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ABSTRACT: Use of a heterobifunctional photoactivatable cross-
linker, sulfo-SDA (diazirine), has yielded high-density data that
facilitated structure modeling of individual proteins. We expand the
photoactivatable chemistry toolbox here with a second reagent, sulfo-
SBP (benzophenone). This further increases the density of photo-
cross-linking to a factor of 20× over conventional cross-linking.
Importantly, the two different photoactivatable groups display
orthogonal directionality, enabling access to different protein regions,
unreachable with a single cross-linker.

Cross-linking/mass spectrometry (CLMS) is a widespread
method for investigating protein structure and inter-

actions. Selective cross-linking chemistry is one factor that
limits the current resolution of this approach.1 In CLMS, new
covalent bonds are introduced between atoms near in space but
not necessarily close in the sequence of the protein. These
linkages are then detected by mass spectrometry and function
as distance constraints when modeling the structure. Currently
data-density of identified distance constraints is curtailed by the
restricted specificity of homobifunctional N-hydroxysuccini-
mide (NHS) ester cross-linkers predominantly used in CLMS
analysis, consequently limiting the level of protein structure
detail obtainable. Alternative cross-linking chemistry, including
cysteine specific cross-linking,2,3 zero-length carbodiimide
coupling,4−7 acidic specific cross-linking8 and photo-cross-
linking4,9−12 has failed to demonstrate significant increases in
CLMS data amount, either alone or in combination.13 The
recent exception is the heterobifunctional, photoactivatable
diazirine containing cross-linker sulfosuccinimidyl 4,4′-azipen-
tanoate (sulfo-SDA), which greatly increases cross-linked
residue pair number identification in human serum albumin
(HSA) from an average of 0.07 links per residue using NHS-
ester based cross-linking14 to 2.5 links per residue using sulfo-
SDA.15 This high-density data allows the computation of HSA
domain models from samples of purified protein as well as from
crude human blood serum (RMSD to crystal structure of 2.53
and 3.38 Å, respectively).15

We aimed to assess whether cross-linker coverage over a
protein could be improved upon by expanding our methods of
cross-linking to include an additional photoactivatable moiety,
the benzophenone group. Benzophenones have previously been

used to capture protein interactions in the context of amino
acid analogue incorporation, but this has typically involved
targeting single incorporation sites, limiting the extent of
identified links.16−25 A previous study aimed at comparing
exogenous bifunctional cross-linkers containing different photo-
activatable groups, including diazirine and benzophenone.
However, resulting data from using carboxy-benzophenone-
succinimide was sparse, with only 3 links observed and a total
lack of identified links using a diazirine derivative cross-linker.12

An earlier study, having synthesized a benzophenone derivative
cross-linker and it's deuterated equivalent, also identified 3
linked residue pairs.26 In contrast, when using the diazirine
derivative sulfo-SDA in a previous study, we identified 500
cross-linked residue pairs in purified HSA at 5% FDR.15 We
aimed to establish whether the use of a benzophenone based
cross-linker could result in a similarly high number of cross-
links and whether cross-linking site selection would be
influenced by the different chemical nature of the two
photoactivatable groups.

■ METHODS
Chemicals and Materials. The cross-linking reagent sulfo-

SDA was purchased from Thermo Fisher Scientific (Rockford,
IL). HSA (A8763) was purchased from Sigma-Aldrich (St.
Louis, MO).

