
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Improved Prediction of Bovine Leucocyte Antigens (BoLA)
Presented Ligands by Use of Mass-Spectrometry-Determined
Ligand and in Vitro Binding Data

Citation for published version:
Nielsen, M, Connelley, T & Ternette, N 2018, 'Improved Prediction of Bovine Leucocyte Antigens (BoLA)
Presented Ligands by Use of Mass-Spectrometry-Determined Ligand and in Vitro Binding Data' Journal Of
Proteome Research, vol. 17, no. 1, pp. 559-567. DOI: 10.1021/acs.jproteome.7b00675

Digital Object Identifier (DOI):
10.1021/acs.jproteome.7b00675

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal Of Proteome Research

Publisher Rights Statement:
This is an open access article published under a Creative Commons Attribution (CC-BY) License, which permits
unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/151190526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1021/acs.jproteome.7b00675
https://www.research.ed.ac.uk/portal/en/publications/improved-prediction-of-bovine-leucocyte-antigens-bola-presented-ligands-by-use-of-massspectrometrydetermined-ligand-and-in-vitro-binding-data(c8b3cd8f-2d95-4961-b59c-933c5412d05d).html


Improved Prediction of Bovine Leucocyte Antigens (BoLA) Presented
Ligands by Use of Mass-Spectrometry-Determined Ligand and in
Vitro Binding Data
Morten Nielsen,*,†,‡ Tim Connelley,§ and Nicola Ternette∥

†Department of Bio and Health Informatics, Technical University of Denmark, DK-2800 Lyngby, Denmark
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ABSTRACT: Peptide binding to MHC class I molecules is the single
most selective step in antigen presentation and the strongest single
correlate to peptide cellular immunogenicity. The cost of experimentally
characterizing the rules of peptide presentation for a given MHC-I
molecule is extensive, and predictors of peptide−MHC interactions
constitute an attractive alternative. Recently, an increasing amount of
MHC presented peptides identified by mass spectrometry (MS ligands)
has been published. Handling and interpretation of MS ligand data is, in
general, challenging due to the polyspecificity nature of the data. We here
outline a general pipeline for dealing with this challenge and accurately
annotate ligands to the relevant MHC-I molecule they were eluted from
by use of GibbsClustering and binding motif information inferred from in silico models. We illustrate the approach here in the
context of MHC-I molecules (BoLA) of cattle. Next, we demonstrate how such annotated BoLA MS ligand data can readily be
integrated with in vitro binding affinity data in a prediction model with very high and unprecedented performance for
identification of BoLA-I restricted T-cell epitopes. The prediction model is freely available at http://www.cbs.dtu.dk/services/
NetMHCpan/NetBoLApan. The approach has here been applied to the BoLA-I system, but the pipeline is readily applicable to
MHC systems in other species.

KEYWORDS: MHC, antigen presentation, BoLA, mass spectrometry, T-cell epitopes, bioinformatics, prediction, GibbsClustering,
NetMHCpan

■ INTRODUCTION

Binding to MHC class I molecules (MHC-I) is a prerequisite
for antigen presentation and induction of cytotoxic T-cell
responses.1 MHC-I molecules are highly specific, binding only a
very small part of the possible peptide space. This high
specificity combined with its essential role of antigen
presentation has placed MHC in the focal point of research
related to rational T-cell epitope discovery and vaccine design.
Traditionally, the specificity of MHC molecules has been

characterized using in vitro binding assays.2 Using such assays,
binding affinity values for large sets of single peptides have
allowed very accurate experimental characterization of the
binding motifs for a large panel of MHC-I molecules including
the most prevalent human and several nonhuman primate
MHC-I molecules. Recent studies have further extended the
approach to livestock species including pig (SLA)3 and cattle
(BoLA).4 However, the cost of applying an in vitro approach to
the characterization of MHC-I molecules is substantial, and
using it to characterize all MHC molecules within a given
species remains unfeasible.

