

Edinburgh Research Explorer

Semi-equilibrium models for paracoherent answer set programs

Citation for published version:
Amendola, G, Eiter, T, Fink, M, Leone, N & Moura, J 2016, 'Semi-equilibrium models for paracoherent
answer set programs' Artificial Intelligence, vol. 234, pp. 219-271. DOI: 10.1016/j.artint.2016.01.011

Digital Object Identifier (DOI):
10.1016/j.artint.2016.01.011

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Artificial Intelligence

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/151190151?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.artint.2016.01.011
https://www.research.ed.ac.uk/portal/en/publications/semiequilibrium-models-for-paracoherent-answer-set-programs(7301c7cd-96ff-4769-9bb4-44d4171978c6).html

Semi-Equilibrium Models for Paracoherent Answer Set ProgramsI

Giovanni Amendolaa, Thomas Eiterb,∗, Michael Finkb, Nicola Leonea, João Mourac

aDepartment of Mathematics and Computer Science, University of Calabria Via P. Bucci, Cubo 30b, 87036 Rende (CS), Italy
bInstitute of Information Systems, Vienna University of Technology Favoritenstraße 9-11, A-1040 Vienna, Austria

cNOVA LINCS, Departamento de Informática, Universidade Nova de Lisboa 2829-516 Caparica, Portugal

Abstract

The answer set semantics may assign a logic program no model, due to logical contradiction or unstable
negation, which is caused by cyclic dependency of an atom from its negation. While logical contradictions
can be handled with traditional techniques from paraconsistent reasoning, instability requires other methods.
We consider resorting to a paracoherent semantics, in which 3-valued interpretations are used where a
third truth value besides true and false expresses that an atom is believed true. This is at the basis of the
semi-stable model semantics, which was defined using a program transformation. In this paper, we give
a model-theoretic characterization of semi-stable models, which makes the semantics more accessible.
Motivated by some anomalies of semi-stable model semantics with respect to basic epistemic properties,
we propose an amendment that satisfies these properties. The latter has both a transformational and a
model-theoretic characterization that reveals it as a relaxation of equilibrium logic, the logical reconstruction
of answer set semantics, and is thus called the semi-equilibrium model semantics. We consider refinements
of this semantics to respect modularity in the rules, based on splitting sets, the major tool for modularity
in modelling and evaluating answer set programs. In that, we single out classes of canonical models that
are amenable for customary bottom-up evaluation of answer set programs, with an option to switch to
a paracoherent mode when lack of an answer set is detected. A complexity analysis of major reasoning
tasks shows that semi-equilibrium models are harder than answer sets (i.e., equilibrium models), due to a
global minimization step for keeping the gap between true and believed true atoms as small as possible.
Our results contribute to the logical foundations of paracoherent answer set programming, which gains
increasing importance in inconsistency management, and at the same time provide a basis for algorithm
development and integration into answer set solvers.

Keywords: Answer Set Programming, Equilibrium Logic, Paracoherent Reasoning, Splitting Sequences,
Inconsistency Management

1. Introduction

Answer Set Programming (ASP) is a premier formalism for nonmonotonic reasoning and knowledge
representation, mainly because of the existence of efficient solvers and well-established relationships to
common nonmonotonic logics. It is a declarative programming paradigm with a model-theoretic semantics,
where problems are encoded into a logic program using rules, and its models, called answer sets (or stable
models) [26], encode solutions; see [6, 11, 24].

ISome of the results were presented in preliminary form at KR 2010 [17] and JELIA 2014 [2]. This work was partially supported by
Regione Calabria under the EU Social Fund and project PIA KnowRex POR FESR 2007- 2013, by the Vienna Science and Technology
Fund (WWTF) grant ICT 08-020, the Austrian Science Fund (FWF) grant P20841, and by the Italian Ministry of University and
Research under PON project Ba2Know (Business Analytics to Know) S.I.-LAB n. PON03PE 0001. The work of J. Moura was
supported by grant SFRH/BD/69006/2010 from Fundação para a Ciência e Tecnologia (FCT) from the Portuguese Ministério do
Ensino e da Ciência.
∗Corresponding author

URL: amendola@mat.unical.it (Giovanni Amendola), eiter@kr.tuwien.ac.at (Thomas Eiter),
fink@kr.tuwien.ac.at (Michael Fink), leone@mat.unical.it (Nicola Leone), joaomoura@yahoo.com (João
Moura)

Preprint submitted to Elsevier January 28, 2016

As well-known, not every logic program has some answer set. This can be due to different reasons: (1)
an emerging logical contradiction, as e.g. for the program

P = { locked(door)← not open(door); −locked(door) }
where “−” denotes strong (sometimes also called classical) negation and “not” denotes weak (or default
negation); according to the first rule, a door is locked unless it is known to be open, and according to the
second rule it is not locked. The problem here is a missing connection from−locked(door) to open(door).1

(2) Due to cyclic dependencies which pass through negation, as e.g. in the following simplistic program.

Example 1. Consider the barber paradox, which can be regarded as an alternative form of Russell’s famous
paradox in naive set theory:2 in some town, the barber is a man who shaves all men in town, and only those,
who do not shave themselves. The paradox arises when we ask “Who shaves the barber?”. Assuming that
Joe is the barber, the knowledge about who is shaving him is captured by the logic program

P = {shaves(joe, joe)← not shaves(joe, joe)},
(where joe is the barber), which informally states that Joe shaves himself if we can assume that he is not
shaving himself. Under answer set semantics, P has no model; the problem is a lack of stability, as either
assumption on whether shaves(joe, joe) is true or false can not be justified by the rule.

In general, the absence of an answer set may be well-accepted and indicates that the rules cannot be
satisfied under stable negation. There are nonetheless many cases when this is not intended and one might
want to draw conclusions also from a program without answer sets, e.g., for debugging purposes, or in
order to keep a system (partially) responsive in exceptional situations; in particular, if the contradiction or
instability is not affecting the parts of a system that intuitively matter for a reasoning problem.

In order to deal with this, Inoue and Sakama [49] have introduced a paraconsistent semantics for answer
set programs. While dealing with logical contradictions can be achieved with similar methods as for (non-)
classical logic (cf. also [9, 1, 37]), dealing with cyclic default negation turned out to be tricky. We concentrate
in this article on the latter, in presence of constraints, and refer to it as paracoherent reasoning, in order to
distinguish reasoning under logical contradictions from reasoning on programs without strong negation that
lack stability in models.

With the idea that atoms may also be possibly true (i.e., believed true), Inoue and Sakama defined
a semi-stable semantics which, for the program in Example 1, has a model in which shaves(joe, joe) is
believed true; this is (arguably) reasonable, as shaves(joe, joe) can not be false while satisfying the rule.
Note however that believing shaves(joe, joe) is true does not provide a proof or founded justification that
this fact is actually true; as a mere belief it is regarded to be weaker than if shaves(joe, joe) would be known
as a fact or derived from a rule.

In fact, semi-stable semantics approximates answer set semantics and coincides with it whenever a
program has some answer set; otherwise, under Occam’s razor, it yields models with a smallest set of atoms
believed to be true. That is, the intrinsic closed world assumption (CWA) of logic programs is slightly
relaxed for achieving stability of models.

In a similar vein, we can regard many semantics for non-monotonic logic programs that relax answer
sets as paracoherent semantics, e.g. [4, 19, 39, 43, 44, 47, 48, 51, 56, 59]. Ideally, such a relaxation meets
for a program P the following properties:

(D1) Every (consistent) answer set of P corresponds to a model (answer set coverage).

(D2) If P has some (consistent) answer set, then its models correspond to answer sets (congruence).

(D3) If P has a classical model, then P has a model (classical coherence).

In particular, (D3) intuitively says that in the extremal case, a relaxation should renounce to the selection
principles imposed by the semantics on classical models (in particular, if a single classical model exists).

1Constraints (rules with empty head) may be considered as descriptions of cases when inconsistency arises, if ⊥ (falsum) is added
to the head; however, also an instability view is possible, cf. Section 6.2.

2Namely, that the set of all sets that are not members of themselves can not exist.

2

Widely-known semantics, such as 3-valued stable models [47], L-stable models [19], revised stable
models [43], regular models [59], and pstable models [39], satisfy only part of these requirements (see
Section 8.2 for more details). Semi-stable models however, satisfy all three properties and thus have been
the prevailing paracoherent semantics.

1.1. Use case scenarios

Paracoherent semantics may be fruitfully employed in different use cases of ASP, such as model building
respectively scenario generation, but also traditional reasoning from the models of a logical theory. The
semi-stable model semantics is attractive as it (1) brings in “unsupported” assumptions as being believed, (2)
remains close to answer sets in model building, but distinguishes atoms that require such assumptions from
atoms derivable without them, not creating justified truth from positive beliefs, and (3) keeps the CWA/LP
spirit of minimal assumptions.

Let us consider two possible use cases for illustration.

1.1.1. Model building
In ASP, one of the principal reasoning tasks is model building, which means to compute some, multiple

or even all answer sets of a given program. Each answer set encodes a possible world or solution to a
problem that is represented by the program.

The standard answer set semantics may be regarded as appropriate when a knowledge base, i.e., logic
program, is properly specified adopting the CWA principle to deal with incomplete information. It may
then be perfectly ok that no answer set exists, as e.g. in the Gedanken-Experiment of the barber paradox.
However, sometimes the absence of an answer set is unacceptable as a possible world is known to exist, and
in this case a relaxation of the answer set semantics is desired.

