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Abstract

The honeybee population of the tropical Reunion Island is a genetic admixture of the Apis mellifera unicolor subspecies, originally

described in Madagascar, and of European subspecies, mainly A. m. carnica and A. m. ligustica, regularly imported to the island

since the late 19th century. We took advantage of this population to study genetic admixing of the tropical-adapted indigenous

and temperate-adapted European genetic backgrounds. Whole genome sequencing of 30 workers and 6 males from Reunion,

compared with samples from Europe, Madagascar, Mauritius, Rodrigues, and the Seychelles, revealed the Reunion honeybee

population to be composed on an average of 53.2 6 5.9% A. m. unicolor nuclear genomic background, the rest being mainly

composed of A. m. carnica and to a lesser extent A. m. ligustica. In striking contrast to this, only 1 out of the 36 honeybees from

Reunion had a mitochondrial genome of European origin, suggesting selection has favored the A. m. unicolor mitotype, which is

possibly better adapted to the island’s bioclimate. Local ancestry was determined along the chromosomes for all Reunion

samples, and a test for preferential selection for the A. m. unicolor or European background revealed 15 regions significantly

associated with the A. m. unicolor lineage and 9 regions with the European lineage. Our results provide insights into the long-

term consequences of introducing exotic specimen on the nuclear and mitochondrial genomes of locally adapted populations.

Key words: adaptation, genomics/proteomics, insects, molecular evolution.

Introduction

Apis mellifera unicolor (Latreille 1804) is a honeybee subspe-

cies endemic to Madagascar, belonging to a haplogroup en-

demic to the South West Indian Ocean (SWIO) islands, which

includes Madagascar, the Mascarene archipelago (Reunion,

Mauritius, and Rodrigues islands), and the Seychelles and

Comoros archipelagos (Techer et al. 2017). Its mitochondrial

haplotype, or “mitotype,” groups with other subspecies of

honeybee of the African (A) evolutionary lineage. Other line-

ages comprising distinct subspecies include western and

northern Europe (M), eastern Europe (C), the Near East and

central Asia (O), and Yemen and Ethiopia (Y), which diverged
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>150 thousand years ago (Ruttner 1988; Franck et al. 2001;

Harpur et al. 2014; Wallberg et al. 2014). The presence of the

honeybee on Reunion prior to the arrival of man is still subject

to debate. In his book on traveling in Madagascar and

Reunion, Du Bois (1674) mentions that honeybees had been

imported to Reunion in 1666, probably from Fort Dauphin in

Madagascar shortly after the first French settlements, had

successfully multiplied, and that it was easy to find honey in

the woods, whereas Hermann (1920) suggests honeybees

were present on the island before man settled there. Since

the end of the 19th century, in order to develop beekeeping,

the principal honeybee subspecies imported from Europe

were A. m. ligustica and/or A. m. carnica, both of which are

praised for their high honey production, low levels of swarm-

ing, and their calmness (Franck et al. 2000), but also included

to a lesser extent A. m. caucasica. However, to prevent the

spread of the microsporidia Nosema spp. the importation of

honeybees was prohibited in 1982, which had until recently

(May 2017) successfully maintained Reunion honeybees free

from other parasites such as Varroa destructor. Accordingly,

since 1982, the honeybee population on Reunion is believed

to have remained free from genetic flow originating from

outside of the island. During this time, the genomes of the

local subspecies A. m. unicolor and the imported European

subspecies A. m. carnica and/or A. m. ligustica have had the

opportunity to naturally recombine over many generations,

leading to the emergence of a novel population. Prior to the

introduction of hives with mobile frames to Reunion in the

1960s, honey production involving natural swarms was ex-

tensive, a practice which still continues to this day to some

degree. Management practices also involve transhumance,

whereby hives are moved several times per year around the

island by the beekeepers as they follow the availability of

resources. Reunion honeybees therefore provide an excellent

opportunity to investigate natural selection in a hybrid popu-

lation founded by genetic backgrounds of temperate and

tropical origin.

Reunion has a humid tropical climate with two seasons:

austral summer from November to April, characterized by in-

tense rainfalls and cyclones, followed by the drier austral win-

ter. Maps indicating monthly averages for temperature,

precipitation, and wind speed are provided in supplementary

figure S1, Supplementary Material online. The topography of

the island includes two volcanoes, one of which remains ac-

tive, that culminate at 2,636 and 3,071 m, respectively. The

island has very variable climate zones within its �2,500 km2

surface contributing to an exceptional level of biodiversity,

with 28% of plant species being endemic to Reunion, where-

as 48% are exotic species having been introduced by settlers

(l’index de la flore vasculaire de La Reunion; http://flore.cbnm.

org; last accessed November 2017). Agriculture, secondary

vegetation and urban areas have transformed almost half of

the island, mostly in the west coast lowlands, whereas only

one-third of indigenous habitat where invasion by introduced

floral species is localized still remains (Strasberg et al. 2005).

A study of the genetic structure of the Reunion honeybee

population, sampling >2,000 honeybees throughout the is-

land and following standard methods (Evans et al. 2013)

employing microsatellite markers and sequences of the

tRNAleu-cox2 hyper-variable region, revealed an absence of

population structure, despite the island’s various climate

zones (Techer MA, in press). This contrasts for instance with

the east–west distribution of genetic clusters of the melon fly

Bactrocera cucurbitae (Jacquard et al. 2013). However, the

absence of structure might be explained by the practice of

transhumance.

To gain a detailed insight of the genetic structure of the

Reunion honeybee population, and to investigate mecha-

nisms of admixture and adaptation acting on the nuclear

and mitochondrial genomes, we performed a study by whole

genome sequencing in which honeybees from Reunion were

compared with African, European, and other SWIO samples

from Madagascar, Mahé of the Seychelles and Mauritius. In

particular, local ancestry inference along nuclear haplotypes

was performed in Reunion with reference to the indigenous

A-type A. m. unicolor and introducted C-type A. m. carnica

and A. m. ligustica subspecies, followed by tests of heteroge-

neity to identify regions under putative selection.

Materials and Methods

Sampling

Drones, being haploid, provide the ideal data for haplotype

analyses. However, it was not feasible to source sufficient

numbers of drones from all populations/subspecies to under-

take a drone-specific study. An effective alternative is to sam-

ple haploids where possible, and to use their haplotypes as

references to phase the genotypes of diploid workers.