Given this, large efforts have been dedicated to the
development of accurate in silico models capable of character-
izing the specificity of MHC-I molecules that not only allow the
prediction of peptide binding to MHC-I molecules outside the
very small set of peptides with measured binding affinity (i.e.,
extrapolating the peptide space) but also make predictions for
MHC-I molecules with limited or even no experimental
binding data (i.e., extrapolating the MHC-I space). One
method capable of both of these types of extrapolations is
NetMHCpan.5−7 This method is pan-specific in the sense that
it allows the prediction of peptide binding to any MHC-I
molecule with known protein sequence, and the method has in
several benchmark studies been shown to be “state-of-the-
art”.8,9

One inherent problem with most MHC-I binding prediction
methods available, including NetMHCpan, is that they reflect
the nature of the data used in the training of the underlying
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models. Because most prediction methods are trained on in
vitro binding data, the predictive power of the models is
restricted by any bias present in the in vitro binding data. It is
clear that several biases are present in the currently available in
vitro binding data, compromising their relevance as a descriptor
of the biological event of antigen presentation: Binding data
does not address the fact that antigen presentation is a complex
integrative physiological process that combines antigen
processing and transport as well as binding affinity and binding
stability of the peptide to the MHC-I binding groove.
Additionally, in vitro data fails to reflect any peptide length
preference of different MHC-I alleles.
Recent advances in liquid chromatography tandem mass

spectrometry (LC−MS2) have allowed this technique to
become a powerful alternative to in vitro binding assays for
the identification of MHC ligands and T-cell epitopes10,11 and
characterization of MHC binding specificities.12,13 The use of
LC−MS2 to identify MHC ligands has several clear advantages
over in vitro binding assays. First and foremost, the data
obtained suffers to a much lesser degree from the biases
described above for the in vitro generated binding data.
However, a limiting factor of the LC−MS2 approach for
identification of MHC ligands is the sensitivity with which
peptides can be reliably identified. It is inherent to the
technology that the most abundant peptides in the sample are
prioritized for identification using standard LC−MS2 acquis-
ition methods. This is hallmarked by the fact that only a minor
proportion of known T-cell epitopes are identified as MHC
ligands in standard LC−MS2 assays. Hence, in the foreseeable
future, LC−MS2 will, in line with in vitro assays, serve as a
guide and not a solution for rational identification of T-cell
epitopes.
Recent studies have suggested that training prediction

engines on LC−MS2-determined MHC ligand data (further
referred to as MS ligand data) rather than binding affinity data
improves the ability to accurately identify MHC ligands.12,14,15

This observation strengthens the assumption that MS ligand
data may provide a better representation of the presented
peptide antigen pool compared with in vitro binding affinity
data.
However, because the number of different MHC-I molecules

characterized by MS ligands compared with in vitro binding
data remains small, we have in a recent publication outlined an
approach that permits the inclusion of both MS ligand data and
binding affinity data into a framework for learning MHC-I
peptide interactions.16 In this previous work, we demonstrated
how this approach increased predictive performance compared
with the previous “state-of-the-art” techniques with regard to
the identification of naturally processed ligands, cancer neo-
antigens, and T-cell epitopes.
Here we extend the approach to livestock using MS ligand

data obtained as part of studies to identify epitopes derived
from Theileria parva, an intracellular protozoan pathogen of
cattle. In addition to the pathogen-specific peptide data
obtained in these studies (manuscript in preparation), the
self-presented bovine-derived peptides provide a rich data set
that could be utilized to enhance predictive models for BoLA-I
restricted T-cell epitopes. To demonstrate this, we outline a
general pipeline for analysis and interpretation of MS ligand
data. The pipeline consists of three steps: (i) clustering of MS
ligand data into MHC specificity groups, (ii) association of
specificity groups to specific MHC molecules, and (iii)
integration of MS ligand data into a framework for prediction

of MHC-restricted T-cell epitopes. We describe this pipeline in
the context of bovine leukocyte antigen class I (BoLA-I) ligand
data and demonstrate how the approach can readily be applied
to construct a predictive model with very high and
unprecedented performance for identification of BoLA-I
restricted T-cell epitopes.

