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 12 

Abstract 13 

Plutonic rocks from the Mineiro Belt, Brazil record a delayed onset of the transition from TTG to 14 

sanukitoid-type magmatism (high Ba-Sr), starting during the Siderian magmatic lull when little 15 

juvenile magma was added to the continental crust. Rocks mostly belong to the calc-alkaline series, 16 

meta- to peraluminous and originally “I-type”, meaning that oxidized magmas were formed by partial 17 

melting of subducted material. The temporal distribution and apparent secular changes of the magmas 18 

are consistent with the onset of subduction-driven plate tectonics due to an increase of the subduction 19 

angle and opening of the mantle wedge. New isotopic analyses (Sm-Nd whole rock and Lu-Hf in 20 

zircon) corroborate the restricted juvenile nature of the Mineiro Belt and confirm the genetic link 21 

between the Lagoa Dourada Suite, a rare ca. 2350 Ma high-Al tonalite-trondhjemite magmatic event, 22 

and the sanukitoid-type ca. 2130 Ma Alto Maranhão Suite. U-Pb dating of zircon and titanite 23 

constrain the crystallisation history of plutonic bodies; coupled with major and trace element analyses 24 

of the host rocks, they distinguish evolutionary trends in the Mineiro Belt. Several plutons in the 25 

region have ages close to 2130 Ma but are distinguished by the lower concentration of compatible 26 

elements in the juvenile high Ba-Sr suite.  27 

Keywords: São Francisco Craton; Magmatic lull; TTG-sanukitoid transition; Zircon U-Pb-Hf; 28 

Titanite U-Pb; Whole rock Nd isotopes 29 

 30 

1. Introduction 31 

Understanding the secular evolution of the continental crust and the onset of subduction-32 

driven tectonics has been based on analytical experiments, modelling and/or field 33 

relationships (Stern et al., 2005, 2016; Condie and Pease, 2008; Korenaga, 2013; Moore and 34 

Webb, 2013; Gerya et al., 2015; Roberts and Spencer, 2015; Smart et al., 2016). Even so, the 35 

matter of when and how plate tectonics begun is still heavily debated (Moyen et al., 2006; 36 

Cawood et al., 2009; Arndt and Davaille, 2013; Hawkesworth et al., 2016; Smart et al., 2016; 37 

Stern et al., 2016, 2017; Ernst, 2017; Rozel et al., 2017). Proponents of plate tectonics 38 

beginning in the Archean (e.g. Dhuime et al., 2012; Cawood et al., 2013; Condie, 2016) agree 39 
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on two points: (1) most of the crust had been produced by the end of the Archean; (2) 40 

subduction-driven plate tectonics is a gradual and evolving mechanism, which started at ca. 41 

3.0 Ga and evolved to a modern style by ca. 2.5 Ga. A secular geochemical transition in arc-42 

related magmas reflects the second observation, where the opening of the mantle wedge after 43 

a period of shallower subduction promoted interaction between metasomatised mantle and 44 

crustal derived magmas (Martin and Moyen, 2002; Martin et al., 2010). Globally, this 45 

tectonic change is recorded by a geochemical transition starting with Tonalite-Trondhjemite-46 

Granodiorite (TTG) magmas dominantly produced during the Palaeoarchaean. Processes 47 

gradually evolved from ca. 3.0 Ga towards sanukitoids (high Ba-Sr), in places accompanied 48 

by hybrid granitoids (Shirey and Hanson, 1984; Laurent et al., 2014) at 2.5 Ga.  49 

The subsequent scenario of Earth’s geodynamics was marked by an apparent “global 50 

magmatic shutdown”, also referred to as the Siderian Quiet Interval (2.45–2.20 Ga; e.g. 51 

Condie et al., 2009; Perhsson et al., 2014) or the presently-preferred terminology “magmatic 52 

lull” (Stern et al., 2017). Lithospheric stagnation is proposed to explain this period of little 53 

addition of juvenile magmas to the continental crust, and is recorded as a temporal hiatus 54 

within large datasets of magmatic and detrital zircon ages (O'Neill et al., 2007; Condie et al., 55 

2009).  However, the notion of a shutdown of plate tectonics is increasingly questioned due 56 

to documentation of many rock types within the proposed interval (for a recent review see 57 

Partin et al., 2014). The perceived lack of data is attributed either to sampling bias or a 58 

geological response to supercontinent assembly. In the second option, the amalgamation of 59 

the first supercontinent possessing margins akin to current continents (Flament et al., 2008), 60 

named Kenorland (Williams et al., 1991), shortened the cumulative length of active 61 

subduction zones and, therefore, reduced magmatic activity (Silver and Behn, 2008; Perhsson 62 

et al., 2014). 63 

Recent studies in the Mineiro Belt, southern Brazil, reported important occurrences of 64 

plutonic igneous rocks that fit in the aforementioned time gap (e.g. Seixas et al., 2012; 65 

Teixeira et al., 2015). They describe the Lagoa Dourada and Resende Costa TTG juvenile 66 

suites in the southern portion of the São Francisco Craton (SSFC), dated at ca. 2.35–2.30 Ga 67 

(Fig. 1a–c). The region also contains other juvenile (I-type) magmatic arcs, named the 68 

Serrinha-Tiradentes (ca. 2.22 Ga) and Alto Maranhão (ca. 2.13 Ga) suites (Seixas et al., 2013; 69 

Ávila et al., 2014). The Alto Maranhão Suite is geochemically similar to late Archaean, 70 

mantle-derived sanukitoids (Seixas et al., 2013).  71 
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Figure 2 compiles U-Pb-Hf zircon analyses from the SSFC. Igneous zircons are divided by 72 

different granitoid types based on published petrogenetic classification (yellow for TTG, pink 73 

for hybrid and purple for sanukitoid). Those granitoid types, corresponding to TTG and 74 

hybrid sources, were formed during two time intervals, whereas sanukitoids only formed 75 

during one of these. There is a late TTG to sanukitoid transition starting during the magmatic 76 

lull, indicated in red. Thus, a temporal shift is registered in the secular geochemical evolution 77 

of arc-related magmas straddling the Archaean to Palaeoproterozoic (e.g. Halla et al., 2017). 78 

Major and trace element studies of several granitoids in the region expand the geochemical 79 

dataset from the Mineiro Belt. Major, trace and Rare Earth Elements (REE) are used to 80 

document the transition from TTGs to sanukitoid and hybrid granitoids.  U-Pb analyses of 81 

accessory zircon and titanite and whole rock Sm-Nd and in-situ zircon Lu-Hf isotopic 82 

analyses are used to constrain the crustal sources and isotopic evolution of the Mineiro Belt.  83 

 84 

2. Geological background and rationale  85 

The São Francisco Craton consists of Archaean and Palaeoproterozoic crustal segments, 86 

initially assembled in the Palaeoproterozoic era, and best exposed in its northern and southern 87 

domains. Its counterpart is located in the Congo Craton in central West Africa (e.g. Alkmim 88 

and Marshak, 1998; Teixeira et al., 2015; Aguilar et al., 2017; Teixeira et al., 2017a, b) (Fig. 89 

1a). Collisional processes involved recycling and melting of the Archaean crust during a 90 

protracted high grade metamorphic overprint from ca. 2.10 Ga to 1.94 Ga. The 91 

Palaeoproterozoic belt is evidence of these processes and is known as the Minas Orogen 92 

(Teixeira et al., 2017a) and by various temporally related occurrences in the interior of the 93 

SSFC (Barbosa and Sabaté, 2004; Peucat et al., 2011; Carvalho et al., 2016, 2017; Aguilar et 94 

al., 2017; Alkmim and Teixeira, 2017; Teixeira et al., 2017b).  The Archaean basement of the 95 

southern portion of the craton, the Quadrilátero Ferrífero (QF), is composed of TTGs, which 96 

range in age from 3.20 to 2.76 Ga, later intruded by transitional medium-K to high-K 97 

granitoids between 2.76 and 2.63 Ga (Carneiro, 1992; Lana et al., 2013; Romano et al. 2013; 98 

Farina et al., 2015, 2016; Moreno et al., 2017) (Fig. 1b). In addition, Farina et al. (2015) 99 

revealed that the previously assumed TTGs also had a contribution of melts derived from 100 

continental crust in their genesis (not solely derived from partial melting of mafic oceanic 101 

crust – Moyen and Martin, 2012). Similarly, K-granitoids were formed from the melting of 102 

TTGs and also from low-degree partial melting of metagreywacke. These arguments are 103 

based on detailed geochemical comparison of basement rocks of the QF with experimental 104 
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melts produced by partial melting of TTGs. Indeed, the geochemical and geochronological 105 

evolution of the basement is also temporally related to the deposition and closure of a typical 106 

metavolcanoclastic greenstone belt basin, known as Rio das Velhas Supergroup, in which 107 

metagreywackes were formed (Dorr, 1969; Noce et al., 2005; Baltazar and Zuchetti, 2007; 108 

Lobato et al., 2007; Moreira et al., 2016). Moreover, recent combined U-Pb, Lu-Hf and O 109 

isotopes on single zircons demonstrated that Archaean segments are distinct, presenting 110 

individual evolutionary trends and confirming the presence of metasediments in the 111 

petrogenesis of Neoarchean high-K granitoids (Albert et al., 2016). However, the absence of 112 

sanukitoid magmas that make the link between TTGs to calc-alkaline transition is different 113 

from Archaean cratonic lithosphere worldwide (Laurent et al., 2014; Halla et al., 2017) (Fig. 114 

2). Farina et al. (2015) first reported this deficiency in a thorough geochemical study of three 115 

main granite-gneissic complexes in the region, the Bação, Bonfim and Belo Horizonte 116 

complexes of the SSFC (Fig. 1b). This deficiency casts doubt on models of continental 117 

subduction during the Meso- to Neoarchaean in the region. A lack of sanukitoid magmas 118 

raises the question of when and if it occurred. This is one of the major questions in 119 

understanding the evolutionary history of Archaean crust in the SSFC. 120 

Significantly, the emplacement of potassic magmas in SSFC led to the stabilization of the 121 

Archaean crust (Romano et al., 2013). Heat-producing elements (e.g. K, Th and U) extracted 122 

from the deep crust during partial melting of older crust subsequently partitioned into granite 123 

magmas (Taylor and McLennan, 1985; Romano et al., 2013). The concentration of such 124 

elements in the upper crust is one of the possibilities that led to thermal stability, providing 125 

conditions suitable for the accumulation of the eventual kilometre-thick column of sediments, 126 

and so the lower crust became refractory and resistant to subsequent melting (e.g., Sandiford 127 

and McLaren, 2002). This sedimentation is represented in the SSFC by the 8000 m-thick 128 

