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On the use of Conformal Models and Methods in
Dosimetry for Non-Uniform Field Exposure
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Akimasa Hirata, Fellow, IEEE, Ilkka Laakso, Member, IEEE, Esra Neufeld,

Sylvain Reboux, Craig Warren, Antonis Giannopolous, and Fumie Costen Senior Member, IEEE

Abstract—Numerical artifacts affect the reliability of computa-
tional dosimetry of human exposure to low-frequency electromag-
netic fields. In the guidelines of the International Commission of
Non-Ionizing Radiation Protection (ICNIRP), a reduction factor
of 3 was considered to take into account numerical uncertainties
when determining the limit values for human exposure. How-
ever, the rationale for this value is unsure. The IEEE Inter-
national Committee on Electromagnetic Safety has published
a research agenda to resolve numerical uncertainties in low-
frequency dosimetry. For this purpose, intercomparison of results
computed using different methods by different research groups is
important. In previous intercomparison studies for low-frequency
exposures, only a few computational methods were used, and
the computational scenario was limited to a uniform magnetic
field exposure. This study presents an application of various
numerical techniques used: different Finite Element Method
(FEM) schemes, Method of Moments (MoM) and Boundary
Element Method (BEM) variants and finally by using a hybrid
FEM/BEM approach. As a computational example, the induced
electric field in the brain by the coil used in transcranial magnetic
stimulation is investigated. Intercomparison of the computational
results are presented qualitatively. Some remarks are given for
the effectiveness and limitations of application of the various
computational methods.

Index Terms—low frequency dosimetry, transcranial magnetic
stimulation, induced fields, sphere brain model, simplified brain
model

I. INTRODUCTION

HUMAN exposure to artificial electromagnetic fields has
raised an increasing public concern regarding adverse

health effects [1]. The assessment of low frequency (LF)
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exposure is based on the evaluation of internal current density
[2] or internal electric field [3], [4], while high frequency (HF)
exposure is based on the evaluation of specific absorption rate
averaged over 1g or 10 g of tissue, which is a surrogate of
temperature rise.

In addition to environmental exposure to man-made electro-
magnetic fields due to steadily increasing number of power and
telecommunication installations, efficient medical treatments
and diagnosis using electromagnetic radiation also require the
knowledge of the accurate distribution of the electromagnetic
fields inside the tissues. As it is rather difficult, or even
impossible, to measure directly these quantities, the use of
computational methods becomes necessary to determine inter-
nal field distributions [5]–[10].

There exists two international guidelines/standard for low-
frequency exposure mentioned by World Health Organization.
In the IEEE C95.6 standard [4], the ellipsoid is considered to
derive the external and internal field strength. The International
Commission of Non-Ionizing Radiation Protection (ICNIRP)
guidelines [3] use computational results using anatomical
models. Although the developed high resolution anatomically
based models provide the detailed body representation cur-
rently available for LF dosimetry, there are some aspects that
may need consideration. In 2014, the IEEE International Com-
mittee on Electromagnetic Safety (ICES) Technical Committee
95 Subcommittee 6 (EMF Dosimetry Modeling) has been
established to resolve uncertainties and advance proper use of
numerical models to determine electric fields induced within
the body due to external electromagnetic fields or contact
currents [11].

Voxel models suffer from essential errors due to stair-
casing approximations, especially when discretized at another
resolution than the underlying voxels. ICNIRP thus consider
a reduction factor of 3 to account for numerical uncertainty.
Historically, the difference of the induced electric field in
anatomical models was suggested to be large in the intercom-
parison by Stuchly and Gandhi [12]. In that study, different
human body models with different sets of electrical conduc-
tivities were used, together with a discussion on sensitivity
of the electrical conductivities. Hirata et al. [13] coordinated
the intercomparison using the same anatomical model named
TARO with an identical set of electrical conductivities. The
99th percentile value of the induced electric field in the
human body models, which is recommended in the ICNIRP
guidelines [3] as the dosimetric quantity, is in good agreement
for uniform magnetic field exposures. However, it is difficult to
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be certain of the reliability of the 99th percentile value of the
induced electric field because no exact analytic solution exists
for a realistic anatomical model. It is particularly applicable
to non-uniform magnetic exposure as firstly suggested in [14].
Additional issue is how to process the internal electric field
averaged over 2-mm cube [3] as discussed in [15].

