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ABSTRACT 23 

The genomes of human herpesviruses 6A and 6B (HHV-6A and HHV-6B) have the 24 

capacity to integrate into telomeres, the essential capping structures of chromosomes that play 25 

roles in cancer and ageing. About 1% of people worldwide are carriers of chromosomally 26 

integrated HHV-6 (ciHHV-6), which is inherited as a genetic trait. Understanding the 27 

consequences of integration for the evolution of the viral genome, for the telomere and for the 28 

risk of disease associated with carrier status is hampered by a lack of knowledge about 29 

ciHHV-6 genomes. Here, we report an analysis of 28 ciHHV-6 genomes and show that they 30 

are significantly divergent from the few modern non-integrated HHV-6 strains for which 31 

complete sequences are currently available. In addition ciHHV-6B genomes in Europeans are 32 

more closely related to each other than to ciHHV-6B genomes from China and Pakistan, 33 

suggesting regional variation of the trait. Remarkably, at least one group of European ciHHV-34 

6B carriers has inherited the same ciHHV-6B genome, integrated in the same telomere allele, 35 

from a common ancestor estimated to have existed 24,500 ±10,600 years ago. Despite the 36 

antiquity of some, and possibly most, germline HHV-6 integrations, the majority of ciHHV-37 

6B (95%) and ciHHV-6A (72%) genomes contain a full set of intact viral genes and therefore 38 

appear to have the capacity for viral gene expression and full reactivation. 39 

 40 

IMPORTANCE 41 

Inheritance of HHV-6A or HHV-6B integrated into a telomere occurs at a low frequency in 42 

most populations studied to date but its characteristics are poorly understood. However, 43 

stratification of ciHHV-6 carriers in modern populations due to common ancestry is an 44 

important consideration for genome-wide association studies that aim to identify disease risks 45 

for these people. Here we present full sequence analysis of 28 ciHHV-6 genomes and show 46 
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that ciHHV-6B in many carriers with European ancestry most likely originated from ancient 47 

integration events in a small number of ancestors. We propose that ancient ancestral origins 48 

for ciHHV-6A and ciHHV-6B are also likely in other populations. Moreover, despite their 49 

antiquity, all of the ciHHV-6 genomes appear to retain the capacity to express viral genes, and 50 

most are predicted to be capable of full viral reactivation. These discoveries represent 51 

potentially important considerations in immune-compromised patients, in particular in organ 52 

transplantation and in stem cell therapy.   53 

54 
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INTRODUCTION 55 

Given the complex roles that human telomeres play in cancer initiation and 56 

progression and in ageing (1, 2), it is remarkable that the genomes of human herpesviruses 6A 57 

and 6B (HHV6-A and HHV-6B; species Human betaherpesvirus 6A and Human 58 

betaherpesvirus 6B) can integrate and persist within them (3). Human telomeres comprise 59 

double-stranded DNA primarily composed of variable lengths of (TTAGGG)n repeats and 60 

terminated by a 50-300 nucleotide (nt) 3’ single-strand extension of the G-rich strand. 61 

Telomeres, bound to a six-protein complex called shelterin, cap the ends of chromosomes and 62 

prevent inappropriate double-strand break repair. They also provide a solution to the ‘end 63 

replication problem’ via the enzyme telomerase (4-6). 64 

The double-stranded DNA genomes of HHV-6A and HHV-6B consist of a long 65 

unique region (U; 143-145 kb) encoding many functional open reading frames (ORFs U2-66 

U100), flanked by identical left and right direct repeats (DRL and DRR; 8-10 kb) encoding 67 

two ORFs (DR1 and DR6). Each DR also contains near its ends two variable regions of 68 

telomere-like repeat arrays (T1 and T2) (7, 8), terminated by the viral genome packaging 69 

sequences (PAC1 and PAC2, respectively) (9, 10). Telomeric integration by HHV-6A or 70 

HHV-6B (yielding chromosomally integrated HHV-6, ciHHV-6) results in loss of the 71 

terminal PAC2 sequence at the fusion point between the telomere and DRR-T2 (11) and loss 72 

of the DRL-PAC1 sequence at the other end of the integrated viral genome when the DRL-T1 73 

degenerate telomere-like repeat region becomes part of a newly formed telomere (Figure 1A, 74 

(12)). 75 

Once the HHV-6 genome has integrated in the germline it can be passed from parent 76 

to child, behaving essentially as a Mendelian trait (inherited ciHHV-6) (13-16). The telomere 77 

carrying the ciHHV-6 genome shows instability in somatic cells, which can result in the 78 
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partial or complete release of the viral genome as circular DNA (12, 17, 18). This could 79 

represent the first step towards viral reactivation, and in this respect telomeric integration may 80 

be a form of HHV-6 latency. To date, reactivation of ciHHV-6 has been demonstrated in vivo 81 

in two settings: first, in a child with X-linked severe combined immunodeficiency who was 82 

also a carrier of inherited ciHHV-6A (19); and second, upon transplacental transmission from 83 

two ciHHV-6 carrier mothers to their non-carrier babies (20). Recently, it has been shown that 84 

ciHHV-6 carriers bear an increased risk of angina pectoris (21), although it is not known 85 

whether this arises from viral reactivation, a deleterious effect on the telomere carrying the 86 

viral genome, or some other mechanism. 87 

A small proportion of people worldwide are carriers of inherited ciHHV-6A or -6B, 88 

but very little is known about the HHV-6 genomes that they harbor, although this may 89 

influence any associated disease risk. To investigate ciHHV-6 genomic diversity and 90 

evolution, the frequency of independent germline integrations, and the potential functionality 91 

of the integrated viral genomes, we analysed 28 ciHHV-6 genomes. We discovered that 92 

ciHHV-6 genomes are more similar to one another than to the few sequenced reference HHV-93 

6 genomes from non-integrated viruses. This is particularly marked among the ciHHV-6B 94 

genomes from Europeans. We also found that a subset of ciHHV-6B carriers from England, 95 

Orkney and Sardinia are most likely descendents from a single ancient ancestor. Despite the 96 

apparent antiquity of some, possibly most, ciHHV-6 genomes, we concluded that the majority 97 

contain a full set of intact HHV-6 genes and therefore in principle retain the capacity to 98 

generate viable viruses. 99 

MATERIAL AND METHODS 100 

Population screening to identify ciHHV-6 carriers. ciHHV-6 carriers were identified by 101 

screening a variety of DNA sample collections of individuals from across the world, using 102 
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PCR assays to detect either U11, U18, DR5 (HHV-6A) or DR7 (HHV-6B) (12), or U7, DR1, 103 

DR6A or DR6B ((22) and manuscript in preparation). DR5, DR6A, DR6B and DR7 104 

correspond to ORFs in the original annotation of the HHV-6A genome (GenBank accession 105 

X83413 (23)), but DR5 is in a non-coding region of the genome, and DR6A, DR6B and DR7 106 

are in exons of DR6 in the reannotation used (RefSeq accession NC_001664). From the 107 

populations screened, 58 samples with ciHHV-6 among 3875 individuals were identified 108 

(Table 1). The number of individuals screened in most populations was small and therefore 109 

cannot be used to give an accurate estimate of ciHHV-6A or -B frequencies, although a larger 110 

number of ciHHV-6B-positive samples was identified overall. The frequency of ciHHV-6B 111 

carriers in Orkney (1.9%), a collection of islands off the north coast of Scotland, is higher 112 

than that reported from England (24). Screening of the Generation Scotland: Scottish Family 113 

Health Study (GS:SFHS) will be described elsewhere (RFJ, manuscript in preparation). 114 

Ethical approval for the GS:SFHS cohort was obtained from the Tayside Committee on 115 

Medical Research Ethics (on behalf of the National Health Service). 116 

Generation of overlapping amplicons and sequencing. The 32 primer pairs used to 117 

generate overlapping amplicons from ciHHV-6A genomes, and the PCR conditions 118 

employed, were reported previously (18). The primer pairs used to amplify ciHHV-6B 119 

genomes were based on conserved sequences from the HHV-6B non-integrated HST and Z29 120 

strains (Genbank accessions AB021506.1 and AF157706 respectively; (9, 25). The primer 121 

sequences are shown in Supplementary Table S1. The amplicons from each sample were 122 

pooled in equimolar proportions and then sequenced by using the Illumina MiSeq or 123 

IonTorrent (Life Technologies) next-generation sequencing platforms, as described 124 

previously (18). Some sequences were verified by using Sanger dideoxy chain termination 125 

sequencing on PCR-amplified products. 126 
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Assembly and analysis of DNA sequence data. DNA sequence data were processed 127 

essentially as described previously (18), except that SPAdes v. 3.5.0 (26) was used for de 128 

novo assembly into contigs, ABACAS v. 1.3.1 (27) was used to order contigs, and Gapfiller 129 

v. 1-11 (28) was used to fill gaps between contigs. The integrity of the sequences was verified 130 

by aligning them against the read data using BWA v. 0.6.2-r126
 
and visualizing the 131 

alignments as BAM files using Tablet v. 1.13.08.05. Nucleotide substitutions, indels and 132 

repeat regions were also verified by manual analysis using IGV v. 2.3 133 

(http://software.broadinstitute.org/software/igv/home). 134 

Alignments of the seven ciHHV-6A genomes with the three published HHV-6A 135 

genomes from non-integrated strains U1102, GS and AJ (23, 29-31), and alignment of the 21 136 

ciHHV-6B genomes with the two previously published HHV-6B genomes from non-137 

integrated viruses HST and Z29 (9, 25), were carried out by using Gap4 (32). Variation across 138 

the ciHHV-6 genomes was studied by a combination of manual inspection and automated 139 

analysis by using an in-house Perl script. The script performed a sliding window count of 140 

substitutions using the aligned Gap4 files, reporting the count according to the mid-point of 141 

the window. For analysis across the genome, the window size was 1 kb and the step size was 142 