Minas Supergroup, an intracratonic rift basin which opened shortly after cratonic stabilization 129 

(after 2.60 Ga) and closed around 2.12 Ga with the deposition of the syn-orogenic Sabará 130 

Group (Machado et al., 1996; Hartmann et al., 2006; Martínez Dopico et al., 2017) (Fig. 2). 131 

The Minas basin contains large Lake Superior-type banded iron formation and a world-class 132 

iron deposit, the Cauê Formation (Dorr, 1969; Rosière et al., 2008).  133 

The Minas Supergroup is unconformably overlain by the Itacolomi Group, deposited after 134 

2.059 Ga (Machado et al., 1996). The inversion and subsequent closure of the Minas basin 135 

was caused by the Palaeoproterozoic orogeny, divided into three main plutonic belts that 136 

together characterize a long-lived system of oceanic and continental magmatic arcs (Teixeira 137 
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et al., 2015, 2017a; Alkmim and Teixeira, 2017) (Fig. 1b): (1) Mineiro Belt (focus of this 138 

study), (2) Mantiqueira Belt, and (3) Juiz de Fora Belt. The last two belts comprise 139 

respectively a Cordilleran-type adjoining terrane emplaced between 2.17 and 2.0 Ga with 140 

Archaean inheritance, and an outermost juvenile-type terrane accreted from 2.20 to 2.0 Ga. 141 

The Palaeoproterozoic suture between these two belts, the Abre Campo shear zone, was 142 

formed during the late Neoproterozoic Araçuaí orogeny, which also strongly deformed and 143 

metamorphosed both terranes (Alkmim and Noce, 2006; Heilbron et al., 2010) (Fig. 1a,b). 144 

In contrast to the Mantiqueira and Juiz de Fora domains, the Mineiro Belt was shielded from 145 

the Neoproterozoic overprint and its plutonic suites range in age from 2.47 to 2.0 Ga (Ávila et 146 

al., 2010, 2014; Barbosa, et al., 2015; Teixeira et al., 2015, 2017a). The belt comprises an 147 

area larger than 6000 km2 bounded to the north by the NE–SW Jeceaba-Bom Sucesso 148 

Lineament, to the east by the NW–SE Congonhas Lineament and to the south by a 149 

Palaeoproterozoic high-grade metamorphic terrane that contains zircons with Archean cores 150 

(Noce et al., 2007)(Fig. 1b). The NE–SW and NW–SE lineaments are major boundaries 151 

between the Mineiro Belt and the Archean continental margin of the proto-São Francisco 152 

Craton (e.g., Teixeira et al. 2015) (Fig. 1c).  153 

Another important difference is that the Mineiro belt is essentially composed of juvenile 154 

granitoids (discussed below) intruded by later phases with different degrees of crustal 155 

contamination/assimilation (e.g., Ávila et al., 2010, 2014; Seixas et al., 2012, 2013; Barbosa 156 

et al., 2015; Teixeira et al., 2015). The mantle signature is given by Lu-Hf and Sm-Nd 157 

analyses, in single zircons or whole rock, correspondingly. Locally, xenoliths and roof 158 

pendants of amphibolite are found (Ávila et al., 2010; Seixas et al., 2012, 2013). The 159 

supracrustal rocks surrounding the granitoids are carbonaceous phyllites, gondites, quartzites, 160 

metagreywackes and tholeiitic-komatiitic metavolcanic rocks (Ávila et al., 2010, 2014). 161 

Metavolcanic-sedimentary sequences are subordinate (for a recent review see Alkmim and 162 

Teixeira, 2017). Amphibolites and metavolcanics have variable source isotope signatures 163 

(εNd(t): -15.9 to +6.1; Ávila et al., 2010, 2014; Teixeira et al., 2015) and U-Pb ages between 164 

2.1 and 2.3 Ga with older Archaean contributions (2.8 and 2.9 Ga). Older supracrustal 165 

sequences (ca. 2.3 Ga) were later intruded by plutonic bodies (2.1 Ga) (Toledo, 2002; 166 

Teixeira et al., 2008; Ávila et al., 2014; Barbosa et al., 2015; Teixeira et al., 2015). Table 1 167 

summarizes the main plutonic occurrences studied so far in the Mineiro Belt, together with 168 

U-Pb ages of zircons and also the published εHf(t) and εNd(t) data. Among them, we draw 169 
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attention here to the Lagoa Dourada, Resende Costa Orthogneiss, Serrinha-Tiradentes and 170 

Alto Maranhão suites (Seixas et al., 2012, 2013; Ávila et al., 2014; Teixeira et al., 2015).  171 

3. Petrogenetic significance of plutonic rocks in the Mineiro Belt 172 

The Lagoa Dourada Suite is the first record of Siderian magmatism within the Mineiro Belt 173 

(crystallisation age of 2349 ± 4 Ma, Seixas et al., 2012). The suite consists of a low-K, high 174 

Al 2O3 and low Mg# juvenile TTG-like suite, evolving from metaluminous tonalites to 175 

slightly peraluminous trondhjemites (Seixas et al., 2012). Its origin is related to partial 176 

melting of a short-lived tholeiitic basaltic source rock (greenstone belt) within the 177 

hornblende-eclogite stability field in an intra-oceanic setting. This origin is supported by 178 

εNd(t) values between +2.1 and +1.0 and partial melt REE modelling (Seixas et al., 2012). To 179 

the west of the Lagoa Dourada Suite, a juvenile metatonalite (Resende Costa Orthogneiss) 180 

was dated by Teixeira et al. (2015) at 2351 ± 48 Ma, yielded εNd(t) mostly between +1.1 to 181 

+3.2 and εHf(t) divided between depleted mantle (up to +4.2) and reworked zircon grains (-2.9 182 

to -9.2). Teixeira et al. (2015), using geochemical and isotopic constraints, grouped both 183 

bodies into a geotectonic unit named the Resende Costa – Lagoa Dourada magmatic arc. The 184 

oldest reported age of plutonic rocks in the Mineiro Belt is from the Cassiterita orthogneiss 185 

(2472 ± 11 to 2414 ± 29 Ma), located to the south of the Lagoa Dourada Suite. Geochemical 186 

and isotopic analyses indicate a TTG-affinity with positive εNd(t) values (+2.7 to +1.5) and 187 

low (87Sr/86Sr)i (0.700–0.702) (Barbosa, 2015). The Cassiterita batholith was incorporated by 188 

Barbosa (2015) as part of the juvenile magmatic arc that comprises the Lagoa Dourada and 189 

the Resende Costa suites, suggesting therefore a protracted evolution for the oldest magmatic 190 

arc in the Mineiro Belt.  191 

The Tiradentes and Serrinha suites together with the Nazareno orthogneiss (2.26–2.21 Ga) 192 

are composed of metagranitoids with mainly granodioritic and minor tonalitic and mafic 193 

andesitic compositions. Geochemistry of the trondhjemites ranges from meta- to 194 

peraluminous, alkali-rich and low Al2O3 (Ávila et al., 2010, 2014). The rocks are grouped 195 

with the Serrinha-Tiradentes magmatic arc (Ávila et al., 2014). Their source was juvenile 196 

with short crustal residence, attested by εNd(t)  values between -0.9 and +2.3 and TDM ages 197 

between 2.6 and 2.3 Ga (Ávila et al. 2014).  198 

The Alto Maranhão Suite is located to the south of the Congonhas Lineament, bordering the 199 

Archaean nucleus of the SSFC and is mainly composed of biotite hornblende tonalites with 200 

abundant commingled dioritic enclaves. The suite is cut by granitoids and pegmatites. The 201 
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crystallization age of this suite is 2130 ± 2 Ma and its εNd(t)  whole rock composition is zero 202 

on average (Seixas et al., 2013). The suite resulted from the melting of the mantle wedge 203 

below a Palaeoproterozoic arc, which was previously metasomatised by TTG-like melts, 204 

similar to the model for sanukitoid genesis (Martin et al., 2010). The TDM extraction line of 205 

this suite superimposes the εNd(t) field of the Lagoa Dourada Suite and, thus, not only marks a 206 

change from an intra-oceanic setting (Lagoa Dourada Suite) to a continental arc setting, but is 207 

consistent with a genetic link between their sources (Seixas et al., 2013).  208 

Other magmatic batholiths and smaller occurrences have similar ages to the Alto Maranhão 209 

Suite (ca. 2.18 to 2.09 Ga), have εNd(t) from -0.2 to -7.3; εHf(t)  from +4.3 to -7.0 and are 210 

widespread in the Mineiro Belt (e.g. Ritápolis, Macuco de Minas, Serra do Camapuã, Represa 211 

de Camargos, Morro do Resende, Nazareno, Rio Grande – Seixas et al., 2013; Barbosa et al., 212 

2015; Alkmim and Teixeira et al., 2017, and references therein).  213 

4. Field relationships, sampling and methodology  214 

Widely distributed granitoids in the Mineiro Belt are weakly to strongly-foliated, representing 215 

variable degrees of deformation and containing igneous textures. The prefix ‘meta’ is omitted 216 

in the following text as the deformation and metamorphism are not the main focus of the 217 

present study. Mafic magmatic enclaves can be either absent or abundant in some outcrops. 218 

Where they occur, they are commonly ellipsoidal with cuspate margins. Macroscopically, the 219 

granitoids are biotite-rich tonalites/granodiorites with variable hornblende contents. Rock-220 

forming minerals in the tonalites are plagioclase, quartz, biotite, amphibole, and absent to 221 

minor K-feldspar (< 5 vol.%). Magnetite, ilmenite, zircon, apatite, titanite, epidote and 222 

allanite are the accessory phases. Syn- to post-magmatic aplite veins crosscut the tonalites.  223 

Twenty-two samples were collected from the main plutonic bodies. The study area is 224 

delimited by coordinates 21°S and 20°30'S, and 44°15'W to 43°30'W (Fig. 1c). Samples were 225 

analysed for major and trace elements at the University of Portsmouth (UK), CRPG (Nancy, 226 