■ MATERIAL AND METHODS

BoLA-Defined Cell Lines

Cell lines were established from animals that were derived from
a series of parental backcrosses to generate MHCI-homozygous
progeny. MHC haplotypes of these individuals were confirmed
by a combination of serotyping and MHCI-allele-specific PCR
and amplicon sequencing as previously described.17,18 Theileria
parva-infected lines from animals 1011 (BoLA-A10), 641
(BoLA-A18), and 2229 (BoLA-A14) were generated and
maintained using well-established protocols.19 As uninfected
controls, lymphoblastic T-cell lines were generated from
homozygous MHC-matched animals 500004 (A10) and
104003 (A14) by stimulation of PBMC with 2.5 μg/mL of
Concavalin (Con) A (Sigma-Aldrich, Dorset, U.K.) and then
passage in medium supplemented with 100 U/mL recombinant
human IL-2. Theileria parva-infected cell lines are denoted in
the manuscript as A10-1, A14-1, and A18 and Con-A blast cell
lines as A10-2 and A14-2, respectively. As defined in previous
studies (e.g., ref 20), the MHCI-allele content of the haplotypes
described herein is A10 − BoLA-3*00201 and BoLA-2*01201,
A18 − BoLA-6*01301, and A14 − BoLA-1*02301, BoLA-
2*02501, and BoLA-4*02401.
BoLA-I-Associated Peptide Purification

Cells were washed and then lysed using 10 mL of lysis buffer
(1% Igepal 630, 300 mM NaCl, 100 mM Tris pH 8.0, and
protease inhibitors) per 109 cells. Lysates were cleared by
centrifugation at 500g for 10 min, followed by 15 000g for 60
min. BoLA complexes were captured using a pan anti-BoLA
class I antibody IL-88 that was covalently conjugated to protein
A sepharose immunoresin (GE Healthcare) at a concentration
of 5 mg/mL. Bound complexes were washed sequentially using
buffers of 50 mM Tris buffer, pH 8.0 containing 150 mM NaCl,
then 400 mM NaCl, and finally 0 mM NaCl. BoLA-associated
peptides were eluted using 5 mL of 10% acetic acid and dried.
High-Performance Liquid Chromatography (HPLC)
Fractionation

Affinity column-eluted material was resuspended in 120 μL of
loading buffer (0.1% formic acid, 1% acetonitrile in water).
Samples were loaded onto on a 4.6 × 50 mm ProSwiftTM RP-
1S column (Thermo Scientific) and eluted using a 500 μL/min
flow rate over 10 min from 2 to 35% buffer B (0.1% formic acid
in acetonitrile) in buffer A (0.1% formic acid in water) using an
Ultimate 3000 HPLC system (Thermo Scientific). Sample
fractions were collected from 2 to 15 min. Protein detection
was performed at 280 nm. Fractions up to 12 min that did not
contain ß2-microglobulin were combined, dried, and further
analyzed by LC−MS2.
LC−MS2 Analysis

Samples were suspended in 20 μL of loading buffer and
analyzed on an Ultimate 3000 nano UPLC system online
coupled to a QExactive-HF mass spectrometer (Thermo
Scientific). Peptides were separated on a 75 μm × 50 cm
PepMap C18 column using a 1 and 2 h linear gradient from 5
to 35% buffer B in buffer A at a flow rate of 250 nL/min (∼600
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bar). Peptides were introduced into the mass spectrometer
using a nano Easy Spray source (Thermo Scientific).
Subsequent isolation and higher energy C-trap dissociation
(HCD) was induced on the 20 most abundant ions per full MS
scan with an accumulation time of 128 ms and an isolation
width of 1.0 Da. All fragmented precursor ions were actively
excluded from repeated selection for 8 s. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE21 partner
repository with the data set identifier PXD008151.

MS Data Analysis

Sequence interpretations of MS2 spectra were performed using
a database containing all bovine UniProt entries combined with
the all annotated Theileria parva proteins (35 992 entries total;
bovine SwissProt entries: 5995, bovine Trembl entries: 25 911,

Theileria parva entries: 4084). Spectral interpretation was
performed using PEAKS 7.5 (Bioinformatics Solutions).

NetMHCpan Retraining and Data Preparation

MHC binding affinity data were obtained from the IEDB22

(http://tools.immuneepitope.org/main/datasets; data set used
for retraining the IEDB class I binding prediction tools). This
data set consists of 186 684 peptide−MHC binding affinity
measurements covering 172 MHC molecules from human,
mouse, primates, cattle, and swine. IEDB eluted ligands were
also obtained from the IEDB applying the filtering procedure
described in ref 16. This data set contains 85 217 entries in total
restricted by 55 unique MHC molecules. Random artificial
negatives were added for each MHC molecule covered by
eluted ligand data by randomly sampling 10*N peptides of each
length 8−15 amino acids from the antigen source protein
sequences, where N is the number of 9mer ligands for the given

Figure 1. (A) Number of peptides obtained from each cell line and for the combined set (all) of peptides for each of the BoLA-A10, -A14, and -A18
haplotypes. (B) Overlap of peptide sequences for A10 and A14 samples. (C) Distribution of ligand lengths within the different data sets.