1 nucleotide. For analysis of individual ORFs, a file with a list of annotated positions was 143 

generated. 144 

Phylogenetic analyses were carried out by using two different methods. Maximum 145 

likelihood trees were built by using the maximum composite likelihood model (MEGA6.0), 146 

and bootstrap values were obtained with 2000 replications. Model selection was carried out 147 

for HHV-6A and HHV-6B separately, and the substitution model with the lowest Bayesian 148 

information criterion was selected (the Tamura 3-parameter model (33) for HHV-6B and the 149 

Hasegawa-Kishino-Yano model for HHV-6A). Median-joining networks were built by using 150 

Network 5.0 (www.fluxus-engineering.com) with default parameters. Sites with missing data 151 
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were excluded from all phylogenetic analyses for both HHV-6A and HHV-6B. The number of 152 

positions analysed for HHV-6B was 130412, and that for HHV-6A was 117900. The time to 153 

the most recent common ancestor (TMRCA) was calculated by using rho as implemented in 154 

Network 5.0. Rho values were transformed into time values by using the accepted mutation 155 

rate for the human genome, 0.5E-09 substitutions per bp per year (34), scaled to the number 156 

of sites analysed. 157 

Comparison of tandem repeat regions. The copy numbers of repeat units in the DR-R, R0, 158 

R1, R2, R3 and R4 tandem repeat regions (9, 25) were determined by manual inspection of 159 

the individual BAM files generated for each sequenced ciHHV-6 genome, with verification 160 

by checking the sequence alignments generated using Gap4. The numbers of copies of 161 

TTAGGG in each DRL-T2 region was determined from PCR amplicons generated using the 162 

DR8F and UDL6R primers (Supplementary Table S1). Each amplicon was purified using a 163 

Zymoclean™ gel DNA recovery kit, and then sequenced by using the Sanger dideoxy chain 164 

termination method. The sequence data were analysed by using the MacVector software. 165 

Variation at the (CA)n repeat array located immediately adjacent to T1 in HHV-6B was 166 

investigated in DRL specifically by reamplification of single telomere length analysis (STELA 167 

(35)) products, using the primers DR1R and TJ1F. The short amplicons were purified and 168 

sequenced as above and compared with the same sequence in the reference HST and Z29 169 

genomes.  170 

Analysis of DRR-T1 region by TVR-PCR 171 

The DRR-T1 regions from ciHHV-6B positive samples were amplified by using the primers 172 

U100Fw2 and DR1R. Telomere variant repeat mapping by PCR (TVR-PCR) was conducted 173 

on each of these amplicons essentially as described before (36, 37) but using an end-labeled 174 

primer, HHV-6B-UDR5F and the unlabeled TAG-TELWRev. The TELWRev primer anneals 175 
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to TTAGGG repeats, allowing amplification of products that differ in length depending on the 176 

location of the TTAGGG repeat with respect to the flanking primer (HHV-6B-UDR5F). The 177 

labeled amplicons from the T1 region were separated by size in a 6% denaturing 178 

polyacrylamide gel.  179 

Analysis of HHV-6 ORFs. The frequency of nucleotide substitutions in each ORF was 180 

determined by a combination of manual inspection and automated analysis using a Perl script, 181 

as described above. The DNA sequences of each of the 86 HHV-6B ORFs from the 21 182 

ciHHV-6B genomes were aligned to identify and compare the number of synonymous and 183 

non-synonymous codon changes within and among genes. In addition the predicted amino 184 

acid sequences for each gene in the 21 ciHHV-6B genomes were aligned to confirm the 185 

number of non-synonymous changes. 186 

Characterisation of chromosome-ciHHV-6 junctions. The junctions between the 187 

chromosome and the ciHHV-6 genome were isolated by PCR amplification using various 188 

primers that anneal to subterminal regions of a variety of human chromosomes in 189 

combination with the DR8F primer. The amplicons were purified as described above and 190 

sequenced by using the Sanger method with a variety of primers (Supplementary Table S1). 191 

The number of repeats present in each junction fragment and the interspersion of TTAGGG 192 

repeats with degenerate repeats was determined by manual inspection using the MacVector 193 

software. 194 

Accession numbers.  195 

The finished sequences have been deposited in GenBank under accession numbers 196 

KY316030-KY316056 (Table 2). The LEI_1501 ciHHV-6A genome reported previously has 197 

the accession number KT355575 (doi:  10.1038/srep22730)(18). 198 

 199 
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RESULTS 200 

Selection of ciHHV-6 carriers and sequence analysis of viral genomes. To investigate 201 

sequence variation among ciHHV-6 genomes, 28 samples were selected for analysis: seven 202 

with ciHHV-6A (including LEI-1501 (18)) and 21 with ciHHV-6B (Table 2). The selected 203 

samples were identified in the various populations screened (Table 1), and included additional 204 

individuals from the London area (16), Scotland and the north of England (22), the Leicester 205 

area of England (18) and the GS:SFHS (RJF, manuscript in preparation). The chromosomal 206 

location of ciHHV-6 genomes, determined by fluorescent in situ hybridisation (FISH), was 207 

available for some samples (16, 18). For other samples the junction between the viral DR8 208 

sequence (a non-coding region near one end of DR) and the chromosome subtelomeric region 209 

was isolated by PCR and sequenced (discussed below). Integration of each ciHHV-6 genome 210 

was confirmed by detection of a telomere at DRL-T1 using STELA (12), or by detection of at 211 

least one copy per cell using droplet digital PCR (22, 38). 212 

Each viral genome from ciHHV-6 carriers was sequenced from pooled PCR 213 

amplicons (12, 18). Full sets of HHV-6 amplicons were readily generated (Fig. 1 and 214 

Supplementary Table S1), demonstrating the robustness of this approach for enriching HHV-215 

6 sequences from ciHHV-6 carriers. The HHV-6 amplicons generated from each carrier had 216 

the expected sizes, with variation only in amplicons encompassing repetitive regions (e.g. the 217 

DRR-T1 region of degenerate telomere-like repeats). This observation indicated that all of the 218 

ciHHV-6 genomes are essentially intact, with the exception of the terminal DRR-PAC2 and 219 

DRL-PAC1 sequences lost during integration (Fig. 1A) (11, 12). 220 

The ciHHV-6 genome sequences were determined by short-read next-generation 221 

sequencing (NGS), with some verification by the Sanger method. De novo assemblies of each 222 

genome were generated with few gaps (Fig. 1). The finished sequences were annotated and 223 
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deposited in GenBank under accession numbers KY316030-KY316056 (Table 2). The 224 

ciHHV-6A genome reported previously by us was included in these analyses (LEI-1501, 225 

KT355575; (18)). 226 

Sequence similarity is greater among ciHHV-6 genomes than to non-integrated HHV-6 227 

genomes. Nucleotide substitution frequencies were analysed across the DR and U regions of 228 

the HHV-6B genome (excluding the tandem repeat regions R-DR, R0, R1, R2, R3 and R4, 229 

see Fig. 1, (9, 25)) for each sequenced ciHHV-6B genome in comparison with the two 230 

available HHV-6B reference genomes from non-integrated strains (HST from Japan, 231 

GenBank accession AB021506, (25) and Z29 from Democratic Republic of Congo 232 

(D.R.Congo), GenBank accession AF157706, (9)). The ciHHV-6B genomes show different 233 

patterns of variation from the reference genomes, with greater divergence from strain Z29 in 234 

the distal portion of the U region (120-150 kb) and across DR (1-8 kb), reaching a maximum 235 

of 35 substitutions per kb in these regions (Fig. 2A). Overall, there is less divergence from 236 

strain HST, although the frequency of substitutions is higher in part of the U region (45-64 237 

kb) compared to strain Z29. To assess sequence variation among the ciHHV-6B genomes, 238 

comparisons were made using the genome in HAPMAP NA10863 (CEPH1375.02) as a 239 

reference. The substitution frequency is considerably less across the viral genomes for 18/20 240 

of the ciHHV-6B genomes from individuals with European ancestry, indicating greater 241 

similarity among them. Notably, the other two ciHHV-6B genomes that showed a higher 242 

substitution frequency in this comparison were in individuals from Pakistan and China, 243 

HGDP00092 and HGDP00813, respectively (Fig. 2A). 244 

Nucleotide substitution frequencies were also analysed across each of the seven 245 

ciHHV-6A genomes in comparison with three non-integrated HHV-6A reference genomes 246 

(strain U1102 from Uganda (39) (accession X83413, (23)); strain GS from the USA 247 

