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ABSTRACT 

In this era of big data and internet of things, the need for performance 
improvement in cloud data center is unavoidable. This has led to 
several designs of data center network topologies with the aim of 
achieving a data center that has the capability of tolerating fault 
during multiple failures. In this paper, we proposed improved 
variants of fat-tree interconnections to mitigate the challenges of fault 
tolerance. The availability of alternative paths for congestion control 
and fault tolerance gave Fat-tree an edge over other data center 
architectures, thereby becoming a widely used architecture for data 
center. 

Our focus is on client to server communications in a cloud data center 
network as explained in Fig. 7, hence simulation of HTTP application 
was carried out on different variants of fat tree designs. The 
simulation results with Riverbed showed that our proposed hybrid 
designs outperformed the Single fat tree designs as the number of 
link failures increase.  

Keywords: Fault Tolerance; Reversed Hybrid; Cloud Data Center; 

Congestion Control. 

I. INTRODUCTION 

   As the use of cloud data center network increases due to the 
rapid growth of internet-based applications, the emergence of 
Internet of Things, and Big Data transfer and analytics; the 
size and deployment of interconnection networks are expected 
to increase. Currently, network designs are built to 
accommodate larger applications, congestion control, increase 
in throughput, low latency, reliability, and of course fault 
tolerance - which is the cornerstone. Therefore, to achieve a 
good level of performance and reliable communication flow in 
a network, there must be a provision that will tolerate failures 
of devices and links [1, 2]. In view of this, to achieve a 
manageable level of fault tolerance in interconnection 
network, creation of alternative paths between source and 
destination is imperative for a graceful performance 
degradation during multiple failures. 

   The fat-tree topology originates from the fixed topology 
used in designing data center networks, which is a subset of 

the tree-based topology [3]. The tree-based topologies, which 
comprises Basic tree, Fat-tree and Clos network, and other 
variants are commonly used in the design of data center 
networks [4, 5, 6]. Fat-tree has undergone different 
developmental stages since its inception, because of its 
unavoidable contribution in the design of data center network. 
According to [7, 8], the conventional fat-tree has a switch-port 
speed that is unmanageably high towards the root of the 
topology, a single point of failure, and lacks scalability. The 
authors of [9] established that at later stage of the 
developmental stage, generalized fat-tree (GFT) evolved, 
which is made up of switches of the same radix and same 
speed port in all the network levels, but with limited paths 
from source to destination. To achieve flexible performance 
requirements, the extended generalized fat tree (XGFT) was 
introduced by Ohring et al; for more routing capacity, 
performance requirement, and allowing variable number of 
switch ports to be used at different levels of the network [7, 9, 
10]. Nevertheless, the Z-Fat-tree, which is the bedrock of our 
work, is also a variant of Fat tree introduced by [11]. This 
improved version of fat tree helps define the number of root 
nodes per zone or subtree, and adds a degree of connectivity 
for maximal fault-tolerance. This helps to extract the full 
benefit of Fat-tree, for design of cloud data center networks 
that meets its increasing demand; with improved reliability, 
fault tolerance and alleviate other technical challenges [12,13]. 
In our previous work [14], we simulated FTP and EMAIL 
applications using our proposed hybrid and reversed hybrid 
designs. But, in this paper, an extension of our previous work, 
we simulated HTTP applications to ascertain our claim that 
our proposed designs are better than the single fat-trees even 
with the same number of resources. And the summary of the 
results (Table 2) proved us right.  

   Subsequently, in section II, we reviewed concisely some 
contributions to fault tolerance capability on data center. The 
section III gives details of the model description of 
architectures used - the mathematical equations for the switch 
connectivity and port mapping respectively. Then in section 
IV, the results of HTTP application simulated on these 
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topologies at different number of failed links using Riverbed 
tool, are compared to one another. Finally, section V is where 
conclusion is drawn as per the level of fault tolerance 
capability of each data center design. 