France), ACME and ACT-LABS (both in Canada) laboratories. Major element compositions 227 

were analysed by X-ray Fluorescence Spectrometry (XRF) on glass beads. Trace element 228 

compositions were acquired from fragments of the same beads or from pressed powder 229 

pellets. Fifteen samples had zircon and titanite grains extracted to obtain U-Pb ages. Whole 230 

rock Sm-Nd isotope analyses were performed on eight samples at GEOTOP–UQAM, 231 

Montreal, Canada (n = 6) and at the Brasília University Geochronology laboratory (n = 2) 232 

using the methodology described by Seixas et al. (2012, 2013). In situ zircon Lu-Hf analyses 233 
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were performed on three selected samples at the University of Ouro Preto, Brazil using the 234 

methodology of Albert et al. (2016), Moreira et al. (2016) and Martínez Dopico et al. (2017). 235 

Sample LD5 is the same as Seixas et al. (2012) and had zircons analysed for U-Pb and Lu-Hf 236 

isotopes. A list of the samples used for this study and the methodology applied to each one is 237 

presented in Table 2. Detailed description of individual rock samples and localities as well as 238 

a full report on the analytical techniques is provided in supplementary material A.  239 

5. Results 240 

5.1. U-Pb geochronology  241 

Results from a U-Pb dataset of fifteen samples from the Mineiro Belt enabled the 242 

identification of magmatic episodes at ca. 2.35 Ga, ca. 2.20 Ga and ca. 2.13 Ga and one 243 

ubiquitous metamorphic event at ca. 2.050 Ga, after investigation of the zircon and titanite 244 

morphology and internal structures. A summary of the ages is presented in Table 3.  In this 245 

section, the new analyses for samples 14-SCT-01, 16-RC-01 and 16-RC-03 are presented. 246 

Description of other samples are available in supplementary material A, and analytical data 247 

are presented in supplementary material C.  248 

Zircons from sample 14-SCT-01 are transparent to pale white, elongated and prismatic with 249 

fine oscillatory zoning (Fig. 3a). Apatite inclusions are common. Forty-nine analyses were 250 

carried out on thirty-five grains. Five analyses, including three cores, yielded Archaean ages 251 

between 2660 Ma and 2970 Ma, whereas the other analyses are Rhyacian. Twenty-six 252 

analyses yield an upper intercept age of 2122 ± 3.5 Ma (Fig. 4a). Few grains are concordant 253 

to sub-concordant between 2100 and 2020 Ma (Fig. 4c). The same sample also had five 254 

zircons analysed via ID-TIMS and four yielded a best fit line with upper intercept age of 255 

2121 ± 2 Ma (Fig. 4b). Titanite grains from the same sample are sub-angular and honey 256 

brown in colour (Fig. 3a). Twenty-two grains were analysed and fourteen yielded a concordia 257 

age of 2136 ± 7 Ma (Fig. 4b). One grain returned a 207Pb/206Pb age of 2064 ± 28 Ma which is 258 

100% concordant. The other seven analyses are slightly discordant.  259 

Zircon grains from samples 16-RC1A and 16-RC3A are subhedral to euhedral, and short 260 

prismatic. The most evident feature of the grains in CL is a core-rim structure. Most (90%) 261 

grains show bright cores surrounded by homogeneous dark rims (Fig. 3b). Cores contain fine 262 

oscillatory zoning, whereas rims are homogeneous. A few grains show indentation between 263 

core and rim. One hundred and twenty U-Pb zircon analyses (70 cores, 50 rims) were 264 

acquired from both samples. They yielded similar results and therefore are plotted together in 265 
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a concordia diagram (Fig. 4d). Cores return ages around 2350 Ma (upper intercept age at 266 

2352 ± 11 Ma) while the rims are significantly younger at around 2130 Ma (upper intercept 267 

age at 2151 ± 31 Ma).  Core analyses define a strong Pb-loss trend, with a lower intercept at 268 

around 500 Ma. Titanite grains from this suite are euhedral, yellow honey to brown in colour 269 

and abundant in both samples, reaching 500 µm in size (Fig. 3b). Titanite grains show 270 

igneous texture in BSE imaging, distinguished by patchy zoning patterns and local 271 

overgrowths, commonly possessing zircon inclusions up to 15 µm (Fig. 3b).  Noteworthy and 272 

contrary to examples from the literature (Storey et al., 2006; Khon et al., 2017), Pb in the 273 

titanite grains from sample 16-RC1A is all radiogenic within uncertainty and detection limits 274 

(Fig. 4e), therefore no common Pb correction was applied. Analyses are concordant (>97%), 275 

except for one analyses that was not considered for age calculation. Fourteen analyses give a 276 

consistent concordia age of 2148 ± 6 Ma. Zircon rims and titanite ages overlap within 277 

uncertainty (Fig. 4f).  278 

 279 

U-Pb zircon and titanite ages in this work are in good agreement with previously published 280 

zircon and titanite U-Pb ages from the Mineiro Belt (Noce et al., 2000; Seixas et al., 2012, 281 

2013; Barbosa et al., 2015; Teixeira et al., 2015; Aguilar et al., 2017). Titanite grains have 282 

two distinct groups of ages, at around 2130 Ma and a less abundant one around 2050 Ma. 283 

Overall, zircon and titanite ages of tonalites (17-2130; 16-SBS-1A; 16-SBS-1C and 16-SBS-284 

2B) and the Serra do Camapuã Pluton (14-SCT-01) overlap with the Alto Maranhão Suite, 285 

consistent with a genetic link between them. Sample 16-MSC-1D is significantly older than 286 

Alto Maranhão samples (by 40 to 50 Ma). An older as yet unidentified crustal contribution 287 

should be present in the region, judging by the xenoliths and the few Archaean inherited 288 

zircons in samples 16-SBS-1C and 14-SCT-01. Archaean Hf and Nd model ages also indicate 289 

older crustal materials inherited from the surrounding terranes (Seixas et al., 2012; Barbosa et 290 

al., 2015; Teixeira et al., 2015). 291 

5.2. Geochemistry 292 

Major, trace and REE elements for all samples are presented in supplementary material B. 293 

Geochemistry of most granitoids is consistent with the TTG field defined by Moyen and 294 

Martin (2012) and verified by the normative feldspar classification diagram (Ab-An-Or 295 

ternary feldspar diagram of O’Connor, 1965; with the granitoid fields defined by Barker, 296 

1979) (Fig. 5a), the La/Yb fractionation diagram (Fig. 5b) and the Sr and Y contents (Fig. 297 

5c). The normalised La/Yb vs. Yb diagram divides the samples into two groups: Lagoa 298 
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Dourada Suite plus Resende Costa trondhjemites and remaining samples with higher La/Yb 299 

ratio and Yb concentration (the highest being samples 17-BÇ47 and 14-AMT-03, Fig. 5b). 300 

Similarly, lower (La/Yb)n samples have lower Y concentration. In the diagram by Condie 301 

(2005) (see also Smithies, 2000, 2009), Lagoa Dourada and Resende Costa suites (low 302 

La/Yb) show relative depletion of Mg# against SiO2 and lie in the TTG field. Samples from 303 

the Alto Maranhão Suite have high (La/Yb)n and lie in the adakite field (Fig. 5d). In general, 304 

calc-alkaline samples are metaluminous to slightly peraluminous (i.e. A/CNK ≤ 1.03, except 305 

for the two Resende Costa samples with A/CNK of 1.13–1.15). Their chondrite-normalized 306 

REE patterns indicate enrichment in LREE relative to HREE, flat to steep HREEs and 307 

negligible or small positive Eu anomalies (Fig. 6). Ba + Sr increase in younger samples, 308 

accompanied by higher (La/Yb)n (Fig. 7a). An Sr/Ba isolines diagram shows that samples 309 

that have ratios between 0.5 and 1.5 (Fig. 7b), have high Ba-Sr content up to 2000 ppm (Fig. 310 

7a, c). The exception is the Lagoa Dourada Suite with ratios up to 5.0 and Ba + Sr up to 700 311 

ppm.  312 

Most samples plot in the high-HREE TTG field of Halla et al. (2009), whereas only samples 313 

from the Alto Maranhão Suite are in the sanukitoid field (Fig. 7d). A trace element mantle-314 

normalised diagram shows Nb-Ta, Ti negative anomalies, and positive Sr anomalies (Fig. 6).  315 

Three different geochemical groups can be distinguished for plutonic rocks in the Mineiro 316 

Belt: (1) TTGs with low Mg#, (La/Yb)n, Ba+Sr and (Gd/Er)n content; (2) sanukitoids with 317 

high Mg#, (La/Yb)n, Ba+Sr, (Gd/Er)n; and (3) hybrid granitoids, akin to the second group but 318 

depleted in compatible elements (Fig 4). The third group seems to fit the geochemical 319 

interval between the first and second in the ternary diagram of Laurent et al. (2014). 320 

Compared to the gneisses and granitoids studied by Farina et al. (2015) and Moreno et al. 321 

(2017) (see the Geological Background and Rationale above), the presence of high Ba-Sr 322 

magmas and lack of two-mica granites in the Mineiro Belt plutons differs from the basement 323 

rocks of the SSFC (Fig. 8). A2-type granitoids from Moreno et al. (2017) mostly plot in the 324 

fields corresponding to hybrid and biotite, two-mica granites of Laurent et al. (2014) (Fig. 8). 325 

 326 

The Lagoa Dourada Suite (14-LDT-01 and 16-LD4A) and Resende Costa Suite (16-RC1A 327 

and 16-RC3A) have generally negative slopes between the large ion lithophile (LIL) and the 328 

high-field-strength (HFS) elements with negative anomalies for Nb-Ta and Ti (Fig. 6). These 329 

suites have lower trace element contents than other surrounding granitoids in the Mineiro 330 
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Belt. However, samples from the Lagoa Dourada Suite have relatively flat patterns of LIL 331 

elements, particularly K, Rb, Ba, and Pb and higher Mg and Fe contents compared to the 332 

Resende Costa trondhjemites, which suggests more fractionation and differentiation of the 333 

trondhjemites. On the other hand, Resende Costa trondhjemite samples are more depleted in 334 

HFS elements and REE than the Lagoa Dourada rocks. These two suites of the Mineiro Belt 335 

fit well within the TTG field following the classification of Laurent et al. (2014) and could be 336 

described as low-HREE TTGs (Moyen and Martin, 2012)(Fig. 5d). Geochemical data from 337 

the Cassiterita orthogneiss (Barbosa, 2015) show similar trends to the Lagoa Dourada and 338 