(accessions KC465951.1 (GS1) and KJ123690.1 (GS2) (29, 30)) and strain AJ from the 248 
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Gambia (accession KP257584.1 (31)). This analysis shows that the ciHHV-6A genomes have 249 

similar levels of divergence from each reference genome from non-integrated HHV-6A and 250 

that divergence is highest across DR and the distal part of U (120-149 kb) (Fig. 2B). 251 

Comparisons with the ciHHV-6A LEI-1501 genome (18) as a reference, also showed greater 252 

similarity among the ciHHV-6A genomes although the substitution frequencies are higher 253 

than among European ciHHV-6B genomes, indicating greater diversity among the ciHHV-6A 254 

genomes sequenced here (40). Notably the ciHHV-6A in the Japanese individual (HAPMAP 255 

NA18999) shows greater divergence from the other ciHHV-6A samples of European origin. 256 

 In summary, comparisons of nucleotide substitution frequencies show that the viral 257 

genomes in ciHHV-6B carriers are more similar to each other than they are to reference 258 

genomes derived from clinical isolates of non-integrated HHV-6B from Japan (HST) and 259 

D.R.Congo (Z29). The ciHHV-6A genomes are also more similar to each other than they are 260 

to the three HHV-6A reference genomes, although this is less pronounced than among the 261 

ciHHV-6B genomes.  262 

Phylogenetic analysis of ciHHV-6 and non-integrated HHV-6 genomes. Consistent with 263 

the results shown in Fig. 2, phylogenetic analysis of the U region from 21 ciHHV-6B and the 264 

HST and Z29 reference genomes (excluding DR, the large repeat regions and missing data 265 

shown in Fig. 1) shows that the ciHHV-6B genomes in HGDP00813 from China and 266 

HGDP00092 from Pakistan are outliers to the 19 ciHHV-6B genomes from individuals of 267 

European descent (Fig. 3A). A phylogenetic network of the ciHHV-6B genomes with 268 

European ancestry shows three clusters of 8, 3 and 5 closely related ciHHV-6B genomes 269 

(groups 1, 2 and 3, respectively; Fig. 3B) and three singletons (ORCA1340, COR264 and 1-270 

ciHHV-6B). Phylogenetic analysis of DR alone shows that, with the exception of COR264, 271 

the European ciHHV-6B samples show greater similarity to the HST (Japan) reference 272 

genome than to the Z29 (D.R.Congo) reference genome. However, the DRs in the two non-273 
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European ciHHV-6B samples HGDP000813 (China) and HGDP00092 (Pakistan) do not 274 

cluster closely with those in the European ciHHV-6B samples again indicating these ciHHV-275 

6B strains are distinct (Supplementary Fig. S1 and Fig. 3A).  276 

To explore variation only within HHV-6B genes, the frequency of substitutions in 277 

ORFs of each of the 21 ciHHV-6B genomes was compared with that in the HST and Z29 278 

reference genomes and the ciHHV-6B genome in HAPMAP NA10863 (Fig. 4A). The 279 

patterns of variation were similar to those observed across the whole genome (Fig. 2A) and 280 

consistent with the phylogenetic analysis showing greater similarity among ciHHV-6B in 281 

Europeans and with the subgroups. Phylogenetic analysis of specific genes, which were 282 

selected because they show greater sequence variation from the reference genomes or among 283 

the ciHHV-6B genomes, generated a variety of trees that are generally consistent with the 284 

phylogenetic analysis based on the U region but exhibited less discrimination between 285 

samples or groups (Fig. 4 and Supplementary Fig. S2). For example, the phylogenetic tree 286 

based on U90 separates the European ciHHV-6B samples from the ciHHV-6B samples from 287 

China and Pakistan and from the HST and Z29 reference genomes but does not subdivide the 288 

European ciHHV-6B samples. 289 

Phylogenetic analysis of the seven ciHHV-6A genomes and four reference genomes 290 

(U1102 (Uganda), AJ (Gambia) and two sequences from GS (USA)) shows a clear separation 291 

between the integrated and non-integrated genomes (Fig. 3C and D), with two pairs of closely 292 

related ciHHV-6A genomes (LEI-1501 and GLA_25506; 7A-17p13.3 and GLA_15137). A 293 

similar separation of the integrated versus non-integrated genomes is also evident in the 294 

phylogenetic analysis of DR alone, irrespective of the geographic origin of the individual 295 

ciHHV-6A carrier (Supplementary Fig. S1).  296 
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Variation within HHV-6A genes was also explored by plotting base substitution 297 

frequency per ORF for each of the seven ciHHV-6A samples in comparison to the three 298 

reference genomes and the ciHHV-6A genome in LEI_1501 (Fig. 4B). The patterns of 299 

variation are similar to those observed across the whole genome (Fig. 2B). Phylogenetic 300 

analysis of U83, U90 and DR6, selected because they show greater sequence variation, 301 

generally support the phylogenetic trees and networks generated from analysis of the U and 302 

DR regions (Supplementary Fig. S3). 303 

Overall, the sequence variation and phylogenetic analyses indicate a divergence 304 

between the integrated and non-integrated HHV-6 genomes but with some differences 305 

between the HHV-6A and HHV-6B. The ciHHV-6B samples from individuals with European 306 

ancestry showed divergence from both HST (Japan) and Z29 (D.R.Congo) reference 307 

genomes, although the pattern of divergence varies across the genome. The 21 ciHHV-6B 308 

genomes from individuals with European ancestry are more similar to one another than to the 309 

ciHHV-6B genomes from China and Pakistan and can be subdivided into distinct groups. 310 

There is greater divergence among the seven ciHHV-6A genomes than among the ciHHV-6B 311 

genomes but, despite this, two pairs of closely related ciHHV-6A genomes were identified.  312 

From these analyses, we concluded that the three groups of closely related ciHHV-6B 313 

genomes and the pairs of ciHHV-6A genomes identified in the phylogenetic networks (Fig. 314 

3B and D, respectively) could represent independent integrations by closely related strains of 315 

HHV-6B or HHV-6A. Alternatively, each group might have arisen from a single integration 316 

event, with members sharing a common ancestor. Further analyses were undertaken to 317 

explore these possibilities. 318 

Comparison of tandem repeat regions in ciHHV-6 genomes. Tandem repeat arrays within 319 

the human genome often show length variation as a consequence of changes to the number of 320 
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repeat units present (copy number variation). The greater allelic diversity in these regions 321 

reflects the underlying replication-dependent mutation processes in tandem repeat arrays, 322 

which occur at a higher rate than base substitutions (41). To explore diversity among the 323 

ciHHV-6B genomes further, tandem repeat regions distributed across the viral genome were 324 

investigated. The R-DR, R2A, R2B and R4 repeat regions analysed (location shown in Fig. 325 

1C) showed little or no copy number variation among the ciHHV-6B and non-integrated 326 

reference genomes (Fig. 5A, Table 3). Copy number variation at R1 (location shown in Fig. 327 

1C) was greater but did not show a clear relationship with strains of ciHHV-6B or non-328 

integrated HHV-6B. Greater copy number variation was detected at the pure array of 329 

TTAGGG repeats at DRL-T2 (location shown in Fig. 5B) with the largest number of repeats 330 

in the HHV-6B Z29 reference genome and ciHHV-6B in HGDP00813 from China (Fig. 5A, 331 

Table 3). Notably, copy number variation observed at R0 (location shown in Fig. 1C) 332 

correlates reasonably well with the groups of ciHHV-6B genomes identified the phylogenetic 333 

network (Fig 5A; Table 3; Fig. 3).  334 

Similar analysis of repeat regions in the ciHHV-6A genomes was conducted (Table 3). 335 

The data suggest that ciHHV-6A genomes have fewer TTAGGG repeats at DRL-T2 than in 336 

the HHV-6A reference genomes. This variation could have been present in HHV-6A strains 337 

prior to integration or deletion mutations that reduce the length of the DRL-T2 array may have 338 

been favoured after integration (12). 339 

 To explore variation within the T1 array of degenerate telomere-like repeats in 340 

ciHHV-6B genomes, we amplified the DRR-T1 region by using the U100Fw2 and DR1R 341 

primers, and investigated the interspersion patterns of TTAGGG and degenerate repeats at the 342 

distal end of DRR-T1 (near U100, Fig. 5B) by using modified TVR-PCR (36, 37, 42). 343 

Comparison of the TTAGGG interspersion patterns between the samples showed that the 344 

ciHHV-6B genomes clustered into groups that share similar TVR maps in DRR-T1 (Fig. 5C). 345 
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Furthermore, these interspersion patterns differed between the groups and the singleton 346 

ciHHV-6B genomes identified in the phylogenetic analyses. Variation around the (CA)n 347 

simple tandem repeat, located immediately adjacent to DRL-T1 (location shown in Fig. 5B), 348 

also showed clustering into groups that correlate with the ciHHV-6B phylogenetic analyses 349 

(Fig 5D, Table 3, Fig. 3). Overall, the analyses of tandem repeat regions in the ciHHV-6B 350 

genomes are consistent with the phylogenetic analyses. 351 

Ancestry of ciHHV-6B carriers in group 3. The repeat copy number variation observed 352 

within and among groups may have arisen before or after telomeric integration of the viral 353 

genome. To investigate further how many different integration events may have occurred 354 

among the ciHHV-6B carriers, we isolated and sequenced fragments containing the junction 355 

between the human chromosome and the ciHHV-6B genome, in addition to using the 356 

cytogenetic locations published previously for some samples (Table 2; (16)). The junction 357 

fragments were isolated by a trial-and-error approach, using PCR between a primer mapping 358 

in DR8 in DRR and a variety of primers known to anneal to different subtelomeric sequences 359 