1. REVIEW OF RELATED WORKS 

   Generally, across several data center network topologies, 
there have been some contributions to work around the 
challenges of traffic congestion and faults in a network; 
though some of these contributions have their pros and cons. 
The use of separation technique to improve the performance of 
data center network was proposed by the authors of [15]. Their 
work was to make sure that there is no coexistence of different 
traffic on same transmission path. So that big data traffic will 
be transmitted via a path different from that used to transmit 
the ordinary data traffic, thereby making the source to 
destination transmission paths congestion free. We agreed on 
this concept but also argue that the authors failed to put into 
recognition the bedrock of effective and reliable network 
performance, which is fault tolerance. Consequently, our 
proposed hybrids (H2

+) and reversed hybrid (H2
-) design 

proved that even having same number of servers with the 
single fat trees (Ƶ), are still better used for data center. 

   The authors in [16] proposed mechanism that enables a 
reliable data delivery as links failure occurs in data center. 
This mechanism also evenly distributes traffic and recovers 
failure thereby causing a reduction in the operational cost of 
data centers. This architecture is made up of a.) path-level 
failure detection for detecting and recovering of failures; b.) a 
precomputed multipath routing ensuring continuous 
transmission during failure; c.) and local adaptation to path 
failure that enables traffic rebalancing from unhealthy path to 
healthy path. However, the inability of this architecture to 
proactively sense a faulty device (because its path failure 
detection is a reactive mechanism), is one of its shortcomings. 
As a result, there is a time lag for the traffic rebalancing from 
unhealthy paths to the healthy ones; which will reduce 
performance in data center. On the contrary, our hybrid 
designs can sustain the communications proactively without a 
waste of time failure detection and rebalancing of traffic. 

   The authors in [17] discussed the advancement in data center 
using packet-based optical interconnection networks for 
meeting network traffic requirements, reduction in power 
consumption, and all-to-all connectivity. According to them, 
packet-based optical switching is comparable to the common 
networking structures use in building nowadays data centers. 
Using the optical packet-based switching, encourages an array 
of fixed tunable transmission to address specific port 
destination by choosing the appropriate wavelength. An 
example of this kind of optical interconnection network is the 
DOS architecture proposed by X. Yin et al., [18]. This is based 
on arrayed waveguide grating router that allows different input 
to get to same output at the same time via different 
wavelengths; resulting to low latency even at high input loads. 
However, as we already mentioned in our previous paper [19] 
optical interconnection used in data center only provides it 
with high capacity, low power, and low latency; while the 
challenges of fault tolerance, network scaling, and reduced 
cost of deployment are still issues confronting this architecture 

[17]. But with our proposed improved version of Fat-tree 
hybrids, fault tolerance, network scalability, and cost-
effectiveness are guaranteed. 

   In another instance, the authors in [2] worked on achieving 
fault tolerance in a data center by hosting a virtual data center 
on a physical data enter. The virtualization was basically on 
server failures, whereby virtual machines were relocated from 
failed host servers to the healthy servers. By doing this, they 
could recover failure and reduce the effect of server failures 
on the virtual data center with the help of their proposed load 
balancing scheme. Nevertheless, their work is targeted only at 
server failure recovery. Secondly, the process of relocating the 
failed virtual servers to the healthy ones is time consuming; 
therefore, defeats its original plan to improve fault tolerance in 
data center. Nevertheless, our improved fat tree designs 
(which is typically based on the commonest failures in data 
center – links failures) sustain fault tolerance capability in 
real-time to achieve graceful performance degradation. 