Resende Costa suites, although the LREE are slightly enriched (not shown).  339 

A main difference between samples from the Alto Maranhão Suite (14-AMT-01a, b; 14-340 

AMT-02 and 14-AMT-03) and the Lagoa Dourada and Resende Costa samples, besides 341 

enrichment in compatible elements (e.g. Cr, Mg, Ni), is the enrichment of LIL elements, 342 

principally Ba and Sr. A similarity of these rocks is the general negative correlation between 343 

light and heavy REE and in the mantle-normalized trace element pattern (Fig. 6). This duality 344 

of mantle and crustal signature is typical of sanukitoids (Fig. 8); this suite was accordingly 345 

described as low-Ti sanukitoid by Seixas et al. (2013). The Alto Maranhão Suite is more 346 

depleted in the HREE and in some HFS elements, such as Nb and Zr, compared to the 347 

average composition of sanukitoids from the Limpopo Belt and Pietersburg block in South 348 

Africa.  In addition, the Alto Maranhão Suite has no monzogranitoids with feldspar 349 

phenocrysts, which are common in Archaean sanukitoids.  350 

Several ca. 2.13 Ga tonalite bodies (São Brás do Suaçuí – 16-SBS-1A, 16-SBS-1C and 16-351 

SBS-2B; Água Limpa – 16-MSC-1D; Bombaça – 17-BÇ47, 17-2130; Gagé – 17-GAGE-1, 352 

17-GAGE-2) are peraluminous to metaluminous, calc-alkaline and richer in K2O compared to 353 

samples from the Resende Costa and Lagoa Dourada suites.  REE patterns are similar to the 354 

biotite- and two-mica granites (Fig. 6) and they can be classified as hybrid granitoids 355 

(Laurent et al., 2014) (Fig. 8). Sample 16-MSC-1D is less evolved. Firstly, the sample is 356 

relatively depleted in REE and has a positive Eu anomaly. Secondly, this sample is more Ca-357 

enriched, metaluminous and relatively depleted in LREE, although in the Sun and 358 

McDonough (1995) mantle-normalised diagrams the samples do not show a striking 359 

difference. Samples from Serra do Camapuã Pluton (14-SCT-01; 17-SC713; 17-SC3 and 17-360 

SC4) are metaluminous to peraluminous trondhjemite-granodiorite and have enrichment of 361 

LREE relative to HREE. Samples have positive to slightly negative Eu anomalies and, as 362 

shown in the Sun and McDonough (1995) spider diagram, have similar patterns to the biotite- 363 
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and two-mica granitoids (Fig. 6). Samples plot in the area corresponding to the overlap 364 

between hybrid granitoid and TTG fields (Fig. 8).  365 

Samples 14-CGT-01 and 14-CGT-03 from the Casa Grande tonalite are described separately 366 

due to their different mafic composition. Sample 14-CGT-03 plots in the gabbroic field of the 367 

TAS diagram of Cox et al. (1979) (not shown). This sample was collected from a mafic 368 

portion of the tonalite (see sample description in the supplementary file) and is composed of 369 

40% to 50% mafic minerals (hornblende + biotite + magnetite). This segregated portion of 370 

the outcrop also plots in the field of the mafic magmatic enclaves of the Alto Maranhão Suite 371 

in the AFM diagram. Among other possibilities, this segment of the tonalite represents an 372 

incompletely-mixed enclave.  This sample is also enriched in HREE compared to other 373 

samples from this study. Sample 14-CGT-01 is also more mafic than the other tonalites and 374 

has intermediate silica content (60 wt.%), classified as a diorite. Ba and Sr contents of this 375 

sample are ca. 600 ppm each, but reach ca. 450 and 400 ppm in sample 16-CGT-03. Both 376 

samples plot in the sanukitoid field in the Laurent et al. (2014) diagram, biased by their Mg# 377 

and FeOt abundance.  378 

5.3. Sm-Nd isotope analyses 379 

Table 4 reports the Nd isotopic composition of eight samples from selected plutons in the 380 

Mineiro Belt. The results for all the analysed rocks are presented in an εNd versus time 381 

diagram in Fig. 9a. Sample 17-2130 has Sm–NdTDM age of 2.4 Ga and yields εNd(t) value of -1.0 382 

for a crystallisation age of 2130 Ma. Sample 14-SCT-01, from the Serra do Camapuã Pluton, 383 

yields εNd(t) = -0.8 at 2121 Ma, with Sm–NdTDM age of ca. 2.5 Ga. Another sample (17-SC3) 384 

collected from the same quarry yields similar values within uncertainty, confirming the 385 

homogeneous isotopic character of the pluton. Samples 17-GAGE-1 and 17-GAGE-2 yield 386 

respectively εNd(t) of -0.1 and 0.1 and both have NdTDM ages of 2.4 Ga for an estimated age of 387 

2130 Ma. Sample 16-SBS-1A has a model age of 2.3 Ga and εNd(t) = +0.3 at  2130 Ma. Sm-388 

Nd isotopes suggest a mantle-derived source, but crustal contribution is assumed during their 389 

genesis considering the presence of some Archaean inherited zircons in the spatially and 390 

temporally correlated sample 16-SBS-1C. Data from sample 16-SBS-2B yield TDM = 2.4 Ga, 391 

εNd(t) = -0.2 at 2130 Ma. Sample 16-MSC-1D has TDM age of 2.6 Ga and εNd(t) = -2.9 at 2180 392 

Ma.  393 

Samples have εNd(t) close to zero and crystallisation ages at around 2130 Ma, except for 394 

sample 16-MSC-1D, which is ca. 50 Ma older than the other rocks analysed for Sm-Nd 395 
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isotopes. These two features are found in the Alto Maranhão Suite (Seixas et al., 2012). The 396 

NdTDM ages range from 2.3 and 2.4 Ga, apart from the Serra do Camapuã (14-SCT-01 and 17-397 

SC3) and 16-MSC-1D samples, which have model ages of 2.5 Ga and 2.6 Ga.  398 

5.4. Lu-Hf isotope analyses 399 

Fifty-eight Lu-Hf analyses were performed on top of U-Pb analyses on zircons from samples 400 

LD5, 17-2130 and 14-SCT-01 (Fig. 9b). Hf analyses on zircons from the Lagoa Dourada 401 

sample (LD5 – concordia U-Pb age of 2356 ± 4 Ma) plot in a narrow field with εHf(2350Ma) 402 

values between +4.3 and +5.6, consistent with a juvenile origin. One grain had core and rim 403 

analysed and yielded similar 207Pb/206Pb age and εHf(t) within uncertainty, respectively of 404 

2356 ± 22 Ma; +4.3 ± 0.8 (grain 34c) and 2357 ± 21 Ma; +4.9 ± 0.6 (grain 34r). Model ages 405 

range from 2.37 to 2.44 Ga. Data are consistent with published Sm-Nd isotopes from the 406 

same sample (εNd(2350Ma)= +2.1, NdTDM= 2.4 Ga - Seixas et al., 2013) as well as with published 407 

data from nearby plutons (Barbosa et al., 2015; Teixeira et al., 2015). Nineteen Hf analyses 408 

were carried out on zircons from sample 17-2130. εHf(2120Ma) ranges from -1.2 ± 0.7 to 0.9 ± 409 

0.8 (2σ error) with an average of zero and the HfTDM ages range from 2.44 to 2.55 Ga. Results 410 

are compatible with Sm-Nd analyses of the whole rock and the near-chondritic signature 411 

attests to the juvenile origin of the magma. Nineteen Hf analyses on zircons from sample 14-412 

SCT-01 yielded εHf(2121Ma) from -11.4 to +1.4 and respectively, HfTDM ages of 3.11 to 2.41 Ga. 413 

Negative values are due to a few analysed grains, which are 6 to 10% discordant. The U-Pb 414 

discordance shifts the εHf towards negative values even when the εHf(t) is calculated at the 415 

preferred age of the grain or rock (Vervoort and Kemp, 2016). In fact, the selected 100% 416 

concordant grains only give εHf(t) values at around zero, which matches the near chondritic 417 

εNd(t) of the whole rock. 418 

6. Discussion 419 

In the following, we explore why the juvenile additions to the crust were high in the Mineiro 420 

Belt during the Palaeoproterozoic magmatic lull, the evolution of the region through 421 

successive episodes of magmatic arc amalgamation, geochemical evolution compared with 422 

that proposed for Archaean granitoids (e.g. Laurent et al., 2014) and future directions in the 423 

study of Siderian and Rhyacian plutonism.  424 

6.1. Juvenile nature of Mineiro Belt 425 

Most Sm-Nd and Lu-Hf analyses of granitoids in the Mineiro Belt indicate juvenile to 426 

chondritic signatures (Ávila et al., 2010, 2014; Seixas et al., 2012, 2013; Teixeira et al., 2015; 427 
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this study). In general, εNd(t) is around zero and the similar NdTDM  implies a short-lived 428 

Palaeoprotrozoic source for the parent rocks, after which they remelted to generate the 429 

existing granitoids (Table 4). The exception is sample 16-MSC-1D, which has a εNd(2180Ma) 430 

value of -2.9. This negative value is derived from crustal assimilation of amphibolite rafts 431 

included within the tonalite (see supplementary material A). The superposition of εNd and 432 

depleted mantle evolution line of the amphibolite (sample TH; Seixas et al., 2012) reinforces 433 

this hypothesis. This is because the amphibolites have NdTDM of 3.3 Ga and evolve to negative 434 

εNd values at the age of the tonalite crystallisation (2.18 Ga) when the assimilation most likely 435 

occurred (Fig. 9a). 436 

The Lagoa Dourada Suite has whole rock Sm-NdTDM ages between 2400 and 2500 Ma, which 437 

implies short crustal residence time, with significant positive εNd(2350Ma) between +1.0 and 438 

+2.1 and εHf(2350Ma) up to +5.6. The Lu-HfTDM ages range between 2370 and 2440 Ma. This 439 

defines the depleted mantle source. Noticeably, Lu-Hf analyses of zircons from this suite 440 

yielded a crustal residence time as short as 15 to 20 Ma. The generally shorter crustal 441 

residence time of the Lagoa Dourada Suite suggests a relatively thinner and mafic crustal 442 

segment during the periods of magma emplacement (Dhuime et al., 2015). 443 

In contrast, the Resende Costa Suite has older HfTDM ages in ca. 2350 Ma grains, ranging from 444 