Honeybees sampled from Reunion comprised individual hap-

loid drones (n¼ 6) and diploid workers (n¼ 30), sampled

from different managed colonies distributed throughout the

island (fig. 1). These were supplemented by drones from sur-

rounding islands of the SWIO including Rodrigues (n¼ 2),

Mahé in the Seychelles (n¼ 2), Mauritius (n¼ 2), and

Madagascar (n¼ 6), and by a number of reference honeybees

representing A. m. carnica (Germany, n¼ 3 haploid; Slovenia,

n¼ 3 haploid; Croatia, n¼ 4 diploid), A. m. ligustica (Italy,

n¼ 10 haploid); A. m. caucasia (France, imported from

Georgia, n¼ 10 haploid); A. m. mellifera (France, n¼ 6 hap-

loid; Poland, n¼ 2 diploid; Spain, n¼ 2 diploid); A. m. scutel-

lata (South Africa, n¼ 10 diploid); and A. m. jemenitica (Saudi

Arabia, n¼ 7 diploid; Yemen, n¼ 3 diploid). It is worth noting

that in Spain there is a well-documented north-east to

south-west geographical cline of M to A lineage genetic back-

ground in honeybees (Ch�avez-Galarza et al. 2015). The two

A. m. mellifera samples from Spain were reported by
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Harpur et al. (2014) to have admixture proportions equivalent

to A. m. mellifera samples from Poland in a data set which

also comprised African samples. However, given that they

were sampled from the south of Spain (Cordoba and

Murcia) there is the possibility that they are in fact A. m.

iberiensis. For the purposes of this study, we have

grouped them with the A. m. mellifera samples as both

subspecies are derived from the M lineage (Ruttner 1988).

With the exception of the samples from Reunion, all other

diploid samples were sequenced by Harpur et al. (2014),

and downloaded from NCBI. The DNA of samples se-

quenced in this study was extracted from the thorax as

described in Wragg et al. (2016).

Sequencing, Mapping, and Variant Detection

Pair-end sequencing was performed on Illumina HiSeq plat-

forms, with 20 samples per lane, following the manufac-

turer’s protocols for library preparations. The data

downloaded from NCBI were generated from single-end li-

braries on the Illumina HiSeq 2000, and so all sequence data

used in this study were produced using the same sequencing

by synthesis technology. Sequencing reads were mapped to

the reference genome (Amel 4.5) using BWA-MEM v0.7.9a

(Li H. 2013: Aligning sequence reads, clone sequences and

assembly contigs with BWA MEM. ArXiv13033997 Q-Bio.

http://arxiv.org/abs/1303.3997; last accessed November

2017), and processed with regards to marking duplicates, lo-

cal realignment, base quality score recalibration, and variant

detection as described in Wragg et al. (2016). Sequencing

depth (DP) ranged from 6 to 48� across the data sets with

a median of 17, full details per sample are provided in sup-

plementary table S1, Supplementary Material online.

Variant sites identified across the samples from the SWIO

were merged and filtered on depth of coverage to generate a

list of autosomal sites for that data set, with 9�DP� 3lDP in

which l¼ average DP across samples on a site-by-site basis

calculated at run-time, for which these samples were

regenotyped with the GATK UnifiedGenotyper (McKenna

et al. 2010); base quality BQ� 20), resulting in 9,077,645

SNPs. Plink (v1.9; https://www.cog-genomics.org/plink2; last

accessed November 2017; Chang et al. 2015) was used to

filter these SNPs on minor allele frequency (MAF)� 0.01, in-

dividual and genotyping call rates� 0.9, resulting in

3,704,546 autosomal SNPs which were used as a panel for

genotyping the non-SWIO samples. A subset of “unlinked”

SNPs were generated from these 3.7 M SNPs, by filtering to

remove SNPs< 1 kb apart, and those with pairwise linkage

FIG. 1.—Map of Reunion Island indicating sampling locations. The size of the circle indicates the number of colonies sampled. Pink: A1 (African lineage)

mitochondrial DNA; yellow: C2 (European lineage) mitochondrial DNA.
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disequilibrium (LD) r2> 0.1 for SNPs spaced <50 kb apart,

resulting in 19,888 SNPs. This subset of unlinked SNPs was

used to investigate the autosomal population genetics of

Reunion honeybees so as to avoid overstratification of the

data.

Mitochondrial Analyses

Consensus mitochondrial whole-genome sequences were

generated for each individual using SAMTOOLS and

BCFTOOLS. Sequence reads aligned to the mitochondrial ge-

nome were extracted, and together with unmapped reads

were aligned to the mitochondrial genome of A. m. scutellata

(GenBank Acc. No. KJ601784). The best reference from which

to generate a consensus sequence for each sample was deter-

mined as that with the least error rate for high quality aligned

reads (mapping quality� 20) as reported by Picard’s

CollectAlignmentSummaryMetrics tool (https://broadinstitute.

github.io/picard; last accessed November 2017). Sequences

were concatenated into a multiple fasta and aligned with

ClustalW (Larkin et al. 2007) to generate a nexus file for plot-

ting a network in PopArt (Leigh et al. 2015). As described in

Wragg et al. (2016), to reconstruct tRNAleu-cox2 sequence

mitotypes, sequencing reads were extracted from the BAM

alignment for the region, aligned against 226 mitotype refer-

ence sequences downloaded from GenBank, and the refer-

ence mitotype to which the reads aligned best was then

used as a reference for de novo assembly with MITObim

v1.8; (Hahn et al. 2013). The resulting fasta files were manually

aligned in AliView (Larsson 2014). In the resulting alignment, at

positions where insertions/deletions (indels) were present, “G”

nucleotides were recoded to an otherwise absent nucleotide

(e.g., “C”) and “missing” nucleotides at these positions

recoded as “G” to facilitate their inclusion in network analysis

with PopArt, which would otherwise exclude sites with 5%

missing rate. Individual mitochondrial gene trees were made

using FastTree 2.1.8 (Price et al. 2010) with default parameters

and drawn with ggtree (Yu et al. 2017). McDonald–Kreitman

tests were performed for each of the 13 coding mitochondrial

genes separately, and Tajima’s D tests were performed on the

whole mitochondrial genome of all Reunion bees having A. m.

unicolor mitochondrial DNA using PopGenome (Pfeifer et al.

2014). Mitotype sequences were verified for 42 SWIO honey-

bees by Sanger sequencing of PCR amplifications using primers

E2 and H2 (Garnery et al. 1993). Sanger sequences were proc-

essed using FinchTV (https://digitalworldbiology.com/FinchTV;

last accessed November 2017) and aligned manually in AliView

against the de novo assembled mitotypes. Whole mitochon-

drial DNA sequences were assigned to groups using the parti-

tioning around medoids clustering method as implemented in

the fpc R package (Hennig C. 2015: fpc: Flexible Procedures for

Clustering. https://CRAN.R735project.org/package=fpc; last

accessed November 2017.). This method was chosen for its

robustness toward the presence of outliers, reducing the like-

lihood of overestimating the number of clusters.

Autosomal Population Genetics Analyses

To assess the general population structure of the data, prin-

cipal components analysis (PCA) was conducted in R using the

glPca function of the adegenet package (Jombart 2008;

Jombart and Ahmed 2011) from a distance matrix, where

distance is expressed as genomic proportions (1-identity by

state) as generated in Plink. Using the same distance matrix,

a complimentary neighbor-joining (NJ) tree was constructed

using the NJ function of the phangorn package for R (Schliep

2011), which performs the NJ tree estimation of Saitou and

Nei (Saitou and Nei 1987).