The suitability of the applied numerical solution methods is
then related to the highly heterogeneous electrical properties
of the body and the complexity of the external and internal
geometry. The numerical methods for LF exposure scenarios
range from simple canonical models, e.g. [16], [17], robust
finite difference scheme, e.g. [18], [19], which are ideally
suited for simulations of high-resolution, inhomogeneous mod-
els, but limited to scenarios where the wavelength is not too
big compared to the resolution, to the approaches suitable for
adaptive, conformal meshes, such as Finite Element Methods
(FEM), e.g. [20], [21] or Boundary Element Method (BEM),
e.g. [22], [23]. It should be noted that the numerical method is
not necessarily fixing the discretization approach. For example,
while FEM frequently uses adaptive unstructured meshes,
many FEM implementations (including some of those used
in this work) employ structured, rectilinear meshes or voxels.
Conversely, variants of the Finite Difference Time Domain
(FDTD) method support subcell models, conformal corrections
or local adaptivity.

Recent advancements in LF dosimetry have been reported
by a number of researchers, e.g. Chan et al. [24], De Santis et
al., [25], Hirata et al. [26], Dimbylow and Findlay [27], Laakso
et al. [28], Neufeld et al. [29], Kuster [15], [30], and others, in
addition to sensitivity analysis [6], [22], [31]. In most studies,
uniform field exposure was considered. As summarized above,
no study conduct intercomparison for low-frequency non-
uniform exposure. Dosimetry for non-uniform field becomes
essential for product safety and medical applications.

This study summarizes comparison on the implementation
of conformal models in LF dosimetry. For benchmarking pur-
poses, different research groups have carried out calculations
for non-uniform exposure. Unlike previous intercomparisons
at low frequencies, several computational methods were imple-
mented. As an example, the electric field induced in the brain
by transcranial magnetic stimulation (TMS) coil is considered.

II. METHODS AND MODELS

A. Stair-cased and conformal methods

Contrary to simple canonical models used in early dosime-
try papers (plane slab, cylinders, homogeneous and layered
spheres and prolate spheroids), modern realistic, anatomically
based computational models comprising of cubical cells are
mostly related to the use of the FDTD method [10], scalar-
potential finite difference method, or the FEM applied to
structured meshes. The conformal FEM, BEM, Method of
Moments (MoM), and some other methods are, on the other
hand, being used to a somewhat lesser extent.

Undoubtedly, an advantage of conformal methods, such as
BEM is that such methods themselves represent the natural
way of avoiding staircasing error in terms of the implemen-
tation of curvilinear or isoparametric elements. Furthermore,

for different alternatives (e.g., quasi-static solvers, integral
equation method) to full-wave methods, there is no need to im-
plement absorbing boundary conditions. Using integral equa-
tion methods and some MoM approaches one typically avoids
volume meshes and reduce number of elements for large-scale
problems, at the cost of difficult handling of inhomogeneity.
On the other hand, serious drawbacks of integral equation
methods, such as BEM, are more complex formulation (par-
ticularly for non-homogeneous domains) and corresponding
numerical implementation. Namely, numerical implementation
of integral methods leads to dense matrices being computa-
tionally far more expensive than FDM and FEM. Also, the
problem of Green function singularities/quasisingularities has
to be solved within any integral equation scheme. A recent
study [7] presents a short review of the use of some integral
methods in LF and HF dosimetry, respectively.

B. Exposure scenario and model

The implementation of several numerical methods such as
FDTD, FEM, BEM, FEM/BEM, and MoM, respectively, to LF
dosimetry problem has been investigated on the TMS setup,
for the simple geometry of sphere and a more realistic, but
still simplified, geometry of the brain.

While human exposure to fields generated by different
electromagnetic sources has raised a number of questions
regarding potential adverse health effects, some biomedical
applications of electromagnetic fields in medical diagnostic
and for therapy purposes, such as TMS, recently become
of particular importance [10], [32], [33], as evidenced by
modeling efforts of several investigators [9], [10], [14], [34].

As an initial exploration to the subject, it has been proposed
to compare the results using a homogenized realistic-shaped
brain reported in [10]. Having verified the model compatibility
with FEM and MoM, it has been decided that TMS setup is
well suited for initial comparisons.