Figure 2. GibbsCluster analysis of the three combined data sets. Each row displays the results from one haplotype data set. Left panels give the
barplot of the Kullback−Leibler Distance (KLD) as a function of the number of clusters. The relative size of each black block within a bar is
proportional to the size of each of the clusters. The right panels give the sequence motifs derived from the best solution (i.e., the solution with
highest KLD) displayed in the form of sequence logos generated with Seq2Logo.25
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MHC molecule. A similar procedure was applied for the BoLA-
I restricted eluted ligands. Here, however, the artificial negatives
were obtained from a set of random natural proteins.

■ RESULTS

Raw MS Ligand Data

We first analyzed the accuracy and consistency of the raw MS
BoLA-I ligand data generated. MS ligand data were obtained
from five BoLA-I homozygous cell lines describing three BoLA
haplotypes: A10, A14, and A18. As expected, the vast majority
(99.7%) of the peptides are bovine self-peptides (data not
shown). More than 94% of the peptides identified had lengths
of between 8 and 14 amino acids. (A full list of this subset of
identified ligands is included in Table S1.) Focusing on this
peptide subset, the number of ligands obtained in each
experiment varied between 6615 and 7755 (Figure 1A). The
overlap in ligands identified between cell-lines expressing the
same BoLA-I haplotype was large, with >50% of the unique
peptides for each haplotype data set found in both samples
(reflected in the total number of ligands for each haplotype
being smaller than the sum of the counts from each cell line)
(Figure 1B).
The length distribution of the peptides was highly consistent

between data sets from each haplotype but varied substantially
between haplotypes (Figure 1C). The extreme examples are the
data from cell lines expressing the A14 haplotype, with a
relatively high preference for 8mers, and the cell lines
expressing the A18 haplotype, with a preference for 10 and
11mer peptides.
Identification of MHC-I Allele Specificity Groups

One first challenge faced when interpreting and analyzing MS
ligand data obtained from a given cell line that expresses more
than a single MHC allele is assigning the peptides to the
relevant MHC-I molecule they were eluted from. We have
previously demonstrated that this challenge can be readily and

accurately solved using the GibbsCluster method.23 In short,
this method takes the complete list of eluted ligands from a
given experiment as input and seeks to cluster the ligands into
groups so that the similarity within each group is high and the
similarity between groups is low. The algorithm includes an
option to place ligands into a trash cluster if they demonstrate
poor similarity to all defined clusters. This trash cluster option
has proven to be very powerful for the removal of false-positive
ligand data. The recent update to the tool allows the clustering
to be performed on peptides of variable length.24 The outcome
of the algorithm is a solution defined by an optimal number of
clusters, with each ligand associated with one such cluster (or
the trash cluster).
We hence applied the GibbsCluster method (version 2.0) to

deconvolute the BoLA-I restriction of the ligands in the data
sets corresponding to the three haplotypes. The method was
run with default options for MHC class I ligand clustering
except for the number of seeds, which was set to 10 to allow for
improved sampling (Figure 2).
The GibbsCluster method selects the solution with the

highest KLD value (the central column of Figure 2), and in all
three cases we find a perfect correspondence between the
number of known functional BoLA-I alleles expressed by each
cell line and the number of clusters identified by the
GibbsCluster method. The number of peptides assigned to
the Trash cluster was in the three cases: 3.4% (BoLA A10:347
out of 10 188), 2.1% (BoLA A14:201 out of 9509), and 2.5%
(BoLA A18:164 out of 6615). These low proportions confirm
the very high purity of the eluted ligand data sets.