Example 2. Suppose we have a program that captures knowledge about friends of a person regarding visits
to a party, where go(X) informally means that X will go:

P =

 go(John)← not go(Mark);
go(Peter)← go(John), not go(Bill);

go(Bill)← go(Peter)


It happens that P has no answer set. This is unacceptable as we know that there is a model in reality,

regardless of who will go to the party, and we need to cope with this situation. Semi-stable semantics is a tool
that allows us to gain an answer set, by relaxing the CWA and adopting beliefs without further justifications.
In particular, the semi-stable models of this program are Iκ1 = {Kgo(Mark)} and Iκ2 = {go(John),
Kgo(John), Kgo(Bill)}. Informally, the key difference between Iκ1 and Iκ2 concerns the beliefs on Mark
and John. In Iκ2 Mark does not go, and, consequently, John will go (moreover, Bill is believed to go, and
Peter will not go). In Iκ1 , instead, we believe Mark will go, thus John will not go (likewise Peter and Bill).
Notably, and different from other related formalisms (cf. Section 8.2), positive beliefs do not create justified
truth: if we had a further rule fun ← go(Mark) in P , then from just believing that Mark will go we can not
derive that fun is true; Iκ1 would remain a semi-stable model.

As already mentioned, paracoherent semantics can serve as a starting point for debugging and also
repairing a program. Indeed, if all believed atoms were justified true, then we would obtain an answer set of
the program.3 Therefore, we might investigate reasons for the failure to derive these atoms justified, and
possibly add new rules or modify existing ones. However, dealing with this issue and linking it to existing
work on debugging and repair of answer set programs (e.g., [50, 52, 25, 4, 38]) is beyond the scope of this
article; we will briefly address it in Section 8.2.

3As we shall see, this actually holds for the amended semi-stable semantics.

3

1.1.2. Inconsistency-tolerant query answering
Query answering over a knowledge base resorts usually to brave or cautious inference from the answer

sets of a knowledge base, where the query has to hold in some respectively in every answer set; let us focus
on the latter here. However, if incoherence of the knowledge base arises, then we lose all information and
query answers are trivial, since every query is vacuously true. This, however, may not be satisfactory and be
problematic, especially if one can not modify the knowledge base, which may be due to various reasons
(no permission for change, the designer or administrator of the knowledge base might be unavailable, no
clear way to fix the problem etc). Paracoherent semantics can be exploited to overcome this problem and to
render query answering operational, without trivialization. We illustrate this on an extension to the barber
paradox (but could equally well consider other scenarios).

Example 3. Consider a variant of the barber paradox, cf. [49]:

P = {shaves(joe,X)← not shaves(X ,X), man(X); man(paul); man(joe)}.
While this program has no answer set, the semi-stable model semantics gives us the model {man(joe),
shaves(joe, paul), man(paul), Kshaves(joe, joe)}, in which shaves(joe, joe) is believed to be true (as
expressed by the prefix ’K’); here the incoherent rule shaves(joe, joe)← not shaves(joe, joe),man(joe),
which is an instance of the rule in P for joe, is isolated from the rest of the program to avoid the absence
of models;4 this treatment allows us to derive, for instance, that shaves(joe, paul) and man(paul) are
true; furthermore, we can infer that shaves(joe, joe) can not be false. Such a capability seems to be
very attractive in query answering: to tolerate inconsistency (that is, incoherence) without a “knowledge
explosion.”

The well-founded semantics (WFS) [56] is the most prominent approximation of the answer set semantics
and in particular useful for query answering, since an atom that is true (resp. false) under WFS is true (resp.
false) in every answer set of a program. The WFS has similar capabilities, but takes intuitively a coarser
view on the truth value of an atom, which can be either true, false, or undefined; in semi-stable semantics,
however, undefinedness has a bias towards truth, expressed by “believed true” (or stronger, by “must be
true”); in the example above, under WFS shaves(joe, joe) would be undefined. Furthermore, undefinedness
is cautiously propagated under WFS, which may prevent one from drawing expected conclusions.

Example 4. Consider the following extension of Russell’s paraphrase:

P =

{
shaves(joe, joe)← not shaves(joe, joe);
visits barber(joe)← not shaves(joe, joe)

}
.

Arguably one expects that visits barber(joe) is concluded false from this program: to satisfy the first
rule, shaves(joe, joe) can not be false, and thus the second rule can not be applied; thus under CWA,
visits barber(joe) should be false. However, under well-founded semantics all atoms are undefined; in
particular, the undefinedness of shaves(joe, joe) is propagated to visits barber(joe) by the second rule.

The single semi-stable model of P from its epistemic transformation is {Kshaves(joe, joe)}, according
to which shaves(joe, joe) is believed true while visits barber(joe) is false.

Furthermore, it is well-known that the well-founded semantics has problems with reasoning by cases .

Example 5. From the program

P =

 shaves(joe, joe)← not shaves(joe, joe);
angry(joe)← not happy(joe); happy(joe)← not angry(joe);
smokes(joe)← angry(joe); smokes(joe)← happy(joe)

 ,

which is still incoherent with respect to answer set semantics, we can not conclude that smokes(joe) is true
under WFS: as angry(joe) and happy(joe) mutually define each other by negation, WFS remains agnostic
and leaves both atoms undefined; their undefinedness is propagated to smokes(joe) by the rules for this
atom. In contrast, we can conclude that smokes(joe) is true under semi-stable semantics and its relatives:

4A similar intuition underlies the CWA inhibition rule in [42] that is used for contradiction removal in logic programs.

4

we have two semi-stable models, one in which angry(joe) is true and happy(joe) is false, and one in which
angry(joe) is false and happy(joe) is true; in both models, however, smokes(joe) is true. Moreover, under
these semantics we can e.g. not derive that angry(joe) is true, which means that trivialization is avoided.

We elucidate the relationship between paracoherent semantics and WFS in more detail in Section 8.

1.2. Contributions

Despite the model-theoretic nature of ASP, semi-stable models have been defined by means of a program
transformation, called epistemic transformation. A semantic characterization in the style of equilibrium
models for answer sets [41] was still missing. Such a characterization is desired because working with
program transformations becomes cumbersome, if properties of semi-stable models should be assessed; and
moreover, while the program transformation is declarative and the intuition behind is clear, the interaction
of rules does not make it easy to understand or to see how the semantics works in particular cases.

Starting out from these observations, we have addressed the problem making the following main
contributions.
– We characterize semi-stable models by pairs of 2-valued interpretations of the original program, similar
to so-called here-and-there (HT) models in equilibrium logic [40, 41]. Equilibrium logic is the logical
reconstruction of the answer set semantics and has proven immensely useful to understand it better from
a proof-theoretic perspective based on intuitionistic logic, and to characterize important properties such
as strong equivalence of answer set programs [32]; furthermore, it naturally extends to richer classes of
programs. The logic of here-and-there, on which equilibrium logic is based, can be seen as the monotonic
core of answer set semantics; its semantics is captured by HT-models, which are pairs (X,Y), where
X ⊆ Y are sets of atoms that are true and believed true, respectively. Thus, to characterize the semi-stable
models in terms of HT-models or similar structures is a natural and important issue. In the course of this, we
point out some anomalies of the semi-stable semantics with respect to basic rationality properties in modal
logics (K and N) which essentially prohibit a 1-to-1 characterization5 in terms of HT-models. Roughly
speaking, the epistemic transformation misses some links between atoms encoding truth values of atoms,
which may lead in some cases to counterintuitive results.

– These anomalies of the semi-stable model semantics lead us to propose an alternative paracoherent
semantics, called semi-equilibrium (SEQ) model semantics, which remedies them. It satisfies the properties
(D1)-(D3) from above and is fully characterized using HT-models. Informally, semi-equilibrium models
are 3-valued interpretations in which atoms can be true, false or believed true; the gap between believed
and (derivably) true atoms is globally minimized. That is, SEQ-models can be seen as relaxed equilibrium
models respectively answer sets where a smallest set of atoms is believed to be true, without further
justification, such that an answer set can be built. Note that the semantic distinction between believed true
and true atoms in models is important. Other approaches, e.g. CR-Prolog [4], make a syntactic distinction
at the rule level which does not semantically discriminate believed atoms; due to truth propagation, this may
lead to more models. Notably, SEQ-models can be obtained by an extension of the epistemic transformation
that adds further rules which take care of the anomalies; we thus have both an appealing model-theoretic
and an declarative-operational view of the semantics.

– Different from equilibrium models, semi-equilibrium models do in general not obey a well-known
syntactic modularity property that allows one to build all models of a program by extending the models of a
bottom part to the rest of the program. More precisely, splitting sets [31], the major tool for modularity
in ASP, can not be blindly used to decompose an arbitrary program under semi-equilibrium semantics.
This shortcoming affects in fact two aspects: (1) program evaluation, which for answer set programs in
practice proceeds from bottom to top modules, and (2) problem modelling, where user-defined subprograms
are hierarchically organized. To address this, we define split SEQ-models, where a concrete sequence
S = (S1, . . . , Sn) of splitting sets Si, called splitting sequence, is used to decompose the program into
hierarchically organized subprograms P1, . . . , Pn that are evaluated bottom up.

5By 1-to-1 we mean a one to one and onto (i.e., bijective) correspondence.

