
FAULT TOLERANCE CAPABILITY OF CLOUD

DATA CENTER

Humphrey Emesowum

School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

humphrey.emesowum@port.ac.uk

Athanasios Paraskelidis

School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

athanasios.paraskelidis@port.ac.uk

Mo Adda

School of Computing, University of Portsmouth

Buckingham Building Lion Terrace PO1 3HE

Portsmouth, United Kingdom

mo.adda@port.ac.uk

ABSTRACT

In this era of big data and internet of things, the need for performance
improvement in cloud data center is unavoidable. This has led to
several designs of data center network topologies with the aim of
achieving a data center that has the capability of tolerating fault
during multiple failures. In this paper, we proposed improved
variants of fat-tree interconnections to mitigate the challenges of fault
tolerance. The availability of alternative paths for congestion control
and fault tolerance gave Fat-tree an edge over other data center
architectures, thereby becoming a widely used architecture for data
center.

Our focus is on client to server communications in a cloud data center
network as explained in Fig. 7, hence simulation of HTTP application
was carried out on different variants of fat tree designs. The
simulation results with Riverbed showed that our proposed hybrid
designs outperformed the Single fat tree designs as the number of
link failures increase.

Keywords: Fault Tolerance; Reversed Hybrid; Cloud Data Center;

Congestion Control.

I. INTRODUCTION

 As the use of cloud data center network increases due to the
rapid growth of internet-based applications, the emergence of
Internet of Things, and Big Data transfer and analytics; the
size and deployment of interconnection networks are expected
to increase. Currently, network designs are built to
accommodate larger applications, congestion control, increase
in throughput, low latency, reliability, and of course fault
tolerance - which is the cornerstone. Therefore, to achieve a
good level of performance and reliable communication flow in
a network, there must be a provision that will tolerate failures
of devices and links [1, 2]. In view of this, to achieve a
manageable level of fault tolerance in interconnection
network, creation of alternative paths between source and
destination is imperative for a graceful performance
degradation during multiple failures.

 The fat-tree topology originates from the fixed topology
used in designing data center networks, which is a subset of

the tree-based topology [3]. The tree-based topologies, which
comprises Basic tree, Fat-tree and Clos network, and other
variants are commonly used in the design of data center
networks [4, 5, 6]. Fat-tree has undergone different
developmental stages since its inception, because of its
unavoidable contribution in the design of data center network.
According to [7, 8], the conventional fat-tree has a switch-port
speed that is unmanageably high towards the root of the
topology, a single point of failure, and lacks scalability. The
authors of [9] established that at later stage of the
developmental stage, generalized fat-tree (GFT) evolved,
which is made up of switches of the same radix and same
speed port in all the network levels, but with limited paths
from source to destination. To achieve flexible performance
requirements, the extended generalized fat tree (XGFT) was
introduced by Ohring et al; for more routing capacity,
performance requirement, and allowing variable number of
switch ports to be used at different levels of the network [7, 9,
10]. Nevertheless, the Z-Fat-tree, which is the bedrock of our
work, is also a variant of Fat tree introduced by [11]. This
improved version of fat tree helps define the number of root
nodes per zone or subtree, and adds a degree of connectivity
for maximal fault-tolerance. This helps to extract the full
benefit of Fat-tree, for design of cloud data center networks
that meets its increasing demand; with improved reliability,
fault tolerance and alleviate other technical challenges [12,13].
In our previous work [14], we simulated FTP and EMAIL
applications using our proposed hybrid and reversed hybrid
designs. But, in this paper, an extension of our previous work,
we simulated HTTP applications to ascertain our claim that
our proposed designs are better than the single fat-trees even
with the same number of resources. And the summary of the
results (Table 2) proved us right.

 Subsequently, in section II, we reviewed concisely some
contributions to fault tolerance capability on data center. The
section III gives details of the model description of
architectures used - the mathematical equations for the switch
connectivity and port mapping respectively. Then in section
IV, the results of HTTP application simulated on these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/151190384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

topologies at different number of failed links using Riverbed
tool, are compared to one another. Finally, section V is where
conclusion is drawn as per the level of fault tolerance
capability of each data center design.