(Fig. 6A), including primers that anneal to the subterminal region of some but not all copies 360 

of chromosome 17p (17p311 (43) and subT17-539 (12)). There was insufficient DNA for 361 

analysis from the sequenced ORCA1340 (singleton) or the ORCA1622 and ORCA3835 362 

(group 3) samples (Fig. 3B). However, analysis of DRR-T1 and the other repeats showed that 363 

the 42 ciHHV-6B carriers from Orkney fall into two groups, that share the same length at 364 

DRR-T1 with either ORCA1340 or with ORCA1622 and ORCA3835 (Table 3). For junction 365 

fragment analysis, we selected ORCA1006 as a substitute for ORCA1340, since it shares the 366 

same DRR-T1 length. Similarly, ORCA1043, ORCA2119 and ORCA1263 were used as 367 

substitutes for ORCA1622 and ORCA3835, since they share a different DRR-TI length. Using 368 

the chromosome 17p primers, junction fragments were generated from all of the group 3 369 

ciHHV-6B samples and from 1-ciHHV-6B (a singleton in the phylogenetic network, Fig. 3). 370 
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Using these primers, PCR products were not amplified from other ciHHV-6B samples in this 371 

study. The sequences of seven junction fragments from group 3 ciHHV-6B genomes 372 

(including NWA008 (44), which is another ciHHV-6B carrier having a viral genome that 373 

belongs to group 3 (data not shown)) were similar to each other but different from the 374 

fragment in sample 1-ciHHV-6B (Fig. 6B). These data indicate the existence of at least two 375 

independent integration events into different alleles of the chromosome 17p telomere, or 376 

possibly into telomeres of different chromosomes that share similar subterminal sequences 377 

(45). 378 

Comparison of the junction fragments from group 3 ciHHV-6B samples shows 379 

remarkably similar TTAGGG and degenerate repeat interspersion patterns (Fig. 6B). The 380 

differences among the interspersion patterns are consistent with small gains or losses that may 381 

have arisen from replication errors in the germline, after integration of the viral genome (36). 382 

Therefore, it is most likely that the ciHHV-6B status of group 3 individuals arose from a 383 

single ancestral integration event. Using the levels of nucleotide substitution between the 384 

group 3 ciHHV-6B genomes, the time to the most recent common ancestor (TMRCA) was 385 

estimated as 24,538 ±10,625 years ago (Table 4). This estimate is based on the assumption 386 

that, once integrated, the ciHHV-6B genome mutates at the same average rate as the human 387 

genome as a whole. However, deviation from this rate would result in an under- or over- 388 

estimation of the TMRCA. 389 

Genetic intactness of ciHHV-6 genomes. The evidence for an ancient origin of some, 390 

probably most, of the ciHHV-6B genomes analysed, and for post-integration mutations in 391 

repeat regions, raised the question of whether these genomes contain an intact set of viral 392 

genes or whether they have been rendered non-functional by mutation. To explore the 393 

consequence of sequence variation among the ciHHV6B genomes, the amino acid sequences 394 

predicted from all genes in the ciHHV-6B genomes were aligned, and the cumulative 395 
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frequencies of independent synonymous and non-synonymous substitutions were determined 396 

(Fig. 7A). The ratio of synonymous:non-synonymous substitutions varies among genes. The 397 

great majority of non-synonymous changes (amounting to 34% of the total) result in single 398 

amino acid substitutions, but one substitution in the U20 stop codon of HGDP00092 is 399 

predicted to extend the coding region by eight codons. Only one substitution, which creates 400 

an in-frame stop codon in U14 of 1-ciHHV-6B, is predicted to terminate a coding region 401 

prematurely. Two of the seven ciHHV-6A genomes also have in-frame stop codons, one in 402 

U79 of GLA_15137 and the other in U83 genes of GLA_4298 (data not shown). 403 

The 21 inherited ciHHV-6B genomes are likely to include mutations that arose before 404 

integration and represent variation among the parental non-integrated HHV-6B strains as well 405 

as mutations that arose after integration. To explore the latter, five group 3 ciHHV-6B 406 

genomes were compared (Fig. 7B). Among the ten substitutions identified, three were in non-407 

coding regions, one was a synonymous mutation in U77, and six were non-synonymous 408 

mutations. From these limited data, it seems likely that the accumulation of mutations after 409 

integration has been random in these ciHHV-6B genomes. 410 

DISCUSSION 411 

In this study, we used comparative analyses to explore diversity among ciHHV-6 412 

genomes in order to understand the factors that influence the population frequencies of 413 

ciHHV-6 and to determine whether the integrated genomes appear to retain the capacity for 414 

full functionality as a virus. We have found that the ciHHV-6B genomes are more similar to 415 

each another than to the two available HHV-6B reference genomes from Japan and 416 

D.R.Congo (Figs 2, 3, 4 ; Supplementary Fig. S1). This is particularly noticeable among the 417 

19 ciHHV-6B genomes from individuals with European ancestry, which are more similar to 418 

each other than they are to the ciHHV-6B genomes in HGDP00092 from Pakistan and 419 
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HGDP00813 from China. This pointer towards a relationship between the integrated HHV-6B 420 

strain and geographical distribution warrants further investigation, if the association between 421 

carrier status and potential disease risk is to be understood fully (21, 46). The smaller group 422 

of seven ciHHV-6A genomes show higher levels of divergence from the three available 423 

HHV-6A reference genomes from the USA, Uganda and the Gambia, and as reported 424 

previously (40). However, in making these observations, the possibility of sample bias should 425 

be considered, both in the geographic distribution of ciHHV-6 genomes analysed and, in 426 

particular, in the small number of non-integrated HHV-6A and HHV-6B genomes that are 427 

available for comparative analysis.  428 

The isolation of chromosome junction fragments from eight ciHHV-6B samples 429 

(seven group 3 samples and 1-ciHHV-6B) by using primers from chromosome 17p 430 

subterminal sequences (43) suggests integration in alleles of the 17p telomere. Given the 431 

variable nature of human subterminal regions (45), the chromosome locations should be 432 

confirmed using a different approach. Nevertheless, comparison of the TTAGGG and 433 

degenerate repeat interspersion patterns at the chromosome-ciHHV-6B junction can be used 434 

to deduce relationships (42, 47) and, combined with the phylogenetic analyses, show that the 435 

individuals carrying a group 3 ciHHV-6B genome share an ancient ancestor. Group 3 includes 436 

individuals from Sardinia, England, Wales and Orkney, with greater divergence between the 437 

ciHHV-6B genomes in the two individuals from Sardinia (HGDP1065 and HGDP1077) than 438 

between the individual from Derby, England (DER512) and the Sardinian (HGDP1065) (Figs. 439 

3, 5, 6 and Tables 2, 3). Moreover there is no evidence of a close family relationship between 440 

the two individuals from Sardinia. Overall, the data are consistent with the group 3 ciHHV-441 

6B carriers being descendants of a common ancestor who existed approximately 24,500 years 442 

ago, similar to the date of the last glacial maximum and probably predating the colonization 443 

of Sardinia and Orkney. 444 
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The population screen of Orkney identified 42 ciHHV-6B carriers (frequency 1.9%, 445 

Table 1) and no ciHHV-6A carriers, which also suggests a founder effect. However, the 446 

Orkney ciHHV-6B samples can be divided into two groups, based on the length of DRR-T1, 447 

the ciHHV-6B phylogenetic analyses and the different integration sites. Therefore, it is likely 448 

that the ciHHV-6B carriers in Orkney are the descendants of two different ciHHV-6B 449 

ancestors, who may have migrated to Orkney independently. This is consistent with the fine 450 

resolution genetic structure of the Orkney population and the history of Orkney, which 451 

includes recent admixture from Norway (Norse-Vikings) (44). 452 

Given the evidence that extant ciHHV-6B carriers in group 3 are descendants of a 453 

single ancient founder with a germline integration, it is plausible that other clusters in the 454 

phylogenetic tree have a similar history. For example the three individuals in group 2 may all 455 

carry a ciHHV-6B integrated in a chromosome 11p telomere. Further verification is required 456 

to support this speculation, and this will be valuable when assessing disease risk associated 457 

with ciHHV-6 integrations in different telomeres.  458 

There is good evidence that ciHHV-6 genomes can reactivate in some settings, for 459 

example when the immune system is compromised (19, 20). However, it is not known what 460 

proportion of ciHHV-6 genomes may retain the capacity to reactivate. We investigated this 461 

question from various angles. We presented evidence that some ciHHV-6 genomes are 462 

ancient and therefore could have accumulated inactivating mutations while in the human 463 

genome. Most of the tandem repeats analysed in ciHHV-6B genomes showed minor 464 

variations in repeat copy numbers (Fig. 5 and Table 3). However, the function of these 465 

regions is unclear, and, as copy number variation exits among the reference genomes, it seems 466 

unlikely that the level of variation detected unduly influences the potential functionality of the 467 

integrated viral genomes. In the protein-coding regions of ciHHV-6B genomes, 34% of 468 

substitutions are non-synonymous and are predicted to cause amino acid substitutions (Fig. 469 
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7). A single potentially inactivating mutation was detected as an in-frame stop codon in gene 470 