5

– In general, the resulting split SEQ-models depend on the particular splitting sequence. E.g., the party
program in Example 2 has two SEQ-models, which result from different splitting sequences (see Section 6).
This is a drawback, as e.g. in program evaluation a solver may use one of many splitting sequences. In
order to make the semantics robust, we thus introduce canonical splitting sequences, with the property that
the models are independent of any particular member from a class of splitting sequences, and thus obtain
canonical models (Section 6). This is analogous to the perfect models of a (disjunctive) stratified program,
which are independent of a concrete stratification [3, 46]. We concentrate on program evaluation and
show that for programs P with a benign form of constraints, the class derived from the strongly connected
components (SCCs) of P warrants this property, as well as modularity properties. For the party program
in Example 2, the single canonical SEQ-model is Iκ2 , as there is no rule from which go(Mark) can be
derived. For arbitrary programs, independence is held by a similar class derived from the maximal joined
components (MJCs) of P , which intuitively merge SCCs that are involved in malign constraints. A compact
summary of the relationships of the different notions of models is shown in Figure 1 in Section 6.3.

– We study major reasoning tasks for the semantics above and provide precise characterizations of their
computational complexity for various classes of logic programs. Besides brave and cautious reasoning,
deciding whether a program has a model, respectively recognizing models, is considered. Briefly, the results
show that semi-stable and SEQ-model semantics reside in the polynomial hierarchy one level above the
answer set semantics, and is for brave and cautious reasoning from disjunctive programs Σp3- respectively
Πp

3-complete; for normal programs, the problems are Σp2- respectively Πp
2-complete. This increase in

complexity is intuitively explained by the congruence property (D2), which imposes another layer of
optimization. Notably, split SEQ- and canonical SEQ-models have the same complexity as SEQ-models
for these problems, but the model existence problem (which is NP-complete for SEQ-models) is harder
(Σp3- resp. Σp2-complete). Intuitively, this is explained by the fact that classical coherence (D3) already
ensures SEQ-model existence, but split SEQ- and canonical SEQ-models must fulfill further conditions
that are a source of complexity.

– We compare the SEQ-model semantics to a number of related semantics in the literature. It turns out
that it coincides with the evidential stable model semantics for disjunctive logic programs [51]. The latter
has been defined like the semi-stable model semantics in terms of a two stage program transformation, but
using a rather different program. Thus our results provide as a byproduct also a semantic and computational
characterization of the evidential stable model semantics. Another notable result is that the SEQ-model
semantics of a slightly enriched program Pwf refines the WFS of a given program P , by making in general
more atoms true resp. false; hence the query answers from SEQ-models are in general more informative
than under WFS (cf. Example 5). Moreover, the same holds for split SEQ-models.

Our results contribute to enhanced logical foundations of paracoherent answer set programming, which
gains increasing importance in inconsistency management. They provide a model-theoretic characterization
and an amendment of the semi-stable semantics, given by the semi-equilibrium semantics, linking it to the
view of answer sets semantics in equilibrium logic; this also provides the basis for immediate extensions
to richer classes of logic programs (see Section 9.3 and Section 10). Furthermore, the split SEQ-model
semantics, and in particular the SCC-models semantics, lends itself for a modular use and bottom up
evaluation of programs. Cautious merging of components, as done forMJC-models, aims at preserving
independence of components and thus possible parallel evaluation. This makes the refined semantics
attractive for incorporation into answer set solvers and evaluation frameworks, in order to offer paracoherent
features. Notably, the bottom-up evaluation allows one to switch on the fly to a paracoherent mode when
facing an incoherence, i.e., no answer set exists. Furthermore the notions and main results for SCC-models
can be generalized to user-defined subprograms (Section 9.2).

1.2.1. Organization
The remainder of this article is organized as follows. In the next section, we review answer set programs,

equilibrium logic and semi-stable model semantics. After that, we provide in Section 3 the semantic
characterization of semi-stable models and point out some anomalies, which leads us to introduce semi-
equilibrium models in Section 4. The refinement of the latter relative to splitting sets and arbitrary splitting
sequences is considered in Section 5, while canonical semi-equilibrium models are introduced in Section 6.

6

Section 7 is devoted to characterize the complexity of various semantics and to computational issues in this
context. Related work is discussed in Section 8, followed by Section 9 that addresses possible extensions.
Section 10 concludes the article with open issues and an outlook. In order not to disrupt the flow of reading,
most proofs have been moved to the Appendix.

2. Preliminaries

In this paper, we consider a propositional setting of logic programs; extensions to the usual non-ground
setting are straightforward. Since we are primarily interested in paracoherence, we also disregard aspects
devoted to paraconsistency, i.e., logical contradictions; more specifically, we exclude strong negation. A
discussion of how the work extends to non-ground programs and strong negation is given in Section 9.3.

We first recall the answer set semantics of disjunctive logic programs, and then its reconstruction as
equilibrium logic based on a non-classical logic.

2.1. Answer Set Programs

Given a propositional signature, i.e., a set of propositional atoms Σ, a (disjunctive) rule r is of the form

a1 ∨ · · · ∨ al ← b1, . . . , bm, not c1, . . . , not cn, (1)

where l + m + n > 0, such that all ai, bj and ck are atoms.6 As usual, “not” stands for weak or
default negation. The head of r is the set H(r) = {a1, . . . , al}, and the positive (respectively negative)
body is the set B+(r) = {b1, . . . , bm} (respectively B−(r) = {c1, . . . , cn}); the body of r is B(r) =
B+(r)∪ notB−(r), where for any set S of atoms, not S = {not a | a ∈ S}. By abuse of notation, we will
denote r also by

H(r)← B(r) or H(r)← B+(r), notB−(r).

A rule r is a (disjunctive) fact, if B(r) = ∅ (we then omit ←); a constraint, if H(r) = ∅; normal, if
|H(r)| ≤ 1; and positive, if B−(r) = ∅.

A (disjunctive logic) program P is a finite set of disjunctive rules (over Σ). A program P is called
normal (resp. positive) if each r ∈ P is normal (resp. positive); P is constraint-free, if P contains no
constraints.

Example 6. Several programs have already been considered in the Introduction. As an example of a
disjunctive program, consider

P = {assistant ∨ student ← not professor ; discount ← student , not assistant}.

It intuitively captures that in some department members who are not known to be professors are assistants
or students, and a student who is not known to be assistant gets a discount for coffee.

We now recall the stable models (also called answers sets) of a program; intuitively, these are models
that can be reconstructed from the rules if negation is pre-evaluated according to the model itself. An
interpretation is any set I ⊆ Σ of atoms. An interpretation I satisfies a rule r, denoted I |= r, if I∩H(r) 6= ∅
whenever B+(r) ⊆ I and B−(r) ∩ I = ∅, and I is a model of a program P (denoted I |= P), if I |= r for
each rule r ∈ P . A model I of P is minimal, if no model J ⊂ I of P exists; MM (P) denotes the set of all
minimal models of P .

An interpretation I is a stable model (or answer set) of P , if I ∈ MM (P I), where P I is the well-known
Gelfond-Lifschitz (GL) reduct [26] of P w.r.t. I , which is the positive program P I = {H(r)← B+(r) |
r ∈ P,B−(r) ∩ I 6= ∅}. The program P I incorporates the value of negation given by I into the program;
if I ∈ MM (P I) holds, I can be reconstructed under the “guess” for negation given by I . We denote by
AS(P) the set of all answer sets of P .

6Occasionally, we use as in Example 3 schematic rules with variables which are instantiated to propositional rules.

7

Example 7 (continued). Reconsider the program P in Example 6, where for simplicity we use a, b, c
and d for professor , student , assistant , and discount , respectively; that is, we have P = {b ∨ c ←
not a; d← c, not b}. This program has the minimal models MM (P) = {{a}, {b}, {c, d}} and the answer
sets AS(P) = {{b}, {c, d}}. Note that I = {a} is not an answer set, as I is not a minimal model of
P I = {d← c}; intuitively the truth of a in I is unfounded, as it can not be derived from rules.

2.1.1. Stratified and headcycle-free programs.
Among various syntactic classes of programs that are important for the use in practice are stratified

programs [3, 46] and headcycle-free (hcf) program [8]. In the following, we characterize these notions in
terms of the strongly connected components of a logic program.

The dependency graph of a program P is the directed graph DG(P) = 〈VDG , EDG〉 whose nodes
VDG are the atoms in P and with an edge (a, b) if a occurs in the head of a rule r and either b occurs
in the body of r or in the head of r and is different from a, i.e., EDG = {(a, b) | a ∈ H(r), b ∈
B+(r) ∪ B−(r) ∪ (H(r) \ {a}), r ∈ P}. The strongly connected components (SCCs) of P , denoted
SCC(P), are the SCCs of DG(P), i.e., the maximal node sets C ⊆ At(P) such that every pair of nodes
v, v′ ∈ C is connected by some path in G with nodes only from C. Informally, the dependency graph
captures dependencies of the truth of an atom a that occurs in the head of a rule r from the other occurrences
of atoms in r; their value potentially influences the value of a.

A program P is stratified, if for each r ∈ P and C ∈ SCC(P) either H(r) ∩ C = ∅ or B−(r) ∩ C = ∅.
Note that the notion of stratified program introduced here applies also to programs with constraints, while
the original notion [3, 46] considers only constraint-free normal respectively disjunctive logic programs.
It conservatively generalizes the traditional notion and simply disregards constraints, as H(r) ∩ C = ∅
trivially holds for each constraint r. If all other rules r satisfy the condition, then no atom a can depend via
rules in P on its negation: no path a = a0, a1, . . . , ak = a where every (ai, ai+1), 0 ≤ i < k, is an edge
in DG(P) exists thats leads from a in the head of some rule through a literal a1 resp. not a1 in its body
recursively to not a in some rule body. This makes it possible to evaluate negation in layers (also called
strata). Indeed, every constraint-free stratified normal program P has a unique stable model which coincides
with the perfect (stratified) model of P that is defined along strata (see [3, 46]).