Hence, a simple sphere homogeneous brain model and an
homogenized realistic-shaped brain models have been pre-
pared by using several discretization schemes (from coarse
to fine), as shown in Table I.

TABLE I
SPECIFIED GEOMETRY PARAMETERS

Geometry Points Triangles Tetrahedra
sphere 199 244 809 199 244 809

sphere 406 494 1690 406 494 1690
sphere 803 734 3815 803 734 3815

brain 250 232 360 814
brain 500 483 696 1871
brain 800 885 1224 3542

brain 1200 1405 1870 5771

The models have been initially prepared for MATLAB use.
The script for the viewing purposes has been prepared, as well.
The initial sphere of 1 m radius has been scaled using a factor
of 0.06, corresponding to 12 cm diameter. Dimensions of the
brain model are width 13.18 cm, length 16.11 cm, and height
13.9 cm, respectively.

Furthermore, frequency dependent parameters of the homo-
geneous models are taken from [10], i.e. relative permittivity
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and electric conductivity, respectively, are ε=46940, σ=0.0859
S/m, at f=2.44 kHz. In addition, linear and isotropic behavior
is assumed for the electrical properties of tissues.

For the TMS coils, three generic geometries have been
considered, namely, standard circular coil, Figure-8 coil, and
butterfly coil (Figure-8 with wings inclined 10 degrees). The
coil operating frequency is 2.44 kHz, while the radius, im-
pressed current and number of turns are given in [10]. Each
coil is located 1 cm over the surface of the model. The exact
location of coil center (circular, 8-coil) is determined from the
location of the model nodes: VX = mean(node(:, 1)) + Cx;
VY = mean(node(:, 2)) + Cy; VZ = max(node(:, 3)) + Cz ,
where Cx = Cy = 0, Cz = 0.01) are displacement of coil
center (1 cm over primary motor cortex). From this geometric
center, location of all other coil elements are determined.

C. Numerical methods implemented in comparison

The following numerical methods have been used in the
TMS setup comparison: Surface Integral Equation (SIE) based
MoM (SIE/MoM) carried out by Cvetković, Poljak and
Haueisen [7], [10]; FEM with cubical elements carried out by
Laakso and Hirata [14], BEM and Hybrid FEM/BEM carried
out by Bottauscio, Zilberti and Chiampi [35], [36], and FEM
with rectilinear elements using Sim4Life software carried out
by Neufeld and Reboux. Interested reader can found specifics
on the particular formulation type and the related solution
method in the above references.

At low frequencies the electric and magnetic fields are
decoupled and it is possible to treat the exposure to these
fields separately. Another property of LF exposures is that
for most tissues the conduction currents are at least one
order of magnitude higher than the displacement currents
and, therefore, in most scenarios, only tissue conductivity is
considered, while the permittivity can be neglected.

III. NUMERICAL RESULTS

A. Fundamental Discussion

First the intercomparison of various methods with the ana-
lytical solution is carried out for the case of a homogeneous
sphere exposed to infinitesimal magnetic dipole. The goal
was to evaluate the induced field strength around the surface
for localized or non-uniform exposure. A dielectric sphere of
radius 8 cm centered at the origin is exposed to a magnetic
dipole source located 3 cm above the sphere with dipole
moment oriented in z-direction.

The analytical approach to analyze a multi-layer sphere with
arbitrary isotropic material parameters (ε and σ) exposed to
magnetic and/or electric dipoles based on Mie theory provides
a full-wave solution and works at any frequency (previously
confirmed at both 50 Hz and in the GHz range [37]).

The set of points is selected along three lines (x-, y-,
and z-axes) and two surfaces (2 mm and 2 cm below the
sphere surface), respectively. Figure 1 shows the electric and
magnetic fields along three axes for the analytical case, nu-
merical solution obtained using quasistatic FEM with cubical
elements and full-wave SIE/MoM solution. As evident from
Figure 1, analytical and numerical results computed by FEM

are in excellent agreement, while SIE/MoM results do not
match satisfactorily. These discrepancies particularly occur for
points located close to the sphere surface where rather sharp
peaks are observed, and are thus a serious drawback for the
integral equation based solution due to a strong singularity
of the kernel. Further SIE/MoM calculations using various
mesh resolutions also showed a more pronounced effect near
the surface. Hence, the results by current implementation of
SIE/MoM at this LF scenario should not be taken without
scrutiny. It is a well known fact that the electric field integral
equation, on which SIE/MoM is based, suffers from a low-
frequency breakdown problem [38]. In order to avoid this, and
improve the results, it is necessary to use the so called loop-
tree decomposition of basis functions followed by a frequency
normalization of the matrix system. More details could be
found in [38].