A more detailed assessment of population structure was

performed using ADMIXTURE v1.23 (Alexander et al. 2009),

assuming no prior knowledge of population origin, testing

2�K� 16. The likelihood of the results was determined

from the cross-validation (CV) error values, and Q estimates

plotted in R. Network analyses by k-nearest neighbor (kNN)

were conducted using NetView (Neuditschko et al. 2012) for

R (https://github.com/esteinig/netview; last accessed

November 2017). kNN graphs were generated assuming

2� k� 100, from which networks were constructed for

each k where the number of communities (n) reached a tem-

porary plateau, indicating the most visually informative net-

work at k¼ 41. This network was plotted incorporating the Q

data from the K¼ 7 ADMIXTURE analysis, which does not

impact on the structure of the network but simply replaces

the nodes with pie charts of the ADMIXTURE results for each

sample. TreeMix (Pickrell and Pritchard 2012) analyses were

conducted on stratified allele frequency data generated by

Plink. This software is designed for the inference of patterns

of population splitting and mixing from genome-wide allele

frequency data. It calculates the maximum likelihood tree for

the set of populations, and optionally attempts to infer a

number of admixture events. Based on the results of the

PCA and kNN analyses, A. m. caucasia was specified as the

root population, and the TreeMix analysis conducted in 100

SNP windows with sample size correction, assuming a single

migration event, for 100 iterations. The results were parsed

and plotted in R.

Autosomal Signatures of Selection Analyses

To investigate whether or not the distribution of the principal

genetic backgrounds identified (A. m. unicolor and C lineage)

in the Reunion population was heterogenous, the data were

preprocessed for PCAdmix (Brisbin et al. 2012) and

Chromosomal Ancestry Differences (CAnD) analyses

(McHugh et al. 2016). The initial 3.7-M SNP data were first

filtered to retain only samples from Reunion, together with

the haploid A. m. carnica, A. m. ligustica, and A. m. unicolor

(Madagascar and Mauritius) samples. The data were further
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filtered to retain only SNPs with 100% call rate, resulting in

1,441,078 SNPs. By using SNPs with 100% call rate, we avoid

the risk of introducing erroneous genotypes through imputa-

tion which can influence the results of downstream analyses.

The diploid Reunion samples were subsequently phased using

shapeit2 (Delaneau et al. 2011), using the haploid data as

reference haplotypes. Shapeit2 is very insensitive to the effec-

tive population size parameter carried forward by the impu-

tation algorithm incorporated from impute2, and so an

arbitrary value of 100 k was used which is lower than the

A. mellifera subspecies range of estimates (157–457 k) from

Wallberg et al. (2014). Phasing was performed per chromo-

some using the minimum permitted window size of 100 kb,

and a genetic map estimated from the crossover data gener-

ated by Liu et al. (2015). Briefly, Liu et al. sequenced haploid

drones from three colonies together with their diploid queen.

For each colony, by comparing the linkage of markers across

all drones, queens could be phased into haplotypes at the

chromosome level. This enabled recombination events in

each drone to be identified, from which 3,505 crossovers

(spanning> 10 kb) were detected. To generate the genetic

map, each chromosome was partitioned into 1-Mb intervals

and for each interval the recombination rate was calculated

from the sum of crossovers observed by Liu et al. divided by

the number of drones they sequenced (n¼ 43) multiplied by

100 due to there being 100 meioses per centiMorgan (cM).

For each physical position along a chromosome the genetic

position was estimated in cM as the recombination rate of the

interval in which the position was located, divided by 1 Mb.

PCAdmix classifies blocks of SNPs by ancestry through

PCA, projecting the loadings of admixed individuals based

on the loadings of putative ancestors. It employs a Hidden

Markov Model (HMM) to smooth the results, and returns the

posterior probabilities of ancestry affiliation for each block

from the HMM. The analysis was run in 1-cM windows using

the aforementioned genetic map, with the A. m. carnica and

A. m. ligustica haplotypes as a reference for the C lineage

and the A. m. unicolor haplotypes from Madagascar and

Mauritius as a reference for the A lineage, whereas all

Reunion samples were provided as the admixed population.

The results were parsed and plotted using R. To detect het-

erogeneity in ancestry across the individual haplotypes of

the genomes of the admixed Reunion population, the pos-

terior probabilities obtained from the HMM for each of the

two reference backgrounds were subject to CAnD analysis.

As the analysis was performed on probabilities assigned to

haplotypes, and not genotypes, the ploidy of the bees is of

no consequence. CAnD tests for systematic differences in

genetic contributions from ancestral populations to chro-

mosomes in admixed individuals. Regions were considered

significant if Bonferonni-corrected P< 0.001 and where the

mean posterior probability of ancestry inference across

samples for the region >0.75. Genes and their orthologs

for Drosophila melanogaster were identified for significant

regions using the A. mellifera Amel4_5 and D. melanogaster

BDGP6 genes data sets of EnsemblMetazoa’s BioMart.

Unless elaborated upon further, gene functions are broadly

summarized according to their gene ontologies, sourced

through BioMart and flybase (flybase.org).

Results

Maternal Origins of Reunion Island Honeybees

Analysis of tRNAleu-cox2 mitotype sequences is presently the

most practical and cost-effective means of characterizing

sample origin and honeybee subspecies in large numbers of

samples. Mitotype sequences were generated from the

resequencing data of each of the SWIO samples, associated

with previously identified mitotypes by BLAST, and a network

constructed (fig. 2A). All but one of the Reunion samples

(REU28) and the two samples from Rodrigues were found

to possess an A1 mitotype, with the exceptions possessing

C1 or C2 mitotypes. This lack of mitotype diversity was sub-

sequently verified by Sanger sequencing 42 of the 48 SWIO

samples (supplementary table S2, Supplementary Material

online). The results support previous findings concerning the

near fixation of the A1 mitotype on Reunion (Franck et al.

2001; Techer et al. 2017), and the presence of C1 and C2

mitotypes on Rodrigues (Techer et al. 2015).

Consensus mitochondrial genome sequences were gener-

ated for each individual against the mitochondrial sequences

of the Amel 4.5 reference and that of an A. m. scutellata

individual, and the best alignment in each case retained.

With the exception of the three honeybees having C1 and

C2 mitotypes, all SWIO samples aligned better to the A. m.

scutellata reference. A network (fig. 2B) was constructed from

aligned sequences, representing 812 segregating sites. The

samples from Reunion, Madagascar, Mauritius, and Mahé

(Seychelles) formed a cluster branching out from the other

A lineage cluster comprising A. m. scutellata samples. Within

this cluster, the samples from Madagascar branched out from

the Reunion, Mauritius, and Seychelles samples, albeit with a

very low number of sites separating the two populations,

suggesting the divergence to be much more recent than

the one between the SWIO A. m. unicolor and the mainland

African A. m. scutellata honeybees (fig. 2C). A clustering anal-

ysis by partitioning around medoids confirmed this grouping

of samples from the Reunion, Madagascar, Mauritius, and

Mahé (Seychelles), and revealed three other clusters: one con-

taining A. m. scutellata honeybees, another corresponding to

A. m. mellifera, and a final cluster containing all remaining

honeybees. It should be noted that some exchange of mito-

chondrial DNA has occurred in Europe, involving A. m. ligus-

tica from Italy and some A. m. mellifera samples (fig. 3).