A program P is headcycle-free (hcf), if |H(r) ∩ C| ≤ 1 for each r ∈ P and C ∈ SCC(P ′), where
P ′ = {a← B+(r) | r ∈ P, a ∈ H(r)}. Headcycle-freeness means that distinct atoms a and b that occur in
the head of the same rule do not mutually depend on each other by recursion through the positive parts of the
rule bodies; this allows for tractable minimal model checking, which is intractable for arbitrary disjunctive
logic programs.

Example 8 (continued). The program P = {b∨ c← not a; d← c, not b} is stratified and also headcycle-
free. Informally, the value of a, which does not depend on any other atom, can be determined first, next
the value of b and c, and finally the value of d; this gives rise to three respective strata. The program is
headcycle-free, as b and c do not mutually depend on each other through positive rule bodies. This also
holds for the extended program P ′ = P ∪ {b← d}: while b positively depends on c (via b← d and d← c),
c does not positively depend on b.

Notation. It is convenient to introduce further notation. For any rule r, we denote by At(r) = H(r) ∪
B+(r) ∪B−(r) the set of all atoms occurring in r, and for any program P , we let At(P) =

⋃
r∈P At(r).

We assume as usual that by default Σ = At(P), i.e., the signature is the one generated by the considered
program P .

2.1.2. Splitting sets and sequences
Stratified programs come with the modularity property that atoms in lower layers (in Example 8 e.g. a)

have their value solely determined by rules there. This modularity property in fact generalizes to a more
abstract view of a program that is based on splitting sets of program [31]. Informally, a splitting set allows
one to divide a program P into a lower and a higher part which can be evaluated bottom up. More formally,
a set S ⊆ Σ is a splitting set of P , if for every rule r in P such that H(r) ∩ S 6= ∅ we have that At(r) ⊆ S.
We denote by bS(P) = {r ∈ P | At(r) ⊆ S} the bottom part of P , and by tS(P) = P \ bS(P) the top

8

part of P relative to S. Note that the union S = S1 ∪ S2 of splitting sets S1, S2 of a program P is also a
splitting set of P .

As shown in [31], it holds that

AS(P) =
⋃

M∈AS(bS(P))

AS(tS(P) ∪M), (2)

where as usual, “∪M” means adding all atoms in M as facts, and S is a splitting set of P . That is, we can
obtain the answer sets of a program P by first evaluating its bottom part bS(P) with respect to a splitting
set S; this part contains rules that are entirely formulated over atoms from S. After that, we evaluate the
remaining part of the program, tS(P), in which the atoms from S can only occur in rule bodies but not in
rule heads, augmented with facts for the atoms that are found true in an answer set.

Example 9 (continued). For the program P = {b ∨ c ← not a; d ← c, not b}, the set S = {a, b, c} is
a splitting set, and we have bS(P) = {b ∨ c ← not a} and tS(P) = {d ← c, not b}; as AS(bS(P)) =
{{b}, {c}}, we get AS(P) = AS(tS(P) ∪ {b}) ∪ AS(tS(P) ∪ {c}) = {{b}, {c, d}}.

Splitting sets naturally lead to splitting sequences. A splitting sequence S = (S1, . . . , Sn) of P is
a sequence of splitting sets Si of P such that Si ⊆ Sj for each i < j; note that usually Sn ⊂ Σ; the
characterization in (2) can be extended accordingly.

Example 10 (continued). A splitting sequence for P = {b ∨ c ← not a; d ← c, not b} is S = (S1, S2)
where S1 = {a} and S2 = {a, b, c}; bS1(P) = ∅, bS2(P) = {b ∨ c ← not a} and tS2(P) = {d ←
c, not b}.

With an eye on practical implementation, we do not consider infinite splitting sequences here, but will
comment on them at the end of Section 5. An important note is that splitting sets and sequences are an
important tool not only for modular representation, but also for the implementation of answer set semantics.
Advanced answer set solvers such as DLV and clasp exploit this tool heavily, and while the SCCs yield the
most fine-grained splitting sequences, in practice coarser splittings may be more advantageous.

2.2. Equilibrium Logic
The definition of answer set in Section 2.1 uses the GL-reduct, and thus in a sense has an operational

flavor. This raised the question whether a characterization of answer sets in terms of a suitable logic is
possible; and as constructibility of answer sets by rules is crucial, whether in particular (a variant of)
intuitionistic logic could serve this purpose. David Pearce showed that the answer is positive and presented
equilibrium logic [40, 41], which is a natural non-monotonic extension of Heyting’s logic of here-and-there
(HT) [27]. The latter is an intermediate logic between (full) intuitionistic and classical logic, and it coincides
with 3-valued Gödel logic. As it turned out, HT-logic serves as a valuable basis for characterizing semantic
properties of answer set semantics and equilibrium logic can be regarded as a logical reconstruction of
answer set semantics that has many attractive features.

As such, HT-logic considers a full language L± of formulas built over a propositional signature Σ with
the connectives ¬, ∧, ∨,→, and ⊥. We restrict our attention here to formulas of the form

b1 ∧ . . . ∧ bm ∧ ¬bm+1 ∧ . . . ∧ ¬bn→ a1 ∨ · · · ∨ al, (3)

which correspond in a natural way to rules of form (1) where for l = 0, the formula a1 ∨ · · · ∨ al is ⊥; every
program P corresponds then similarly to a theory (set of formulas) ΓP .

Example 11. For example, the program P = {a ← b; b ← not c; c ← not a}, corresponds to the
theory ΓP = {b → a; ¬c → b; ¬a → c}, while P = {b ∨ c ← not a; d ← c, not b} corresponds to
ΓP = {¬a→ b ∨ c; ¬b ∧ c→ d}.

In the rest of the article, we tacitly use this correspondence. We note, however, that the key notions
extend to the full language L±, and in this way some of the results to extensions of the rule language that
we consider (see Section 9.3) also apply to the full language.

9

As a restricted intuitionistic logic, HT can be semantically characterized by Kripke models, in particular
using just two worlds, namely “here” and “there” (assuming that the here world is ordered before the there
world). An HT-interpretation is a pair (X,Y) of interpretations X,Y ⊆ Σ such that X ⊆ Y ; it is total, if
X = Y . Intuitively, atoms in X (the here part) are considered to be true, atoms not in Y (the there part) to
be false, while the remaining atoms (from Y \X) are undefined.

Assuming that X |= φ denotes satisfaction of a formula φ by an interpretation X in classical logic,
satisfaction of φ in HT-logic (thus, an HT-model), denoted (X,Y) |= φ, is defined recursively as follows:

1. (X,Y) |= a if a ∈ X , for any atom a,

2. (X,Y) 6|= ⊥,

3. (X,Y) |= ¬φ if Y 6|= φ (that is, Y satisfies ¬φ classically),

4. (X,Y) |= φ ∧ ψ if (X,Y) |= φ and (X,Y) |= ψ,

5. (X,Y) |= φ ∨ ψ if (X,Y) |= φ or (X,Y) |= ψ,

6. (X,Y) |= φ→ ψ if (i) (X,Y) 6|= φ or (X,Y) |= ψ, and (ii) Y |= φ→ ψ.

Note that the condition in item 3 is equivalent to (X,Y) |= φ → ⊥, thus we can view negation ¬φ as
implication φ→ ⊥. Then, an HT-interpretation (X,Y) is a model of a theory Γ, denoted (X,Y) |= Γ, if
(X,Y) |= φ for every formula φ ∈ Γ. As regards negative literals and rules, the following is not hard to see.

Proposition 1. Given a HT-interpretation (X,Y), for an atom a it holds that (X,Y) |= ¬a iff a /∈ Y , and
(X,Y) |= r for a rule r of form (1) iff either H(r) ∩X 6= ∅, or B+(r) 6⊆ Y , or B−(r) ∩ Y 6= ∅.

In terms of the GL-reduct, we have (X,Y) |= P for a program P iff Y |= P and X |= PY [54].
A total HT-interpretation (Y, Y) is an equilibrium model (EQ-model) of a theory Γ, if (Y, Y) |= Γ

and for every HT-interpretation (X,Y), such that X ⊂ Y , it holds that (X,Y) 6|= Γ; the set of all EQ-
models of Γ is denoted by EQ(Γ). The equilibrium models of a program P are then those of ΓP , i.e.,
EQ(P) = EQ(ΓP). For further details and background see, e.g., [41].

Example 12 (continued). For the program P = {b ∨ c ← not a; d ← c, not b}, the sets (∅, a), (a, a),
(b, b), (∅, ab), (a, ab), (b, bc), (c, bc), (cd, cd) are some HT-models (X,Y) of the corresponding theory ΓP .7

The equilibrium models of P resp. ΓP are (b, b) and (cd, cd), i.e., EQ(P) = EQ(ΓP) = {(b, b), (cd, cd)}.

In the previous example, the program P has the answer sets I1 = {b} and I2 = {c, d}, which amount to
the equilibrium models (b, b) and (cd, cd), respectively. In fact, the answer sets and equilibrium models of a
program always coincide.