2400 to 3400 Ma and one grain has εHf(t) as low as -9.0. However, whole rock εNd(2350Ma) 445 

between +1.1 and +3.2 and the εHf(2350Ma) of the spatially related Restinga de Baixo 446 

amphibolite (mostly between +4 and +7) suggests a juvenile signature (Fig. 9b) (Teixeira et 447 

al., 2015).  448 

The Serrinha-Tiradentes Suite (Ávila et al., 2010, 2014) and the Alto Maranhão Suite (Seixas 449 

et al., 2013) dated at 2.23 and 2.13 Ga are juvenile segments of the Mineiro Belt, due to their 450 

εNd(t) signatures up to +2.3 and +0.9, respectively. Roughly contemporary plutonic rocks 451 

dated between 2.17 and 2.12 Ga also display positive εNd(t) and εHf(t) and broaden the isotopic 452 

composition, yet confer a juvenile signature to the belt (Table 1). 453 

 Volcanoclastic sequences around main plutonic bodies in the Mineiro Belt are rich in mafic 454 

volcanic rocks with juvenile isotopic signatures, consistent with an intra-oceanic setting 455 

(Ávila et al., 2010, 2014). Juvenile tonalites of the Mineiro Belt represent a shift to a ca. 2.13 456 

Ga continental arc with mantle wedge interaction, in agreement with previous tectonic 457 

models (Seixas et al., 2013; Barbosa, 2015; Barbosa et al., 2015). The diversity of other 458 
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magmatic occurrences in the Mineiro Belt corresponds to magmatic differentiation of the 459 

sanukitoid end member.  460 

Supracrustal sequences in the Mineiro Belt contain Archaean detrital zircons but have 461 

maximum deposition ages of ca. 2100 Ma and ca. 2300 Ma, an interval of hundreds of 462 

million years (Teixeira et al., 2012, 2015; Ávila et al. 2014). Thus, few Archaean Lu-HfTDM 463 

ages in zircons from plutonic rocks of the Mineiro Belt are derived from cratonic areas. 464 

Indeed, Palaeoproterozoic zircon TDM ages are as old as both detrital and igneous zircons 465 

from Archaean domains (Moreira et al., 2016; Martínez Dopico et al., 2017). Moreover, U-Pb 466 

and Lu-Hf analyses of detrital zircons of the syn-orogenic Sabará Group have ages between 467 

2300 and 2100 Ma and εHf(t) from ca. +7.0 to -9.0 (Martínez Dopico et al., 2017). Therefore, 468 

the negative εHf values are interpreted either as reworked zircon grains derived from 469 

Archaean materials or minor crustal assimilation (e.g. Woodhead et al., 2001; Nebel et al., 470 

2011; Teixeira et al., 2015).  471 

6.2. Metamorphic and multiple stage history of the Mineiro Belt 472 

The magmatic-tectono-metamorphic evolution of the Mineiro Belt is poorly understood. 473 

Regional greenschist to amphibolite facies metamorphism is documented as the evidence of 474 

collision between the Palaeoproterozoic plutonic arcs and the Archean core of the SFC (Ávila 475 

et al., 2010, 2014; Barbosa et al., 2015). The significance of young ages in relation to older 476 

crystallised bodies is not clear, although rim ages of 2130 Ma surrounding older zircon cores 477 

(ca. 2350 Ma) has been previously reported and interpreted as metamorphic domains 478 

(Teixeira et al., 2015). Zircon is commonly the preferred mineral for U-Pb isotope studies 479 

aimed at determining the age of crystallisation of granitoid rocks, because of its resistance to 480 

thermal resetting (e.g. Schaltelgger et al., 2017).  However, zircon rims from this study 481 

(samples 16-RC1A and 16-RC3A) define a typical trend of variable degrees of Pb-loss, 482 

caused either by radiation damage (e.g. Cherniak et al., 1991), or by recrystallisation under 483 

metamorphic conditions (e.g. Pigeon, 1992) and consequently an intercept age with a 484 

substandard MSWD of 82 (see supplementary material A). Previous interpretations of 485 

metamorphic age were based on Pb loss, low Th/U and more radioactive nuclei that are 486 

significantly older (Teixeira et al., 2015). Zircon rims also have high U concentration (ca. 800 487 

ppm on average), reflected in dark CL images, which contributed to metamictization and Pb-488 

loss (e.g. Geisler et al., 2002). To clarify these points, titanite is an ideal geochronometer due 489 

its comparatively low closure temperature (ca. 650 °C, Pidgeon et al., 1996). This closure 490 

either indicates cooling of an igneous system or high grade metamorphic event (>650 °C) 491 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

(Frost et al., 2000). Additionally, titanite analyses yielded in this study have a more reliable 492 

MSWD when compared to zircon rims (due to scattering by Pb-loss in the latter). 493 

U-Pb analyses on titanite grains of sample 16-RC1A yielded a concordia age of 2148 ± 6 Ma 494 

which is equal within uncertainty to the upper intercept age of zircon rims from the same 495 

sample (Fig. 4c). The question still remains whether this age represents a metamorphic 496 

overprint of rocks crystallised at 2350 Ma (core ages) or igneous crystallisation age meaning 497 

the older cores represent inherited zircons. Given the discrepancy in the Lu-Hf analyses of 498 

this work and the more evolved character of the Resende Costa Suite, the authors are inclined 499 

to the inheritance hypothesis. The Resende Costa trondhjemites zircon grains have εHf(2350Ma) 500 

divided into two groups, consistent with juvenile (+4.2 and +1.0) and reworked zircon grains 501 

(-2.9 to -9.2), in which the second represents involvement of subducted sedimentary material 502 

(Teixeira et al., 2015). Secondly, Th/U ratios of zircon rims, albeit undeniably lower than 503 

zircon cores, are in general above 0.1 and variable (up to 0.4).  Titanite grains have a 504 

relatively constant Th/U composition probably reflecting growth at chemical equilibrium 505 

with the local mineral assemblage. Additionally, abundant zircon inclusions in titanite were 506 

incorporated during crystallisation of the host, unusual in metamorphic titanites. Kohn et al. 507 

(2017) pointed out that metamorphic titanites grow both during prograde and retrograde 508 

metamorphism, not during peak conditions. Therefore, like zircon rims, titanites formed at 509 

lower-P during the continental arc stage (Kohn et al., 2015). Thus, remelting of intermediate 510 

portions of Lagoa Dourada Suite (ca. 62 wt.% SiO2) explains the decoupling effect witnessed 511 

in these samples and the presence of ca. 2350 Ma zircon cores. If so, the Resende Costa Suite 512 

crystallised much later, at 2148 ± 6 Ma, given the crystallisation age of the titanite grains and 513 

zircon rims (Table 2). 514 

The youngest age defined by some zircon rims and a few titanite grains is around 2050 Ma 515 

(Table 4). This same age was reported in monazite and titanite from a broad variety of rocks 516 

surrounding the Archaean core of the SSFC (Aguilar et al., 2017); in zircon rims from the 517 

Kinawa migmatite (2034 ± 32 Ma; 2048 ± 24 Ma – Carvalho et al., 2016, 2017); and in the 518 

Itapecirica graphite schist, formed during migmatization/granulite metamorphism of 519 

carbonaceous sedimentary rocks at ca. 2000 Ma (Teixeira et al., 2017b).  Titanite ages near 520 

2000 Ma are related to the collapse of the Minas Orogen, which affected the Archaean and 521 

Palaeoproterozoic domains during formation of the dome-and-keel architecture in the QF 522 

(Marshak et al., 1997; Alkmim and Marshak, 1998; Aguilar et al., 2017). The data suggest 523 

that collapse affected the older Archaean basement and the orogen itself. Final evolution of 524 
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the Mineiro Belt is composed of two phases: (1) collisional stage at ca. 2130 to 2100 Ma 525 

(second metamorphic event of Ávila et al., 2010) and (2) collapse and slow cooling at ca. 526 

2050 to 1950 Ma, incorporating the third metamorphic event of Ávila et al. (2010), and data 527 

from Aguilar et al. (2017). The short time between them is explained as rapid relaxation of 528 

the crust, not onset of a rift basin. Breakup occurred between 1800 and 1700 Ma, when the 529 

Espinhaço Supergroup and the mafic dykes of the QF first appeared (Marshak and Alkmim, 530 

1989; Almeida et al., 2000; Cederberg et al., 2016).  The two youngest sedimentary units of 531 

the QF are consistent with these observations. First, the main source of the Sabará Group 532 

(Dorr, 1969; Machado et al., 1996) comes from the Minas Orogen and reflects the change in 533 

tectonic regime as the orogen evolved and the SSFC craton acted as the foreland to flysch-534 

type deposition (Alkmim and Martins-Neto, 2012). The maximum depositional age of the 535 

sequence is given by a zircon ID-TIMS age of 2125 ± 4 Ma (Machado et al., 1996) coeval 536 

with the main collisional stage of the belt against the Archaean portion of the craton. The 537 

second sedimentary unit, the Itacolomi Group, lies unconformably on top of the Minas 538 

Supergroup and corresponds to an intramontane molasse basin deposited during the Minas 539 

Orogen collapse (Hartmann et al., 2006; Alkmim and Martins-Neto, 2012) after 2058 ± 9 Ma 540 

(Alkmim et al., 2014). Accordingly, this age matches with the youngest zircon and titanite 541 

ages of this study. Likely, titanite first crystallised during the magma cooling and later 542 

thermal overprint due to the Mineiro Belt collapse. 543 

6.3. Building continental crust during the magmatic lull – The geochemical evolutionary 544 

trend 545 

The Mineiro Belt is a natural laboratory for the understanding of crustal evolution during the 546 

Palaeoproterozoic, because it contains a rare occurrence of juvenile Siderian TTGs on Earth 547 

and because of the composition of granitoids that vary through time and space. At this unique 548 

geological time, Earth was dominated by hot and shallow subduction (e.g. Dhuime et al., 549 

2012; Hawkesworth et al., 2016), increasing oxygen levels in the atmosphere (e.g. Catling et 550 

al., 2005) and a rare set of island arcs occupied Earth’s oceanic lithosphere. In this respect, 551 

the study area of this work and three other TTG island arc-like magmas were generated in the 552 