The sequences of the 13 mitochondrial protein coding, the

2 rRNA, and the 22 tRNA genes were also analyzed sepa-

rately, to look for substantive differences within the genes

between the different populations. For the 13 protein-
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coding genes, both DNA and protein sequences were

analyzed and network diagrams drawn for all 37 genes (sup-

plementary fig. S2, Supplementary Material online). The

results recapitulate the global analysis and indicate the exis-

tence of nonsynonymous changes between subspecies. The

A1 SWIO mitochondrial gene sequences have a high similar-

ity, suggesting a close link between samples and a relatively

low diversity at the scale of the SWIO population, with the

notable exceptions of the cox3 and nd4l genes, for which

Madagascar has different haplotypes as compared with

Reunion, Mauritius, and the Seychelles, both at the DNA

and amino-acid levels (fig. 4 and supplementary fig. S2,

Supplementary Material online). The cox3 gene shows a spe-

cifically high level of diversity in Madagascar, with four differ-

ent DNA and amino acid haplotypes observed in the six

samples sequenced. As was shown by the tRNAleu-cox2 mito-

type results, the REU28 sample and the two samples from

Rodrigues are closer to C-type honeybees and more

FIG. 2.—Global mitochondrial analyses. (A) Barcode sequencing of the tRNAleu-cox2 mitotype in honeybees from the SWIO. C1 and C2 sequences

diverge notably from the A1 sequence, respectively, by the presence or absence of the P element. (B) Network of mitochondrial genome sequences of all

honeybees in the study. (C) Magnified region of network indicating the Apis mellifera unicolor cluster. Unless otherwise indicated, network vertices indicate a

single point mutation.
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specifically to A. m. carnica in the case of REU28.

Nonsynonymous changes were found in all 13 mitochondrial

coding genes, with 35 separating the A. m. unicolor popula-

tion from all other populations (supplementary table S3,

Supplementary Material online). To test whether the fraction

of fixed nonsynonymous sites was higher than expected,

which can be indicative of positive selection, a McDonald–

Kreitman test was performed on the 13 mitochondrial DNA

coding genes, between the Reunion and Madagascar honey-

bees having a typical A. m. unicolor mitotype (all except

REU28) and the C-type A. m. ligustica and A. m. carnica,

the results of which were not significant (supplementary table

S4, Supplementary Material online). Many nucleotide differ-

ences, both SNPs and indels were also found for the tRNA

genes. For instance, nucleotide differences in the tRNA-pro,

tRNA-thr, and one of the tRNA-ser genes separate the SWIO

samples from the other subspecies (fig. 4 and supplementary

fig. S2, Supplementary Material online). A Tajima’s D test on

the mitochondrial DNA of the Reunion samples having A. m.

unicolor mitotypes gave a value of �0.85, only slightly sug-

gestive of a recent selective sweep or a population expansion

after a bottleneck.

Global Ancestry Inference along Nuclear Genome

An initial assessment of population structure was per-

formed by principal components analysis (PCA) on a dis-

tance matrix of the 19,888 unlinked SNPs (fig. 5A).

Samples from Reunion form an intermediate group half

way between the A. m. unicolor group of Madagascar

and Mauritius, and the C lineage group of A. m. carnica

and A. m. ligustica, along each of the four principal com-

ponents plotted. An unrooted phylogeny based on genetic

distance illustrates the branching of samples by subspecies,

sampling location, and finally by ploidy (fig. 5B). The two

honeybees from Rodrigues having C mitotypes group close

to the A. m. ligustica and A. m. carnica honeybees, whereas

REU28 having the C1 mitotype cannot be distinguished

from the other Reunion samples. Concerns about potential

issues arising when analyzing together honeybees having

different ploidy were raised by Wragg et al. (2016) and are

further demonstrated here in the phylogeny, where the

overall picture shows a correct grouping of geographical

origins but with a separation by ploidy within groups.

Cross-validation (CV) error rate from ADXMITURE analyses

indicates the most likely number of genetic backgrounds

within the data to be K¼ 6 (CV¼ 0.48; supplementary ta-

ble S5, Supplementary Material online), clearly differenti-

ating A. m. scutellata, A. m. jemenitica, A. m. mellifera, A.

m. caucasia, and A. m. unicolor, with a further background

represented by the combined A. m. carnica and A. m. lig-

ustica samples (fig. 3). At K¼ 7 (CV¼ 0.49), the next most

likely number of backgrounds, A. m. carnica and A. m.

ligustica separate, whereas at K¼ 8 (CV¼ 0.52), Reunion

emerges as an independent genetic background. Where

K¼ 6 or 7, Reunion samples exhibit an admixed

FIG. 3.—ADMIXTURE analysis. The top lane “MT” illustrates mitochondrial DNA assignments to the four clusters identified by partitioning around

medoids of mitochondrial genome sequences (see Materials and Methods). Following which are admixture plots for K¼6 to K¼8 genetic backgrounds. ROD,

Rodrigues; SEY, Seychelles; MAU, Mauritius; MAD, Madagascar (Apis mellifera unicolor).
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background of A. m. carnica and A. m. ligustica C-mitotype

bees (43.2 6 3.5%) and of A. m. unicolor (53.2 6 5.9%),

which is in accordance with the PCA results placing them

half way between these two groups. Interestingly, the only

Reunion sample (REU28) having the C mitotype does not

stand out at all, having proportions of A-type and C-type

backgrounds of 42.8% and 52.8%, respectively.

Admixture is also evident in the samples from Rodrigues,

and to a lesser extent Seychelles, whereas those from

Madagascar and Mauritius possess only the A. m. unicolor

background. More specifically, considering K¼ 7 where all

reference populations separate, admixed honeybees from

Seychelles exhibit background averages of 77.2% A. m.

unicolor and 22.7% A. m. ligustica, whereas those from

Rodrigues are a complex mix of 57.7% A. m. ligustica,

16.2% A. m. mellifera, 13.3% A. m. unicolor, and

11.9% A. m. caucasia. As only two samples are available

for each of these populations additional sampling would be

required to better interpret these results. However, the ab-

sence of the A mitotype has previously been reported on

Rodrigues (Techer et al. 2015) and supports the low levels

of A. m. unicolor background detected in our samples. At

K¼ 7 Reunion honeybees comprise background averages

of 53.2% A. m. unicolor, 35.6% A. m. carnica, 7.7% A. m.

ligustica, 2.5% A. m. caucasica, and <1% A. m. scutellata,

A. m. jemenitica, and A. m. mellifera.

A k-nearest neighbor (kNN) network, with pie-charts

representing the Q values from the ADMIXTURE analysis at

FIG. 4.—Haplotype networks for mitochondrial genes differentiating the SWIO samples. The cox3 and nd4l coding genes and the tRNA-pro, tRNA-thr,

and tRNA-ser genes each have haplotypes which are specific to the samples from the SWIO islands. In the case of the the cox3 and nd4l genes, Madagascar

samples have different haplotypes than the other SWIO samples. Reference samples are indicated by their subspecies names. For the SWIO samples, the

name of the island is indicated. The REU28 sample having a European C lineage haplotype distinct from all other Reunion samples is indicated.
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FIG. 5.—Autosomal analyses of genetic distance, based on 19,888 unlinked SNPs. (A) Principal components analysis. CAU, Apis mellifera caucasia; CAR,

A. m. carnica; LIG, A. m. ligustica; ROD, Rodrigues; REU, Reunion; SEY, Seychelles; YEM, A. m. jemenitica; MEL, A. m. mellifera; SCU, A. m. scutellata; MAU,

Mauritius; MAD, Madagascar (A. m. unicolor). (B) Unrooted neighbor-joining tree on which haploid individuals are indicated with dashed branches while

diploid individuals are indicated with solid branches.
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K¼ 7 (supplementary table S6, Supplementary Material on-

line), indicate the Reunion samples to be almost equidistant

between A. m. unicolor from Madagascar and the A. m.

ligustica and A. m. carnica samples from the C lineage

(fig. 6). The most distant population, also evident by PCA, is

A. m. caucasia which had no connectivity to the other

populations. A. m. caucasica also returned the highest FST

values in the ADMIXTURE analysis (fig. 6 and supplementary

table S7, Supplementary Material online).