Proposition 2 ([40]). For every program P and M ⊆ At(P), it holds that M ∈ AS(P) iff (M,M) is an
EQ-model of ΓP .

In particular, as AS(P) = MM (P) for any positive program P , we have EQ(P) = {(M,M) | M ∈
MM (P)} in this case.

We call a logic program incoherent, if it lacks answer sets due to cyclic dependency of atoms among
each other by rules through negation; that is, no answer set (equivalently, no equilibrium model) exists even
if all constraints are dismissed from the program.

Example 13. Reconsider the barber paradox; the HT-models of the corresponding program P = {a←
not a}, where a stands for shaves(joe, joe), are (∅, a) and (a, a); the single total HT-model is (a, a),
which however is not an equilibrium model. Similarly, the program P = {a ← b; b ← not a} has the
HT-models (∅, a), (∅, ab), (a, a), (a, ab), and (ab, ab); likewise, the total HT-models (a, a) and (ab, ab) are
not equilibrium models.

We next recall the semi-stable model semantics which deals with such incoherence.

7We write (as common) sets {a1, a2, . . . , an} also as juxtaposition a1a2 · · · an of their elements.

10

2.3. Semi-Stable Models
Inoue and Sakama [49] introduced semi-stable models as an extension of paraconsistent answer set

semantics (called PAS semantics, respectively p-stable models by them) for extended disjunctive logic
programs. Their aim was to provide a framework which is paraconsistent for incoherence, i.e., in situations
where stability fails due to cyclic dependencies of a literal from its default negation.

We consider an extended signature Σκ = Σ∪{Ka | a ∈ Σ}. Intuitively, Ka can be read as a is believed
to hold. Semantically, we resort to subsets of Σκ as interpretations Iκ and the truth values false ⊥,8 believed
true bt, and true t, which are ordered by a binary relation � (a truth ordering) such that ⊥ � bt � t. The
truth value assigned by Iκ to a propositional variable a is defined by

Iκ(a) =


t if a ∈ Iκ,
bt if Ka ∈ Iκ and a 6∈ Iκ,
⊥ otherwise.

The semi-stable models of a program P are obtained from its epistemic transformation Pκ.

Definition 1 (Epistemic Transformation Pκ [49]). Let P be a disjunctive program. Then its epistemic
transformation is defined as the positive disjunctive program Pκ obtained from P by replacing each rule r
of the form (1) in P , such that B−(r) 6= ∅, with:

λr,1 ∨ . . . ∨ λr,l ∨Kc1 ∨ . . . ∨Kcn ← b1, . . . , bm, (4)
ai ← λr,i, (5)
← λr,i, cj , (6)

λr,i ← ai, λr,k, (7)

for 1 ≤ i, k ≤ l and 1 ≤ j ≤ n, where the λr,i, λr,k are fresh atoms.

Intuitively, the atom Kcj means that cj must be believed to be true, and λr,i means that in the rule r, the
atom ai in the head must be true. With this meaning, the rule (1) is naturally translated into the rule (4): if
all atoms in B(r) are true, then either some atom in H(r) is true, and thus some λr,i is true, or some atom
ci in B−(r) must be believed to be true (then not ci is false). The rule (5) propagates the value of λr,i to ai,
which then is visible also in other rules. The rules (6) and (7) restrict the choice of λr,i for making the head
of r true: if cj is true, the rule r is inapplicable and no atom in H(r) has to be true (6). Furthermore, if the
atom ai in the head is true (via some other rule of P or by (5)), then whenever some atom ak in H(r) must
be true, also ai must be true (7); the minimality of answer set semantics effects that only ai must be true.

Example 14. Reconsider the barber paradox programP = {a← not a}, where a stands for shaves(joe, joe).
Then

Pκ = {λ1 ∨Ka← ; a← λ1; ← a, λ1; λ1 ← a, λ1}.
Consider the similar program P = {b← not a}, which is stratified. Its epistemic transformation is

Pκ = {λ1 ∨Ka← ; b← λ1; ← a, λ1; λ1 ← b, λ1}.

Finally, let us also reconsider the stratified program P = {b ∨ c ← not a; d ← c, not b}. Its epistemic
transformation is

Pκ =



λr1,1 ∨ λr1,2 ∨Ka← λr2,1 ∨Kb← c
b← λr1,1 d← λr2,1
c← λr1,2
← λr1,1, a ← λr2,1, b
← λr1,2, a

λr1,1← b, λr1,1 λr2,1← d, λr2,1
λr1,1← b, λr1,2
λr1,2← c, λr1,1
λr1,2← c, λr1,2


,

8In [49] ⊥ is called ‘undefined’, as it should be if strong negation is considered as well.

11

where r1 and r2 name the first and second rule, respectively.

Note that for any program P , its epistemic transformation Pκ is a positive program. Models of Pκ are
defined in terms of a fixpoint operator in [49], with the property that for positive programs, according to
Theorem 2.9 in [49], minimal fixpoints coincide with minimal models of the program. Therefore, for any
program P , minimal fixpoints of Pκ coincide with answer sets of Pκ.

Semi-stable models are then defined as maximal canonical interpretations among the minimal fixpoints
(answer sets) of Pκ as follows. For every interpretation Iκ over Σ′ ⊇ Σκ, let gap(Iκ) = {Ka ∈ Iκ | a 6∈
Iκ} denote the atoms that are believed true but not assigned true.

Definition 2 (maximal canonical). Given a set S of interpretations over Σ′, an interpretation Iκ ∈ S is
maximal canonical in S , if no Jκ ∈ S exists such that gap(Iκ) ⊃ gap(Jκ). By mc(S) we denote the set of
maximal canonical interpretations in S.

Then we can equivalently paraphrase the definition of semi-stable models in [49] as follows.

Definition 3 (semi-stable models). Let P be a program over Σ. An interpretation Iκ over Σκ is a semi-
stable model of P , if Iκ = S∩Σκ for some maximal canonical answer set S of Pκ. The set of all semi-stable
models of P is denoted by SST (P), i.e., SST (P) = {S ∩ Σκ | S ∈ mc(AS(Pκ))}.

Example 15 (continued). For P = {a← not a}, the epistemic transformation Pκ, has the single answer
set M = {Ka}; hence, {Ka} is the single semi-stable model of P , in which a is believed true. For the
program P = {b ← not a}, the epistemic transformation Pκ has the answers sets M1 = {Ka} and
M2 = {λ1, b}; as gap(M1) = {a} and gap(M2) = ∅, among them M2 is maximal canonical, and hence
M2 ∩ Σκ = {b} is the single semi-stable model of P . This is in fact also the unique answer set of P .

Finally, the epistemic transformation of P = {b ∨ c ← not a; d ← c, not b} has the answer sets
M1 = {λr1,1, b}, M2 = {λr1,2, c, λr2,1, d}, M3 = {λr1,2, c,Kb}, and M4 = {Ka}, as may be checked
using an ASP solver. Among them as gap(M1) = gap(M2) = ∅ while M3 and M4 have nonempty gap, M1

and M2 are maximal canonical and hence the semi-stable models of P ; they correspond with the answer
sets of P , {b} and {c, d}, as expected.

For a study of the semi-stable model semantics, we refer to [49]; notably,

Proposition 3 ([49]). The SST -models semantics, given by SST (P) for arbitrary programs P , satisfies
properties (D1)-(D3).

Arguably, the transformational definition of semi-stable models makes it difficult to grasp at the semantic
level what makes an interpretation a semi-stable model, in particular if we focus on the original language
and forget about the auxiliary symbols. This raises the question of a characterization of semi-stable models
from first principles that can serve as an alternative definition under a pure model-theoretic view. In the next
section, we present such a characterization.

3. Semantic Characterization of Semi-Stable Models

As opposed to its transformational definition, we aim in this section at a model-theoretic characterization
of semi-stable models. Given that equilibrium logic and HT-models have been successfully used to
characterize stable models, it is natural to attempt to give such a characterization in the line of model-
theoretic characterizations of the answer set semantics by means of HT models. Recall that in such a model
(X,Y), the set X contains the atoms that are true while Y contains the atoms that are believed true. Let us
reconsider how HT-models work on the barber paradox.

Example 16. Reconsider P = {a← not a} in Examples 13 and 14, and recall that HT-models of P are
(∅, a) and (a, a). One might aim at characterizing the semi-stable model {Ka} by (∅, a). Indeed, while
(a, a) is inappropriate, (∅, a) perfectly describes the situation: a is believed true but not assigned true, as
this can not be proven.

12

However, resorting to HT-interpretations will not allow us to uniquely characterize semi-stable models, as
illustrated by the following example.

Example 17. Consider the program

P = {a; b; c; d← not a, not b; d← not b, not c}.

The program is coherent, with a single answer set {a, b, c}, while SST (P) = {{a, b, c,Kb}, {a, b, c,
Ka,Kc}}. This is due to the fact that the epistemic transformation Pκ contains rules λr3,1 ∨Ka ∨Kb←
and λr4,1 ∨Kb∨Kc← and the constraints (6), given that a, b, and c are true by facts, enforce that all λr,i
are false; thus, either Kb or Ka,Kc must be true in every answer set of Pκ. Note that neither (abc, b) nor
(abc, ac) is a HT-interpretation.