Figure 2 shows comparisons between the induced electric
field over 2 spherical surfaces obtained analytically, and nu-
merically by FEM. Again, a very good agreement is shown,
while the largest difference between FEM and the analytical
solution, seems to be at points with peak field values.

B. Some specifics related to implemented Hybrid FEM/BEM

The set of results, obtained using BEM code with triangular
surface elements and the FEM/BEM code featuring voxel
elements are based on two different formulations: the complete
formulation (where E and B fields are both unknowns) and the
approximate one (where only E is a problem unknown). The
latter is valid if the reaction of the induced currents on the
magnetic field can be disregarded.

The solutions with the FEM/BEM voxel model are obtained
by creating a voxel model of the object (sphere or brain)
having approximately the same number of volume tetrahe-
dral elements reported in Table I. As voxel models are a
structured mesh (used for highly anatomical human models),
the resolution can be low in some regions, without loss of
shape adaptivity, but with insufficient resolution of the field
inhomogeneity. This fact can explain some discrepancies with
BEM results. Simulations assuming voxels of smaller size (1
mm and 2 mm) have been also carried out.

C. Some specifics related to simulation setup for the FEM
with rectilinear elements (Sim4Life) study

Regarding the implementation of models in FEM code, the
brain geometries were imported as .stl (Standard Tessellation
Language) format in Sim4Life. The sphere is created directly
using the embedded CAD modeling tool. Its triangulated
surface was edited such that no edge is larger than 4 mm.

The coil models do not account for the separation between
the coil windings, so all the turns collapse into a single wire.
The current source is thus modeled with one turn. The current
intensity (peak amplitude, not RMS) is determined from the
[10] as the number of turns times the coil current. For both
the 8-Coil and Butterfly Coil, the currents in the two coil parts
flow in opposite directions.
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Fig. 1. Distribution of electric field (top) and magnetic field (bottom) along three axes. Comparison between analytical solution (analytical), FEM with cubical
elements (num-FEM) and SIE/MoM (SIE-MoM).

Fig. 2. Maps of induced electric field over a spherical surface a) 2 cm below, b) 2 mm below, respectively. Comparison between analytical solution and
numerical solution using FEM with cubical elements (side length of 0.5 mm).

TABLE II
CRITERIA OF RELEVANCE TO THE SUITABILITY OF USING A

MAGNETO-QUASISTATIC APPROXIMATION

Sphere Homogeneous brain
Criteria σ/ωε 13.5 13.5

Criteria ω2εµd2 ∼ 1.7 · 10−5 ∼ 2.3 · 10−5

Criteria ωσµd2 ∼ 0.00023 ∼ 0.0003

As evidenced from Table II, for both the sphere and the
realistic brain model, the ratio σ/ωε is 13.5, which is signifi-
cantly larger than one, thus indicating that the ohmic-current-
dominated flavor of the magneto-quasi-static equation can be
used.

The tolerance for the relative residuals of the magneto-
quasi-static (convergence criterion) solver was set to 10−12.
Selected results show peak amplitude distributions of the
induced electric fields and magnetic flux densities.

D. Spherical model

The first set of results is related to a TMS coil positioned
1 cm over homogeneous spherical model. The comparison
is given for the induced electric field and magnetic flux
density maps, respectively, on a cross-section of the sphere
model, as shown in Figure 3. The results have been obtained
using SIE/MoM, FEM with cubical elements, complete and
approximate BEM, complete and approximate FEM/BEM, and
FEM codes, respectively. Also, Table III gives a comparison
of maximum induced electric field (V/m) and magnetic flux
density (T) obtained using different numerical models for the
case of circular coil and spherical geometry.

The results for the induced electric field obtained using
different methods agree relatively satisfactorily as evidenced
from the cross-sectional maps. Results for the magnetic flux
density in the same cross-sectional plane are a plausible match,
as well. Still, there are some numerical artifacts evident in the
results using SIE/MoM code, which could be attributed to the
low number of field points in the interpolation scheme.