Siderian period in Brazil.  553 

Macambira et al. (2009) reported in the Amazonian Craton 2.36 Ga juvenile intermediate 554 

rocks with εNd(t) from −0.87 to +0.78 and some other granitoids with similar signatures. 555 

Santos et al. (2009) described analogous occurrences in the western portion of the Borborema 556 

Province where ca. 2.35 Ga granodioritic gneisses have positive εNd(t) and an island arc 557 
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seems the most likely tectonic setting. Also, Girelli et al. (2016) reported juvenile 558 

granodiorites of the Santa Maria Chico Granulitic Complex, in the Rio de La Plata Craton, 559 

southern Brazil, for which zircon ages range from 2.38 Ga to 2.28 Ga with positive εHf(t) 560 

between +0.29 and +9.64. These island arcs, similar to the tectonic evolution of the Mineiro 561 

Belt, collided against Archaean cratonic areas at ca. 2.1 Ga (Vasquez et al., 2008; dos Santos 562 

et al., 2009; Santos et al., 2003). In Brazil, the collage of Archaean and accreted 563 

Palaeoproterozoic terranes at this time is defined as the Transamazonian Orogeny (for the 564 

Amazonian Craton) or Minas accretionary orogeny (for the SFC) (Alkmim and Marshak, 565 

1998; Teixeira et al., 2015, 2017a). Globally, other occurrences of juvenile TTG suites have 566 

been reported in Canada, China, Australia and West Africa (for details see compilation of 567 

Partin et al., 2014 and references therein). 568 

Chronologically, older granitoids in the Mineiro Belt are less enriched in Ba and Sr than the 569 

younger rocks. For example, the Lagoa Dourada Suite (ca. 2350 Ma) is depleted in Ba + Sr, 570 

rarely possessing more than 700 ppm and characterised by Sr/Ba > 1.5.  Similarly, sample 571 

16-MSC-1D is dated at 2180 Ma and is 40%−50% less enriched in Ba + Sr than the ca. 2130 572 

Ma granitoids, which have significantly more enriched concentrations (Fig. 5a−c). 573 

Nevertheless, the ca. 2130 Ma granitoids are not sanukitoids/adakites as the Alto Maranhão 574 

Suite is. However, geochemically they all sit between sanukitoid and hybrid granites sensu 575 

Laurent et al. (2014) (Fig. 8). These Palaeoproterozoic ‘hybrid’ magmas were initially 576 

described as miscellaneous by Seixas et al. (2012, 2013) or broadly incorporated as the Alto 577 

Maranhão Suite, Ritápolis batholith and coeval rocks (Barbosa et al., 2015; Teixeira et al., 578 

2015; Alkmim and Teixeira, 2017). In this study, they are interpreted as a ca. 2130 Ma 579 

juvenile high Ba-Sr suite. This group is distinguished from the Alto Maranhão Suite (after the 580 

definition of Seixas et al., 2013) by low concentrations of compatible elements (i.e. Cr, Ni 581 

and Mg#) (Figs. 5d and 7d). Even so, the absence of crustal reworking in the genesis of the 582 

juvenile Ba-Sr suite causes the resemblance with the sanukitoids, rather than being similar to 583 

the hybrid granitoids sensu stricto of Laurent et al. (2014). The coeval age of the plutons, the 584 

similar geochemistry (but with relative depletion in Mg#, Cr and Ni) and the Sm-Nd isotopic 585 

signature can be used to incorporate these occurrences into the Alto Maranhão Suite. If so, 586 

the area of exposed juvenile high Ba-Sr magmatism is up to 500 km2, with 300 km2 defined 587 

as the sanukitoid suite (i.e. Alto Maranhão Suite). Comparable with the Alto Maranhão Suite, 588 

these coeval plutons were derived from a similar juvenile source with a slightly higher degree 589 

of fractional crystallisation and little assimilation of older crustal rocks. Alternatively, they 590 
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could have been derived from a different source, whereby the miscellaneous tonalites were 591 

not sourced from the metasomatised mantle, but from a lower portion of the crust above the 592 

mantle wedge.  593 

Therefore, Siderian-Rhyacian evolution stage of the Mineiro Belt was akin to high Ba-Sr 594 

magmas (e.g. Tarney and Jones, 1994; Fowler and Rollinson 2012; Laurent et al., 2014) and 595 

resembles the Archaean−Palaeoproterozoic transition from TTG to sanukitoid magmas (e.g. 596 

Martin and Moyen, 2002; Halla et al., 2017). Thus, delayed geochemical transition occurred 597 

compared to other cratonic areas in the continents (Laurent et al., 2014; Halla et al., 2017), 598 

also supported by a lack of this secular geochemical transformation in the Archaean nucleus 599 

of the SFC (Figs. 2 and 8). 600 

6.4. Implications and future evaluation of the magmatic lull 601 

Depleted mantle model ages are debated as to whether they represent real ages and direct 602 

measure of the timing of juvenile crust addition to the continents (e.g. Payne et al., 2016). 603 

However, uncertainties related to model ages do not disrupt the overall shape and meaning of 604 

the calculated crustal growth curve based on large datasets (Dhuime et al., 2017). In the 605 

following, we present a compilation of 2067 Lu-Hf analyses published so far both in igneous 606 

and detrital zircons of the QF and Mineiro Belt, plotted as crustal residence time versus age 607 

(Fig. 10). Model ages are used in calculations simply by subtracting their values from 608 

crystallisation ages and the results represent a rough estimation of crustal residence time (e.g. 609 

Griffin et al., 2006). Thus, the presented diagram is considered in its qualitative meaning and 610 

general sense (Vervoort and Kemp, 2016). Blue and grey dots display negative εHf(t), while 611 

red dots are positive. Respectively, red and grey linear functions are composed of positive 612 

and negative εHf(t) and depict different gradients. Red dots appear to oscillate regularly 613 

through time, although defining a shallow slope towards younger ages. In fact, juvenile 614 

compositions result in restricted residence times and a low slope (0.0982 ± 0.002), whereas 615 

reworked material has a broader residence time and a steeper slope (0.3843 ± 0.008). The 616 

yellow interval in the diagram shows a pause of ca. 200 Ma followed by addition of juvenile 617 

magmas into the crust (Fig. 10). A repetition of TTG magma production occurred in the 618 

region at this stage as shown previously in Fig. 2. Similarly, the two periods were followed 619 

by an increase in crustal recycling, highlighted by the orange lines, with an inflexion shortly 620 

after juvenile magma additions. Increase of recycling seen in the Archaean was associated 621 

with the collisional system and continent amalgamation (e.g. Moreira et al., 2016; Martínez 622 
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Dopico et al., 2017), while in the Palaeoproterozoic it was associated with the Mineiro Belt 623 

collision against the cratonic margins at ca. 2100 Ma. Indeed, εHf values in zircon become 624 

increasingly enriched (lower εHf) towards collisional/compressional phases in peripheral 625 

orogenic settings (e.g. Roberts and Spencer, 2015).    626 

A diminishing number of ages between 2.6 Ga and 2.4 Ga is apparent. The lack of data 627 

during this interval of almost 200 Ma is mainly due to a decrease in magmatism. 628 

Characterization of ca. 2650 Ma A-type magmatism in the western region of the QF (Moreno 629 

et al., 2017) corresponds to breakup after lithospheric stabilization (Condie et al., 2015).  630 

Supercontinent fragmentation, together with the emergence of Wilson cycle-type 631 

sedimentation, preceded the tectonic evolution of SSFC as controlled by successive accretion 632 

of magmatic arcs, stabilization and rifting (e.g. Alkmim and Marshak, 1998; Alkmim and 633 

Teixeira, 2017; Martínez Dopico et al., 2017). 634 

An increasing number of magmatic occurrences in the last few years are within the magmatic 635 

lull. Kenorland supercontinent assembly is the best option to explain the dearth of 636 

magmatism in this period (Lubnina and Slabunov, 2011; Perhsson et al., 2014).  Indeed, this 637 

hypothesis explains important points regarding Earth’s tectonothermal conditions and 638 

convincingly suggests that plate tectonics did not stop. However, it does not explain the 639 

particular geochemistry and isotopic signature of the magmas generated within the interval, 640 

nor why the same magma-type is not recurrent as a consequence of other continental 641 

amalgamations during different periods (e.g. Condie et al., 2016; Lawley et al., 2016). Recent 642 

Palaeoproterozoic geodynamic reconstruction of the SFC-Congo Craton has been proposed 643 

based on magmatic and metamorphic comparisons with the North China blocks (Cederberg et 644 

al., 2016; Teixeira et al., 2017b). Additional isotopic information is required to formulate a 645 

global tectonic model during the Siderian–Rhyacian interval. For example, a thorough 646 

investigation of variations in high Ba-Sr magmas coupled with a broader dataset of oxygen 647 

isotope and trace element analyses in mineral accessory phases could better characterize 648 

mantle derived contributions and constrain the evolution of the subcontinental lithosphere 649 

and continental crust growth rates (e.g. Dhuime et al., 2012; Hawkesworth and Kemp, 2006; 650 

Heilimo et al., 2013).  651 

7. Conclusions 652 

The Mineiro Belt is composed of a set of arcs. The older arcs (>2.3 Ga) have plutonic rocks 653 

with more characteristic juvenile Hf-Nd signatures and depletion of Ba-Sr when compared to 654 
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younger occurrences in the Mineiro Belt (ca. 2.2 to 2.1 Ga). Geochemical data suggest an 655 

igneous differentiation mechanism for the plutons. The lack of significant Eu anomalies in 656 

the REE patterns argues for a genetic link of the granitoids with the mafic magmas of the 657 

Mineiro Belt. The high Ba and Sr of most ca. 2.13 Ga samples is consistent with a subduction 658 

stage as a factor controlling the sanukitoid geochemical signature of the 2.13 Ga Alto 659 

Maranhão Suite. Magmas coevally emplaced in the Alto Maranhão Suite are envisaged as 660 

formed by underplating melt, above the mantle wedge (e.g. Petford and Atherton, 1996).  661 