U14 in 1-ciHHV-6B. Since this gene encodes a tegument protein that is essential for the 471 

production of viral particles and can induce cell cycle arrest at the G2/M phase (48), it seems 472 

unlikely that this integrated copy of ciHHV-6B would be able to reactivate. However, the 473 

other viral genes may be expressed in this ciHHV-6B genome and the presence of the viral 474 

genome may also affect telomere function. The stop codon in gene U20 in the individual from 475 

Pakistan (HGDP00092) is mutated, and this is predicted to extend the U20 protein by eight 476 

amino acid residues. U20 is part of a cluster of genes (U20-U24) that are specific to HHV-6A, 477 

HHV-6B and their relative human betaherpesvirus 7, and likely plays a role in suppressing an 478 

apoptotic response by the infected host cell (49, 50). Further experimental analysis will be 479 

required to determine whether the modest extension affects the function of the U20 protein. 480 

Among the seven ciHHV-6A genomes, two contain novel in-frame stop codons. One of these 481 

is located in U83 in GLA_4298. The other is present in U79 in GLA_15137, but this 482 

inactivating mutation is absent from the closely related ciHHV-6A genome in 7A-17p13.3 483 

(Fig. 3C and D). 484 

In summary, we have shown that most ciHHV-6A and ciHHV-6B genomes contain an 485 

intact set of genes and therefore may have the potential to be fully functional. This 486 

observation needs to be taken into consideration when assessing whether ciHHV-6 carrier 487 

status is associated with disease risk and in understanding the underlying mechanisms of such 488 

associations (e.g. whether viral reactivation is involved). Among the individuals of European 489 

descent, we found strong evidence for the ancient common ancestry of some of the integrated 490 

viral genomes. The close similarity between ciHHV-6B genomes in the Europeans and the 491 

evidence of multiple different integration events by similar strains also indicate that we have 492 

effectively sequenced the ancient, non-integrated strains of HHV-6B that existed in European 493 

populations in prehistoric times. Based on these observations, it is possible that other 494 
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populations, for example in China, South Asia and Africa, may show similar founder effects 495 

among ciHHV-6 carriers but from different ancient strains (51). Our limited knowledge of 496 

non-integrated HHV-6A and HHV-6B strains is based mostly on strains derived from Africa 497 

and Japan. There is now a real need to sequence non-integrated strains from other 498 

populations, including those in Europe, so that the relationship between non-integrated HHV-499 

6 and ciHHV-6 can be fully understood. A major challenge will be to determine whether 500 

germline integration continues to occur de novo today, and, if so, at what rate and by which 501 

viral strains. 502 

ACKNOWLEDGMENTS 503 

We thank most sincerely Mark Jobling, Michael Wood and Ryan Mate (University of 504 

Leicester) for their help with data analysis. We also thank Martin Dyer (University of 505 

Leicester), Bruce Winney (University of Oxford), James F. Wilson (University of Edinburgh) 506 

and Duncan A. Clark (Department of Virology, Barts Health NHS Trust) for samples from 507 

the various populations screened.  Author contributions: EZ, AJB, GSW, NMS, RN, IA-C, 508 

VEC, and YH conducted various aspects of the experimental work; AJD, EZ, GSW, NMS, 509 

CDV, and CB conducted the bioinformatic and other analyses; DJP is a member of the 510 

Executive Committee of Generation Scotland and, with AJB and RFJ, screened the large GS: 511 

SFHS cohort to identify ciHHV-6 carriers used in this study; NJR was responsible for the 512 

project design. The paper was written by EZ and NJR with significant input from AJD and 513 

RFJ.  514 

FUNDING 515 

This work was supported by the UK Medical Research Council [G0901657 to N.J.R., 516 

MC_UU_12014/3 to A.J.D.] and the Wellcome Trust Institutional Strategic Support Fund 517 

[WT097828MF to N.J.R]. Generation Scotland receives core support from the Chief Scientist 518 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


23 

Office of the Scottish Government Health Directorates [CZD/16/6] and the Scottish Funding 519 

Council [HR03006]. 520 

REFERENCES  521 

1. Holohan B, Wright WE, Shay JW. 2014. Cell biology of disease: Telomeropathies: an 522 

emerging spectrum disorder. J Cell Biol 205:289-99. 523 

2. Reddel RR. 2010. Senescence: an antiviral defense that is tumor suppressive? Carcinogenesis 524 

31:19-26. 525 

3. Ablashi D, Agut H, Alvarez-Lafuente R, Clark DA, Dewhurst S, DiLuca D, Flamand L, 526 

Frenkel N, Gallo R, Gompels UA, Hollsberg P, Jacobson S, Luppi M, Lusso P, Malnati M, 527 

Medveczky P, Mori Y, Pellett PE, Pritchett JC, Yamanishi K, Yoshikawa T. 2014. 528 

Classification of HHV-6A and HHV-6B as distinct viruses. Arch Virol 159:863-70. 529 

4. de Lange T. 2005. Shelterin: the protein complex that shapes and safeguards human 530 

telomeres. Genes Dev 19:2100-10. 531 

5. Sfeir A, de Lange T. 2012. Removal of shelterin reveals the telomere end-protection problem. 532 

Science 336:593-7. 533 

6. Arnoult N, Karlseder J. 2015. Complex interactions between the DNA-damage response and 534 

mammalian telomeres. Nat Struct Mol Biol 22:859-66. 535 

7. Lindquester GJ, Pellett PE. 1991. Properties of the human herpesvirus 6 strain Z29 genome: G 536 

+ C content, length, and presence of variable-length directly repeated terminal sequence 537 

elements. Virology 182:102-10. 538 

8. Achour A, Malet I, Deback C, Bonnafous P, Boutolleau D, Gautheret-Dejean A, Agut H. 539 

2009. Length variability of telomeric repeat sequences of human herpesvirus 6 DNA. J Virol 540 

Methods 159:127-30. 541 

9. Dominguez G, Dambaugh TR, Stamey FR, Dewhurst S, Inoue N, Pellett PE. 1999. Human 542 

herpesvirus 6B genome sequence: coding content and comparison with human herpesvirus 543 

6A. J Virol 73:8040-52. 544 

10. De Bolle L, Naesens L, De Clercq E. 2005. Update on human herpesvirus 6 biology, clinical 545 

features, and therapy. Clin Microbiol Rev 18:217-45. 546 

11. Arbuckle JH, Medveczky MM, Luka J, Hadley SH, Luegmayr A, Ablashi D, Lund TC, Tolar 547 

J, De Meirleir K, Montoya JG, Komaroff AL, Ambros PF, Medveczky PG. 2010. The latent 548 

human herpesvirus-6A genome specifically integrates in telomeres of human chromosomes in 549 

vivo and in vitro. Proc Natl Acad Sci U S A 107:5563-8. 550 

12. Huang Y, Hidalgo-Bravo A, Zhang E, Cotton VE, Mendez-Bermudez A, Wig G, Medina-551 

Calzada Z, Neumann R, Jeffreys AJ, Winney B, Wilson JF, Clark DA, Dyer MJ, Royle NJ. 552 

2014. Human telomeres that carry an integrated copy of human herpesvirus 6 are often short 553 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


24 

and unstable, facilitating release of the viral genome from the chromosome. Nucleic Acids 554 

Res 42:315-27. 555 

13. Daibata M, Taguchi T, Nemoto Y, Taguchi H, Miyoshi I. 1999. Inheritance of chromosomally 556 

integrated human herpesvirus 6 DNA. Blood 94:1545-9. 557 

14. Morris C, Luppi M, McDonald M, Barozzi P, Torelli G. 1999. Fine mapping of an apparently 558 

targeted latent human herpesvirus type 6 integration site in chromosome band 17p13.3. J Med 559 

Virol 58:69-75. 560 

15. Tanaka-Taya K, Sashihara J, Kurahashi H, Amo K, Miyagawa H, Kondo K, Okada S, 561 

Yamanishi K. 2004. Human herpesvirus 6 (HHV-6) is transmitted from parent to child in an 562 

integrated form and characterization of cases with chromosomally integrated HHV-6 DNA. J 563 

Med Virol 73:465-73. 564 

16. Nacheva EP, Ward KN, Brazma D, Virgili A, Howard J, Leong HN, Clark DA. 2008. Human 565 

herpesvirus 6 integrates within telomeric regions as evidenced by five different chromosomal 566 

sites. J Med Virol 80:1952-8. 567 

17. Prusty BK, Krohne G, Rudel T. 2013. Reactivation of chromosomally integrated human 568 

herpesvirus-6 by telomeric circle formation. PLoS Genet 9:e1004033. 569 

18. Zhang E, Cotton VE, Hidalgo-Bravo A, Huang Y, J. Bell A, F. Jarrett R, Wilkie GS, Davison 570 

AJ, P. Nacheva E, Siebert R, Majid A, Kelpanides I, Jayne S, Dyer MJ, Royle NJ. 2016. 571 

HHV-8-unrelated primary effusion-like lymphoma associated with clonal loss of inherited 572 

chromosomally-integrated human herpesvirus-6A from the telomere of chromosome 19q. 573 