Annotation of BoLA-I Restrictions to Specificity Groups

The next challenge of analyzing the MS ligand data set is the
association of each identified ligand clusters to a BoLA-I
molecule expressed in the given cell line. Here we used the
motifs and binding predictions of NetMHCpan (version 3.0)7

as a qualitative guide to make this association. This approach

Figure 3. Mapping of GibbsClustered peptides to BoLA-I molecule specificities. Each haplotype is shown separated by the vertical lines as indicated.
In each column the binding motif logos for each of the optimal GibbsCluster solutions (upper row) together with the best-matched NetMHCpan
predicted binding motif for the BoLA-I molecules (central row) expressed by the relevant haplotype are shown (as determined by visual
comparison). The lower row displays boxplot representations of the NetMHCpan-3.0 percentile rank prediction values for all peptides in each
GibbsCluster against all BoLA-I molecules expressed by the given haplotype.
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allowed in all cases a clear and unambiguous association of a
single BoLA-I restriction to each cluster (Figure 3, upper
panel). We further quantified to which degree the motifs
identified by the GibbsCluster method correspond to the
motifs predicted by NetMHCpan-3.0 and how the Trash
cluster is capable of acting as an effective filter for the removal
of false-positives. The box plots (Figure 3, lower panel) depict
the predicted percentile rank values of NetMHCpan-3.0 toward
each of the different BoLA molecules of each haplotype for the
peptides associated with the identified GibbsClusters (including
Trash). As a rule of thumb, a percentile rank value of 2% or less
is indicative of MHC binding.7 This Figure confirms that the
ligands in a GibbsCluster in most cases are well-predicted by
only one of the alleles in the haplotype (only one allele displays
a low median rank value) and that ligands in the Trash cluster
are poorly predicted by all alleles in the haplotype (median rank
values are in all cases well above 10%). One exception from this
is the G3 cluster of the A14 haplotype. This cluster is associated
with the BoLA-2*02501 molecule according to visual binding
motif association. This annotation is confirmed by the
NetMHCpan-3.0 binding prediction analysis. (The median
predicted rank for the G3 ligands is lowest for BoLA-2*02501
compared with the two other molecules.) However, the
predicted rank values for this molecule are relatively high.
(The median rank value is 6.5%, compared with median values
close to 1 for the two annotated BoLA molecules for the other
GibbsClusters G1 and G2.) This observation underlines the
important additional information present in the MS ligand data
beyond what is present in the in vitro binding data used for
training NetMHCpan-3.0.
On the basis of this mapping, we unambiguously assigned

each cluster to one BoLA-I molecule, as shown in Table 1.

Given this mapping of ligands to individual BoLA molecules
we were able to conduct an allele-specific analysis of the length
distribution of MHC-I ligands. As expected, most of the BoLA
molecules had a length preference for 9mer peptides (Figure
4); however, clear differences in the ligand length distribution
between the different BoLA-I molecules were evident. The

most extreme cases were BoLA-1*02301 (A14), with a high
preference for binding 8mer peptides (>30%), and BoLA-
6*01301 (A18), with an increased preference for binding 10
and 11mer peptides (>65%).
Construction of a Prediction Model

Having mapped the likely BoLA-I restriction of the individual
ligands, we sought to use this information to (re)train the
NetMHCpan prediction method combining the BoLA MS
eluted ligand (EL) data with BoLA binding affinity (BA) data
contained within the IEDB. The retraining of the NetMHCpan
prediction method was performed as previously described.16 In
short, the method was trained on the two data types (BA and
EL) in a conventional three-layer feed forward artificial neural
network. The weights between the input layers and the hidden
layer are shared between the two input types, and the output
layer has two output neurons, one for each input type. During
training, examples of the two data types (EL and BA) are
shown at random to the network, and weights are adjusted
using stochastic gradient descent along the gradient of the
output neuron corresponding to the input type. Variations in
peptide length are handled allowing insertions and deletions as
described in ref 26.
The IEDB binding affinity peptide data set for seven BoLA

molecules (listed in Table 2) contains exclusively 9mer peptide

data. By integrating the MS ligand, we would hence expect that
the updated NetMHCpan method would achieve an improved
predictive performance for the BoLA system due to (i) the
method being informed of the differences in length preference
of the different BoLA molecules as illustrated in Figure 4 and
(ii) the inclusion of peptide data for additional BoLA molecules
expanding the knowledge of BoLA binding specificities.
Examples of (i) are shown in Figure 5. (Results for all BoLA

Table 1. Association of GibbsCluster Clusters to BoLA-I
Restrictions

cell line group BoLA-I

A10 G1 BoLA-3*00201
G2 BoLA-2*01201

A14 G1 BoLA-4*02401
G2 BoLA-1*02301
G3 BoLA-2*02501

A18 G1 BoLA-6*01301

Figure 4. Length distribution of ligands restricted to each BoLA
molecule.