1. REVIEW OF RELATED WORKS

 Generally, across several data center network topologies,
there have been some contributions to work around the
challenges of traffic congestion and faults in a network;
though some of these contributions have their pros and cons.
The use of separation technique to improve the performance of
data center network was proposed by the authors of [15]. Their
work was to make sure that there is no coexistence of different
traffic on same transmission path. So that big data traffic will
be transmitted via a path different from that used to transmit
the ordinary data traffic, thereby making the source to
destination transmission paths congestion free. We agreed on
this concept but also argue that the authors failed to put into
recognition the bedrock of effective and reliable network
performance, which is fault tolerance. Consequently, our
proposed hybrids (H2

+) and reversed hybrid (H2
-) design

proved that even having same number of servers with the
single fat trees (Ƶ), are still better used for data center.

 The authors in [16] proposed mechanism that enables a
reliable data delivery as links failure occurs in data center.
This mechanism also evenly distributes traffic and recovers
failure thereby causing a reduction in the operational cost of
data centers. This architecture is made up of a.) path-level
failure detection for detecting and recovering of failures; b.) a
precomputed multipath routing ensuring continuous
transmission during failure; c.) and local adaptation to path
failure that enables traffic rebalancing from unhealthy path to
healthy path. However, the inability of this architecture to
proactively sense a faulty device (because its path failure
detection is a reactive mechanism), is one of its shortcomings.
As a result, there is a time lag for the traffic rebalancing from
unhealthy paths to the healthy ones; which will reduce
performance in data center. On the contrary, our hybrid
designs can sustain the communications proactively without a
waste of time failure detection and rebalancing of traffic.

 The authors in [17] discussed the advancement in data center
using packet-based optical interconnection networks for
meeting network traffic requirements, reduction in power
consumption, and all-to-all connectivity. According to them,
packet-based optical switching is comparable to the common
networking structures use in building nowadays data centers.
Using the optical packet-based switching, encourages an array
of fixed tunable transmission to address specific port
destination by choosing the appropriate wavelength. An
example of this kind of optical interconnection network is the
DOS architecture proposed by X. Yin et al., [18]. This is based
on arrayed waveguide grating router that allows different input
to get to same output at the same time via different
wavelengths; resulting to low latency even at high input loads.
However, as we already mentioned in our previous paper [19]
optical interconnection used in data center only provides it
with high capacity, low power, and low latency; while the
challenges of fault tolerance, network scaling, and reduced
cost of deployment are still issues confronting this architecture

[17]. But with our proposed improved version of Fat-tree
hybrids, fault tolerance, network scalability, and cost-
effectiveness are guaranteed.

 In another instance, the authors in [2] worked on achieving
fault tolerance in a data center by hosting a virtual data center
on a physical data enter. The virtualization was basically on
server failures, whereby virtual machines were relocated from
failed host servers to the healthy servers. By doing this, they
could recover failure and reduce the effect of server failures
on the virtual data center with the help of their proposed load
balancing scheme. Nevertheless, their work is targeted only at
server failure recovery. Secondly, the process of relocating the
failed virtual servers to the healthy ones is time consuming;
therefore, defeats its original plan to improve fault tolerance in
data center. Nevertheless, our improved fat tree designs
(which is typically based on the commonest failures in data
center – links failures) sustain fault tolerance capability in
real-time to achieve graceful performance degradation.