E. Simplified brain geometry

The following comparison between the same numerical
methods has been performed on a simplified brain model.
Figure 4 shows the distribution of the induced electric field
at the brain surface due to three typical TMS coils: circular,
figure-of-8 and butterfly, obtained using SIE/MoM and FEM.
On the other hand, Figure 5 shows distribution of the induced
electric field on the coronal cross-section of the brain model.
The results have been obtained using SIE/MoM, FEM with
cubical elements, complete and approximate BEM, complete
and approximate FEM/BEM, and FEM codes, respectively.
Table IV gives a comparison of maximum induced electric
field (V/m) obtained using different numerical models for the
case of circular coil.

The comparison from Figure 5 demonstrates that the results
computed using the quasistatic solver and the FEM method
and the full wave analysis carried out via SIE/MoM, respec-
tively, do not exactly match. The electric field distribution over
the cross-section is similar, but the maximum values obtained
by different methods differ somewhat. Finally, some initial
investigation related to the numerical errors due to discretiza-
tion and convergence were investigated using structured mesh
FEM code (voxels) by varying the Cartesian grid step, the
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TABLE III
COMPARISON OF MAXIMUM INDUCED ELECTRIC FIELD (V/M) AND MAGNETIC FLUX DENSITY (T) OBTAINED USING DIFFERENT NUMERICAL MODELS

FOR THE CASE OF CIRCULAR COIL AND SPHERICAL GEOMETRY. BEM COMPUTATIONS (BEM COMPLETE/APPROXIMATE), HYBRID FEM/BEM
COMPUTATIONS (FEM/BEM COMPLETE/APPROXIMATE), AND SIE-MOM COMPUTATIONS, RESPECTIVELY.

Surface, conforming Voxels, nonconforming Surface, conforming
Triangles BEM complete BEM approximate Voxels FEM/BEM complete FEM/BEM approximate Triangles SIE

E [V/m] 244 83,4 88,1 854 (10mm) 69,3 55,2 244 98,8
494 90,0 89,6 1718 (8mm) 70,1 70,1 494 105,6
734 90,5 91,7 4105 (6mm) 92,2 92,2 734 105,7
976 92,0 92,4 5347 (5,5mm) 84,8 84,8 976 108,3

B [T] 244 0,505 0,504 854 (10mm) 0,501 0,501 244 0,581
494 0,498 0,495 1718 (8mm) 0,488 0,488 494 0,492
734 0,496 0,495 4105 (6mm) 0,496 0,496 734 0,733
976 0,494 0,495 5347 (5,5mm) 0,501 0,501 976 0,561

TABLE IV
COMPARISON OF MAXIMUM INDUCED ELECTRIC FIELD USING VARIOUS

NUMERICAL MODELS FOR THE CASE OF BRAIN GEOMETRY AND
CIRCULAR TMS COIL

Triangles SIE Triangles BEM, complete
360 115,9 696 117,1
696 122,8 1870 122,2
1224 134,5 Voxels FEM/BEM, approx.

Triangles BEM, approx. 5762 (6mm) 93,6
696 108,6 FEM/BEM, complete
1870 115,6 5762 (6mm) 93,6

triangulated mesh density of the brain surface, and the residual
tolerance of the iterative solver. Results are shown in Figure 6
for the strictest criteria and finest resolutions, for the geometry
of the brain.

A comparison of results computed for different grid reso-
lutions indicates good convergence for the field values inside
the brain (or the sphere). A thorough convergence analysis has
not yet been performed. The maximum field values are located
on the surface of the objects and thus converge more slowly.

IV. DISCUSSION

The intercomparison of numerical results by involved re-
search groups obtained a reasonable agreement in the induced
electric fields.

Comparison with analytical solution for a sphere exposed to
dipole field showed excellent agreement with results obtained
using FEM with cubical elements while SIE/MoM results
do not match satisfactorily. Additional SIE/MoM calculations
using various mesh resolutions showed this effect to be more
pronounced near model surface.

The results for a sphere and a simplified brain model ex-
posed to circular and butterfly coils obtained using SIE/MoM,
BEM, and FEM codes, respectively, agree relatively satis-
factorily as evidenced from the cross-sectional maps of the
induced electric field. Results for the magnetic flux density in
the same cross-sectional plane are a plausible match, as well.
Still, there are some numerical artifacts evident in the results
using SIE/MoM code. The electric field distribution over the
cross-section is similar, but the maximum values obtained by
different methods differ somewhat.

