong ergodic-
ity breaking in solutions of rings, triggered for any fp > 0
and non-trivial convergence towards ergodicity has also
been found for unperturbed solutions at high density
(Fig. 4). These results can be rationalized by assuming
that random pinning turn transient threading topological
constraints into quenched disorder and permanent cages.
Overall, ring solutions appear to cluster into sub-systems
with slow/fast diffusivities corresponding to large/little

overlaps with other slow or pinned rings (Fig. 5).

An intriguing finding of our work is that, even in the
limit fp → 0, solutions of rings may deviate from stan-
dard Gaussian behaviour (Figs. 3(D)-4(D)) and turn into
“topological glasses” provided ρ or N are large enough
(Fig. 2). We have concluded that a topological glass may
form when the probability pc of any pinned ring to cage
any of its neighbours is ≥ p†c, with p†c given by a simple
analytical expression for networks in the Bethe lattice
approximation.

We argue that the experimentally observed [22] non-
Gaussian behaviour of ring polymers melts may be well
reconciled with this picture. At the same time, we hope
that the present work will pave the way for future exper-
iments and computer simulations.

Acknowledgments – The authors thank C. Micheletti
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I. MODEL AND METHODS

A. The model

Solutions of ring polymers are modelled by resorting
to the Kremer and Grest [46] polymer model.

Excluded volume interactions between beads (includ-
ing consecutive ones along the contour of the chains) are
described by the shifted and truncated Lennard-Jones
(LJ) potential:

ULJ(r) =

{
4ε
[(
σ
r

)12 −
(
σ
r

)6
+ 1

4

]
r ≤ rc

0 r > rc
, (1)

where r denotes the separation between the bead centers.
The cutoff distance rc = 21/6σ is chosen so that only the
repulsion part of the Lennard-Jones is used. The energy
scale is set by ε = kBT and the length scale by σ. In the
course of the paper, we adopt conventional LJ units with
ε = 1 and σ = 1.

Nearest-neighbour monomers along the rings contour
length are connected through the finitely extensible non-
linear elastic (FENE) potential:

UFENE(r) =

{
−0.5kR2

0 ln
(
1− (r/R0)2

)
r ≤ R0

∞ r > R0
,

(2)
where k = 30ε/σ2 is the spring constant and R0 = 1.5σ
is the maximum extension of the elastic FENE bond.

In order to maximize mutual chain interpenetration at
relatively moderate chain length [5] and hence reduce the
computational effort, we have introduced an additional
bending energy penalty between consecutive triplets of
neighbouring beads along the chain in order to control
polymer stiffness:

Ubend(θ) = kθ
(
1− cos θ

)
. (3)

Here, θ is the angle formed between adjacent bonds and
kθ = 5 kBT is the bending constant. With this choice,
the polymer is equivalent to a worm-like chain with Kuhn
length lK equal to 10σ [47].

B. Simulation details

We consider equilibrated polymer solutions consisting
of M = 160 and M = 80 ring polymers made of N = 250
and N = 500 beads each, respectively. The total num-
ber of monomers of each system is then fixed to 40′000
monomer units. We study solutions at four monomer
densities, ρσ3 = 0.1, 0.2, 0.3 and 0.4. In particular, sys-
tems of rings with ρσ3 = 0.1 have been at the center
of the previous study [17], and will be then used as a
validation of the present work.

The static and kinetic properties of the chains are
studied using fixed-volume and constant-temperature
molecular dynamics (MD) simulations (NVT ensemble)

with implicit solvent and periodic boundary conditions.
MD simulations are performed using the LAMMPS en-
gine [48]. The equations of motion are integrated us-
ing a velocity Verlet algorithm, in which all beads are
weakly coupled to a Langevin heat bath with a local
damping constant Γ = 0.5 τ−1

LJ where τLJ = σ(m/ε)1/2

is the Lennard-Jones time and m = 1 is the conventional
mass unit for monomer and colloid particles. The inte-
gration time step is set to ∆τ = 0.012 τLJ.