Synthesis of 4-(N-Sulfosuccinimidylcarboxy)-
benzophenone. 4-Benzoylbenzoic acid (37 mg, 0.16 mmol)
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and N-hydroxysulfosuccinimide (50 mg, 0.23 mmol) were
stirred in 1 mL of DMF and to this was added EDC·HCl (40
mg, 0.21 mmol) and the mixture stirred overnight. Solvents
were removed under reduced pressure and the residue purified
using semipreparative RP-HPLC (Agilent 1100 prep-HPLC
system equipped with a preparative autosampler (G2260A),
preparative scale pumps (G1361A), a fraction collector
(G1364B-prep), and a multiwavelength UV detector (G13658
MWD with preparative flow cell)). Material was separated at a
flow rate of 20 mL/min on an Agilent RP-C-18 column (21.2
mm × 150 mm, 10 μm particle size), using the following
method: 0% B for 5 min, 0% to 80% B in 40 min, 80% B for 5
min, 80% to 0% B in 5 min, 0% B for 5 min, with mobile phase
A consisting of water and 0.1% trifluoroacetic acid and mobile
phase B consisting of acetonitrile and 0.1% trifluoroacetic acid)
to yield the title product as a white solid (20 mg, 0.05 mmol,
31%). 1H-NMR (500 MHz, D2O) δ 8.29−8.15 (2H, m, ArH),
7.92−7.66 (5H, m, ArH), 7.61−7.48 (2H, m, ArH), 4.55 (1H,
d, J = 7.1 H, SCH), 3.46 (1H, dd, J = 18.0, 8.7 Hz, CH2), 3.26
(1H, m, CH2). 13C-NMR (125 MHz, D2O) δ 199.2 (C),
170.0 (C), 166.0 (C), 161.9 (C), 142.6 (C), 135.8 (C), 134.1
(CH), 130.5 (CH), 130.4 (CH), 130.3 (CH), 128.7 (CH),
127.6 (C), 56.6 (CH), 30.0 (CH2). MS (ESI) Exact mass calcd
for C18H14NO8S [M + H]+, 404.44; found, 404.15.
Cross-Linking HSA. Cross-linking was carried out in

triplicate. Aliquots of HSA (15 μg, 0.75 mg/mL) in cross-
linking buffer (20 mM HEPES−OH, 20 mM NaCl, 5 mM
MgCl2, pH 7.8) were cross-linked with either sulfo-SDA or
sulfo-SBP, using eight cross-linker-to-protein ratios (w/w) and
UV irradiation times of either 25 or 50 min. In the case of sulfo-
SBP, the cross-linker-to-protein ratios (w/w) used were
0.187:1, 0.25:1, 0.375:1, 0.5:1, 0.75:1, 1:1, 1.5:1, and 2:1. The
equivalent molar ratios of sulfo-SDA were used, which meant
that the cross-linker-to-protein ratios (w/w) used were 0.152:1,
0.203:1, 0.303:1, 0.406:1, 0.606:1, 0.811:1, 1.21:1, and 1.62:1.
The cross-linking reaction was a two-step process. First the
cross-linker and protein mixture was allowed to incubate to
initiate incomplete lysine reaction with the sulfo-NHS ester
component of the cross-linker. The diazirine group was then
photoactivated using UV irradiation from a UVP CL-1000 UV
Cross-linker (UVP Inc.) at 365 nm (5 × 8 W). Samples were
spread onto the inside of Eppendorf tube lids to form a thin
film, placed on ice at a distance of 5 cm from the lamp, and
irradiated for either 25 or 50 min. The resulting cross-linked
mixtures were separated on a NuPAGE 4−12% Bis-Tris gel
using MES running buffer and Coomassie blue stain.
Sample Preparation for Mass Spectrometric Analysis.

Bands corresponding to monomeric HSA were excised from
the gel and the proteins reduced with 20 mM DTT, alkylated
using 55 mM IAA and digested using trypsin following standard
protocols.27 The resulting digests were desalted using self-made
C18 StageTips28 prior to mass spectrometric analysis.
Mass Spectrometry and Data Analysis. Peptides were

loaded directly onto a spray emitter analytical column (75 μm
inner diameter, 8 μm opening, 250 mm length; New
Objectives) packed with C18 material (ReproSil-Pur C18-AQ
3 μm; Dr Maisch GmbH, Ammerbuch-Entringen, Germany)
using an air pressure pump (Proxeon Biosystems, Odense,
Denmark).29 Mobile phase A consisted of water and 0.1%
formic acid. Mobile phase B consisted of acetonitrile and 0.1%
formic acid. Peptides were loaded onto the column with 1% B
at 700 nL/min flow rate and eluted at 300 nL/min flow rate
with a gradient: 1 min linear increase from 1% B to 9% B; linear