Initial investigation using FEM code related to the numerical
errors due to different grid resolutions showed good conver-
gence for the field values inside the brain and the sphere.

When comparing different numerical results in literature, the
observed differences can be related to factors such as, human
model size and detailedness, posture, organ size and shape,
dielectric properties, the exposure source model, boundary
conditions, and numerical factors (accuracy of the numerical
method, discretization resolution, mesh quality, convergence).
While all of these are important factors when talking about
comparing different studies, most of these should not be
relevant for intercomparisons with clearly defined setups as
all should use the same geometry, same properties, etc. In the
presented intercomparison, the observed differences are partly
related to the different numerical techniques, but unfortunately
also to insufficiently well defined setup specification – the
exact source positioning (angles) relative to the brain model
and the evaluation planes and points were not specified, mak-
ing quantitative comparison impossible. Hence, it is suggested
that in future work, much of the differences resulting from
comparison at different planes and setups are to be overcome
by giving specific set of evaluation trajectories and also
including precise source information, in order to allow more
quantitative comparison the type of approximation introduced
by the different methods.

When comparing the methods, their performance (including
scaling with increasing resolution), accuracy, and strengths
(e.g., ability of dealing with inhomogeneity) must be in-
vestigated, while considering the interdependence of these
factors. For example, methods based on voxels are more
likely to introduce stair-casing artifacts, but cannot directly
be compared with methods featuring a similar number of
conformal elements, as the structuredness of their discretiza-
tion facilitates scaling to higher resolutions, thus reducing
discretization errors. In general, a good comparison should
require the methods to first perform a convergence study to
determine the method-specific requirements to get a converged
solution. Then the solution quality and computational efforts
can be compared.

Surface plots should be interpreted and compared carefully,
due to the combination of interpolation to the surface, field
discontinuity at interfaces, and surface element orientation
discontinuities at edges. The cross-section and line plots are
more reliable to get quantitative information.
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Fig. 3. Maps of the induced electric field (left column) and the magnetic
flux density (right column) for conformal and stair-cased spherical geometry,
respectively, due to circular coil. Results obtained by: a) SIE/MoM with 976
triangles, b) FEM with cubical elements with a side length of 0.5 mm, c)
approximate BEM, and d) complete BEM using 976 triangles, respectively,
e) approximate FEM/BEM, and f) complete FEM/BEM using 5394 voxel
elements (5.5 mm), respectively, and g) FEM using grid resolution of 0.5
mm.

A. Limitations

This study featured comparison on only very simple prob-
lems (homogeneous, isotropic, single, mostly smooth surface,
without internal structure or inclusions), although some of the
employed approaches can perform calculation on very detailed
geometries at high resolution (already within this study, in the
case of the FEM method using cubical elements, the finest
spherical mesh has been discretized using 0.5 mm cubical
elements, equivalent to 7.4 million degrees of freedom). On
the other hand, calculations using the SIE/MoM code could
be undertaken only on a coarsely discretized geometry. In
addition, using the SIE/MoM, the field values at intermediate
points are calculated using an interpolation scheme. Low
number of elements and field determined at restricted number
of points will result in some numerical artifacts particularly
evident on the cross-sectional results for the magnetic flux
density. This could be overcome by determining the field at
higher resolution.

As previously highlighted, the employed conformal brain
geometry is still an extremely simplified model (mainly for
the purpose of comparison). The surface is radically smoothed
(missing folding structures of gyri and sulci) and the model
consists of a single, homogeneous structure. Although it is
more realistic than the sphere, it lacks the detailed cortical
structures and inhomogeneity (grey/white matter, ventricles,
etc.). In order to overcome this limitation, the future work
should therefore include comparisons on detailed anatomically
correct head model, featuring complex material maps and
shapes.

Nonetheless, regarding the use of the homogeneous model
it is important to emphasize that it is reasonable to start
comparing different numerical techniques using simple models
thus opening the subject. In any case one has to deal with
discrepancies in numerical results due to complexity of the
geometry and material (inhomogeneity). It was shown in some
previous papers [39] that computational artifacts are caused at
the air-tissue boundary. It was also shown in some previous
papers that integral equation techniques are more sensitive to
irregularities in geometry than inhomogenities, e.g. [6], [22].