C. Preparation of the initial configuration and
system equilibration

Equilibrated solutions of ring polymers are prepared
as described in Ref. [32]. To avoid unwanted linking be-
tween close by rings, the chains were initially arranged
inside a large simulation box at very dilute conditions. In
order to reach the correct monomer density of ρσ3 = 0.1
we performed then a short (≈ 400 τLJ) MD simulation
under fixed external pressure which shrinks the simula-
tion box until it reaches the desired value. Similarly, the
other densities were reached by compressing the solutions
under even higher imposed pressures.

Once any given system was prepared at the correct
density, we switched to the NVT ensemble. Then, each
system was equilibrated by performing single MD runs
up to 1 · 109∆τ = 12 · 106τLJ (for N = 250) and
2 · 109∆τ = 24 · 106τLJ (for N = 500), during which the
center of mass of each chain moves on average a distance
comparable to ≈ 3 − 4 times its corresponding gyration
radius, Rg (for more details, see the Supplementary Ma-
terial of Ref. [32]).

D. Molecular dynamics runs

After equilibration, ring dynamics was studied by per-
forming MD simulations up to 1 ·109∆τ = 12 ·106τLJ for
both N = 250 and N = 500. We studied systems with
different pinning fractions fp of the total number of rings
in the range fp = 0.1− 0.7. For comparison we have also
considered unperturbed rings solutions, corresponding to
pinning fraction fp = 0.

E. Calculation of diffusion coefficients

The ring asymptotic diffusion coefficient at given (N ,
ρ, fp) is defined as:

D(ρ, fp) ≡ lim
∆→∞

〈g3(∆)〉
6∆

,

where 〈g3(∆)〉 is the mean-square displacement of the
chain center of mass. By following the same procedure
employed in Ref. [17], D(ρ, fp) is computed by standard
best fit of the long-time behaviour of the corresponding
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〈g3(∆)〉 to a linear function. This is done regardless the
long-time behavior of 〈g3(∆)〉 is effectively linear or sat-
urates to a plateau like in frozen set-up’s. In the latter
case, the evaluated D(ρ, fp) should be then best consid-
ered as an upper value to the “true” asymptotic behavior.
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II. SUPPLEMENTAL FIGURES
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Fig. S 1: Phase Diagrams and Scaling. (A) Phase diagram for solutions of semi-flexible ring polymers at monomer density
ρ = 0.1σ−3 [17]. The two vertical lines represent the values of N chosen in this work and the intersections f†p = −fN log(N/Ng)

are the predicted values of f†p for the onset of glassiness at ρ = 0.1σ−3. Ng is the (empirical) value at which the system
is expected to vitrify at zero pinning fraction. (B) Scaled diffusion coefficient D(ρ, fp)/D0(ρ) (D0(ρ) ≡ lim∆→∞〈g3(∆)〉/6∆
with fp = 0) as a function of fp for N = 500. The plots shows the exponential decay of the diffusion coefficient. For high
densities and large fp, the reported values are overestimates due the insufficient length of simulation runs. We therefore extract
the exponential decay from the values of D(ρ, fp) measured at small fp. (C) Phase diagram in the plane (fp, ρσ

3) for the
ring solutions studied in this work. The data points are obtained by fitting D(ρ, fp)/D0(ρ) with an exponential function
d(fp) = exp (−fp/a) and by solving d(fp) = 0.01. This gives the “critical” f†p at fixed ρ and N . The functional dependence

appears to follow a scaling relation similar to that found for N , i.e. f†p(ρ) = −fρ log ρ/ρg(N) where ρg(N = 250) = 0.84 and
ρg(N = 500) = 0.6 are the theoretical threshold densities for the spontaneous onset of glassiness. Both curves have fρ = 0.43
suggesting that this parameter depends very weakly on N or ρ. As a consequence, the data points collapse onto a master curve
by plotting f†p(x = ρ/ρg(N))/fρ = − log(x) (see Fig. 2(B), main text).
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Fig. S 3: Probability Distribution Functions of 1d Displacements. The figure shows a collection of P (∆x) for N = 250
and fp = 0 (top row) and fp = 0.3 (middle and bottom rows). The curves are rescaled by the average displacement, i.e.