increase to 35% B in 169 min; 5 min increase to 85% B. Eluted
peptides were sprayed directly into a hybrid linear ion trap-
Orbitrap mass spectrometer (LTQ-Orbitrap Velos, Thermo
Fisher Scientific). Peptides were analyzed using a “high/high”
acquisition strategy, detecting at high resolution in the Orbitrap
and analyzing the subsequent fragments also in the Orbitrap.
Survey scan (MS) spectra were recorded in the Orbitrap at
100 000 resolution. The eight most intense signals in the survey
scan for each acquisition cycle were isolated with an m/z
window of 2 Th and fragmented with collision-induced
dissociation (CID) in the ion trap. 1+ and 2+ ions were
excluded from fragmentation. Fragmentation (MS2) spectra
were acquired in the Orbitrap at 7500 resolution. Dynamic
exclusion was enabled with 90 s exclusion time and repeat
count equal to 1. Mass spectrometric raw files were processed
into peak lists using MaxQuant version 1.3.0.530 using default
parameters except the setting for “Top MS/MS peaks per 100
Da” being set to 100.
Peak lists were subsequently searched against an HSA

sequence database (UniProt P02768) using Xi31 (https://
github.com/Rappsilber-Laboratory/XiSearch) for identification
of cross-linked peptides. Search parameters for sulfo-SDA
search were MS accuracy, 6 ppm; MS/MS accuracy, 20 ppm;
enzyme, trypsin; specificity, fully tryptic; allowed number of
missed cleavages, four; cross-linker, SDA; fixed modifications,
none; variable modifications, carbamidomethylation on cys-
teine, oxidation on methionine, SDA-loop (SDA cross-link
within a peptide that is also cross-linked to a separate peptide).
Search parameters for sulfo-SBP were the same except: cross-
linker, BENZO (C14H8O2); fixed modifications, none;
variable modifications, carbamidomethylation on cysteine and
oxidation on methionine. The linkage specificity for sulfo-SDA
and sulfo-SBP was assumed to be at lysine, serine, threonine,
tyrosine, and protein N-termini at one end, with the other end
having specificity for any amino acid residue. False discovery
rates (FDR) were estimated following a modified target-decoy
search strategy.27,32,33 Cross-link results from the FDR analysis
with scores at the peptide-spectrum match level and confidence
values at cross-link level are also available in Tables S1 and S2.
Cross-links were visualized in the crystal structure of HSA
(PDB|1AO6)34 using PyMOL (http://www.pymol.org).
To compare the fragmentation behavior of peptides linked

with either sulfo-SDA or sulfo-SBP, we extracted 49 common
PSMs that were identified with both sulfo-SBP and sulfo-SDA.
A common PSM is defined through the sequences of the two
peptides in the cross-link, the cross-link sites and the charge
state of the precursor. Next, we performed a two-sided Mann−
Whitney-U tests to check for differences in the number of b-
and y-type fragments (ignoring loss of H2O and NH3). The
tests were highly significant (n = 49, p-value ≤0.01 for the b-
ions, and ≤0.001 for the y-ions, respectively). The mean
difference between the number of b- and y-fragments between
sulfo-SDA and sulfo-SBP cross-linked peptides is 4. Next, the
fragmentation preferences in terms of fragment ion intensities
were compared with an adjusted cosine similarity. Instead of
computing the cosine similarity of the complete spectrum only
the relative intensities of shared fragment ions were considered.
The two distributions are clearly distinct indicating con-
servation of the preferred bond cleavage during fragmentation.

■ RESULTS AND DISCUSSION
Herein we report the synthesis and use of a photoactivatable
b e n z o p h e n o n e d e r i v a t i v e c r o s s - l i n k e r , 4 -
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(sulfosuccinimidylcarboxy)benzophenone (sulfo-SBP), and
compare its behavior in the reactivity with proteins to that of
sulfo-SDA (Figure 1). While fewer links were detected when

using sulfo-SBP compared to sulfo-SDA, complementary
photochemistry allowed access to additional parts of protein
structure, previously inaccessible using the diazirine-based
cross-linker only.
We aimed to benchmark sulfo-SBP against the performance

of sulfo-SDA. Sulfo-SBP was first synthesized in a one-step
coupling procedure from the corresponding acid (Figure 1B).
Purified HSA was cross-linked in a parallel triplicate experiment
with either sulfo-SDA or sulfo-SBP, using equivalent molar
ratios for both cross-linkers (Figure 1C). Cross-linked protein
was subjected to SDS-PAGE (Figure 1D) and the monomer
band of HSA excised, digested by trypsin, and analyzed by mass
spectrometry (MS) (Figure 1C). Total MS acquisition time was
6.3 days for each cross-linker, consisting of 48 × 190 min
acquisitions (compared to 12 days of acquisition in the previous
analysis of HSA15).