Hence, for a 1-to-1 characterization we have to resort to different structures. Sticking to the requirement
that, given a program P over Σ, pairs of two-valued interpretations over Σ should serve as the underlying
semantic structures, we say that a bi-interpretation of a program P over Σ is any pair (I, J) of interpretations
over Σ, and define:

Definition 4 (bi-model). Let φ be a formula over Σ, and let (I, J) be a bi-interpretation over Σ. Then,
(I, J) is a bi-model of φ, denoted (I, J) |=β φ, if

1. (I, J) |=β a if a ∈ I , for any atom a,

2. (I, J) 6|=β ⊥,

3. (I, J) |=β ¬φ if J 6|= φ,

4. (I, J) |=β φ ∧ ψ if (I, J) |=β φ and (I, J) |=β ψ,

5. (I, J) |=β φ ∨ ψ if (I, J) |=β φ or (I, J) |=β ψ,

6. (I, J) |=β φ→ ψ if (i) (I, J) 6|=β φ, or (ii) (I, J) |=β ψ and I |= φ.

Moreover, (I, J) is a bi-model of a program P , if (I, J) |=β φ, for all φ of the form (3) corresponding to a
rule r ∈ P .

Note that the only difference in the recursive definition of bi-models and HT-models is in item 6, i.e., the
case of implication. While HT-models require that the material implication φ→ ψ holds in the there-world,
bi-models miss such a connection between φ and ψ. This makes it possible that a bi-interpretation (I, J)
such that I ⊆ J is a bi-model but not an HT-model of an implication (3); a simple example is given by
(∅, a) and a→ b. On the other hand, each HT-model of an implication (3) is also a bi-model of it.

Similar to the condition for HT-models in Proposition 1, we can alternatively characterize satisfaction of
rules by bi-models as follows.

Proposition 4. Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ. Then, (I, J) |=β r if
and only if B+(r) ⊆ I and J ∩B−(r) = ∅ implies that I ∩H(r) 6= ∅ and I ∩B−(r) = ∅.

We now link bi-interpretations to interpretations of the extended signature Σκ and the epistemic trans-
formation of a program P , respectively. To every bi-model of a program P , we associate a corresponding
interpretation (I, J)

κ over Σκ by (I, J)
κ

= I ∪ {Ka | a ∈ J}. Conversely, given an interpretation Iκ over
Σκ its associated bi-interpretation β(Iκ) is given by (Iκ ∩ Σ, {a | Ka ∈ Iκ}).

For illustration consider the following example.

Example 18. Let P = {a← b; b← not b}. Its bi-models are all pairs (I, J), where I ∈ {∅, {a}, {a, b}}
and J ∈ {{b}, {a, b}}. Then for (∅, b), we have (∅, b)κ = {Kb}, and for (a, ab) we have (a, ab)

κ
=

{a,Ka,Kb}. Conversely, for Iκ = {a,Kb} we have β(Iκ) = (a, b).

13

In order to relate these constructions to models of the epistemic transformation Pκ, which builds
on additional atoms of the form λr,i, we construct an interpretation (I, J)

κ,P of Pκ from a given bi-
interpretation (I, J) of P as follows:

(I, J)
κ,P

= (I, J)
κ ∪ {λr,i | r ∈ P,B−(r) 6= ∅, ai ∈ I, I |= B(r), J |= B−(r) },

where r is of the form (1).

Example 19 (continued). Reconsider P = {a ← b; b ← not b} in Example 18 and (∅, b). Then
(∅, b)κ,P = (∅, b)κ ∪ {λr2,1} = {Kb, λr2,1}, as the rule b ← not b fulfills the conditions for I = ∅
and J = {b}.

We now can establish the following correspondence between bi-models of a program P and models of
the epistemic transformation Pκ.

Proposition 5. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , then (I, J)
κ,P |= Pκ;

(2) if M |= Pκ then β(M ∩ Σκ) is a bi-model of P .

Based on bi-models, we obtain a 1-to-1 characterization of semi-stable models by imposing suitable
minimality criteria.

Theorem 1. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P such that (i) (I ′, J) 6|=β P , for all I ′ ⊂ I , (ii) (I, J ′) 6|=β P , for all
J ′ ⊂ J , and (iii) there is no bi-model (I ′, J ′) of P that satisfies (i) and gap(I ′, J ′) ⊂ gap(I, J), then
(I, J)

κ ∈ SST (P);

(2) if Iκ ∈ SST (P), then β(Iκ) is a bi-model of P that satisfies (i)-(iii).

Intuitively, Conditions (i) and (ii) filter bi-models that uniquely correspond to (some but not all) answer
sets of Pκ: due to minimality every answer set satisfies (i); there may be answer sets of Pκ that do not
satisfy (ii), but they are certainly not maximal canonical. Eventually, Condition (iii) ensures that maximal
canonical answer sets are selected. More formally, the proof of this theorem builds on the following
relationship between bi-models of P and answer sets of Pκ.

Corollary 1. Let P be a program over Σ. If M ∈ AS(Pκ), then β(M ∩ Σκ) satisfies (i). If (I, J) is a
bi-model of P that satisfies (i) and (ii), then there exists M ∈ AS(Pκ), such that β(M ∩ Σκ) = (I, J).

For illustration, we consider the following example.

Example 20 (continued). Recall that P = {a ← b; b ← not b} has as bi-models all pairs (I, J) where
I ∈ {∅, {a}, {a, b}} and J ∈ {{b}, {a, b}}. Condition (i) of Theorem 1 holds for bi-models such that I = ∅,
and Condition (ii) holds only if J = {b}. Thus, {Kb} is the unique semi-stable model of P .

The examples given so far also exhibit some anomalies of the semi-stable semantics with respect to
basic rationality properties considered in epistemic logics. In particular, knowledge generalization (or
necessitation, resp. modal axiom N) is a basic principle in respective modal logics. For a semi-stable model
Iκ, it would require that

Property N: a ∈ Iκ implies Ka ∈ Iκ, for all a ∈ Σ.

This property does not hold as witnessed by Example 17.
Another basic requirement is the distribution axiom (modal axiom K). Assuming that we belief the rules

of a given program (which might also be seen as the consequence of adopting knowledge generalization) the
distribution property can be paraphrased for a rule of the form (1) as follows:

Property K: If Iκ |= Kb1 ∧ . . . ∧Kbm and Iκ 6|= Kc1 ∨ . . . ∨Kcn, then Iκ |= Ka1 ∨ . . . ∨Kal.
Note that this does not hold for the rule a← b in Example 18, as the single semi-stable model of the program
P is {Kb} (see Example 20).

Arguably, these anomalies should be avoided. This leads us to propose an amendment to the semi-stable
model semantics, which we present in the next section.

14

4. Semi-Equilibrium Models

In this section, we define and characterize an alternative paracoherent semantics which we call semi-
equilibrium semantics (for reasons which will become clear immediately). The aim for semi-equilibrium
models is to enforce Properties N and K on them.

Let us start considering bi-models of a program P which satisfy these properties. It turns out that such
structures are exactly given by HT-models.

Proposition 6. Let P be a program over Σ. Then,

(1) if (I, J) is a bi-model of P , such that (I, J)
κ satisfies Property N and Property K, for all r ∈ P , then

(I, J) is an HT-model of P ;

(2) if (H,T) is an HT-model of P , then (H,T)
κ satisfies Property N and Property K, for all r ∈ P .

In order to define semi-equilibrium models, we follow the basic idea of the semi-stable semantics and
select subset minimal models that are maximal canonical. For any program P , let us define HTκ(P) =
{(H,T)

κ | (H,T) |= P} and denote by MM (HTκ(P)) the minimal elements of HTκ(P) with respect to
subset inclusion.

Definition 5 (semi-equilibrium models). Let P be a program over Σ. An interpretation Iκ over Σκ is a
semi-equilibrium (SEQ) model of P , if Iκ ∈ mc(MM (HTκ(P))). The set of semi-equilibrium models of
P is denoted by SEQ(P).

Let us revisit some examples from the previous section.

Example 21. For P = {a ← not a}, its semi-stable-model {Ka} corresponds to the HT-interpretation
(∅, a); thus {Ka} is the single minimal element of HTκ(P) and the single SEQ-model of P .

For the program P = {a; b; c; d← not a, not b; d← not b, not c} in Example 17, every HT-model of
P must be of the form (X,Y) such that {a, b, c} ⊆ X; hence, {a, b, c,Ka,Kb,Kc} is the single minimal
element of HTκ(P) and the single semi-equilibrium model of P .

Finally, for the program P = {a← b; b← not b} in Example 18, by the rule b← not b every HT-model
(X,Y) of P must fulfill b ∈ Y , and thus by the rule a ← b also a ∈ Y ; the single minimal element of
HTκ(P) is then {Ka,Kb}, which is also the single SEQ-model of P .

A model-theoretic characterization for the semi-equilibrium semantics is obtained as before, by replacing
bi-models with HT-models and dropping Condition (ii). Intuitively, Condition (ii) is not needed as it is
subsumed by Condition (iii) (i.e., Condition (ii′) below) if Property N and Condition (i) hold.

To formulate the result, we extend the notion of gap from Σκ-interpretations to HT-interpretations as
follows. For any HT-interpretation (X,Y), let gap(X,Y) = Y \X , i.e., gap(X,Y) = gap(β((X,Y)

κ
))

= {a | Ka ∈ gap((X,Y)
κ
)}.

Theorem 2. Let P be a program over Σ. Then,

(1) If (H,T) is an HT-model of P such that (i′) (H ′, T) 6|= P , for all H ′ ⊂ H , and (ii′) no HT-model
(H ′, T ′) of P exists that satisfies (i′) and gap(H ′, T ′) ⊂ gap(H,T), then (H,T)

κ ∈ SEQ(P);

(2) if Iκ ∈ SEQ(P), then β(Iκ) is an HT-model of P that satisfies (i′) and (ii′).