 Finally, according to [20], the authors of “On Performance
Evaluation of Fault-Tolerant Multistage Interconnection
Networks”; after a wide survey on fault tolerance properties,
established that current approaches put in place in multistage
interconnection networks could not consider dynamic fault
tolerance. They argued that continuous addition of hardware to
multistage interconnections networks for its enhancement will
not produce a better performance when compared to the
original network. On this note, we believe that our proposed
designs (especially the reversed hybrid H2

-), which shows that
fault tolerance and congestion control can not only be realized
by adding extra hardware, is a good contribution to the cloud
data center because of the increasingly growth of internet
applications. Then with our other proposed hybrid (H2

+), based
on the throughput, when compared to the single fat-trees
shows that the trade-off for using more switches in the design
is worth it for better fault tolerance and general performance
enhancement.

2. MODEL DESCRIPTION

 Generally, fat trees can be defined in several ways. In [20]
with the notation FT(h;m1,m2..,mh;w1,w2..,wh), it is succintly
defined thus: h represents switch levels of the tree numbered
from 0 at the bottom. The sequence ml, m2 represent the
number of children each switch at level1 and level2 has
respectively; while wl, w2 represent the number of parent-
switches of a host and a switch at levell−1 and level1 has
respectively.

 As already stated in our previous works [14, 19], in
constructing the variants of improved version of fat tree we
used in comparing the fault tolerance capability of cloud data
center, it is appropriate to look at how we derived the switch
level relationship, switch connectivity and port mapping
through mathematical equations. By default we use full
connectivity to connect the servers at level0 to level1 switches
for each zone/subtree, and the numbering of switches and its
ports at every level are from left to right starting from zero.
Where there is no extra links used, the switch to switch
connection is done by connecting each lower level switch to
the quotient gotten from the divisor (the greatest common

divisor (gcd) of Rn+1 and Rn,) and the dividend (Rn+1); i.e.
Rn+1/gcd(Rn+1, Rn).

 Furthermore, where extra links are used in the connection,
we introduced the pattern used by the authors of Z-Fat tree
[11]. The Z-Fat tree describes the number of root nodes per
zone in its semantics and adds a degree of connectivity, with
the notation: Ƶ (h; z1, z2, …, zh; r1, r2, …,rh; g1, g2, …,gh).
Where h refers to the number of levels, zn represents the
number of zones/subtree at level n, rn is the number of root
nodes within each of the zones zn+1, and gn specifies the degree
of explicit connectivity at level n (Fig. 1a).

 Therefore, for our single topologies: Fig.1 Ƶ(2;4,6;4,8,1,1),
the sequence r1 =4 and r2 =8 refers to the number of root nodes
inside each of the zones z2 and z3 respectively. The sequence
g1=1 and g2=1, indicates there are no extra connections. For
Fig. 1: Ƶ (2;4,6;4,8;1,2), we have the sequence r1 =4 and r2 =8
refers to the number of root nodes inside each of the zones z2
and z3 respectively. The sequence g1=1 and g2=2, indicates
there are extra two links at level 2. And Fig. 3, Ƶ
(2;4,6;4,8;1,4) shows the sequence g1=1 and g2=4, indicates
there are extra 6 links at level 2.

 For the Hybrid FT (H2
+) designs, the same semantics used in

Z-fat tree is applicable. For example for Fig. 4
H2

+(2;6,4;2,8;1,1), the sequence r1 =2 and r2 =8 refers to the
number of root nodes inside each of the zones z2 and z3
respectively. But at levels 1 and 2, r1 and r2 are doubled
because it is a hybrid. The sequence g1=1 and g2=1, indicates
there are no extra connections. The same process is applicable
to Fig. 5 H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers
to the roots of the zones z2 and z3 respectively; the sequence
g1=g2=1 is the explicit degree of connectivity with no extra
links.

 For the Reversed Hybrid FT (H2
-), the same Z-fat-tree

notation still holds, but the topology is divided into two parts.
With the left-hand-side an exact replica of the right-hand-side
in a reversed form (from level1 to level2). So that Fig. 6, H2

-

(2;6,4;2,8;1,1) shows that the sequence r1 =2 and r2 =8 refers to
the number of root nodes inside each of the zones z2 and z3
respectively. The sequence g1=1 and g2=1, indicates there are
extra connections. These sequences stand for each side of the
topology in reversed form, thus it is called a reversed hybrid.