Using sulfo-SDA, 792 unique residue pairs were identified
(supported by 1874 MS spectra) at 5% FDR (using a score
cutoff of 5). In contrast, using sulfo-SBP a total of 173 unique
residues pairs were identified (supported by 356 MS spectra) at
5% FDR (score cutoff = 5) (Figure 1E), of which 66 were also
found using sulfo-SDA and 107 were unique to sulfo-SBP. For
comparison, previous work cross-linking acidic residues and
primary amines using 5 different cross-linkers, was based on an
average of 52 links per protein, detected in separate studies.8

Unambiguous linkage site assignment is dependent on
adequate flanking fragmentation events (Figure 2). Manual
validation of peptide spectra matches revealed this to be the
case for 313/792 (40%) sulfo-SDA cross-linked residue pairs

Figure 1. Comparison of sulfo-SDA and sulfo-SBP reaction with HSA.
(A) Chemical structures of sulfo-SDA and sulfo-SBP. (B) Synthesis of
sulfo-SBP. (C) Experimental design. HSA was cross-linked in triplicate
using either sulfo-SDA or sulfo-SBP. (D) Purified HSA, with either no
(−) cross-linker, reacted with (+) sulfo-SBP or with (+) sulfo-SDA.
(E) Unique cross-linked residue pairs identified using only either sulfo-
SBP or sulfo-SDA and those common to both.

Figure 2. Fragmentation analysis. (A and B) LC/ESI-MS/MS spectra
of the same peptide pair cross-linked with either (A) sulfo-SBP or (B)
sulfo-SDA. (C and D) Comparison of b- and y-ion fragmention of
common sulfo-SDA and sulfo-SBP cross-linked peptide pairs. (C) A
Mann−Whitney U test indicates highly significant changes in the
number of fragments (n = 49, **p-value ≤ 0.01 for b-ions, and ***≤
0.001 for y-ions, respectively). (D) Fragmentation spectra similarity
computed as a simplified cosine similarity and compared with a
random reference distribution.
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and 55/173 (32%) sulfo-SBP cross-linked residue pairs.
Looking further at cross-linked peptide pairs common to
both sulfo-SDA and sulfo-SBP revealed differences in the
numbers of fragments between cross-linkers (Figure 2C);
however, cosine similarity was high, suggesting the impact was
minimal (Figure 2D).
Cross-link coverage is even across the structure of HSA for

both cross-linkers (Figure 3). Very few links have Cα-Cα
distances in excess of 25 Å, 5.6% for sulfo-SDA (44/776 residue
pairs) and 2.9% for sulfo-SBP (5/172 residue pairs). Although
sulfo-SDA has a shorter calculated backbone distance compared
to sulfo-SBP (3.9 Å compared to 5.7 Å as predicted for sulfo-
SBP), the data suggests that sulfo-SBP has a shorter upper limit
distance constraint than sulfo-SDA. This is also demonstrated
by 94% of sulfo-SBP linked residue pairs having Cα-Cα
distance less than 20 Å, compared to 86% of sulfo-SDA residue
pairs. The number of identified linked residue pairs in excess of
these proposed upper limits are in agreement with the 5% FDR
applied to identifications. Sulfo-SBP data fits well to the crystal
structure of HSA (PDB|1AO6), corroborating with a previous
study that showed benzophenone incorporation into proteins is
well tolerated.36 While HSA does have extensive disulfide
bridges, it is not incapable of changing its structure in response
to changes in its surface charge. Changing the pH does result in
conformational changes37 as does protein oxidation.38,39 The
close agreement of cross-link data with the crystal structure
suggests that the reduction of charged residues during the initial
anchoring step of the reagent does not noticeably disrupt the
native fold of the protein.