To further investigate the admixture observed in Reunion

samples, the data were analyzed using TreeMix, where the

most frequent migration observed was from A. m. carnica!
Reunion (supplementary fig. S3, Supplementary Material on-

line), followed by [A. m. carnica, A. m. ligustica] ! Reunion

(supplementary figs. S3 and S4, Supplementary Material on-

line). TreeMix also allows a three-population test to be con-

ducted. The test are in the form f3(A; B, C), where a

significantly negative value of the f3 statistics (Z<�4) implies

FIG. 6.—k-Nearest neighbor (kNN) network. (A) The lowest and highest FST values connecting each population from ADMIXTURE at K¼7. (B) kNN

network for 41 nearest neighbors with nodes indicating the results from ADMIXTURE at K¼7.
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that population A is admixed. Where A¼ Reunion, the most

significant result strongly indicates the population to be an

admixture of A. m. unicolor and A. m. carnica (Z¼�60.9,

supplementary table S8, Supplementary Material online).

Local Ancestry Inference along Nuclear Genome

To investigate whether or not the distribution of A. m. uni-

color and C lineage genetic backgrounds in Reunion individ-

uals was heterogeneous, the data were analyzed using

PCAdmix. This analysis was performed using the previously

constructed genetic map, and ancestry determined in 1 cM

blocks. As such the physical block sizes were variable along

chromosomes, returning a mean size of 19.8 6 18.7 kb (sup-

plementary fig. S5, Supplementary Material online) and a

mean of 34 6 25 SNPs per block. A contiguous run of blocks

of the same ancestry is herein referred to as a haplotype block,

the size distributions of which for each ancestral background

are presented in supplementary figure S6, Supplementary

Material online, accompanied by a summary of haplotype

blocks per sample (supplementary table S9, Supplementary

Material online) and the individual distribution of haplotype

blocks along the chromosomes (supplementary fig. S7,

Supplementary Material online). There was little difference

in median haplotype block size between the A (4.5 cM) and

C (4.4 cM) lineages, or in the frequency of blocks irrespective

of contiguity assigned to either the A (0.51) or C (0.49) line-

age. Pearson’s r as a measure of the linear correlation be-

tween the PCAdmix and ADMIXTURE ancestry inferences

indicates strong correlations for both the A (r¼ 0.961) and

C (r¼ 0.9) lineage backgrounds. The heterogeneity of local

ancestry inference was tested using the CAnD method, which

aims to test for systematic differences in ancestry of admixed

populations which could for instance arise due to preferential

selection of one or the other background. A. m. carnica and

A. m. ligustica are the least divergent pair of subspecies in our

data set (FST¼ 0.163) and moreover, the contribution of A. m.

ligustica to Reunion bees is low (7.7%). We therefore treated

these two subspecies as a single C lineage reference back-

ground, contrasted against the A lineage A. m. unicolor back-

ground represented by bees from Madagascar and Mauritius.

A loss of heterogeneity is observed at a number of genomic

regions, indicating possible selection for either the A or C

lineage background (fig. 7). Of these, 15 regions were signif-

icantly (P< 0.001) associated with the A lineage while 9 were

significantly associated with the C lineage (supplementary ta-

ble S10, Supplementary Material online). However, none of

the regions identified had a mean posterior probability across

all samples >0.91, indicating none of them to have reached

fixation. Annotation of the SNPs present in the selected

regions with Variant Effect Predictor (VEP) (McLaren et al.

2016) showed that 103 have potential direct effects on pro-

tein structure, including stop gain or loss, missense, and splice

region variants (supplementary table S11, Supplementary

Material online). The genotypes of SNPs having alleles alter-

natively fixed in the A. m. unicolor honeybees from

Madagascar and Mauritius as opposed to the European A.

m. ligustica and A. m. carnica were plotted in supplementary

fig. S8, Supplementary Material online, for all regions

detected, to visually confirm the prevalence of haplotypes

from one or the other background. An example of two

regions very close in chromosome 13 and showing preferen-

tial selection for the A background is shown on figure 8.

Genome-wide annotation of 146,292 SNPs alternatively fixed

in A. m. unicolor and European samples performed using VEP

revealed 1,795 of them to have potential direct effects on

protein structure, including stop gain or loss, missense, and

splice region variants (supplementary table S12,

Supplementary Material online).

The most significant region identified to be associated with

A lineage ancestry (chromosome 13: 4.69–4.73 Mb) spans

the four exons of GB40069 and the last two exons of

GB40148 (fig. 8). The first is orthologous to dpr13, member

of the defective proboscis extension response gene family in

Drosophila, whose protein has a number of immunoglobulin

features and is involved in the sensory perception of chemical

stimuli. The latter has three orthologs in Drosophila, all of

which encode proteins with Cytochrome b561 features and

are thus likely to be involved in ascorbate regeneration. A

region in very close proximity (chromosome 13: 4.78–

4.83 Mb) (fig. 8) contains the forkhead protein FoxP

(GB40150), which is of interest as another forkhead box pro-

tein (foxo) has previously been linked to differentiation be-

tween African and European lineages (Wallberg et al.

2014), and also between Savannah and Desert populations

of bees from Kenya (Fuller et al. 2015). The same region also

contains GB40066, an uncharacterized gene having two mis-

sense mutations in its second exon (SNPs at positions

4,790,007 and 4,790,053) whose allele frequencies in the

Reunion population are much closer to A. m. unicolor than

to C-type bees (supplementary table S11, Supplementary

Material online).

In addition, identified in region (chromosome 5: 6.88–

6.90) were an ortholog (GB42054) to the Drosophila Na

pump a subunit (ATPa) gene, which has been inferred from

mutant phenotypes to be involved in response to mechanical,

temperature, and auditory stimuli; GB48639 (chromosome 5:

8.52–8.56 Mb) which is orthologous to serrate whose protein

contains 14 epidermal growth factor (EGF)-like domains and

plays a role in morphogenesis; and GB43497 (chromosome

11: 6.62–6.77 Mb) which is orthologous to neuromusculin

and whose protein has a number of immunoglobulin-like

features. A further region identified (chromosome 2: 12.72–

12.76 Mb) hosts a cluster of six genes, and includes GB55370

which is orthologous to wrapper whose protein also includes

a number of immunoglobulin-like features, and which plays a

role in axon development; GB55367 an ortholog to rtf1 which

plays a role in transcription-coupled histone modification,
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Notch signaling in the wing margins, and is required for max-

imal induction of heat-shock genes. Another region identified

(chromosome 5: 8.40–8.44 Mb) spans the first exon and up-

stream region of an ortholog (GB48653) to the homothorax

gene in Drosophila. This gene encodes a protein with a ho-

meobox DNA-binding domain required for morphogenesis of

organs within the peripheral nervous systems and antennal

identity.