Table 2. Comparison of the Predictive Performance of
NetMHCpan-4.0_BA (the binding affinity prediction score
of the NetMHCpan-4.0 method trained on both eluted
ligand and peptide binding affinity data) and NetMHCpan-
3.0 Models on Quantitative Binding Affinity Data from the
IEDB Affinity Data Seta

NetMHC-
pan-4.0_BA NetMHCpan-3.0

BoLA-I
no.
peps

no.
bind PCC AUC PCC AUC

BoLA-3*00101
(BoLA-AW10)

166 8 0.497 0.816 0.381 0.792

BoLA-1*02301
(BoLA-D18.4)

258 182 0.648 0.832 0.551 0.747

BoLA-6*01301
(BoLA-HD6)

268 219 0.622 0.815 0.482 0.728

BoLA-3*00201
(BoLA-JSP.1)

158 32 0.464 0.703 0.277 0.622

BoLA-T2c 90 84 0.485 0.833 0.455 0.813
BoLA-2*01201
(BoLA-T2a)

167 47 0.691 0.852 0.635 0.812

BoLA-6*04101
(BoLA-T2b)

157 38 0.631 0.835 0.566 0.816

Ave 0.577 0.812 0.478 0.761
aNames in parentheses in the first column refer to the historical names
for the different alleles. Performance was estimated in terms of
Pearson’s correlation coefficient (PCC) and AUC (area under the
receiver operator curve). Both of these performance measures take a
value of 1 for the perfect and values of 0.0 (PCC)/0.5 (AUC) for a
random prediction.
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molecules are included in Figure S1.) Here the top 1% of the
strongest predicted binders from a set of 700 000 random
natural 8−14mer peptides (100 000 of each length) predicted
using NetMHCpan-2.8, NetMHCpan-3.0, and the two individual
output values of the method trained on the combined BoLA-
eluted MS ligand data (EL) and binding affinity data (BA)
(method 4.0) are shown in comparison with the measured
length distribution of the MS ligand data.
The Figure shows that the MS eluted ligand likelihood score

(4.0 EL) and to a lesser degree the binding affinity score (4.0
BA) of the NetMHCpan-4.0 model trained on the combined
BoLA-eluted MS ligand and IEDB MHC binding affinity data
accurately captures the length preference of the two BoLA
molecules, as described from the MHC-elution MS ligand data.
The Figure also confirms the previous observation that
NetMHCpan-2.8 has no power to predict peptide length
preferences of different MHC molecules and that NetMHCpan-
3.0 in most cases (including the two shown here) predicts a
strong preference for 9mers, followed by 10mers, but has very
limited predictive potential for peptides of other lengths.7 Note
that the eluted ligand data displayed as reference in these
analyses were included in the training of the NetMHCpan-4.0
method. This is an essential remark because the power of
NetMHCpan to predict the binding properties and peptide

length preference of a given MHC molecule depends strongly
on the similarity of the MHC molecule to the data used to train
the NetMHCpan method.16,27 For the BoLA molecules
covered by MS ligand data included in this study, the distance
to the other MHC molecules in the training data is in all cases
very large (data not shown). Hence the method will predict the
length preference, in particular, for BoLA molecules with an
atypical length distribution like BoLA-3*00201 and BoLA-
1*02301 poorly if ligand data for these molecules were
excluded from the training.
Turning next to the evaluation of how the inclusion of the

MS ligand data impacts the performance when it comes to
predicting peptide-BoLA interactions, we show in Table 2 the
performance of models trained with and without MS ligand
data (NetMHCpan-3.0 and NetMHCpan-4.0, respectively)
when evaluated on the set of peptides with measured binding
affinity data from the IEDB (performance is evaluated using 5-
fold cross validation). From this evaluation, it is apparent that
adding MS ligand data improves the predictive performance of
the model with a consistent increase in the predictive power as
measured in terms of both the Pearson’s correlation coefficient
(PCC) and area under the receiver operator curve (AUC)
across all six BoLA molecules.