   Finally, according to [20], the authors of “On Performance 
Evaluation of Fault-Tolerant Multistage Interconnection 
Networks”; after a wide survey on fault tolerance properties, 
established that current approaches put in place in multistage 
interconnection networks could not consider dynamic fault 
tolerance. They argued that continuous addition of hardware to 
multistage interconnections networks for its enhancement will 
not produce a better performance when compared to the 
original network. On this note, we believe that our proposed 
designs (especially the reversed hybrid H2

-), which shows that 
fault tolerance and congestion control can not only be realized 
by adding extra hardware, is a good contribution to the cloud 
data center because of the increasingly growth of internet 
applications. Then with our other proposed hybrid (H2

+), based 
on the throughput, when compared to the single fat-trees 
shows that the trade-off for using more switches in the design 
is worth it for better fault tolerance and general performance 
enhancement. 

2. MODEL DESCRIPTION 

   Generally, fat trees can be defined in several ways. In [20] 
with the notation FT(h;m1,m2..,mh;w1,w2..,wh), it is succintly 
defined thus: h represents switch levels of the tree numbered 
from 0 at the bottom. The sequence ml, m2 represent the 
number of children each switch at level1 and level2 has 
respectively; while wl, w2 represent the number of parent-
switches of a host and a switch at levell−1 and level1 has 
respectively. 

   As already stated in our previous works [14, 19], in 
constructing the variants of improved version of fat tree we 
used in comparing the fault tolerance capability of cloud data 
center, it is appropriate to look at how we derived the switch 
level relationship, switch connectivity and port mapping 
through mathematical equations. By default we use full 
connectivity to connect the servers at level0 to level1 switches 
for each zone/subtree, and the numbering of switches and its 
ports at every level are from left to right starting from zero. 
Where there is no extra links used, the switch to switch 
connection is done by connecting each lower level switch to 
the quotient gotten from the divisor (the greatest common 



divisor (gcd) of Rn+1 and Rn,) and the dividend (Rn+1); i.e. 
Rn+1/gcd(Rn+1, Rn). 

  Furthermore, where extra links are used in the connection, 
we introduced the pattern used by the authors of Z-Fat tree 
[11]. The Z-Fat tree describes the number of root nodes per 
zone in its semantics and adds a degree of connectivity, with 
the notation: Ƶ (h; z1, z2, …, zh; r1, r2, …,rh;  g1, g2, …,gh). 
Where h refers to the number of levels, zn represents the 
number of zones/subtree at level n, rn is the number of root 
nodes within each of the zones zn+1, and gn specifies the degree 
of explicit connectivity at level n (Fig. 1a). 

   Therefore, for our single topologies: Fig.1 Ƶ(2;4,6;4,8,1,1), 
the sequence r1 =4 and r2 =8 refers to the number of root nodes 
inside each of the zones z2 and z3 respectively. The sequence 
g1=1 and g2=1, indicates there are no extra connections. For 
Fig. 1: Ƶ (2;4,6;4,8;1,2), we have the sequence r1 =4 and r2 =8 
refers to the number of root nodes inside each of the zones z2 
and z3 respectively. The sequence g1=1 and g2=2, indicates 
there are extra two links at level 2. And Fig. 3, Ƶ 
(2;4,6;4,8;1,4) shows the sequence g1=1 and g2=4, indicates 
there are extra 6 links at level 2. 

   For the Hybrid FT (H2
+) designs, the same semantics used in 

Z-fat tree is applicable. For example for Fig. 4 
H2

+(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to the 
number of root nodes inside each of the zones z2 and z3 
respectively. But at levels 1 and 2, r1 and r2 are doubled 
because it is a hybrid. The sequence g1=1 and g2=1, indicates 
there are no extra connections. The same process is applicable 
to Fig. 5 H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers 
to the roots of the zones z2 and z3 respectively; the sequence 
g1=g2=1 is the explicit degree of connectivity with no extra 
links. 

   For the Reversed Hybrid FT (H2
-), the same Z-fat-tree 

notation still holds, but the topology is divided into two parts. 
With the left-hand-side an exact replica of the right-hand-side 
in a reversed form (from level1 to level2). So that Fig. 6, H2

-

(2;6,4;2,8;1,1) shows that the sequence r1 =2 and r2 =8 refers to 
the number of root nodes inside each of the zones z2 and z3 
respectively. The sequence g1=1 and g2=1, indicates there are 
extra connections. These sequences stand for each side of the 
topology in reversed form, thus it is called a reversed hybrid.  