Both cross-linkers are heterobifunctional, with cross-linking
occurring as a two-step reaction: as an anchoring step, the
sulfo-NHS ester component of each cross-linker reacts,
primarily with the amine groups of lysine residues and protein
N-termini, but also with the hydroxyl groups of serine,
threonine, and tyrosine. Second, following UV activation, the
photoactivatable groups react by insertion into available N−H/
C−H bonds at any residue (photo-cross-linking step).
Reactivity can therefore be characterized in terms of both the
anchoring and photoreacted sites. Distinct anchoring residue
hotspots within HSA account for up to 46 unique residue pairs
for a single hotspot. In total, the top eight anchoring hotspots
(K161, Y162, K183, K186, K214, K223, K456, and K549)
account for 26% of all identified residue pairs (Figure S1).
Fewer anchoring lysine residues are observed with sulfo-SBP
than sulfo-SDA at 23/59 and 45/59 lysine residues, respectively
(Figure S1). However, linear peptides with sulfo-SBP and sulfo-
SDA modifications (reacted at the NHS-ester) were observed
for 55 and 57 (out of 59) lysine residues, respectively,
suggesting that the observation of cross-links is not limited by
the anchoring reaction but must depend on the photoreaction.
Both cross-linkers show distinct regional preferences in the

photoreaction step (Figure 3D,E). This is marked in the case of
anchoring residues K223, K236, K565 and residues K160,
K161, and Y162 (Figure 3D). Although all these residues have
reacted with both cross-linkers, the reaction has proceeded in
opposing directions. Lysine K565, in particular, was linked to
12 different residues, 5 of which by sulfo-SDA and 7 by sulfo-
SBP. Sulfo-SDA linked K565 to residues in a single loop. In
contrast, sulfo-SBP linked K565 to residues in 4 separate

Figure 3. Sterical analysis of cross-links. (A) Observed cross-links plotted in PDB|1AO6. (B) Cα−Cα distogram of observed cross-links, compared
with a random distance distribution (PDB|1AO6). (C) Matrix plot of residue pairs across the sequence of HSA. (D and E) Zoomed in regions of
HSA in PDB|1AO6 with cross-linked residue pairs involving NHS-ester reactive residue hot-spots. (D) Photoreaction exhibits a cross-linker
dependent regional preference. Top left, K223. Top right, K565. Bottom left, K236. Bottom right, K160, K161, Y162; (E) Top panel, K375. Bottom
panel, K183, Y185 and K186. Sulfo-SDA (red), sulfo-SBP (blue) and common to both cross-linkers (yellow). Figures were generated using PyMOL
(http://www.pymol.org).
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neighboring alpha helices. In the case of anchoring residue
K375 and residues K183, Y185, and K186 (Figure 3E),
opposing cross-linking orientation is also evident. The
difference here being that there is also considerable overlap,
with some degree of linker specificity.
There is an observed cross-linking bias for particular residue

types, which are different for sulfo-SDA and sulfo-SBP (Figure
S2). Both cross-linkers disfavor polar residues (sulfo-SBP more
strongly than sulfo-SDA); however, sulfo-SDA has a preference
for acidic residues (Asp, Glu), which are strongly disfavored by
sulfo-SBP. Notably, we identify a bias between the
benzophenone of sulfo-SBP toward methionine residues,
which corroborates a previous study demonstrating a “Magnet
Effect” of methionine residues.40 The benzophenone of sulfo-
SBP has a stronger preference for linking hydrophobic residues
than sulfo-SDA, in particular glycine and phenylalanine
residues.
Photo-cross-linking has emerged as a means to greatly

increase the density of cross-linking/mass spectrometry data,
which allows interrogation of protein structures in very
complex environments.15 Alternative photo-cross-linking chem-
istry can lead to additional structural insights by accessing
protein regions that are inaccessible with one cross-linker alone.
A greater understanding of how cross-linker chemistry
influences cross-linking could enable design and synthesis of
improved and enhanced cross-linkers with a diverse range of
physicochemical characteristics. Ultimately, cross-linking/mass
spectrometry chemistry may become routinely tuned for
probing a likely structure and to determine protein folds.
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