Alternatively, they were derived from a subsequent melt of the Alto Maranhão Suite source 662 

and therefore have lower concentrations of compatible elements. The interval between TDM 663 

and crystallisation ages and a small input of inherited older zircons, associated with Pb 664 

anomalies, suggests minor crustal involvement during the genesis of the Mineiro Belt. Coeval 665 

crustal-like magmas were potentially formed during collisional stages in active continental 666 

margin settings (Barbosa et al., 2015). The overall evolution of the Mineiro Belt seems akin 667 

to the secular evolution of granitoids at the Archaean–Palaeoproterozoic boundary. Such 668 

correlation implies a late transition from TTG to sanukitoid magmatism starting within the 669 

magmatic lull in this region. The hybrid granitoids presented in this study are different, 670 

however, to the Archaean hybrid granites defined by Laurent et al. (2014). This is because the 671 

rocks of the Mineiro Belt have a smaller amount of older crust involved in their genesis as 672 

demonstrated by the Hf-Nd analyses, particularly for the 2.35 Ga Lagoa Dourada Suite. We 673 

suggest the presence of an extended passive margin, with dispersed island arcs that eventually 674 

collided against the Archaean craton, ultimately leading to the amalgamation of the São 675 

Francisco palaeocontinent. The results of the present study shed new light on the global 676 

distribution of TTG magmas during a distinct tectonic scenario of Earth’s crustal evolution. 677 
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Figure captions 955 

Figure 1. Geological settings of the São Francisco Craton and its southern margin. (a) Cratons and 956 

Neoproterozoic orogens of South America and Africa in West Gondwana. São Francisco Craton and the 957 

Neoproterozoic margins. Quadrilátero Ferrífero (QF) is situated in the southern domain of the craton where 958 

Archaean crust is exposed (modified from Heilbron et al., 2010; Alkmim and Martins-Neto, 2012); (b) Southern 959 

São Francisco Craton and possible boundary along principal belts during the Minas accretionary orogeny and 960 

later Neoproterozoic belt (modified from Heilbron et al., 2010; Alkmim and Martins-Neto, 2012; Teixeira et al., 961 

2015). Grey dashed line is the Abre Campo shear zone, which defines the contact between Juiz de Fora and 962 

Mantiqueira belts. Red dashed line is current craton boundary; (c) Geological map of Mineiro Belt indicating 963 

principal domains and lithologies of the region (modified from Seixas et al., 2013; Barbosa et al., 2015).  964 

 965 

Figure 2. Compilation of U-Pb-Hf zircon analyses of (a) the Minas Basin containing zircon data ranging in age 966 

from ca. 3.9 Ga to 2.1 Ga (Martínez Dopico et al., 2017) and (b) igneous zircon ages from both Archaean 967 

domains within the QF (Albert et al., 2016) and the Palaeoproterozoic Mineiro Belt (Barbosa et al., 2015; 968 

Teixeira et al., 2015; this study); positive εHf(t) values are black, negative are grey. Positive εHf(t)  percentage is 969 

indicated in specific intervals. Red interval corresponds to the magmatic lull.   970 

 971 

Figure 3. (a) Zircons and titanites from sample 14-SCT-01: (i) millimetre-size titanite grain indicated by white arrow in 972 

hand size sample; (ii) CL image, 206Pb/238U ages and degree of concordance of zircons. Available Lu-Hf spot analyses 973 

shown; (iii) plane polarised light microscope image of euhedral titanite. Apatite inclusions (Ap) indicated; (iv) BSE image of 974 

titanite containing apatite and zircon inclusions. 206Pb/238U age of 2123 ± 23 Ma from the core. Zircon inclusion indicated by 975 

white arrow (b) Zircons and titanites from Resende Costa Suite samples: (i) CL image of zircons from sample 16-RC-3A. 976 

207Pb/206Pb ages indicated; (ii) millimetre size titanite of sample 16-RC-1A indicated by white arrow; (iii) BSE image of 977 

dated titanite (light and dark domains yielded same 206Pb/238U age within uncertainty). Zircon inclusions indicated by white 978 

arrow; (iiv) hand-picked titanite fragments/grains of sample 16-RC-1A used for U-Pb analyses.  979 

 980 

Figure 4. U-Pb analyses of samples 14-SCT-01, 16-RC-1A and 16-RC-3A. (a) LA-ICP-MS analyses of zircons from sample 981 

14-SCT-01. (b) Zircon ID-TIMS analyses and titanite LA-ICP-MS analyses from sample 14-SCT-01. Titanite analyses are 982 

within uncertainty of zircon intercept age (2121 ± 2 Ma), although yielding an older concordia age (ca. 2136 Ma). (c) 983 

Weighted mean average of zircon and titanite 207Pb/206Pb ages obtained from sample 14-SCT-01 displayed with propagated 984 

2σ uncertainties and 2% added in quadrature to account for systematic uncertainty (see Horstwood et al., 2016; Spencer et 985 

al., 2016). Red and white bars correspond to zircon ages and orange bars correspond to titanite ages. Zircon and titanite ages 986 

overlap within uncertainty (d) U-Pb zircon analyses of samples 16-RC-1A and 16-RC-3A. Red and grey ellipses represent 987 

zircon rim and core analyses, respectively. They yielded different intercept ages at ca. 2120 Ma (rim) and ca. 2350 Ma 988 

(core). U-Pb titanite analyses from sample 16-RC-1A are plotted in the same diagram and return ages within uncertainty of 989 

the zircon rims. (e) Concordia age of U-Pb titanite analyses in detail. One analysis at ca. 2086 Ma was not used for the 990 

concordia age calculation. (f) Weighted mean average of zircon and titanite 207Pb/206Pb ages obtained from samples 16-RC-991 

1A and 16-RC-3A displayed as (c). White and red bars correspond to zircon core and rim analyses, respectively. Orange bars 992 

represent titanite ages.  993 
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 994 

Figure 5. Classification diagrams of the studied granitoids. Also plotted: Palaeoproterozoic LDS – Lagoa Dourada Suite 995 

(Seixas et al., 2012), AMS – Alto Maranhão Suite (Seixas et al., 2013) and RC – Resende Costa Suite (Teixeira et al., 2015); 996 

and representative Neoarchean granitoids (according to Laurent et al., 2014). Symbols for the average composition of high 997 

aluminium TTG suites (TTG – yellow star), mantle derived sanukitoid suites (SK – purple star), hybrid granitoids (HYB – 998 

grey star), and crustal derived granitic suites (GT – white star). For the LDS and AMS, parental to evolved magma 999 

compositions are indicated by an arrow, and the field shows the spread of the compositions of each suite. (a) Normative An-1000 

Ab-Or triangle (O’Connor, 1965), with subdivisions modified by Barker (1979). Tdj = trondhjemite, To = tonalite, Grd = 1001 

granodiorite, Gt = granite, Qmz = quartz monzonite. Sample 14-CGT-03 (<10% normative Qz) is not in this diagram. The 1002 

field for Archean TTGs is from Moyen and Martin (2012); (b) The (La/Yb)n vs. Ybn (ppm) diagram, with the field for 1003 

Archean high-aluminium TTG suites and post-Archean granitoids according to Martin (1986). (c) Sr/Y vs. Y (ppm) diagram, 1004 

field of Archean high-aluminium TTG suites and ADR (calc-alkaline post-Archean Andesite-Dacite-Rhyolite suites) from 1005 

Drummond and Defant (1990). (d) Mg# against silica content (wt.%) for the studied granitoids. Adapted from Condie 1006 

(2005), with the delimitation of the compositional field of adakitic volcanic rocks and experimental melts derived from 1007 

metabasalt. AFC = assimilation fractional crystallization model for the pathway of a metabasalt-derived experimental liquid 1008 

(E.L.) through the mantle wedge, tick line = 10% AFC. Underlined numbers show chromium content in ppm of selected 1009 

samples. Sample 14-CGT-03 (51 wt.% SiO2) is not in this diagram. SK and HYB granitoid averages are not represented in 1010 

(b) and (c) diagrams because of higher contents in Ybn and Y, respectively. 1011 

Figure 6. Left column: Average chondrite-normalized REE patterns for studied samples. Yellow field of TTGs and purple 1012 

field of sanukitoids are drawn using the compositions of high and low-pressure TTGs and medium-HREE sanukitoid group 1013 

(Halla et al., 2009). Normalization values are from Boynton (1984); Right column: Mantle-normalized multielement plots 1014 

(McDonough and Sun, 1995). Average sodic TTG composition from Moyen and Martin (2012); average sanukitoid; biotite, 1015 

two-mica and hybrid granitoids compositions from Laurent et al. (2014). Legend as Fig. 5. Samples LD4 and T5 from Seixas 1016 

et al. (2012, 2013) are also plotted in the middle and bottom diagrams as indicated. Samples 14-CGT-01 and 14-CGT-03 are 1017 

not plotted.  1018 

Figure 7. Classification of the studied granitoids in the Sr + Ba (ppm) vs. Na2O/K2O (wt.%) diagram (a) proposed by Halla 1019 

et al. (2009). Inset (b) shows the content (ppm) of Sr and Ba and the lines for equal Sr/Ba ratio. Legend as Fig. 5. Triangular 1020 

diagram Rb-Ba-Sr (c), with the field for Low and High Ba-Sr granites from Tarney and Jones (1994). (d) (Gd/Er)n vs. MgO 1021 

wt.% diagram (Halla et al., 2009). Legend as Fig. 5. 1022 

Figure 8. Archean and Palaeoproterozoic geochemistry and isotopic data from the SSFC. Ternary classification diagram 1023 

from Laurent et al. (2014). Triangle vertices are: 2 × A/CNK (molar Al2O3/(CaO + K2O + Na2O) ratio); Na2O/K2O and 2 × 1024 

(FeOt + MgO) × (Sr + Ba)wt.%(=FMSB). Red symbols are Archaean TTG and K-granitoids from Farina et al. (2015). Open 1025 

red squares are from Moreno et al. (2017). Legend as Fig. 5.  1026 

 1027 

Figure 9. (a) εNd versus time diagram for granitoid samples of this study. DM = depleted mantle model from DePaolo 1028 

(1981). CHUR = Chondritic Uniform Reservoir. Also plotted evolutionary Nd isotope lines for Alto Maranhão (purple area) 1029 

and Lagoa Dourada (yellow area) suites, representing Palaeoproterozoic juvenile crust; tholeiitic amphibolite from Ribeirão 1030 

Água Limpa outcrop, representative of mafic crust; and intermediate to acid plutonic orthogneisses from eastern and 1031 

northern terrane, representing Mesoarchean sialic crust (data from Seixas et al., 2012, 2013). Data from Table 4. (b) εHf(t) 1032 

against 207Pb/206Pb ages diagram. Data from samples 17-2130, 14-SCT-01 (grey diamonds) and LD5 (yellow diamonds). 1033 