The most significant region identified to be associated with

C lineage ancestry (chromosome 1: 19.78–19.79 Mb) hosts a

gene (GB55328) orthologous to the tropomyosin gene, which

plays a central role in the calcium dependent regulation of

muscle contraction. In addition, within this region is a tropo-

myosin-2-like gene (GB55329). Tropomyosin has been found

to be significantly overexpressed in insecticide-resistant Aedes

aegypti moquitoes after exposure to deltamethrin
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FIG. 7.—Heterogeneity (CAnD) test of local ancestry on Reunion. The color of the bar indicates the mean posterior probability of A-type ancestry in 1-cM

windows across Reunion haplotypes. The horizontal lines indicates a significance threshold of P<0.001.
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FIG. 8.—Region on chromosomes 13 with a preferential selection of Apis mellifera unicolor haplotypes. The two regions on chromosome 13 having a

preferential selection of A. m. unicolor haplotypes are highlighted in blue, unicolor haplotype (�log10 P¼7 and 4 for the left and right regions, respectively,

see supplementary table S9, Supplementary Material online). (A) Genotypes in the Reunion samples (haploid drones highlighted in green), of SNPs having

alleles alternatively fixed in the A. m. unicolor samples from Madagascar and Mauritius and in the A. m. caucasica and A. m. ligustica samples from Europe.
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(Lertkiatmongkol et al. 2010). A further gene identified

(GB55492) on chromosome 2 (15.31–15.33 Mb) is ortholo-

gous to importin 9 whose predicted function is Ran GTPase

binding. Ran GTPase has been demonstrated to regulate

hemocytic phagocytosis against virus infection in shrimp (Liu

et al. 2009). The Ran protein plays an important role in the

innate immune system of invertebrates via phagocytosis (Ye

and Zhang 2013), and is expressed at elevated levels in

Drosophila embryonic Kc cells following exposure to delta-

methrin (Liu et al. 2016). A further link to immune pathways

defence mechanisms is the ubiquitin-related modifier 1 ortho-

log (GB42195) on chromosome 1 (1.37–1.37 Mb), demon-

strated to be involved in the regulation of JNK signaling and

response against oxidative stress in Drosophila (Khoshnood

et al. 2016). The JNK pathway has been shown to be involved

in the humoral immune response of greater wax moth larvae

(Wojda et al. 2004). In addition, of note, is an ortholog to the

fringe gene (GB44913) on chromosome 11 (13.00–

13.02 Mb) which, like the serrate gene, is involved in morpho-

genesis, and which accommodates a long noncoding RNA

that is overexpressed in honeybee queen ovaries (Humann

et al. 2013). Interestingly, this significant region on chromo-

some 11 is situated within a larger region identified recently in

a study on Africanized honeybees sampled in Brazil (Nelson

et al. 2017).

Given the high levels of mitochondrial DNA of A. m. uni-

color origin in the Reunion population, we further looked at

nuclear genes having annotations indicating that they interact

with the mitochondria, none of which emerged as significant

in the selection analysis at P< 0.001. We searched for genes

containing the Gene Ontology (GO) annotation keywords

*mitoch* and *respir* (see complete list of keywords in sup-

plementary table S13, Supplementary Material online) in the

A. mellifera Amel4_5 Ensembl database. Of the 8,835 genes

having GO annotations in the database, 165 (1.86%) could

be linked to the mitochondria or to the respiratory chains.

Two of these, NDUFA5 and NDUFA10, are located in regions

exhibiting a weak signal of selection toward the A. m. unicolor

background, with P values of 0.073 and 0.006, respectively.

These two genes are essential components of the mitochon-

drial respiratory chain complex (Garcia et al. 2017).

Discussion

The mitochondrial and nuclear genomes of the honeybee A.

mellifera on Reunion were studied by whole genome se-

quencing, giving the highest genome-wise resolution

achieved to date for this population. The results obtained

can be interpreted both in terms of human management

and of adaptation to the environment. Imports of European

honeybees to the island for a duration of at least a century

followed by a 30-year import ban, together with transhu-

mance of colonies, has led to the emergence of an admixed

population with balanced proportions of A. m. unicolor and

C-type nuclear ancestry. Although the proportions of ances-

tries are homogenous between colonies, their genome-wide

distribution is variable.

Influence of Ploidy on Sequencing Results

Having both haploid and diploid samples in our data set, we

first checked the influence of ploidy using standard popula-

tion genetics approaches. Substructure arising from differen-

ces in ploidy could be observed in a neighbor-joining

phylogeny based on genetic distance, although the effect is

not so pronounced as to disturb the phylogeny where pro-

portional numbers of samples with different ploidy have been

included for each population. However, there is a clear effect

in the Reunion data where the number of diploids outnum-

bers the haploids by 5 to 1. Future studies seeking to integrate

samples with differing ploidy should be mindful of this when

processing their data. Further substructure is evident by sam-

pling location within lineage, for instance within A. m. melli-

fera the diploid samples originate from Poland (SRR957058,

SRR957059) and Spain (SRR957061, SRR957062), and

branch accordingly, as do the haploid A. m. carnica samples

from Slovenia (SLO7, SLO11, SLO15) and Berlin (BER12,

BER15). It is worth recalling that these analyses were based

on a subset of SNPs that had been filtered to remove those in

strong LD (r2> 0.1) and spaced <1,000 bp apart. More strin-

gent filtering criteria might remove the ploidy effect, but may

also impact on the ability to detect population substructure

arising from sampling location, which is clearly of interest to

the population geneticist. Additional work in this area would

be of interest to maximize the benefits that can be derived

from integrating haploid and diploid sequence data.

Nonetheless, the impact of ploidy in this regard does not con-

found this study as it is explicitly focused on the analyses of

haplotypes, wherein haploid data make a significant contri-

bution by acting as reference haplotypes for phasing diploid

data.