Figure 5. Predicted length preference for the BoLA-3*00201 (left) and BoLA-1*02301 (right) molecules. The solid line shows the length
distribution for the MS eluted ligands in both panels and bars show the length distribution predicted by NetMHCpan-2.8 (2.8 - light gray),
NetMHCpan-3.0 (3.0 - white), the eluted ligand output value of NetMHCpan-4.0 (4.0_EL - black), and the binding affinity output value of
NetMHCpan-4.0 (4.0_BA - gray).

Table 3. Predictive Performance of the NetMHCpan-4.0 Eluted Ligand Likelihood Prediction Model (4.0_EL) Compared with
NetMHCpan-3.0 (3.0) on a Data Set of Known BoLA-I Restricted T-Cell Epitopes from Theileria parva (TP) and Bovine
Herpes Virus (BHV)a,b

aThe part of the Table to the left of the vertical line gives the performance of the two methods on the original epitope data. The part of the Table to
the right of the vertical line gives the results allowing each prediction method to suggest alternative epitopes overlapping with the known epitopes
(either contained within known epitopes or with single amino acid extensions). In bold is highlighted the case where the two methods suggest
alternative optimal epitopes. b#: Minimal epitope defined in ref 30; $: Minimal epitope (N. MacHugh personal communication).
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Identification of BoLA-I Restricted T-cell Epitopes

Finally, we evaluated the combined impact of the above two
effects (improved prediction of the preferred peptide length
and expanded knowledge of BoLA binding specificities) for the
capacity to enhance prediction of BoLA-I restricted T-cell
epitopes. We performed this evaluation on a set of previously
described epitopes with known BoLA-I restrictions.28,29 Here
we predict binding for all overlapping 8−11mer peptides from
the source protein of the epitopes to the known BoLA-I
restriction molecule using the NetMHCpan-3.0 and NetMHC-
pan-4.0_EL (the eluted ligand prediction score of the
NetMHCpan-4.0 method trained on both eluted ligand and
peptide binding affinity data) prediction methods and report
the performance of each method as a Frank score (i.e., the
fraction of peptides with predicted binding values greater than
the epitope). Using this measure, a value of 0 corresponds to a
perfect prediction (the known epitope is identify with the
highest predicted binding value among all peptides found
within the source protein) and a value of 0.5 to random
prediction. The result of this evaluation is shown in Table 3.
Also, in these data, the improvement in predictive perform-

ance when integrating the BoLA-MS eluted ligand data in the
prediction methods is apparent. When permitting the
prediction methods to suggest alternative epitopes the average
scores for NetMHCpan3.0 and 4.0_EL are 0.036 and 0.013,
respectively. In the majority of cases (16/18), the NetMHC-
pan-4.0 method identifies the epitopes (or suggests an
alternative variant) within the top 2% of peptides contained
within the source protein of the epitope (i.e., has a Frank value
<0.02). Notably, the worst prediction made by NetMHCpa-
n4.0_EL is for the FVEGEAASH epitope presented by BoLA-
1*00901; there is no binding or BoLA-eluted ligand data are
available characterizing the specificity and ligand length
preference of this BoLA-I molecule. The closest neighbor,
defined in terms of the sequence similarity of the pseudo
sequence of BoLA-1*00901 to the MHC molecules in the
training data, is BoLA-1*02301 with a neighbor distance of
0.14. This value is larger than the 0.1 distance value that as rule
of thumb is defined as the threshold for when NetMHCpan
predictions are reliable.27 It is hence not unexpected to observe
low predictive performance for this molecule, and its exclusion
nearly halves the average score for the NetMHCpan4.0_EL
predictions to 0.007. In conclusion, in practical terms and in the
context of workload reduction, this result means that more than
99% of the peptides contained within the antigen protein
sequences could be discarded by use of peptide binding
prioritizations prior to experimental validation.

■ DISCUSSION AND CONCLUSIONS

In this work, we have outlined a simple yet highly powerful
pipeline for the analysis and interpretation of LC−MS2-defined
MHC-eluted ligand data. We applied the pipeline to analyze
eluted ligand data obtained from five cell lines covering three
BoLA-I haplotypes each characterized to express between one
and three distinct BoLA-I molecules.
We demonstrate how the pipeline can effectively deal with

several of the important challenges when interpreting MS
ligand data, including identification of false-positives, identi-
fication of the MHC binding motif, and assignment to the
regarding MHC restriction elements. We also demonstrate how
this information can be integrated into prediction methods to
improve their accuracy for rational epitope discovery.