A. Designs of Single FTs (Ƶ)

Fig. 1a: Labelling of notations. The Fig. 1a points out the

positions of the notations used in describing the topologies.

This example is for Single FT Ƶ (2;4,6;4,8,1,1), however, the

same naming pattern/labeling is applicable to all other designs.

Fig. 2b: Ƶ (2;4,6;4,8,1,1): The sequence r1=4 and r2=8, refers to the
roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the
explicit degree of connectivity

Fig. 3: Ƶ (2;4,6;4,8;1,2) The sequence r1=4 and r2=8, refers to the
roots of the zones z2=6 and z3=1; the sequence g1=1 and g2=2
is the explicit degree of connectivity

Fig. 4: Ƶ (2;4,6;4,8;1,4): The sequence r1=4 and r2=8, refers to the
roots of the zones z2=6 and z3=1; the sequence g1=1 and g2=4
is the explicit degree of connectivity

B. Designs of Hybrid FTs (H2
+)

Fig. 5: H2
+(2;6,4;2,8;1,1): The sequence r1=2 and r2=8, refers to the

roots of the zones z2=4 and z3=1; the sequence g1= and g2=1 is

the explicit degree of connectivity.

Fig. 6: H2

+(2;4,6;4,8;1,1) The sequence r1=4 and r2=8, refers to the

roots of the zones z2=6 and z3=1; the sequence g1=g2=1 is the

explicit degree of connectivity.

C. Design of Reversed Hybrid FT (H2
-)

Fig. 7: H2

-(2;6,4;2,8;1,1): The sequence r1=2 and r2=8, refers to the
roots of the zones z2=4 and z3=1; the sequence g1=g2=1 is the
explicit degree of connectivity.

D. Switch levels relationship

Rn+1 = R1 + Δ (n-1) (1) [14]

Rn+1 represents the sought after number of switches at the
upper level of the network. R1 represents the number of
switches at the first level of the topology, which must be equal
to or greater than 2 to avoid single point of failure. Δ
represents common difference between any two levels. This
must be constant across the topology. n represents switch
level. This depends on the height of the topology, but for
simplicity, in this paper we use 2-level FT topology.

E. Switch Connectivity

X
n+1

= (R
n+1

((x
n
\R

n
)\S

n+1
) +

(x

n
%R

n
)* R

n+1
/gcd

(Rn,Rn+1)
 + k)%

R

n+1
(2) [11]

where k represents ϵ {0, 1, …, R
n+1

/gcd(R
n
, R

n+1
)-1}

X
n+1

 represents the switch sought after at the upper level

upper level to be connected to from the lower level switches.

R
n+1

represents the total number of switches at the upper level

x
n
 represents the switch on level n connecting to upper level

switch at X
n+1.

 R
n

represents the total number of switches on

level n connecting to upper level switches at R
n+1.

Z
n+1

represents the number of zones/subtrees from upper level n
+1.

gcd is an acronym for Greatest Common Divisor used to get
the exact number of R

n+1
 switches that x

n
 will connect to.

The following examples showed how the first subtree
switches at level1 are connected to their orresponding level2
switches in Fig. 1.

Example 1: Connecting level1 switch 0 to level2 switches

Xn+1= (8((0\4)\6) + (0%4)*2+k)%8

 Xn+1 = (0 + 0*2+k)%8

 = (0+k)%8.

where k ϵ {0, 1, …, Rn+1/gcd(Rn, Rn+1)-1} and k=0,1.

Therefore, switches to be connected to at level2 Rn+1 are:

If k= 0 (0+ k(0)) %8
=0%8

Also if k= 1 (0+ k(1)) %8

=1%8 = 1

Example 2: Connecting level1 switch 1 to level2 switches

Xn+1= (8((1\4)\6) + (1%4)*2+k)%8

 Xn+1 = (0 + 1*2+k)%8

 = (2+k)%8.

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k=0,1.