FIG. 8.—Continued

White: missing, yellow: homozygous European allele, orange: heterozygous, brown: homozygous A. m. unicolor allele. Distances between SNPs are not to

scale and their positions along the chromosome are indicated by the black lines. (B) Gene models from Ensembl (http://metazoa.ensembl.org/; last accessed

November 2017) in the selected region. (C) Ancestral backgrounds of 1 cM haplotype blocks in the region as determined by PCAdmix analysis: yellow:

European haplotype, brown: A. m. unicolor haplotype. Physical block sizes vary according to the local recombination rate along the chromosome. For each

diploid sample, both chromosomes are represented and labeled with the sample name followed by _A and _B.
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Autosomal and Mitochondrial Accounts on the History of
Honeybee Subspecies Introduction in Reunion

Statistically, the most likely result (K¼ 6) from the

ADMIXTURE analyses suggests the Reunion population to

be a mixture of A. m. unicolor originating from Madagascar

and European honeybees from the C lineage. The distribution

of admixture proportions is homogenous, with each sample

having on an average just over 50% of A. m. unicolor back-

ground (fig. 3). Increasing levels of K differentiates A. m.

carnica and A. m. ligustica (K¼ 7), and Reunion (K¼ 8) pop-

ulations. Each of these results might be considered plausible,

particularly given that A. m. carnica and A. m. ligustica are

different subspecies, and with Reunion being an island pop-

ulation there is strong potential for genetic drift due to re-

duced gene flow. Considering K¼ 8, samples from the

Seychelles and Mauritius are dominated by the Malagasy

background, with some admixture from European honeybees

in the former, which suggests two possible scenarios. The first

being that honeybees from Madagascar arrived on

Reunion well before man settled in 1665, allowing suffi-

cient time to differentiate by genetic drift, and subse-

quently did not reach Mauritius which is again further

east, until it was introduced artificially—probably from

Madagascar based on our results. The second scenario

would be that honeybees from Madagascar arrived on

all islands at around the same time period, and that the

import of European lineages to Reunion occurred suffi-

ciently long ago to facilitate the emergence of a homog-

enous island population through panmixia.

Analysis of the mitochondrial DNA tRNAleu-cox2 hyper-

variable region illustrates the dominance of the A. m. unicolor

maternal heritage, with only 1 of the 36 Reunion honeybees

possessing a C mitotype. This suggests either that imports

from Europe were limited or that European mitochondrial

DNA was selected against, and favors the emergence of a

specific Reunion background due to drift. However, whole

mitochondrial genome analysis suggests a closer proximity

between samples from Reunion, Mauritius, and Seychelles

on one side and those from Madagascar on the other (fig.

2). Moreover, Mauritius, Seychelles, and Reunion consistently

possess the same major haplotypes for the coding genes,

whereas the samples from Madagascar differ from this group

both at the DNA and protein levels for the cox3 and nd4l

genes (fig. 4 and supplementary fig. S2, Supplementary

Material online). For cox3, four distinct DNA haplotypes are

found for the Madagascar samples, all of them different to

the two haplotypes found in the A-type Reunion samples,

whereas the samples from Seychelles and Mauritius share

one of the two Reunion haplotypes. This remains true at

the amino acid level, where all Reunion A-type, Mauritius,

and Seychelles samples have the same sequence together

with one of the Madagascar samples, whereas the

remaining samples from Madagascar return three distinct

protein sequences. For nd4l, all Reunion A-type,

Mauritius, and Seychelles samples share the same DNA

haplotypes and protein sequences, distinct from those

of the Madagascar samples. All this suggests a common

maternal inheritance for Mauritius, Seychelles, and

Reunion populations, which is in disagreement with the

hypothesis of the genetic background of Reunion samples

being different from the other SWIO samples by genetic

drift alone, as suggested by the nuclear ADMIXTURE anal-

ysis at K¼ 8.

One might expect given the dominance of the mitochon-

drial A lineage background on Reunion, that PCA of nuclear

genetic distance would result in its clustering with samples

from Madagascar, as in the case of Mauritius (fig. 5A).

However, their intermediate placement suggests either an

independent genetic background, or an intermediate state

between the C and A lineages, as might arise through admix-

ture. This intermediate placing of Reunion samples midway

between A. m. ligustica and A. m. carnica from the C lineage

and A. m. unicolor from the A lineage corresponds to the

proportions found in the ADMIXTURE analyses for K¼ 6 or

7, and is further exemplified in the kNN network analysis in

which Reunion is clearly a link between the two lineages (fig.

6B). Furthermore, the population splitting and mixing inferred

by Treemix with seven populations, allowing for one migra-

tion event, indicates the most significant migrations to be

from A. m. carnica and A. m. ligustica into the Reunion pop-

ulation (supplementary figs. S3 and S4, Supplementary

Material online). Considering the A and C lineages as refer-

ence genetic backgrounds, a detailed examination of admix-

ture through local ancestry inference of haplotype blocks

revealed the average fraction of ancestry for A and C lineage

backgrounds to be strongly correlated with the initial

genome-wide estimates by ADMIXTURE. The results also

demonstrated the two genetic backgrounds to be present

in a large number of small haplotypes, consistent with exten-

sive recombination over time coupled with the high recombi-

nation rate observed in honeybees (Liu et al. 2015).

To summarize the genetic accounts on the history of the

Reunion population, our results support a common maternal

origin for honeybees in Reunion, Mauritius, and the

Seychelles, most likely originating from Madagascar. This is

in agreement with the account of Du Bois (1674), that honey-

bees imported from Fort Dauphin had acclimatized well on

Reunion island, rather than the alternative hypothesis of their

presence before the arrival of man (Hermann 1920).

However, more extensive sampling is required to establish

their precise geographical origin on Madagascar, and the ex-

act timing of the dissemination of honeybees in the SWIO. A

more affordable option in this regard than whole genome

sequencing or even tRNA-cox2 sequencing, would be to ge-

notype a few diagnostic SNPs, such as those found in the cox3

gene and others segregating in the SWIO samples.
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Selection on the Mitochondrial Genome

Most intriguing are the completely different narratives given

by the mitochondrial and nuclear genomes. Only 1 out of 36

Reunion samples exhibited a European mitotype, consistent

with the results of another study (Techer et al. 2017), which is

in stark contrast with the 43% European autosomal DNA

found on an average in the samples. Similar observations of

differences between autosomal and mitochondrial propor-

tions in an admixed population have been documented on

Puerto Rico (Rivera-Marchand et al. 2012; Galindo-Cardona

et al. 2013), where Africanized honeybees and European hon-

eybees have been hybridizing since the 1990s. Puerto Rico has

a uniform geographic distribution of Africanized honeybee

morphology and mitochondria, whereas analysis of microsa-

tellites indicates a heterogeneous population comprising two

genetic backgrounds of near equal proportions.

Clearly, although large numbers of hives of European ori-

gin were imported between the late 19th century and 1982,

they must have at first been outnumbered by the local A. m.

unicolor colonies, but one would expect beekeepers to prop-

agate imported colonies thus leading to a spread of the mi-

tochondrial DNA through the queens. Until the 1960s, when

hives with mobile frames were introduced in Reunion, hon-

eybee production was extensive and today, a non-negligible

proportion of beekeepers still gather natural swarms, so it is

expected that both colonies with A. m. unicolor and European

maternal lineages would be found. One possibility is that on a

whole, the genome of the European honeybees was favored

on the island by man, either through repeated imports or by

multiplication of European colonies with higher productivity,

but that in the wild, natural colonies having A. m. unicolor

mitochondrial DNA might have been favored by nature due to

adaptation to the tropical climate. However, discrepancies

between nuclear and mitochondrial DNA have been docu-

mented in several cases (Toews and Brelsford 2012).