We refer to the condition (i′) as h-minimality and to the condition (i′′) as gap-minimality of an HT-model
of a program P . Informally, this characterization says that the SEQ-models are obtained by relaxing the
condition for EQ-models in that a globally smallest set of atoms, expressed by gap-minimality, may be
believed true without further justification, where justification is expressed by h-minimality. Note that the
EQ-models are obtained if we just would require that H = T .

Like semi-stable models, semi-equilibrium models may be computed as maximal canonical answer sets,
i.e., equilibrium models, of an extension of the epistemic program transformation.

15

Definition 6 (PHT). Let P be a program over Σ. Then its epistemic HT-transformation PHT is defined as
the union of Pκ with the set of rules:

Ka← a,

Ka1 ∨ . . . ∨Kal ∨Kc1 ∨ . . . ∨Kcn ← Kb1, . . . ,Kbm,

for a ∈ Σ, respectively for every rule r ∈ P of the form (1).

The extensions of the transformation naturally ensure Properties N and K on its models and its maximal
canonical answer sets coincide with semi-equilibrium models.

Theorem 3. Let P be a program over Σ, and let Iκ be an interpretation over Σκ. Then, Iκ ∈ SEQ(P) if
and only if Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT))}.

We note at this point that an alternative, less involving encoding of semi-equilibrium models can be
found in Section 8.

The resulting semantics is classically coherent, i.e., fulfills property (D3) from the Introduction.

Proposition 7. Let P be a program over Σ. If P has a classical model, then it has a semi-equilibrium
model.

Another simple property is a 1-to-1 correspondence between answer sets and semi-equilibrium models.

Proposition 8. Let P be a coherent program over Σ. Then,

(1) if Y ∈ AS(P), then (Y, Y)
κ is a semi-equilibrium model of P ;

(2) if Iκ is a semi-equilibrium model of P , then β(Iκ) is an equilibrium model of P , i.e., β(Iκ) is of the
form (Y, Y) and Y ∈ AS(P).

An illustration of the 1-to-1 relationship between answer sets and semi-equilibrium models is given
by Example 17, which we reconsidered in Example 21. Note that this example also gave evidence that
semi-stable models do not satisfy Property N, which in contrast is the case for semi-equilibrium models.

From Propositions 7 and 8, we thus obtain that semi-equilibrium models behave similarly as semi-stable
models with respect to the properties (D1)-(D3) in the Introduction.

Proposition 9. The SEQ-models semantics, given by SEQ(P) for arbitrary programs P , satisfies properties
(D1)-(D3).

Furthermore, an immediate consequence of Proposition 8 is the following property.

Corollary 2. For every positive program P , SEQ(P) = {(X,Y)
κ | (X,Y) ∈ EQ(P)} = {(M,M)

κ |
M ∈ MM (P)}.

As a consequence of Property K, semi-equilibrium semantics differs from semi-stable semantics not
only with respect to believed consequences.

Example 22. Consider the program P = {a← b; b← not b; c← not a}, which extends the program in
Example 18 with the rule c← not a. The single semi-stable model of P is {c,Kb} (which corresponds to
the bi-model (c, b)), while the single SEQ-model is {Ka,Kb} (which corresponds to the HT-model (∅, ab)).
Thus while c is true under SST -model semantics, it is false under SEQ-model semantics: due to lacking
belief propagation, the CWA assigns a false in the SST -model which in turn causes c to get true; in the
SEQ-model, as a is believed to be true the rule with c in the head is defeated. As there is no other way to
derive c, the CWA assigns it false.

Convention. As each SEQ-model Iκ of P is uniquely determined by the HT-model β(Iκ), we shall in the
rest of this article also identify these models and refer to the set {β(Iκ) | Iκ ∈ SEQ(P)} as the SEQ-models
of P and denote it in abuse of notation by SEQ(P). For illustration, the programs in Example 21 have
the SEQ-models {Ka}, {a, b, c,Ka,Kb,Kc}, and {Ka,Kb}, respectively, which are identified with the
HT-models (∅, a), (abc, abc), and (∅, ab), respectively.

16

5. Split Semi-Equilibrium Semantics

While the SEQ-semantics has nice properties and fulfills the properties (D1)-(D3) from the Introduction,
it does not ensure the modularity property of answer sets respectively equilibrium models that is expressed
by Equation (2). To illustrate this, consider the following examples.

Example 23. Recall the party program from Example 2:

P =

 go(John)← not go(Mark);
go(Peter)← go(John), not go(Bill);

go(Bill)← go(Peter)

.

The semi-equilibrium models of P are Iκ1 = {Kgo(Mark)} and Iκ2 = {go(John), Kgo(John),
Kgo(Bill)}, or written as HT-models, M1 = (∅, {go(Mark)}), and M2 = ({go(John)}, {go(John),
go(Bill)}). None of the two models provides a fully coherent view (on the other hand, the program is
incoherent, having no answer set). Nevertheless, M2 appears preferable over M1, since, according with a
layering (stratification) principle, which is widely agreed in LP, one should prefer go(John) rather than
go(Mark), as there is no way to derive go(Mark) (which does not appear in the head of any rule of the
program). We remark that according to the well-founded semantics of P , go(Mark) is false and go(John)
is true, while all other atoms are undefined; the SEQ-model M2 is more informative since it tells us in
addition that go(Peter) is false.

Example 24. Consider the following simplistic program capturing knowledge about workers in a company:

P =



← employee(X), not has social sec(X), core staff (X);
← ssnr(X,Y), not#int(Y);
has social sec(X)← employee(X), ssnr(X,Y);
employee(X)← manager(X);
core staff (X)← manager(X);
manager(sam)


.

Informally, the rules state that employees with a social security registry number (SSNR) have social security,
that managers are employees and core staff, and that Sam is a manager. The constraints enforce that
all core staff employees must have social security, and that SSNRs range over integers, where #int is a
builtin predicate. This program has (over its Herbrand universe9) no answer set: while employee(sam)
and core staff (sam) can be proven from the rules, this is not the case for has social sec(sam), and thus
the constraint in P is violated. The program has the SEQ-model Iκ = {manager(sam), employee(sam),
core staff (sam), Khas social sec(sam)} in which Sam is believed to have social security.

It is not hard to see that S = {manager(sam), employee(sam), ssnr(sam, sam), has social sec(sam)},
is a splitting set for P . The bottom part bS(P) has the single answer set (thus single SEQ-model)
M = {manager(sam), employee(sam)}, according to which ssnr(sam, sam), has social sec(sam)
are false. Based on this, in the top part tS(P) we obtain that core staff (sam) is true; however, this
means that the constraint ← employee(sam), not has social sec(sam), core staff (sam), is violated.
Consequently, no SEQ-model for the top part exists and Equation (2) (adapted for SEQ-models) is violated.

Modularity via rule dependency as it emerges from Equation (2) is widely used in ASP for two related
but different purposes: (1) for efficient evaluation of programs by ASP solvers and (2) for problem modelling,
where a program is structured into modules that are organized in a hierarchical fashion.

As for (1), program decomposition is in fact crucial for efficient answer set computation in practice.
For the program P above, advanced answer set solvers like DLV and clasp immediately set go(Mark) to
false, as go(Mark) does not occur in any rule head. In a customary bottom up computation along program
components, solvers gradually extend answer sets until the whole program is covered, or an incoherence is
detected at some component (in our example for the last two rules). But rather than to abort the computation,

9To keep the example and the universe simple, we avoid to introduce number ranges here.

17

we would like to switch to a paracoherent mode and continue with building semi-equilibrium models, as an
approximation of answer sets. Such a behavior would be desirable, as computationally, we do not waste
effort for obtaining such an approximation, and conceptually, we relax the equilibrium condition under
Occam’s razor as little as possible along the hierarchy of components.

As regards (2), it is customary and natural in modelling that a program P is divided into subprograms
P1, . . . , Pm which serve to define the values of specific sets of atoms respectively properties in a way such
that each subprogram Pi is considered as a module whose rules should be evaluated en bloc. These modules
are then evaluated bottom-up exploiting Equation (2) repeatedly to obtain the answer sets of the program P .
For example, the program in Example 2, possibly extended to further persons, could be the bottom part of a
program P ′ that based on the go predicate determines which location to pick for the party, e.g. using

← balcony ,#count({X : go(X)}) > 3; balcony ∨ living room;

here #count({X : go(X)}) > 3 is an aggregate that evaluates to true if more than 3 persons go to the
party.

Similarly, we can imagine that the last three rules of the program in Example 24 form a subprogram about
employees and staff, and the other rules cover social security aspects on top of it. The single SEQ-model Iκ

of P is in fact compatible with this view, and would be an intuitive result.

To overcome this limitation, we introduce a refined paracoherent semantics, called split semi-equilibrium
semantics. It coincides with the answer sets semantics in case of coherent programs, and it selects a subset
of the SEQ-models otherwise based on a given splitting sequence that induces a modular decomposition
of a program at hand. The main results of this section are two model-theoretic characterizations which
identify necessary and sufficient conditions for deciding whether a SEQ-model is selected according to a
splitting sequence. As it turns out (and can be seen from the examples above), different splitting sequences
can yield different selection results, which is not the case for EQ-models. Based on the results of this
section, we will present in Section 6 canonical SEQ-models that are independent of a particular splitting
sequence. The canonical SEQ-models ensure robustness of modular evaluation, as like for the EQ-models
the concrete bottom-up evaluation order taken by a solver does not matter; furthermore, the notion can be
easily generalized to programs that are hierarchically organized in user-defined subprograms, which we
shall briefly address in Section 9.2.