Therefore, switches to be connected to at level2 Rn+1 are:

 If k=0 (2+ k(0)) %8

 = 2%8 = 2

 Also if k= 1 (2+ k(1)) %8

 =3%8 = 3

Example 3: Connecting level1 switch2 to level2 switches

Xn+1= (8((2\4)\6) + (2%4)*2+k)%8

 Xn+1 = (0 + 2*2+k)%8

 = (4+k)%8.

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k=0,1.

Therefore, switches to be connected to at level2 Rn+1 are:

If k=0 (4+ k(0)) %8

 = 4%8 = 4

Also if k= 1 (4+ k(1)) %8

 =5%8 = 5

Example 4: Connecting level1 switch 3 to level2 switches

Xn+1= (8((3\4)\6) + (3%4)*2+k)%8

 Xn+1 = (0 + 3*2+k)%8

 = (6+k)%8.

where k ϵ {0, 1, …, Rn+1/gcd(Ri, Rn+1)-1} and k= 0,1.

Therefore, switches to be connected to at level2 Rn+1 are:

 If k=0 (6+ k(0)) %8

 = 6%8 = 6

 Also if k= 1 (6+ k(1)) %8

 = 7%8 = 7

F. Port Mapping

Xp+1=((X
n
\R

n
)%Z

n+1
)*R

n
/gcd(R

n
,R

n+1
)+p (3) [11]

where p represents ϵ {0, 1, …, R
n
/gcd(R

n
, R

n+1
)-1}

Xp+1 represents switch ports to be mapped at upper level. p
represents set of R

n+1
switch ports to be mapped with X

n

In the following examples, we mapped every first switch of
each zone/subtree of level1 to its corresponding level2 switch
port. Since Z

n+1
represents number of subtrees from upper

level R
n+1

, and level1 in Fig.1 shows 6 subtrees in total, this

means that each level 2 switch has 6 different ports for a total
of 6 subtrees to be mapped.

Example 1: Mapping level1 switch0 subtree0 to level2
switches is thus:

 Xp+1 = ((0\4) %6) * 4/4+ p

 = (0 %6) * 1+ p

 = 0+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

 Xp+1 = 0. Hence, level1 switch 0 will be mapped to
ports 0 of level2 switches where it is connected to.

Example 2: Mapping level1 switch 4 subtree1 to level2
switches is thus:

Xp+1 = ((4\4) %6) * 4/4+ p

 = (1 %6) * 1+ p

 = 1+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

 Xp+1 = 1+0 = 1. Hence, level1 switch 4 will be mapped to
ports 1 of level2 switches where it is connected to.

Example 3: Mapping level1 switch 8 subtree2 to level2
switches is thus:

 Xp+1 = ((8\4) %6) * 4/4+ p

 = (2 %6) * 1+ p

 = 2+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

 Xp+1 = 2+0 = 2. Hence, level1 switch 8 will be
mapped to subtree2 with ports 2 of level2 switches where it is
connected to.

Example 4: mapping level1 switch 12 subtree3 to level2
switches is thus:

 Xp+1 = ((12\4) %6) * 4/4+ p

 = (3 %6) * 1+ p

 = 3+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

 Xp+1 = 3+0 = 3. Hence, level1 switch 12 will be
mapped to subtree3 with ports 3 of level2 switches where it is
connected to.

Example 5: mapping level1 switch 16 subtree4 to level2
switches is thus:

 Xp+1 = ((16\4) %6) * 4/4+ p

 = (4 %6) * 1+ p = 4+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

Xp+1 = 4+0 = 4. Hence, level1 switch 16 will be mapped to
subtree4 with ports 4 of level2 switches where it is connected

to.

Example 6: mapping level1 switch 20 subtree5 to level2
switches is thus:

 Xp+1 = ((20\4) %6) * 4/4+ p

 = (5 %6) * 1+ p

 = 5+p

And p ϵ {0, 1, …, Rn /gcd(Rn , Rn+1)-1}

 Xp+1 = 5+0 = 5. Hence, level1 switch 20 will be
mapped to subtree5 with ports 5 of level2 switches where it is
connected to.