Also, since there is only a qualitative comparison between
the methods, any future effort should include the quantitative
comparison between the different methods (either in terms
of accuracy or in terms of computational effort) as well as
detailed convergence study.

V. CONCLUDING REMARKS

There are several aspects to be improved in the human
dosimetry for low-frequency field exposure, as suggested in
the Research Agenda by IEEE ICES [11]. One of the specific
issues is the stair-casing error arising from the commonly-used
voxel anatomic models, which could be removed by using
conformal methods, such as BEM or FEM.

The present paper reviewed and presented intercomparison
on the use of various numerical techniques applied to confor-
mal models in LF dosimetry. Unlike previous intercomparisons
[12], [13], non-uniform exposure was considered and several
computational methods were used. We particularly discussed
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Fig. 4. Maps of the induced electric field over the brain surface. Top to bottom: circular coil, Figure-8 coil, and butterfly coil. Results obtained by SIE/MoM
for conformal surface comprising of 1224 triangles (left), and FEM (right) using grid resolution of 0.5 mm.

Fig. 5. Maps of the induced electric field for conformal and stair-cased
brain geometry, respectively, due to circular coil. Results obtained by: a)
SIE/MoM with 976, b) FEM with cubical elements, c) approximate BEM,
and d) complete BEM using 1870 triangles, respectively, e) approximate
FEM/BEM using 155546 voxels (2 mm), f) complete FEM/BEM using 5394
voxel elements (5.5 mm), and g) FEM using grid resolution of 0.5 mm

the differences attributable to the implementation of methods
for non-uniform exposure. The implementation of MoM, FEM,
BEM, hybrid FEM/BEM has been investigated on the TMS
setup, for the geometry of a sphere and of a conformal
simplified geometry of a homogeneous, isotropic brain. Illus-
trative computational examples related to the assessment of

Fig. 6. Induced electric field (peak) at different grid resolutions for the circular
coil, at the centered sagittal cross-section. Top to bottom: 2 mm, 1 mm, 0.5
mm. Results obtained using structured mesh FEM (voxels).

the induced field in the brain are given in the paper.

APPENDIX A
ON THE APPLICATIONS OF FDTD AT VERY LOW

FREQUENCIES

The suitability of applying the FDTD technique to dosime-
try at very low frequencies has been examined by E. Neufeld
from ETH Zurich, Switzerland, C. Warren and A. Giannopou-
los from University of Edinburgh, UK and F. Costen from
Manchester University, UK with regard to the reference TMS
setups.

Researchers from University of Edinburgh have access to
a full body model (AustinMan – http://bit.ly/AustinMan) [40]
which can be used in their FDTD simulation software (gprMax
– http://www.gprmax.com) [41]. The brain grey and white
matter of the brain have been extracted from the full body
model, which is meshed with 2x2x2mm cells. As an initial
step, a magnetic dipole can be used to simulate the coil.

However, the main problem in using the FDTD method for
this scenario remains the low excitation frequency. Using a
2 mm spatial resolution coupled with a 2.44 kHz excitation,
results in an unfeasibly large number of iterations, and hence
simulation time, e.g. for 1 ms duration simulation, ∼260x106

iterations (2.5 months with moderate parallelization, although
this is very implementation dependent) are required. Therefore,
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without moving to higher excitation frequencies it is not really
feasible to run a FDTD simulation.

As far as the FDTD simulations are concerned, for LF
dosimetry it can be stated that at such low frequencies (kHz
frequency range with geometry in 10−1 m range) FDTD is
not suitable. This is because the maximal stable time step
relative to the EM time period is proportional to the ratio
of grid step to wavelength. The spatial discretization required
for FDTD is usually around 1/10 of the wavelength at the
frequency of interest, with an additional need to resolve the
skin depth, while in LF simulations at very low frequencies
the resolution required to resolve the geometry is much finer
than that, which results in an extremely large number of time
steps for a simulation. Even when applying various established
numerical techniques or algorithms, such as a wide variety of
implicit schemes, subgridding and subcell methods, frequency
scaling or innovative source models, FDTD simulations would
require unfeasibly long durations. For example, a simulation
of the model setup with a time window of 300 µs for ∆x =
1 cm, which is the very coarse sampling of the object, would
need to run more than 107 time steps.
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