X = ∆x/
√
〈∆x2〉 in order to better visualise deviations from standard Gaussian behaviour (represented by the solid black

line). Middle and bottom rows show P (X) for all rings or only the non-pinned ones, respectively. One can observe that at
fp = 0.3 the Gaussian behaviour observed for fp = 0 is not recovered, and that pinned rings are represented by a narrow spike.
Once pinned rings are removed from the measurement, the distributions display the non-Gaussian dynamics of the non-pinned
rings, alternating caging (higher P (X) at small X with respect to standard Gaussian) and sudden jumps (exponential tails at
large X). For the broadest overview, each column represents different lag-times ∆ at which corresponding P (X)’s are measured.
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Fig. S 6: Time-Averaged Displacement of Rings in Solution (N = 250). (A-D) Curves, g3 = g3(T,∆ = ∆) vs.
measurement time T at fixed lag-time ∆ = ∆ = 1.2× 105 τLJ. (E-H) Ergodicity-breaking (EB) parameter defined as [43, 44]:
EB = EB(T ) ≡

[
〈g3(T,∆ = ∆)2〉 − 〈g3(T,∆ = ∆)〉2

]
/〈g3(T,∆ = ∆)〉2. The heterogeneity in g3 decreases with measurement

time as T−1 for unperturbed systems, as expected for standard diffusion. On the other hand, for perturbed (fp > 0 systems),
EB flattens and the system displays heterogeneous dynamics and ergodicity breaking.



15

10
�3

10
�2

10
�1

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
�3

10
�2

10
�1

10
0

10
�3

10
�2

10
�1

10
0

10
�3

10
�2

10
�1

10
0

A B

C D

E F

G H

Fig. S 7: Time-Averaged Displacement of Rings in Solution (N = 500). Notation, symbols and color code are as in
Fig. S6.
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Fig. S 8: Distribution of Diffusion Coefficients. Example of distribution function, Pd(D/Dmax), of the scaled rings
diffusion coefficients D/Dmax for N = 250, ρσ3 = 0.1 and different values of fp. The first bin contains both, pinned and caged
rings; from this, we can readily extract the fraction of caged rings as fc = Pd(0) − fp. The values obtained for the systems
studied in this work are reported in table SI.
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III. SUPPLEMENTAL TABLES
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N = 250 N = 500

ρσ3 〈mov〉 ḡ fc(fp = 0.3) p†c ≡ 1/(〈mov〉 − 1) pc 〈mov〉 ḡ fc(fp = 0.3) p†c ≡ 1/(〈mov〉 − 1) pc
0.1 6.098 2.874 0.129 0.196 0.053 7.520 2.175 0.283 0.153 0.080
0.2 9.958 2.213 0.312 0.112 0.063 11.184 1.804 0.556 0.098 0.094
0.3 13.383 1.953 0.515 0.081 0.070 14.186 1.641 0.623 0.076 0.086
0.4 17.032 1.785 0.606 0.062 0.065 17.549 1.519 0.649 0.060 0.076

Table S I: Measured values for: (1) the average number of overlapping chains per ring, 〈mov〉; (2) the maximum number of
shells in the Bethe-lattice representation of rings solutions, ḡ, Eq. (9) in main text; (3) fraction of caged rings, fc, at pinning
fraction fp = 0.3 (value chosen for corresponding to the smallest pinning fraction used in this work); (4) “critical” caging
probability, p†c ≡ 1/(〈mov〉 − 1), corresponding to a finite fraction fc of caged rings in the limit fp → 0; (5) caging probability,
pc, obtained from Eqs. (10)-(11) in main text.
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