A. Designs of Single FTs (Ƶ) 

Fig. 1a: Labelling of notations. The Fig. 1a points out the 

positions of the notations used in describing the topologies. 

This example is for Single FT Ƶ (2;4,6;4,8,1,1), however, the 

same naming pattern/labeling is applicable to all other designs. 

 

Fig. 2b: Ƶ (2;4,6;4,8,1,1): The sequence r1=4 and r2=8, refers to the 
roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the 
explicit degree of connectivity 

 

 
Fig. 3: Ƶ (2;4,6;4,8;1,2) The sequence r1=4 and r2=8, refers to the 
roots of the zones z2=6 and z3=1; the sequence g1=1 and g2=2 
is the explicit degree of connectivity 



 
Fig. 4: Ƶ (2;4,6;4,8;1,4): The sequence r1=4 and r2=8, refers to the 
roots of the zones z2=6 and z3=1; the sequence g1=1 and g2=4 
is the explicit degree of connectivity 

B. Designs of Hybrid FTs (H2
+) 

 

Fig. 5: H2
+(2;6,4;2,8;1,1): The sequence r1=2 and r2=8, refers to the 

roots of the zones z2=4 and z3=1; the sequence g1= and g2=1 is 

the explicit degree of connectivity. 

 

 
Fig. 6: H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers to the 

roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the 

explicit degree of connectivity. 

C. Design of Reversed Hybrid FT (H2
-) 

 
Fig. 7: H2

-(2;6,4;2,8;1,1): The sequence r1=2 and r2=8, refers to the 
roots of the zones z2=4 and z3=1; the sequence g1=g2=1 is the 
explicit degree of connectivity. 

D. Switch levels relationship 

Rn+1 = R1 + Δ (n-1)                            (1) [14] 

Rn+1  represents the sought after number of switches at the 
upper level of the network. R1  represents the number of 
switches at the first level of the topology, which must be equal 
to or greater than 2 to avoid single point of failure. Δ  
represents common difference between any two levels. This 
must be constant across the topology. n  represents switch 
level. This depends on the height of the topology, but for 
simplicity, in this paper we use 2-level FT topology. 

E. Switch Connectivity 

X
n+1 

= (R
n+1 

((x
n
\R

n
)\S

n+1
) +

 
(x

n
%R

n
)* R

n+1
/gcd

(Rn,Rn+1)
 + k)%

 
R

n+1                                                                                                           
(2) [11]     

where k represents ϵ {0, 1, …, R
n+1

/gcd(R
n 
, R

n+1
)-1} 

X
n+1 

  represents the switch sought after at the upper level 

upper level to be connected to from the lower level switches. 
 
 

R
n+1   

represents the total number of switches at the upper level 

x
n 
  represents the switch on level n connecting to upper level 

switch at X
n+1. 

  R
n    

represents the total number of switches on 

level n connecting to upper level switches at R
n+1.  

Z
n+1   

represents the number of zones/subtrees from upper level n
+1. 

gcd is an acronym for Greatest Common Divisor used to get 
the exact number of R

n+1
 switches that x

n
 will connect to.

   

The  following examples showed how the first subtree 
switches at level1 are connected to their orresponding level2 
switches in Fig. 1.

 

Example 1: Connecting level1 switch 0 to level2 switches  

Xn+1= (8((0\4)\6) + (0%4)*2+k)%8 

       Xn+1   = (0 + 0*2+k)%8 

                    = (0+k)%8.  



where k ϵ {0, 1, …, Rn+1/gcd(Rn, Rn+1)-1} and k=0,1.  