II. SIMULATION RESULTS AND EVALUATION

 The Table 1 is a summary of network inventory for the
simulation carried out on Riverbed. The following results were
collected for HTTP application: Received packet, Percentage
of Packet Loss, and Page Response Time. 24 servers were
used across all topologies, every other topology has 32
number of switches excluding the H2

+(2;4,6;4,8;1,1) that has
double of the switches i.e. 64. All the networks were simulated
using 2 configuration utilities: Application definition and
Profile definition. [21] defined the Application definition as
where the usage parameters like time, duration and
repeatability are specified while the Profile definition is for
describing the activity pattern of a user of the application over
a period. Every network has been designed using a single
workstation. Workstation is where the profile definition is
deployed, used to model the behavior of a user, and acts as
traffic source. In this paper, the workstation represents the
users over the internet retrieving information from the
servers(cloud). The simulation for the three distinct FT
designs: Ƶ; H2

+; and H2
- for HTTP Applications were run at

simulation time of 900 seconds with packet size of 500,000
bytes. At constant Frame Inter-arrival times of 4.0 seconds.

Table 1: Summary of Network Inventory used for Simulation on Riverbed

F. IP Address Translation

Fig. 7: Mapping Internet IP address to Data Center Labels. This is a

network address translation setup that enables the servers of

the data center to communicate with the clients across the

internet. For detailed explanation, please be referred to our

previous work on [14, 19].

Fig. 8: GRAPH OF RECEIVED HTTP PACKET WITH FAILED LINKS

 The graph, Fig. 8 shows the average number of packets per
second forwarded to the HTTP applications by the transport
layers in the network. The simulation was run at diffrerent
number of failed links on each design. The result shows that
with healthy topologies (0 failed link), the average HTTP
packet received per second remained almost the same for all
designs. But as the number of failed links increase from 0 to
70, there is a noticeable decline in the average received
packet/sec:

 In general, it could be seen that the hybrid topologies
perform better than the single topologies, depicting a better
fault tolerance. Furthermore, the single topology with 24
servers, 156 links and 32 switches has an average received
packet of 4.71/sec at no failed links. But as the number of
links failure increased in multiples of 10 up to 70, the
throughput dropped to 0.2 packet/sec. Therefore, comparing
this topology with the Hybrid topology that has 24 servers,
304 links and 64 switches. The difference between these two
topologies is that the hybrid is twice the single in terms of
switches and number of links. But the hybrid has an average
received packet per second at no failed link of 4.76 pkt/sec;
and when 70 links were failed, the received packet was 3.89

pkt/sec. It is obvious that with such a great margin between
0.2 and 3.89 for the single and the hybrid respectively, the
latter can tolerate much fault than the former, which almost
has a zero throughput as the failure increased to 70 links. One
could argue that since the hybrid topology is twice the single
topology in terms of number of switches and links, that the
received packet (throughput) should also be twice that of the
single topology. This implies that the received packet should
have been 0.2*2 =0.4pkt/sec. However, this is not the case
here because of the design as the hybrid topology showed a
greater fault tolerance capability.

 Another design that worthy of comparing with the single
designs e.g. Ƶ(2;4,6;4,8;1,2), is the reversed hybrid topology
H2

-(2;6,4;2,8;1,1). The former has the same numbers of
switches and servers with the latter, but with the former
having 200 links while the latter has 192 links. When there
was no failed links, the average received packet per second for
the single topology with 200 links Ƶ(2;4,6;4,8;1,2) was
4.71pkt/sec; while that of the reversed hybrid topology with
192 links (H2

-(2;6,4;2,8;1,1)) was 4.71 pkt/sec. However, the
graph of both designs kept declining as the number links
failure increases, till the point when 70 links were failed the
received packet for single FT design is 1.74 pkt/sec, while
2.47 pkt/sec was for the reversed hybrid. Even the single FT
design with a very much higher number of links - 296 links,
still showed a lower performance of 2.2 pkt/sec.