Scientific Reports 6:22730. 574 

19. Endo A, Watanabe K, Ohye T, Suzuki K, Matsubara T, Shimizu N, Kurahashi H, Yoshikawa 575 

T, Katano H, Inoue N, Imai K, Takagi M, Morio T, Mizutani S. 2014. Molecular and 576 

virological evidence of viral activation from chromosomally integrated human herpesvirus 6A 577 

in a patient with X-linked severe combined immunodeficiency. Clin Infect Dis 59:545-8. 578 

20. Gravel A, Hall CB, Flamand L. 2013. Sequence analysis of transplacentally acquired human 579 

herpesvirus 6 DNA is consistent with transmission of a chromosomally integrated reactivated 580 

virus. J Infect Dis 207:1585-9. 581 

21. Gravel A, Dubuc I, Morissette G, Sedlak RH, Jerome KR, Flamand L. 2015. Inherited 582 

chromosomally integrated human herpesvirus 6 as a predisposing risk factor for the 583 

development of angina pectoris. Proc Natl Acad Sci U S A 112:8058-63. 584 

22. Bell AJ, Gallagher A, Mottram T, Lake A, Kane EV, Lightfoot T, Roman E, Jarrett RF. 2014. 585 

Germ-line transmitted, chromosomally integrated HHV-6 and classical Hodgkin lymphoma. 586 

PLoS One 9:e112642. 587 

23. Gompels UA, Nicholas J, Lawrence G, Jones M, Thomson BJ, Martin ME, Efstathiou S, 588 

Craxton M, Macaulay HA. 1995. The DNA sequence of human herpesvirus-6: structure, 589 

coding content, and genome evolution. Virology 209:29-51. 590 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


25 

24. Leong HN, Tuke PW, Tedder RS, Khanom AB, Eglin RP, Atkinson CE, Ward KN, Griffiths 591 

PD, Clark DA. 2007. The prevalence of chromosomally integrated human herpesvirus 6 592 

genomes in the blood of UK blood donors. J Med Virol 79:45-51. 593 

25. Isegawa Y, Mukai T, Nakano K, Kagawa M, Chen J, Mori Y, Sunagawa T, Kawanishi K, 594 

Sashihara J, Hata A, Zou P, Kosuge H, Yamanishi K. 1999. Comparison of the complete DNA 595 

sequences of human herpesvirus 6 variants A and B. J Virol 73:8053-63. 596 

26. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, 597 

Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, 598 

Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its 599 

applications to single-cell sequencing. J Comput Biol 19:455-77. 600 

27. Assefa S, Keane TM, Otto TD, Newbold C, Berriman M. 2009. ABACAS: algorithm-based 601 

automatic contiguation of assembled sequences. Bioinformatics 25:1968-1969. 602 

28. Boetzer M, Pirovano W. 2012. Toward almost closed genomes with GapFiller. Genome 603 

Biology 13. 604 

29. Salahuddin SZ, Ablashi DV, Markham PD, Josephs SF, Sturzenegger S, Kaplan M, Halligan 605 

G, Biberfeld P, Wong-Staal F, Kramarsky B, Gallo R. 1986. Isolation of a new virus, HBLV, 606 

in patients with lymphoproliferative disorders. Science 234:596-601. 607 

30. Gravel A, Ablashi D, Flamand L. 2013. Complete Genome Sequence of Early Passaged 608 

Human Herpesvirus 6A (GS Strain) Isolated from North America. Genome Announc 1. 609 

31. Tweedy J, Spyrou MA, Donaldson CD, Depledge D, Breuer J, Gompels UA. 2015. Complete 610 

Genome Sequence of the Human Herpesvirus 6A Strain AJ from Africa Resembles Strain GS 611 

from North America. Genome Announc 3. 612 

32. Staden R, Beal KF, Bonfield JK. 2000. The Staden package, 1998. Methods Mol Biol 613 

132:115-30. 614 

33. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular 615 

Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725-9. 616 

34. Scally A, Durbin R. 2012. Revising the human mutation rate: implications for understanding 617 

human evolution. Nat Rev Genet 13:745-53. 618 

35. Baird DM, Rowson J, Wynford-Thomas D, Kipling D. 2003. Extensive allelic variation and 619 

ultrashort telomeres in senescent human cells. Nat Genet 33:203-7. 620 

36. Baird DM, Jeffreys AJ, Royle NJ. 1995. Mechanisms underlying telomere repeat turnover, 621 

revealed by hypervariable variant repeat distribution patterns in the human Xp/Yp telomere. 622 

EMBO Journal 14:5433-5443. 623 

37. Varley H, Pickett HA, Foxon JL, Reddel RR, Royle NJ. 2002. Molecular characterization of 624 

inter-telomere and intra-telomere mutations in human ALT cells. Nat Genet 30:301-5. 625 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


26 

38. Moustafa A, Xie C, Kirkness E, Biggs W, Wong E, Turpaz Y, Bloom K, Delwart E, Nelson 626 

KE, Venter JC, Telenti A. 2017. The blood DNA virome in 8,000 humans. PLoS Pathog 627 

13:e1006292. 628 

39. Downing RG, Sewankambo N, Serwadda D, Honess R, Crawford D, Jarrett R, Griffin BE. 629 

1987. Isolation of human lymphotropic herpesviruses from Uganda. Lancet 2:390. 630 

40. Tweedy J, Spyrou MA, Pearson M, Lassner D, Kuhl U, Gompels UA. 2016. Complete 631 

Genome Sequence of Germline Chromosomally Integrated Human Herpesvirus 6A and 632 

Analyses Integration Sites Define a New Human Endogenous Virus with Potential to 633 

Reactivate as an Emerging Infection. Viruses 8. 634 

41. Chakraborty R, Kimmel M, Stivers DN, Davison LJ, Deka R. 1997. Relative mutation rates at 635 

di-, tri-, and tetranucleotide microsatellite loci. Proc Natl Acad Sci U S A 94:1041-6. 636 

42. Mendez-Bermudez A, Hills M, Pickett HA, Phan AT, Mergny JL, Riou JF, Royle NJ. 2009. 637 

Human telomeres that contain (CTAGGG)n repeats show replication dependent instability in 638 

somatic cells and the male germline. Nucleic Acids Res 37:6225 - 6238. 639 

43. Britt-Compton B, Rowson J, Locke M, Mackenzie I, Kipling D, Baird DM. 2006. Structural 640 

stability and chromosome-specific telomere length is governed by cis-acting determinants in 641 

humans. Hum Mol Genet 15:725-33. 642 

44. Leslie S, Winney B, Hellenthal G, Davison D, Boumertit A, Day T, Hutnik K, Royrvik EC, 643 

Cunliffe B, Wellcome Trust Case Control C, International Multiple Sclerosis Genetics C, 644 

Lawson DJ, Falush D, Freeman C, Pirinen M, Myers S, Robinson M, Donnelly P, Bodmer W. 645 

2015. The fine-scale genetic structure of the British population. Nature 519:309-14. 646 

45. Riethman H. 2008. Human telomere structure and biology. Annu Rev Genomics Hum Genet 647 

9:1-19. 648 

46. Pinto EM, Chen X, Easton J, Finkelstein D, Liu Z, Pounds S, Rodriguez-Galindo C, Lund TC, 649 

Mardis ER, Wilson RK, Boggs K, Yergeau D, Cheng J, Mulder HL, Manne J, Jenkins J, 650 

Mastellaro MJ, Figueiredo BC, Dyer MA, Pappo A, Zhang J, Downing JR, Ribeiro RC, 651 

Zambetti GP. 2015. Genomic landscape of paediatric adrenocortical tumours. Nat Commun 652 

6:6302. 653 

47. Mendez-Bermudez A, Hidalgo-Bravo A, Cotton VE, Gravani A, Jeyapalan JN, Royle NJ. 654 

2012. The roles of WRN and BLM RecQ helicases in the Alternative Lengthening of 655 

Telomeres. Nucleic Acids Res 40:10809-20. 656 

48. Mori J, Kawabata A, Tang H, Tadagaki K, Mizuguchi H, Kuroda K, Mori Y. 2015. Human 657 

Herpesvirus-6 U14 Induces Cell-Cycle Arrest in G2/M Phase by Associating with a Cellular 658 

Protein, EDD. PLoS One 10:e0137420. 659 

49. Kofod-Olsen E, Ross-Hansen K, Schleimann MH, Jensen DK, Moller JM, Bundgaard B, 660 

Mikkelsen JG, Hollsberg P. 2012. U20 is responsible for human herpesvirus 6B inhibition of 661 

tumor necrosis factor receptor-dependent signaling and apoptosis. J Virol 86:11483-92. 662 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


27 

50. Jasirwan C, Tang H, Kawabata A, Mori Y. 2015. The human herpesvirus 6 U21-U24 gene 663 

cluster is dispensable for virus growth. Microbiol Immunol 59:48-53. 664 

51. Kawamura Y, Ohye T, Miura H, Ihira M, Kato Y, Kurahashi H, Yoshikawa T. 2017. Analysis 665 

of the origin of inherited chromosomally integrated human herpesvirus 6 in the Japanese 666 

population. J Gen Virol doi:10.1099/jgv.0.000834. 667 

 668 

 