Therefore, switches to be connected to at level2 Rn+1    are:  

If k= 0            (0+ k(0)) %8                                                                                                                                                                  
=0%8 

Also if k= 1       (0+ k(1)) %8 

=1%8 = 1 

Example 2: Connecting level1 switch 1 to level2 switches  

Xn+1= (8((1\4)\6) + (1%4)*2+k)%8 

       Xn+1   = (0 + 1*2+k)%8 

                    = (2+k)%8.  

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k=0,1.  

Therefore, switches to be connected to at level2 Rn+1    are:  

         If k=0                     (2+ k(0)) %8 

                               = 2%8 = 2 

          Also if k= 1            (2+ k(1)) %8  

                                   =3%8 = 3      

Example 3: Connecting level1 switch2 to level2 switches  

Xn+1= (8((2\4)\6) + (2%4)*2+k)%8 

       Xn+1   = (0 + 2*2+k)%8 

                    = (4+k)%8.  

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k=0,1.  

Therefore, switches to be connected to at level2 Rn+1    are:  

If k=0                      (4+ k(0)) %8 

                        = 4%8 = 4 

Also if k= 1            (4+ k(1)) %8 

                      =5%8 = 5 

Example 4: Connecting level1 switch 3 to level2 switches  

Xn+1= (8((3\4)\6) + (3%4)*2+k)%8 

       Xn+1   = (0 + 3*2+k)%8 

                    = (6+k)%8.  

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k= 0,1.  

Therefore, switches to be connected to at level2 Rn+1    are:  

  If k=0                   (6+ k(0)) %8 

                            = 6%8 = 6 

  Also if k= 1              (6+ k(1)) %8  

                             = 7%8 = 7    

F. Port Mapping 

Xp+1=((X
n
\R

n
)%Z

n+1
)*R

n
/gcd(R

n
,R

n+1
)+p            (3) [11] 

where p represents ϵ {0, 1, …, R
n
/gcd(R

n 
, R

n+1
)-1} 

Xp+1 represents switch ports to be mapped at upper level. p   
represents set of R

n+1 
switch ports to be mapped with X

n   

In the following examples, we mapped every first switch of 
each zone/subtree of level1 to its corresponding level2 switch 
port. Since Z

n+1 
represents number of subtrees from upper 

level R
n+1

, and level1 in Fig.1 shows 6 subtrees in total, this 

means that each level 2 switch has 6 different ports for a total 
of 6 subtrees to be mapped.  

Example 1: Mapping level1 switch0 subtree0 to level2 
switches is thus: 

                  Xp+1 = ((0\4) %6) * 4/4+ p  

                            = (0 %6) * 1+ p 

                            = 0+p               

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}  

                 Xp+1 = 0. Hence, level1 switch 0 will be mapped to 
ports 0 of level2 switches where it is connected to. 

Example 2: Mapping level1 switch 4 subtree1 to level2 
switches is thus: 

Xp+1 = ((4\4) %6) * 4/4+ p  

  = (1 %6) * 1+ p 

                                       = 1+p              

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1} 

 Xp+1 = 1+0 = 1. Hence, level1 switch 4 will be mapped to 
ports 1 of level2 switches where it is connected to. 

Example 3: Mapping level1 switch 8 subtree2 to level2 
switches is thus:  

                 Xp+1 = ((8\4) %6) * 4/4+ p  

                           = (2 %6) * 1+ p 

                           = 2+p               

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}  

               Xp+1 = 2+0 = 2. Hence, level1 switch 8 will be 
mapped to subtree2 with ports 2 of level2 switches where it is 
connected to. 

Example 4: mapping level1 switch 12 subtree3 to level2 
switches is thus: 

               Xp+1 = ((12\4) %6) * 4/4+ p  

                         = (3 %6) * 1+ p 

                         = 3+p               

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}  

               Xp+1 = 3+0 = 3. Hence, level1 switch 12 will be 
mapped to subtree3 with ports 3 of level2 switches where it is 
connected to. 