 Fig. 9 shows graph of the percentage of packet loss with
failed links. The graph shows the exact amount of packet that
was lost in percentage during the simulation at different stage
of failed links for each design. To calculate the packet loss, we
use the mathematical relation below

 (10)
 The graph shows that at 0 number of failed links, all the
designs have 75% of packet loss. But as the numbers of failed
links increase, the percentage of packet loss also increases.
Nonetheless, the hybrid designs showed a better performance
with topologies having 240 and 304 links respectively with
77% pkt loss, with a clear significant difference of 10% and
above when compared with all the single designs having 87%,
82%, and 83% pkt loss.

Fig. 9: GRAPH OF PERCENTAGE OF HTTP PACKET LOSS WITH

FAILED LINKS

Table 2: Summary of Results for Received Packet and

Percentage of Packet Loss for both Healthy and failed

links.

 The Fig. 10 shows the graph of HTTP Page Response Time,
which is the time required to retrieve the entire page with all
the contained inline objects [21]. It can be seen from the graph
that there is a slight increase in the response time as number of
failed links get to 70. The reason behind this is the fact that as
the failure increases, there is increase in congestion and the
time to retrieve the HTTP page will also increase. However, in
the case of single FT design with 156links Ƶ(2;4,6;4,8;1,1),
the page response time decreased to almost zero because at 70

failed links, the received HTTP packet was just 0.2 pkt/sec.
Another thing to note from the graph is that the reversed
hybrid topology has a slightly higher page response time than
the other topologies. This means that it took a bit longer time
for the page of the HTTP to be retrieved for the reversed
hybrid.

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70

A
V

.
P

A
G

E
 R

E
S

P
O

N
S

E
 T

IM
E

 (
S

E
C

)

NUMBER OF FAILED LINKS

HTTP PAGE RESPONSE TIME WITH FAILED LINKS

156 links 200 links 296 links

240 links 304 links 192 links

Fig. 10: GRAPH OF PAGE RESPONSE TIME

CONCLUSION

 The results obtained from the simulations carried out show
tremendous difference in the amount of throughput and packet
loss, especially for the hybrid (H2

+) with 304links, 64

switches; and the Single FT (Ƶ) with 152links, 32 switches.
Meanwhile, to ascertain our earlier claim that fault tolerance
and better performance can not only be realized by adding
extra hardware rather bespoke design plays a greater role. The
result of our proposed Reversed Hybrid (H2

-) with 192 links,
and that of the Single FT (Ƶ) with 296 links proved it all.
Therefore, based on the number of failed links with respect to
the Received Packets and Percentage of Packet Loss, it is
certain that our proposed hybrids (H2

+ and H2
-) can bring

about robust and reliable cloud data centers because of their
fault tolerance capabilities. The fault tolerance capability
exhibited by our proposed hybrid designs shows that faults in
cloud data center could be managed in real time through
bespoke design, till repair becomes available. Unlike some of
the contributions as reviewed in the related works whereby the
transfer of data from failed devices to healthy ones consumes
more unnecessary time and causes delay.

REFERENCES

[1] P. Gill, N. Jain, & N. Nagappan, 2011. Understanding network failures in
data centers: measurement, analysis, and implications. ACM SIGCOMM
Computer Communication …. Available at:
http://dl.acm.org/citation.cfm?id=2018477 [Accessed January 6, 2015].

[2] S.C. Joshi, & K.M. Sivalingam, 2013. On fault tolerance in data center
network virtualization architectures. 2013 IEEE International Conference on
Advanced Networks and Telecommunications Systems (ANTS), pp.1–6.
Available at:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6802837.

[3] Y. Liu, K.K. Muppala, & M. Veeraraghavan, 2014. A survey of data
center network architectures., p.22pp.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM 2008
conference on Data communication. ACM, 2008, pp. 63–74.