  669 

 on S
eptem

ber 8, 2017 by U
N

IV
E

R
S

IT
Y

 O
F

 E
D

IN
B

U
R

G
H

http://jvi.asm
.org/

D
ow

nloaded from
 

http://jvi.asm.org/


28 

Table 1. Summary of populations screened for ciHHV-6 670 

 Region Samples Total 

ciHHV-6 

ciHHV-6A ciHHV-6B 

Africa Sub-Saharan Africa 105 0 0 0 

North Africa 29 0 0 0 

Europe North European 

Extraction (CEPH) 

136 2 0 2 

British 518 7 1 6 

Orkney 2194 42 

(1.9%) 

0 42 

Italy (including 

Sardinia) 

49 2 0 2 

France 52 0 0 0 

Russia 42 0 0 0 

Middle East Israel 134 2 2 0 

South/Central 

Asia 

Pakistan 192 1 0 1 

Uygur (China) 10 0 0 0 

East Asia China 213 1 0 1 

Japan 74 1 1 0 

Others (Siberia & 

Cambodia) 

35 0 0 0 

Oceania Bougainville 17 0 0 0 

 New Guinea 11 0 0 0 

America South America 29 0 0 0 

Mexico 35 0 0 0 

TOTAL 3875 58 4 54 
a 
In addition AJB, RFJ and colleagues have screened the Generation Scotland: Scottish Family Health 671 

Study cohort for ciHHV-6 (manuscript in preparation). 672 
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Table 2. Samples from individuals with ciHHV-6 selected for viral genome sequencing. 675 

Sample Acc. No ciHHV-6  Integration Site 
a
 Population or Country 

LEI-1501 b KT355575 A 19q Leicester area (England) 

HAPMAP NA18999 KY316047 A - Japan 

3A-10q26.3 c KY316049 A 
10q26.3 & junction 

isolated by PCR 
South-East England 

GLA_4298 d KY316056 A - Newcastle (England) 

GLA_15137 e KY316055 A - Scotland 

GLA_ 25506 e KY316054 A - Scotland 

7A-17p13.3 c KY316048 A 17p13.3 South-East England 

HGDP00092 KY316037 B - Balochi (Pakistan) 

HGDP00813 KY316036 B - Han (China) 

HGDP01065 KY316035 B 
Junction isolated by 

PCR 
Sardinia (Italy) 

HGDP01077 
KY316034 

B 
Junction isolated by 

PCR 
Sardinia (Italy) 

HAPMAP NA07022 

(CEPH 1340.11) 
KY316039 B - 

Utah Mormon  

(North European) 

HAPMAP NA10863 

(CEPH-1375.02) 
KY316038 B - 

Utah Mormon  

(North European) 

4B-11p15.5 c KY316044 B 11p15.5 Southern East England 

BAN519 f KY316043 B - Banff (Scotland) 

COR264 f KY316042 B - Cornwall (England) 

CUM082 f KY316041 B - Cumbria (England) 

DER512 f KY316040 B 
Junction isolated by 

PCR 
Derbyshire (England) 

2B-9q34.3 c KY316045 B 9q34.3 South-East England 

1-ciHHV-6B c KY316046 B 
Junction isolated by 

PCR 
South-East England 

LEI-ALD KY316033 B - Leicester area (England) 

ORCA1622  KY316031 B - Orkney 

ORCA1340  KY316032 B - Orkney 

ORCA3835  KY316030 B - Orkney 

GLA_3986 d KY316053 B - Newcastle (England) 

GLA_29221 e KY316052 B - Scotland 

GLA_34108 e  KY316051 B - Scotland 

GLA_35629 e KY316050 B - Scotland 

a Determined by FISH or amplification of chromosme-ciHHV-6 junctions by PCR; b LEI-1501 described in (18); 
c ciHHV-6 carriers describe in (16); d ciHHV-6 carriers previously described in (22); e ciHHV-6 carriers 

identified in the GS: SFHS; f Samples from the Population of British Isles study (44). 
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Table 3. Variation in tandem repeat regions among ciHHV-6. 677 

Tandem repeat regions in HHV-6B 
Name T1  STR (CA)n  R-DR 

a  

T2  R0 a  R1  R2A 
a  

R2B  R3  R4 a  

Location    adjacent to 

DR-T1 

DR  DR  U1  U86  U86-

U89  

U86- 

U89 

U91-

U94  

After 

U100  

Length (bp) 6 2 15 6 ~15  12 79 12 - 

15 

~104 64 

Unit   CA NI b  (TTAGGG) NI  NI  NI  NI  NI  NI  

HST 
c
 -  12 6 26 17 51 4 6 -  6 

Z29 
c
 -  1 4 77 13 53 4 8 -  4 

HAPMAP 

NA10863 

-  20 5 28 16 44 4 7 -  4 

2B-9q34.3 -  20 5 26 19 44 4 7 -  4 

CUM082 -  19 5 27 19 45 4 7 -  4 

BAN519 -  19 5 28 16 44 4 7 -  4 

GLA_3986  -  20 5 -  19 44 4 7 -  2 

GLA_29221  -  19 5 -  19 45 4 7 -  4 

GLA_34108  -  19 5 -  19 43 4 7 -  4 

GLA_35629  -  - 5 -  19 45 4 7 -  4 

HAPMAP 

NA07022 

-  11 5 29 10 46 4 6 -  4 

4B-11p15.5 -  11 5 26 10 47 4 6 -  4 

LEI-ALD -  11 5 25 10 47 4 6 -  4 

HGDP01065 -  10 5 15 16 44 4 7 -  4 

HGDP01077 -  10 5 19 16 43 4 7 -  4 

DER512 -  10 5 21 16 43 4 7 -  4 

ORCA1622 -  - 5 -  16 43 4 7 -  3 

ORCA3835 -  - 5 -  16 43 4 7 -  3 

ORCA1340 -  - -  -  16 48 4 6 -  4 

1-ciHHV-6B -  12 5 16 16 43 4 6 -  4 

COR264 -  12 9 28 19 44 4 7 -  2 

HGDP00813 -  20 3 53 12 52 4 7 -  4 

HGDP00092 -  1 2 19 17 55 4 11 -  3 

Tandem repeat regions in HHV-6A         
  T1  T2  R5 d  R1  R2  R3      

Location    DR U41 -

U42  

U86  U86 

-U89  

 U91 

-U94      
Length (bp) 6 6 ~191  ~12  12-

18 

104-

105     
    (TTAGGG) NI NI NI NI     

AJ 
c
 -  51 1.7 52 43 8     

U1102 
c
  -  59 1.7 52 102 29     

GS1/2 
c
 -  51 1.7 52 78 8     

LEI-1501 -  14 2.7 -  -  -      
GLA_25506 -  -  2.7 32 -  -      
GLA_4298 -  -  3.7 53 -  -      
HAPMAP 

NA18999 

-  13 1.7 -  -  -  

    
3A-10q26.3 - 9 1.7 58 -  -      
GLA_15137 -  -  1.7 55 -  -      
7A-17p13.3 -  -  1.7 55 -  -      

a
 Repeats specific to HHV-6B - the coordinates of R-DR and R4 in HHV-6B strain HST are 5400-5489 and 

152603-152986 respectively; b NI, repeats not identical; c Reference genomes in bold; d Repeat specific to HHV-

6A - the coordinates of R5 in HHV-6A strain U1102 are 68124-68450; the other repeats are described in (9) 

(25); hyphens, analysis not completed. The samples in the same box are in the same group in the phylogenetic 

networks. 
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Table 4. Estimate of TMRCA for ciHHV-6B genomes in group 3. 679 

 Entire group 3 a HGDP1065 & 

HGDP1077 

HGDP1065 & 

DER512 

TMRCA (y) 24,538 23,004 15,336 

Standard deviation 10,625 13,281 10,844 
 

a ORCA1622 and ORCA3835 are identical across non-repeat regions. 
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Figure Captions 682 

Figure 1.  Approach to sequencing ciHHV-6 genomes. (A) Diagram showing the 683 

organisation of the HHV-6 genome following integration of a single full-length copy into a 684 

telomere. Chromosome and centromere (Cen) are shown by blue lines and an oval. The 685 

telomere repeats are shown by red arrows. The telomere, encompassing DRL-T1, is shown by 686 

a red dashed line. The junction between the chromosome and HHV-6 genome, encompassing 687 

telomere repeats and DRR-T2, is shown by a dashed blue line. DRL and DRR are shown as 688 

blue boxes. (B) Distribution of numbered PCR amplicons across the HHV-6B genome and an 689 

example gel of PCR products generated from 1-ciHHV-6B. (C) Sequence coverage for 690 

individual ciHHV-6B genomes. Each ciHHV-6B genome is shown with a single DR (blue 691 

box) that was covered by amplicons from DRL and DRR and with U (grey box). Gaps in the 692 

coverage caused by loss of individual amplicons at the amplicon-pooling stage are shown in 693 

white. Tandem repeat regions that were fully sequenced by either Illumina NGS or by the 694 