Example 5: mapping level1 switch 16 subtree4 to level2 
switches is thus: 



                   Xp+1 = ((16\4) %6) * 4/4+ p  

                             = (4 %6) * 1+ p = 4+p               

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}  

Xp+1 = 4+0 = 4. Hence, level1 switch 16 will be mapped to 
subtree4 with ports 4 of level2 switches where it is connected 

to. 

Example 6: mapping level1 switch 20 subtree5 to level2 
switches is thus: 

                Xp+1 = ((20\4) %6) * 4/4+ p  

                          = (5 %6) * 1+ p 

                          = 5+p               

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}  

              Xp+1 = 5+0 = 5. Hence, level1 switch 20 will be 
mapped to subtree5 with ports 5 of level2 switches where it is 
connected to. 

II. SIMULATION RESULTS AND EVALUATION       

   The Table 1 is a summary of network inventory for the 
simulation carried out on Riverbed. The following results were 
collected for HTTP application: Received packet, Percentage 
of Packet Loss, and Page Response Time. 24 servers were 
used across all topologies, every other topology has 32 
number of switches excluding the H2

+(2;4,6;4,8;1,1) that has 
double of the switches i.e. 64. All the networks were simulated 
using 2 configuration utilities: Application definition and 
Profile definition. [21] defined the Application definition as 
where the usage parameters like time, duration and 
repeatability are specified while the Profile definition is for 
describing the activity pattern of a user of the application over 
a period. Every network has been designed using a single 
workstation. Workstation is where the profile definition is 
deployed, used to model the behavior of a user, and acts as 
traffic source. In this paper, the workstation represents the 
users over the internet retrieving information from the 
servers(cloud). The simulation for the three distinct FT 
designs: Ƶ; H2

+; and H2
- for HTTP Applications were run at 

simulation time of 900 seconds with packet size of 500,000 
bytes. At constant Frame Inter-arrival times of 4.0 seconds. 

Table 1: Summary of Network Inventory used for Simulation on Riverbed  

 

 

F. IP Address Translation 

Fig. 7: Mapping Internet IP address to Data Center Labels. This is a 

network address translation setup that enables the servers of 

the data center to communicate with the clients across the 

internet. For detailed explanation, please be referred to our 

previous work on [14, 19]. 

Fig. 8: GRAPH OF RECEIVED HTTP PACKET WITH FAILED LINKS 

   The graph, Fig. 8 shows the average number of packets per 
second forwarded to the HTTP applications by the transport 
layers in the network. The simulation was run at diffrerent 
number of failed links on each design. The result shows that 
with healthy topologies (0 failed link), the  average HTTP 
packet received per second remained almost the same for all 
designs. But as the number of  failed links increase from 0 to 
70, there is a noticeable decline in the average received 
packet/sec:  

   In general, it could be seen that the hybrid topologies 
perform better than the single topologies, depicting a better 
fault tolerance. Furthermore, the single topology with 24 
servers, 156 links and 32 switches has an average received 
packet of 4.71/sec at no failed links. But as the number of 
links failure increased in multiples of 10 up to 70, the 
throughput dropped to 0.2 packet/sec. Therefore, comparing 
this topology with the Hybrid topology that has 24 servers, 
304 links and 64 switches. The difference between these two 
topologies is that the hybrid is twice the single in terms of 
switches and number of links. But the hybrid has an average 
received packet per second at no failed link of 4.76 pkt/sec; 
and when 70 links were failed, the received packet was 3.89 



pkt/sec. It is obvious that with such a great margin between 
0.2 and 3.89 for the single and the hybrid respectively, the 
latter can tolerate much fault than the former, which almost 
has a zero throughput as the failure increased to 70 links. One 
could argue that since the hybrid topology is twice the single 
topology in terms of number of switches and links, that the 
received packet (throughput) should also be twice that of the 
single topology. This implies that the received packet should 
have been 0.2*2 =0.4pkt/sec. However, this is not the case 
here because of the design as the hybrid topology showed a 
greater fault tolerance capability.  