Pink and grey dots correspond to analyses from Barbosa et al. (2015) and Teixeira et al. (2015), respectively. Grey numbers 1034 
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point out the discordance percentage of U-Pb analyses justifying the few negative εHf values. CHUR constants of Bouvier et 1035 

al. (2008; 176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336) and TDM constants of Blichert-Toft and Puchtel (2010; 1036 

176Hf/177Hf = 0.283294 and176Lu/177Hf = 0.03933) were used for calculation of εHf(t), CHUR and depleted mantle evolution 1037 

trend (DM).  1038 

Figure 10. Compilation of 2067 U-Pb-Hf analyses of detrital and igneous zircons from the QF and Mineiro Belt (Barbosa et 1039 

al., 2015; Teixeira et al., 2015; Albert et al., 2016; Moreira et al., 2016; Martínez Dopico et al., 2017; this study). 1040 

Crystallisation age - TDM (Ma) vs. 207Pb/206Pb age (Ma) diagram shows positive εHf(t)  values result in restricted residence 1041 

time as they represent juvenile compositions of the source magma. Grey linear function depicts greater angular coefficient 1042 

than red analogue, which suggest increase of recycling process through time and relative steady juvenile addition to the 1043 

crust. Two orange dashed curves suggest increase periods of crustal recycling. Ten analyses were not used for linear trends 1044 

calculation because they present unrealistic crustal residence time (i.e. Crystallisation age - TDM > 0). 1045 

 1046 

Table 1 Simplified isotopic-geochemical characteristics of plutonic arcs of the Mineiro Belt.  1047 

Table 2 Summary of methodology applied to each sample of this study. See Fig. 1c for samples localities. 1048 

Table 3 Summary of ages by this study for plutonic rocks in the Mineiro Belt. 207Pb/206Pb ages.  1049 

 1050 

Table 4 Nd isotope composition of studied samples. 1051 

 1052 

 1053 
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Table 1 Simplified isotopic-geochemical characteristics of plutonic arcs of the Mineiro Belt.  

OP Age (Ga) Geochemistry Isotopic constraint 

 

TDM (Ga) Reference  

1 2.47–2.41 TTG affinity, peraluminous, 

high Al2O3  

εNd(t)(wr) = +2.0 2.5 (wr) [1] 

2  2.35 TTG affinity, metaluminous 

to slightly peraluminous, 

high Al2O3 

εNd(t) (wr) = +1.0 to 

+2.1;  

 

2.4–2.5 (wr) [3] 

2* 2.35–2.32 TTG affinity, peraluminous, 

high-Al2O3 

εNd(t) (wr) = +1.1 to 

+3.2;  

εHf(t)(zr) = +4.3 to 

-9.0 

2.4–2.5 (wr) 

2.3–3.4 (zr) 

[4] 

3  2.23–2.20 Sub-alkaline to 

calc-alkaline, metaluminous 

to peraluminous 

εNd(t) (wr) = -0.8 to 

+2.3 

2.3–2.6 (wr) [5];[6] 

4  2.18–2.09 Calc-alkaline, 

metaluminous to 

peraluminous 

εNd(t) (wr) = -0.2 to 

-7.3 

εHf(t) (zr) = +4.1 to 

-7.0 

2.3–3.0 (wr) [2];[7]a 

4** 2.13 Sanukitoid affinity high- 

Al 2O3, metaluminous 

εNd(t) (wr) = +0.9 to 

-1.0 

2.3–2.4 (wr) [7]b;[8] 

(OP): Orogenic period; (wr): whole rock; (zr): in situ zircon. 

*Resende Costa is here separated from the Lagoa Dourada Suite, but the two were grouped by Teixeira et al. (2015) (see 

discussion for explanation); **Alto Maranhão has a different signature to this segment as it contains a sanukitoid affinity 

and abundant commingled mafic magmatic enclaves. [1] Barbosa (2015) – Cassiterita; [2] Barbosa et al. (2015) – 

Represa de Carmargos, Rio Grande, Macuco de Minas, Lavras-Poço de Pedra, Morro do Resende, Ribeirão do Amaral 

and Nazareno tonalites; [3] Seixas et al. (2012) – Lagoa Dourada tonalite; [4] Teixeira et al. (2015) – Resende Costa 

Suite; [5] Ávila et al. (2010); [6] Ávila et al. (2014); [7] Noce et al. (2000) – aRitápolis, bAlto Maranhão; [8] Seixas et al. 

(2013). 
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Table 2 Summary of methodology applied to each sample of this study. See Fig. 1c for samples 

localities. 

Sample Plutons/suites Geochemistry - 

Major and trace 

elements 

U-Pb zircon (z);  

titanite (t) 

Whole 

rock 

Sm-Nd 

In situ zircon 

Lu-Hf 

LD5 Lagoa Dourada  x(z)  x 

14-LDT-01  x x(z)   

16-LD-4A  x x(z)   

      

16-RC-1A Resende Costa x x(z);(t)   

16-RC-3A  x x(z)   

      

17-2130 Bombaça  x(z)  x 

17-BÇ47  x  x  

      

17-GAGE-1 Gagé x  x  

17-GAGE-2  x  x  

      

14-AMT-01a Alto Maranhão x    

14-AMT-01b  x    

14- AMT-02  x x(z)   

14-AMT-03  x x(z);(t)   

      

14-SCT-01 Serra do Camapuã x x(z);(t) x x 

17-SC713  x    

17-SC3  x  x  

17-SC4  x    

      

16-SBS-1A São Brás do Suaçuí x x(z);(t) x  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

16-SBS-1C  x x(z)   

16-SBS-2B  x x(z);(t) x  

      

16-MSC-1D Água Limpa x x(z) x  

      

16-CGT-01 Casa Grande x x(z)   

16-CGT-03  x x(z)   
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Table 3. Summary of ages by this study for plutonic rocks in the Mineiro Belt. 207Pb/206Pb ages.  

Sample Inherited age 

(Ma) 

Zircon 

crystallisation age 

(Ma)  

Zircon 

metamorphic age 

(Ma) 

Titanite 

crystallisation age 

(Ma) 

Titanite 

metamorphic age 

(Ma) 

LD5  2356 ± 4 (conc)    

14-LDT-01  2347 ± 7(int)     

16-LD-4A  2345 ± 12(int)    

16-RC-1A 2358 ± 38(int) 2122 ± 84(int)  2148 ± 6(conc) 2086 ± 33(ind – 2%) 

16-RC-3A 2365 ± 36(int) 2149 ± 74(int)    

16-RC* 2358 ± 38(int) 2151 ± 31(int)    

14- AMT-02  2149 ± 30(int)  2135 ± 9(conc) 2059 ± 31(ind-2%) 

14-AMT-03  2135 ± 12(int)  2122 ± 7(conc) 2045 ± 31(ind-2%) 

17-2130  2118 ± 7(int)    

14-SCT-01 >2670 ± 18 2137 ± 80(int) 

2121 ± 2(int)(TIMS) 

2123 ± 4(int) 

2031 ± 17(ind-6%) 

2068 ± 25(ind-0%) 

2057 ± 19(ind-0.2%) 

2136 ± 7(conc) 2064 ± 28(ind-0.5%) 

16-SBS-1A  2127 ± 25(int) 

2121 ± 42(ind-1%) 

2062 ± 30(ind-1%) 2136 ± 14(conc) 2054 ± 17 (ind-2%) 

16-SBS-1C >2333 ± 

34(ind-2%) 

2122 ± 8(conc) 

2121 ± 24(ind-0%) 

2082 ± 24(ind-5%) 

2023 ± 16(ind-4%) 

  

16-SBS-2B >2251 ± 

56(ind-4%) 

2136 ± 9.6(conc) 2018 ± 33(ind-3%) 

 

  

16-MSC-1D  2186 ± 11(conc) 

2173 ± 18(int) 

   

16-CGT-01  2149 ± 4.3 (conc)    

16-CGT-03  2167 ± 14(conc) 

2200 ± 20(int) 

   

*Two samples of the Resende Costa Suite plotted together.  
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(conc): U-Pb concordia age; (int): U-Pb intercept age; (ind-n%): U-Pb individual age – discordance 

percentage. 
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Table 4 Nd isotope composition of studied samples. 

Sample Age 

(Ga) 

Sm 

(ppm)b 

Nd 

(ppm)b 

147Sm/144Ndb 143Nd/144Ndc 2σ εNd(0) εNd(t)
d TDM 

(Ga) 

17-GAGE-1 2.130 3.1 16.9  0.1100 0.511417 15 -23.8 -0.1 2.4 

17-GAGE-2 2.130 4.4 22.0 0.1203 0.511575 10 -20.7 +0.1 2.4 

17- BÇ47 2.130 5.1 30.9 0.1005 0.511241 5 -27.3 -1.0 2.4 

14-SCT-01 2.121 4.0 20.8 0.1173 0.511486 7 -22.5 -0.8 2.5 

17-SC3 2.121 3.6 20.0 0.1079 0.511333 9 -25.4 -1.2 2.5 

16-SBS-1A 2.130 4.8 29.0 0.0991 0.511284 9 -26.4 +0.3 2.3 

16-SBS-2B 2.130 3.6 20.5 0.1065 0.511367 10 -24.8 -0.1 2.4 

16-MSC-1D 2.180 3.0 16.9 0.1084 0.511223 11 -27.6 -2.9 2.6 

a Sm and Nd concentrations and 147Sm/144Nd ratios accurate within 0.5%. 
b 143Nd/144Nd normalized to 146Nd/144Nd = 0.7219. 
c εNd(t) values from crystallization ages and chondritic ratios of 143Nd/144Nd = 0.512638 and 147Sm/144Nd = 0.1966.  
d Nd model ages calculated using depleted mantle model of DePaolo (1981). Maximum error is 0.5 εNd units. 
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Highlights 

One of the largest occurrences of juvenile TTG magmatism during the Siderian lull; 

Latest TTG to sanukitoid transition in the Palaeoproterozoic; 

Magmatic evolution of high Ba-Sr suite in the Mineiro Belt of Brazil; 

Geochemistry and U-Pb analysis of zircon and titanite of several plutons within the 

Mineiro Belt; 

Lu–Hf zircon and Sm–Nd whole rock isotope constraints on the short-lived 

Palaeoproterozoic crust; 

Evolution of the Mineiro belt was driven by mantle extractions with minor crustal 

assimilation; 

 