Simulation studies of spatial expansion with interbreeding

have shown that introgression goes preferentially from local

species toward invading ones, suggesting massive introgres-

sion in an invading species as the null expectation for neutral

genes (Currat et al. 2008). Moreover, this study also shows

that the rate of introgression is often negatively correlated

with the rate of intraspecific gene flow and in cases where

dispersal is male-biased, as in honeybees (Johnstone et al.

2012), the lower gene flow associated with the maternally

inherited mitochrondrial DNA could account for a higher rate

of introgression (Petit and Excoffier 2009).

Our data on mitochondrial DNA do not allow to conclude

between adaptation and the neutral model, and although a

few nonsynonymous changes were found in the coding

genes, the McDonald–Kreitman tests performed between

the two subspecies involved here were inconclusive on the

possible action of positive selection. Other studies have shown

that positive and negative selection can act on the

mitochondrial genome, for instance on the cox and nd genes,

suggesting a physiological connection between mitochondrial

DNA sequence and fitness (Meiklejohn et al. 2007). We also

found SNPs and indels in tRNA genes differentiating subspe-

cies, and some of these may have an impact on general me-

tabolism, as has been demonstrated for mutations in human

tRNA genes that have been associated with diseases (Tuppen

et al. 2010; Suzuki et al. 2011).

A temporal study of honeybee populations of the

Macaronesian achipelago demonstrated clear impacts of

European imports on the mitochondrial genetic diversity of

local populations (Mu~noz et al. 2013). In that study Mu~noz

et al. analyzed mitochondrial data from a 10-year period re-

vealing different patterns of change in haplotype diversity.

High frequencies of C lineage haplotypes were detected, con-

sistent with earlier studies on the Macaronesian islands (De la

R�ua et al. 2001, 2006), however contrary to the earlier studies

there was a notable absence of C lineage haplotypes on some

of the Canary islands. This lead the authors to speculate a

change in importation practices on these islands—suggesting

that the C lineage imports did not succeed in establishing their

presence on these islands, at least at the mitochondrial level,

possibly reflecting adaptation problems. Conservation policies

implemented across the Canaries in 2001 in an effort to pre-

serve the black Canarian honeybee may account for possible

changes in importation practices. It would be interesting to

investigate the nuclear genomes of these populations at high

resolution, as in our study, to establish the extent of hybrid-

ization that has occurred to date, and to revisit the popula-

tions over time to observe how admixture levels change. Such

a study might present an early window into the processes that

appear to have occurred on Reunion.

Selection on the Nuclear Genome

The dominance of the A. m. unicolor lineage mitotype on

Reunion despite European lineage imports is suggestive of a

selective advantage of the A. m. unicolor type. If this is con-

sidered to be the case then one would expect to observe

similar signals on the nuclear genome, as appears to be the

case in our study. The climate and endemic flora of Reunion

are likely to pose challenges to exotic subspecies adapted to

different ecoclimates, and although the introduction and suc-

cess of exotic floral species on the island may alleviate that

particular challenge, most originate from Asia or South

America whereas the introduced honeybees are from

Europe. It could be speculated that several of the genes iden-

tified in regions associated with selection for the A lineage

background might be linked to the ecoclimate. These include

genes with orthologs in Drosophila annotated to be involved

in sensory perception of chemical, mechanical, thermal, and

auditory stimuli, morphogenesis, and the nervous system.

One ortholog in particular, rtf1, is reported to be required
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for maximal induction of heat-shock genes, and could there-

fore be implicated in response to stressful conditions. Another

gene of potential interest, foxp, is a member of the FOX

proteins family to which another gene, foxo, has been iden-

tified in previous studies comparing African and European

lineages (Wallberg et al. 2014) and populations inhabiting

different ecoclimates in Kenya (Fuller et al. 2015).

Similar speculations concerning regions associated with se-

lection for the C lineage might concern genes linked to xeno-

biotic responses or having an immune function. Several such

genes were identified, which include several orthologs to

genes that have been shown to be overexpressed follow-

ing exposure to the pyrethroid pesticide deltamethrin. In

addition, of note, is an ortholog to fringe, in which a long

noncoding RNA has previously been shown to be overex-

pressed in ovaries of honeybee queens (Humann et al.

2013). This gene is located within a quantitative trait locus

underlying the transgressive ovary phenotype identified in

workers from crosses between Africanized and European

honeybees (Linksvayer et al. 2009). A significant but neg-

ative correlation between ovary size and the concentration

of nectar collected by foragers was reported in these bees.

It has also been suggested that hybridization may disrupt

coevolved components of honeybee development, result-

ing in females with less strictly canalized queen and worker

phenotypes (Linksvayer et al. 2009). It is noteworthy that

the region containing fringe at 13.00–13.02 Mb on chro-

mosome 11 is in the center of a larger block recently de-

scribed by Nelson et al. (2017), whose study follows the

introduction of African A. m. scutellata honeybees to

South America where they spread rapidly and replaced

the honeybees of European descent to the point at which

the average proportion of African ancestry is now 0.84

(Nelson et al. 2017). By contrast, in our study, it is the

European honeybees that have been introduced to an

African landscape, and the proportion of African (A. m.

unicolor) ancestry observed is lower (0.53), although A.

m. scutellata is known to be more aggressive than A. m.

unicolor which may be a contributory factor to its success.

What both studies have in common, is that the popula-

tions are a mix of honeybees from tropical and temperate

climates having different behavioral responses, for in-

stance in terms of foraging and brood development.

One current limitation of our study is that only 8,835

(57.7%) out of the 15,314 A. mellifera genes reported in

the Ensembl database have GO annotations. As a result,

only 25 (58%) of the 43 genes identified in significant

regions following our selection analyses are annotated.

This greatly limits the extent of our analysis. However, as

the reference genome assembly and annotation improves,

it may be possible in the future to put into context some of

the genes identified that currently lack annotation.

Given the topography of the island, its diversity of micro-

habitats, and variations in rainfall and wind speed between

the eastern and western halves, it might be interesting to

consider that local adaptation can occur within its mosaic of

different landscape patches. Such adaptation might be ob-

served following the analyses presented here if clusters of

samples shared haplotypes and their sampling habitats

shared some if not all environmental variables. However,

in the case of the Reunion honeybee, management practi-

ces involve transhumance several times a year and so there

is unlikely to be constant selective pressure reinforcing

adaptation to any singular microhabitat on the island.

Conclusion

Our results show that the honeybees from Reunion have

a mixed ancestry of A. m. unicolor from Madagascar and of

C-type bees A. m. carnica and A. m. ligustica from Europe. A

test for preferential selection of one or the other background

along the chromosomes allowed the detection of genomic

regions of local Malagasy or introduced European back-

ground, suggesting adaptation to the local tropical climate

or a response to management practices by the beekeepers.

Interestingly, one of the regions in which the European back-

ground was favored coincides with a region recently identified

by Nelson et al. (2017). Reunion honeybees exhibit balanced

proportions of European and Malagasy nuclear genetic back-

grounds, and preferential selection for the tropical A. m. uni-

color mitochondrial genome, supporting previous

observations and suggesting that mitochondrial genes might

play an important role in adaptation.

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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