   Another design that worthy of comparing with the single 
designs e.g. Ƶ(2;4,6;4,8;1,2), is the reversed hybrid topology 
H2

-(2;6,4;2,8;1,1). The former has the same numbers of 
switches and servers with the latter, but with the former 
having 200 links while the latter has 192 links. When there 
was no failed links, the average received packet per second for 
the single topology with 200 links Ƶ(2;4,6;4,8;1,2) was 
4.71pkt/sec; while that of the reversed hybrid topology with 
192 links (H2

-(2;6,4;2,8;1,1)) was 4.71 pkt/sec. However, the 
graph of both designs kept declining as the number links 
failure increases, till the point when 70 links were failed the 
received packet for single FT design is 1.74 pkt/sec, while 
2.47 pkt/sec was for the reversed hybrid. Even the single FT 
design with a very much higher number of links - 296 links, 
still showed a lower performance of 2.2 pkt/sec. 

   Fig. 9 shows graph of the percentage of packet loss with 
failed links. The graph shows the exact amount of packet that 
was lost in percentage during the simulation at different stage 
of failed links for each design. To calculate the packet loss, we 
use the mathematical relation below 

  (10) 
   The graph shows that at 0 number of failed links, all the 
designs have 75% of packet loss. But as the numbers of failed 
links increase, the percentage of packet loss also increases. 
Nonetheless, the hybrid designs showed a better performance 
with topologies having 240 and 304 links respectively with 
77% pkt loss, with a clear significant difference of 10% and 
above when compared with all the single designs having 87%, 
82%, and 83% pkt loss. 

Fig. 9: GRAPH OF PERCENTAGE OF HTTP PACKET LOSS WITH 

FAILED LINKS 

 

Table 2: Summary of Results for Received Packet and 

Percentage of Packet Loss for both Healthy and failed 

links.

 

   The Fig. 10 shows the graph of HTTP Page Response Time, 
which is the time required to retrieve the entire page with all 
the contained inline objects [21]. It can be seen from the graph 
that there is a slight increase in the response time as number of 
failed links get to 70. The reason behind this is the fact that as 
the failure increases, there is increase in congestion and the 
time to retrieve the HTTP page will also increase. However, in 
the case of single FT design with 156links Ƶ(2;4,6;4,8;1,1), 
the page response time decreased to almost zero because at 70 

failed links, the received HTTP packet was just 0.2 pkt/sec. 
Another thing to note from the graph is that the reversed 
hybrid topology has a slightly higher page response time than 
the other topologies. This means that it took a bit longer time 
for the page of the HTTP to be retrieved for the reversed 
hybrid. 
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CONCLUSION 

   The results obtained from the simulations carried out show 
tremendous difference in the amount of throughput and packet 
loss, especially for the hybrid (H2

+) with 304links, 64 



switches; and the Single FT (Ƶ) with 152links, 32 switches. 
Meanwhile, to ascertain our earlier claim that fault tolerance 
and better performance can not only be realized by adding 
extra hardware rather bespoke design plays a greater role. The 
result of our proposed Reversed Hybrid (H2

-) with 192 links, 
and that of the Single FT (Ƶ) with 296 links proved it all. 
Therefore, based on the number of failed links with respect to 
the Received Packets and Percentage of Packet Loss, it is 
certain that our proposed hybrids (H2

+ and H2
-) can bring 

about robust and reliable cloud data centers because of their 
fault tolerance capabilities. The fault tolerance capability 
exhibited by our proposed hybrid designs shows that faults in 
cloud data center could be managed in real time through 
bespoke design, till repair becomes available. Unlike some of 
the contributions as reviewed in the related works whereby the 
transfer of data from failed devices to healthy ones consumes 
more unnecessary time and causes delay.  
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