[5] M. Niranjan, A. Pamboris, N. Farrington, N. Huang, P. Miri, S.
Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: a scalable fault-
tolerant layer 2 data center network fabric,” ACM SIGCOMM Computer
Communication Review, vol. 39, no. 4, pp. 39–50, 2009.

[6] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Pro-ceedings
of the 7th USENIX conference on Networked systems design and
implementation. USENIX Association, 2010, p. 19.

[7] C. Minkenberg, R. P. Luijten, & G. Rodriguez, 2011. On the optimum
switch radix in fat tree networks. 2011 IEEE 12th International Conference on
High Performance Switching and Routing, HPSR 2011, pp.44–51.

[8] Y. Sun, J. Chen, Q. Liu, & W. Fang, 2014. Diamond: An improved fat-tree
architecture for large-scale data centers. Journal of Communications, 9(1), 91–
98.

[9] A. Peratikou, & M. Adda, 2014. Optimisation of Extended Generalised Fat
Tree Topologies, 1(c), 1–10. Chapter January 2014 DOI: 10.1007/978-3-319-
05209-0_7.

[10] E. Zahavi, 2010. Fat-Trees Routing and Node Allocation Providing Non-
Blocking MPI Global Collectives for Exascale Jobs. Electrical Engineering,
pp.1–8.

[11] M. Adda, and A. Peratikou. Routing and Fault Tolerance in Z-Fat Tree.
IEEE Transactions on Parallel and Distributed Systems. Year: 2017, Volume:
PP, Issue: 99 Pages: 1 - 1, DOI: 10.1109/TPDS.2017.2666807

[12] M. Bradonji, B. Labs, & M. Hill. Scaling of Capacity and Reliability in
Data Center Networks Categories and Subject Descriptors, 2, pp.3–5.

[13.] K. Bilal, S. Khan, L. Zhang, and H Li, 2013. Quantitative comparisons
of the state‐ of‐ the‐ art data center architectures.

Concurrency and …, (December 2012), pp.1771–1783. Available at:
http://onlinelibrary.wiley.com/doi/10.1002/cpe.2963/full [Accessed January 7,
2015].

[14] H. Emesowum, A. Paraskelidis, and M. Adda. “Fault tolerance
improvement for fat-tree based cloud data centers”, The 7th International
Conference on Information Communication and Management, ICICM 2017,
Moscow, Russia, in press.

[15] H. W. Park, I. Y. Yeo, J. R. Lee, & H. Jang, (2013). Study on Big Data
Center Traffic Management Based on the Separation of Large-Scale Data
Stream. 2013 Seventh International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing, 591–594.
http://doi.org/10.1109/IMIS.2013.104

[16] M. Suchara, F. Park, D. Xu, J. Rexford, 2011. Network Architecture for
Joint Failure Recovery and Traffic Engineering Categories and Subject
Descriptors. ACM SIGMETRICS, pp.97–108

[17] C. Kachris, K. Konstantinos, I. Tomkos, 2013. Optical Interconnection
Networks in Data Centers: Recent Trends and Future Challenges,
(September), pp.39–45.

[18] X. Ye et al., “DOS: A Scalable Optical Switch for Data-centers,” Proc.
6th ACM/IEEE Symp. Architectures for Networking and Commun. Sys.,
2010, pp. 24:1–12.

[19] H. Emesowum, A. Paraskelidis, and M. Adda. “Fault Tolerance and
Graceful Performance Degradation on Cloud Data Center”, The 10th
International Conference on Computer Science and Information Technology,
ICCSIT 2017, Florence, Italy, in press.

[20] F.O. Sem-Jacobsen et al., 2011. Dynamic fault tolerance in fat trees.
IEEE Transactions on Computers, 60(4), pp.508–525.

[21] Configuring Applications and Profiles: OPNET, Optimum Network
Performance. Available at
http://aetos.it.teithe.gr/~ziochr/network_lab/configuring_applications.pdf