Sanger method are shown in orange. Tandem repeat regions (e.g. T1 and R3 in HHV-6B) that 695 

were too long to be sequenced fully are shown as hashed-brown boxes. (D) Distribution of 696 

numbered PCR amplicons across the HHV-6A genome and an example gel of products 697 

generated from HAPMAP NA18999. (E). Sequence coverage for each ciHHV-6A genomes, 698 

using the same colour coding as in (C). 699 

 700 

Figure 2.  Frequency of nucleotide substitutions in ciHHV-6 genomes compared to reference 701 

viral genomes. (A) Graphs showing the number of substitutions in 1 kb windows for each of 702 

the 21 ciHHV-6B genomes in comparison with the HHV-6B strain HST (Japan) and Z29 703 

(D.R.Congo) genomes (top and middle panels, respectively) and the ciHHV-6B genome from 704 

HAPMAP NA10863 (bottom panel). The colour-coded key shows that ciHHV-6B genomes 705 

from individuals with European ancestry are represented as light blue lines; ciHHV-6B in 706 

HGDP00813 (China), red lines; ciHHV-6B in HGDP00092 (Pakistan), black lines. (B) 707 

Graphs showing the number of substitutions in 1 kb windows for each of the 7 ciHHV-6A 708 

genomes in comparison with the HHV-6A strain U1102 (Uganda), GS (USA) and AJ 709 

(Gambia) genomes (top and two middle panels) and the ciHHV-6A genome in LEI-1501 710 

(bottom panel). The colour-coded key distinguishes the ciHHV-6A genomes. The x-axes in 711 

all the graphs show the HHV-6B and -6A genomes with a single DR (0-8kb) followed by  U 712 
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(9-150kb) as shown in Figure 1C and 1E. Variation within the tandem repeat regions is not 713 

shown in these graphs.  714 

 715 

Figure 3. Phylogenetic analysis of ciHHV-6 and reference non-integrated HHV-6 genomes. 716 

(A) Maximum likelihood phylogenetic tree of 21 ciHHV-6B genomes and two HHV-6B 717 

reference genomes (strains HST (Japan) and Z29 (D.R Congo)). A total of 130412 718 

nucleotides were analysed, excluding repeat regions and missing amplicons. The scale bar 719 

represents 0.0005 substitutions per site. (B) Phylogenetic network generated from the dataset 720 

used in (A), but without the HST and Z29 genomes and the ciHHV-6B genomes from 721 

HGDP00813 (China) and HGDP00092 (Pakistan). The ciHHV-6B genomes from Europeans 722 

in groups 1, 2 and 3 are shown as blue, orange and green dots, respectively and the singletons 723 

are shown as grey dots. (C) Maximum likelihood phylogenetic tree of seven ciHHV-6A 724 

genomes and four HHV-6A reference genomes (strains U1102 (Uganda), AJ (Gambia), GS1 725 

(USA) and GS2 (USA); GS1 and GS2 are two versions of strain GS). A total of 117900 726 

nucleotides were analysed, excluding repeat regions and missing amplicons. The scale bar 727 

represents 0.002 substitutions per site. (D) Phylogenetic network generated from the dataset 728 

used in (C). The non-integrated HHV-6A reference genomes are shown as yellow dots. The 729 

closely related ciHHV-6A genomes are shown as pairs of red or blue dots and singletons as 730 

grey dots (including one from Japan). The scale bars in the networks (C and D) show the 731 

number of base substitutions for a given line length. The dots are scaled, the smallest dot 732 

representing a single individual.    733 

 734 

Figure 4. Frequency of nucleotide substitutions in ciHHV-6 genes compared to those in 735 

reference viral genomes. (A) Graphs of substitution frequency in each gene are shown for the 736 

21 ciHHV-6B genomes in comparison with HHV-6B strains HST (Japan) and Z29 737 

(D.R.Congo) genomes (top and middle panels, respectively) and the ciHHV-6B genome in 738 

European HAPMAP NA10863 (bottom panel). The colour coding shown in the key matches 739 

that of the network in Figure 3B as follows: European Group 1, pale blue lines; European 740 

Group 2, orange lines; European Group 3, green lines; European singletons, grey lines; 741 

ciHHV-6B in HGDP00813 from China, red lines; and ciHHV-6B in HGDP00092 from 742 

Pakistan, black lines. (B) Graphs of substitution frequency in each gene for each of the 7 743 

ciHHV-6A genomes in comparison with the HHV-6A strains U1102 (Uganda), GS (USA) 744 
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and AJ (Gambia) genomes (top and two middle panels) and the ciHHV-6A genome in 745 

European LEI-1501 (bottom panel). The colour-coded key matches that of the network in 746 

Figure 3D. The x-axes of all the graphs show a single copy of DR1 and DR6, followed by 747 

genes found in the U region.   748 

 749 

Figure 5. Copy number variation in tandem repeat loci across the HHV-6B genome. (A) 750 

Graph of the number of repeat units at loci within the DR (R-DR and DRL-T2) and U regions 751 

(R0, R1, R2A, R2B and R4). Comparisons can be made among the reference non-integrated 752 

HHV-6B strains, HST (Japan) and Z29 (D.R. Congo) and ciHHV-6B genomes. The sample 753 

order along the x-axis as follows: HST, Z29 (mauve highlight); European group 1 ciHHV-6B 754 

genomes (blue highlight); European group 2 ciHHV-6B genomes (orange highlight); 755 

European group 3 ciHHV-6B genomes (green highlight); European singleton ciHHV-6B 756 

genomes (no highlight); ciHHV-6B in HGDP00813 from China (red highlight); and ciHHV-757 

6B in HGDP00092 from Pakistan (no highlight). (B) Diagram showing the location of the 758 

PCR amplicons used to analyse the repeat sequences shown in C and D. Black dashed line 759 

shows the amplicon generated by the U100Fw2 and DR1R primers that were used for TVR-760 

PCR shown in (C). Red dashed line shows STELA products, generated from DR1R, that were 761 

used to analysis the (CA)n repeat shown in D. (C) Distribution of (TTAGGG) repeats at the 762 

distal end of DRR-T1 (near U100) in ciHHV-6B genomes. If the repeat array comprises 763 

consecutive TTAGGG repeats, a ladder of bands with 6 base periodicity should be present 764 

and the migration distance between the rungs on the ladder should steadily decrease as the 765 

separation between the bands is reduced (near the top of the gel, towards DR1). The observed 766 

distance between the bands in each track varies between the samples. This shows that the 767 

repeat array is not pure (TTAGGG)n but includes intervening sequence, most likely 768 

degenerate telomere-like repeats. The pattern of repeats can be compared between the tracks 769 

to identify samples that share the same repeat distribution at this end of the DRR-T1. The 770 

ciHHV-6B sample names are colour-coded in accordance with groupings identified in Figure 771 

3: European group 1, blue; group 2, orange; group 3, green; European singletons, grey; 772 

ciHHV-6B in HGDP00813 from China, red; ciHHV-6B in HGDP00092 from Pakistan, black.  773 

(D) Variation in copy number of (CA) repeats and adjacent 5’- sequence, near the start of the 774 

ciHHV-6B DRL-T1 region. Sample names colour-coded as described in (C). 775 
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Figure 6. Characterisation of ciHHV-6B integration sites.  (A) Diagram showing the location 777 

of PCR amplicons used to characterise the chromosome-ciHHV-6B junctions. Red arrows 778 

represent TTAGGG and degenerate repeats. Blue arrows, primers used to amplify the 779 

chromosome-HHV-6 junction; blue dashed line, chromosome-junction amplicon used for 780 

sequence analysis. (B) Diagram showing the similarity of the TTAGGG (red squares) and 781 

degenerate repeat (coloured squares in key to right) interspersion patterns in the chromosome-782 

HHV-6 junctions from individuals with group 3 ciHHV-6B genomes (DER512 to 783 

HGDP01065, Figure 3B). These interspersion patterns are distinct from that of the 784 

chromosome-junction fragment isolate from 1-ciHHV-6B (singleton in Figure 3B). The 785 

sequence to the left of the repeats is from the chromosome subtelomeric region and the 786 

sequence to the right is from the ciHHV-6B genome.  787 

 788 

 789 

Figure 7. Consequences of nucleotide substitutions across the ciHHV-6 genome.  (A) 790 

Comparison of synonymous (blue) and non-synonymous (orange) substitution frequencies in 791 

each ciHHV-6B gene among the 21 ciHHV-6B genomes (scaled to differences per 1000 792 

amino acids). The green dot shows the novel in-frame stop codon in U14 of 1-ciHHV-6B. 793 

The pie chart shows the overall proportions of synonymous and non-synonymous 794 

substitutions across all genes. (B) Diagram showing the approximate location and 795 

consequence of nucleotide substitutions that are predicted to have arisen after integration in 796 

group 3 ciHHV-6B genomes. The horizontal line represents the HHV-6B genome; black dots, 797 

location of non-coding base substitutions; red dots, base substitutions within HHV-6B genes 798 

that are predicted to result in an amino acid substitutions (non-synonymous) shown by the 799 

text; pink dot, synonymous  (T to C) substitution in DER512 that is not predicted to change 800 

the phenylalanine. HGDP01065, green text; HGDP01077, orange text; DER512 in blue and 801 

the identical sequences found in ORCA1622 and ORCA3835 in purple. The number of 802 

repeats in three regions (T2, R1 and R4) that vary among the group 3 genomes are also 803 

shown.  804 

 805 
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