Comparing the set of ligands identified from separate cell
lines derived from two different animals expressing identical
BoLA haplotypes revealed a high level of consistency with
>50% of the ligands shared between both. Using the
GibbsCluster method to group the ligands allowed for both
the identification of false-positives and also MHC binding
specificity clusters. A very low number of false-positive peptides
were identified (<3.4% in all samples), confirming the high
accuracy of the MS ligand data. For each of the analyzed data
sets, we found a perfect correspondence between the number of
specificity clusters identified and the number of known
functional MHC molecules included in the corresponding
haplotype. Analyzing each of the identified clusters revealed
large differences not only in binding motif of associated ligands
but also in the length preference of the ligands presented by
each of different MHC molecule. This difference in ligand
length preference between BoLA-I molecule has to the best of
our knowledge not been characterized before.
A challenge related to the identification of MHC binding

specificity clusters is the subsequent association of specificity
clusters to restricting MHC molecules expressed by the given
cell. Several approaches have been suggested to deal with these
challenges including the use of MHC monoallelic cell lines15

and co-occurrence of MHC alleles across different samples.14

However, in the vast majority of cases, the association can
readily be obtained by comparing the binding motif of each
specificity cluster to the motif predicted by state-of-the-art
MHC binding prediction methods such as NetMHCpan.7 It is
clear that this approach is limited by the prediction accuracy of
the NetMHCpan method and will fail in situations where
NetMHCpan has no predictive power for one or more of the
MHC molecules in question. However, as shown here, applying
this approach where some prior information about the BoLA-I
specificities is available allows clusters to be unambiguously
assigned to BoLA-I molecules.
Having mapped each ligand to a specific BoLA-I molecule,

we analyzed how to best benefit from these data in terms of the
development of improved prediction methods for BoLA-I
restricted T-cell epitopes. We have previously demonstrated
that integrating binding affinity data covering a range of
relevant BoLA-I into the NetMHCpan prediction tool led to an
improved performance for the identification of known BoLA-I
restricted T-cell epitopes.4 Previous work moreover suggested
that the MHC ligand prediction method could benefit from the
integration of MS elution data.15,12,31 To benefit from both of
these observations, we here applied the recently proposed
approach to train the MHC binding predictor on a combined
data set of binding affinity and MS ligand data.16 In accordance
with the work by Jurtz et al.,16 we find that this approach led to
significantly improved performance for prediction of both
peptide binding affinity and T-cell epitopes.
As previously mentioned, the different BoLA-I molecules

showed very different peptide length binding preference. As
shown here, including the MS ligand data in the training,
allows, in agreement with previous work, the prediction method
to learn these differences and hence boost the predictive
performance by placing lower binding values to peptides with
atypical length according to the eluted ligand length profile.
Evaluating the prediction model trained on the combined

binding affinity and eluted ligand data on a set of validated
BoLA-I restricted epitopes, we found a consistent improvement
in performance compared with current methods. In agreement
with previous studies, the vast majority of epitopes are
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identified within the top 2% of the predicted peptides
contained within the antigen source protein.7 Only one epitope
was very poorly predicted by the proposed model. This epitope
is restricted to a BoLA-I molecule very distinct (in terms of the
protein sequence) from the BoLA molecules included in the
training of the NetMHCpan method, and this most likely
accounted for the low prediction accuracy for this molecule.27

Furthermore, data on the nature of the peptides that bind to
this allele is likely to improve the predictive values of
NetMHCpan. Also, the analysis suggests, in agreement with
previous studies, that the presence of alternative epitopes
overlapping with the known epitopes (either wholly contained
within the peptide or accommodated by single amino acid
extensions) strongly suggests that these need to be refined to
map the minimal epitope.32,30,33

In conclusion, the present study confirms the very high
accuracy of “state-of-the art” proteomic methods for high-
throughput and accurate identification of MHC-presented
ligands and demonstrates how the proposed pipeline
combining GibbsClustering and advanced data mining
techniques allows the intuitive interpretation of MS ligand
data and also the integration of such data for improved
prediction of MHC peptide binding and T-cell epitopes. The
developed prediction model is freely available at http://www.
cbs.dtu.dk/services/NetMHCpan/NetBoLApan.
Here the approach has been applied to the BoLA-I system,

but the pipeline is readily applicable to MHC systems in other
species.
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