5.1. Split Semi-Equilibrium Models

We now introduce the notion of SEQ-models relative to a splitting set. First given a splitting set S for a
program P and an HT-interpretation (I, J) for bS(P), we let

PS(I, J) = P \ bS(P) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}. (8)

Informally, the bottom part of P w.r.t. S is replaced with rules and constraints which fix in any SEQ-model
of the remainder (= tS(P)) the values of the atoms in S to (I, J).

Definition 7 (Semi-equilibrium models relative to a splitting set). Let S be a splitting set of a program
P . Then the semi-equilibrium models of P relative to S are defined as

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS(P))

SEQ(PS(I, J))
)
. (9)

Example 25. Reconsider the party program in Example 2, P = {b ← not a; d ← b, not c; c ← d},
where a, b, and c, d stand for go(Mark), go(John), go(Bill), and go(Peter), respectively. We have
SEQ(P) = { (∅, a), (b, bc) }, where (b, bc) is more appealing than (∅, a) because a is not derivable, as no
rule has a in the head. Moreover, intuitively, P1 = {b← not a} is a lower (coherent) part feeding into the
upper part P2 = {d← b, not c; c← d}. This is formally captured by the splitting set S = {a, b}, which
yields bS(P) = P1 and SEQ(bS(P)) = {(b, b)}. Hence, PS(b, b) = {d← b, not c; c← d; b; ← a} and
SEQS(P) = SEQ(PS(b, b)) = {(b, bc)}.

18

In what follows, we establish a semantic characterization of the SEQ-models relative to a splitting set as
those SEQ-models of the program that extend SEQ-models of the bottom part.
Notation. For any HT-model (X,Y) and set S of atoms, we define the restriction of (X,Y) to S as
(X,Y)|S = (X ∩ S, Y ∩ S).

Proposition 10. Let S be a splitting set of a program P . If (X,Y)∈SEQS(P), then (X,Y)|S ∈
SEQ(bS(P)).

The following result shows that each semi-equilibrium model relative to a given splitting set is always a
semi-equilibrium model of the program.

Proposition 11 (Soundness). Let S be a splitting set of a program P . If (X,Y)∈SEQS(P), then
(X,Y) ∈ SEQ(P).

This result is proven by establishing first that HT-models of the program PS(I, J) are HT-models of
the program P , and then the h-minimality and gap-minimality of (X,Y). More precisely, the first step uses
the following lemma:

Lemma 1. Let S be a splitting set of a program P and let (I, J) ∈ SEQ(bS(P)). If (X,Y) is an HT-model
of PS(I, J), then (X,Y) is an HT-model of P .

However, the converse of Proposition 11 does not hold in general; in fact if we consider the program of Ex-
ample 25 and the splitting set S = {a, b}we have SEQS(P) = {(b, bc)}, while SEQ(P) = {(∅, a), (b, bc)}.
Clearly, SEQS(P) depends on the choice of S; in fact if we choose S = ∅, then SEQ∅(P) = SEQ(P).

Moreover for Proposition 11 to hold, the selection of maximal canonical HT-models is necessary.

Example 26. For P = {a ← not b; b ← not a; c ← b, not c} and the splitting set S = {a, b}, we
have SEQ(bS(P)) = {(a, a), (b, b)}; hence SEQ(PS(a, a)) ∪ SEQ(PS(b, b)) = {(a, a), (b, bc)}, while
SEQ(P) = {(a, a)}.

So far, we have presented two properties of an HT-model that are necessary conditions to qualify as
a SEQ-model relative to a given splitting set. The natural question is whether these conditions are also
sufficient; this is indeed the case.

Proposition 12 (Completeness). Let S be a splitting set of a program P . If (X,Y) ∈ SEQ(P) and
(X,Y)|S ∈ SEQ(bS(P)), then (X,Y) ∈ SEQS(P).

Putting the results above together, we obtain the following semantic characterization of SEQ-models
relative to a splitting set.

Theorem 4 (SEQ-model characterization). Let S be a splitting set of a program P . Then (X,Y) ∈
SEQS(P) iff (X,Y) ∈ SEQ(P) and (X,Y)|S ∈ SEQ(bS(P)).

Proof. The only-if direction follows from Propositions 10 and 11; the if direction holds by Proposition 12.
2

Like the ordinary SEQ-models, also the split SEQ-models coincide with the answer sets of a program if
some answer set exists.

Corollary 3. Let P be a program such that EQ(P) 6= ∅. Then for every splitting set S of P , SEQS(P) =
EQ(P); in particular, if P is positive, then SEQS(P) = {(M,M) |M ∈ MM (P)}.

We observe that a program which has some model does not necessarily have split semi-equilibrium
models (but always semi-equilibrium models) as seen in Example 24. We give another example of a much
simpler program.

Example 27. Let us consider P = {← b; b ← not a} and the splitting set S = {a}. Then we obtain
SEQ(bS(P)) = {(∅, ∅)} and so SEQS(P) = ∅. However (a, a) and (∅, a) are HT-models of P .

19

Note that occurrence of a constraint in the previous example is not accidental; in fact,

Proposition 13. For every constraint-free program P and splitting set S of P , it holds that SEQ(PS) 6= ∅.

In summary, the split SEQ-models have the following profile with respect to the properties (D1)-(D3).

Proposition 14. The split SEQ-models semantics of a program P relative to a splitting set S of P , given
by SEQS(P), satisfies properties (D1)-(D2), and if P is constraint-free, also (D3).

5.2. Split Sequence Semi-Equilibrium Models
Now we generalize the use of splitting sets to SEQ-models of a program via splitting sequences. To

this end, we naturally reduce a splitting sequence to its head and its remainder and apply splitting sets
recursively.

Definition 8 (Semi-equilibrium models relative to a splitting sequence). Let S = (S1, . . . , Sn), n ≥ 1,
be a splitting sequence for a program P . then the semi-equilibrium models of P relative to S are given by

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS1 (P))

SEQS
′
(PS1(I, J))

)
, (10)

where S′ = (S2, ..., Sn) and SEQ()(P) = SEQ(P) (recall that PS1(I, J) adds rules to P that fix the truth
values of all atoms in S1 according to (I, J)).

Example 28. Reconsider the program in Examples 2 and 25, P = {b ← not a; d ← b, not c; c ←
d}. Then S = ({a}, {a, b}, {a, b, c, d}) is a splitting sequence for P , and we obtain that SEQS(P) =
{(b, bc)}. Indeed bS1(P) = ∅ and thus SEQ(bS1(P)) = {(∅, ∅)}; for the remainder sequence S′ =
({a, b}, {a, b, c, d}) and P ′ = PS1(∅, ∅) = P ∪ {← a}, we get bs′1(P ′) = {b ← not a, ← a} and thus
SEQ(bS′1(P ′)) = {(b, b)}. Finally, for S′′ = ({a, b, c, d}) and P ′′ = PS

′
1(b, b) = P ∪ {← a; b ←}, we

obtain bS′′1 (P ′′) = P ′′ and thus SEQ(bS′′1 (P ′′) = {(b, bc}), which is the final result.

The SEQ-models relative to a splitting sequence can be characterized similarly as those relative to a splitting
set, namely as SEQ-models of the program that remain by filtering the SEQ-models along the splitting
sequence.

To ease presentation, for a given program P and splitting sequence S = (S1, ..., Sn), we let P0 = P
and Pk = (Pk−1)Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk(Pk−1)), k = 1, ..., n; that is, Pk is not uniquely
defined but ranges over a set of programs.

The main result of this section is now as follows.

Theorem 5. Let S= (S1, ..., Sn) be a splitting sequence of a program P . Then (X,Y) ∈ SEQS(P) iff
(X,Y) ∈ SEQ(P) and (X,Y)|Sk ∈ SEQ(bSk(Pk−1)), for some Pk, for k = 1, ..., n.

The proof proceeds by induction using Theorem 4. Corollary 3 of Theorem 4 also generalizes to splitting
sequences.

Corollary 4. Let P be a program such that EQ(P) 6= ∅. Then for every splitting sequence S of P ,
SEQS(P) = EQ(P); in particular, if P is positive, then SEQS(P) = {(M,M) |M ∈ MM (P)}.

Proof. [Sketch] Using Theorem 5, this can be shown by induction, using Corollaries 2 and 3. 2

Another consequence of Theorem 5 is that, written in other form, the split sequence SEQ-models of a
program can be bottom up constructed, taking into account that at each stage only the respective rules (i.e.,
bSj+1(P) \ bSj (P)) need to be considered. More formally,

Corollary 5. For every splitting sequence S = (S1, . . . , Sn) of a program P , it holds that SEQS(P) = Sn,
where for j = n, . . . , 1 we have

Sj = mc(
⋃

(X,Y)∈Sj−1
SEQ(Qj(X,Y))),

where Qj = bSj+1(P) \ bSj (P) with bSn+1(P) = P and S0 = SEQ(bS1(P)).

20

This form is in fact a suitable starting point for computation; we refer to Section 6.1 for further discussion.
Regarding the existence of split sequence SEQ-models, we obtain a generalization of Proposition 13.

Proposition 15. For every splitting sequence S of a constraint-free program P , it holds that SEQ(PS) 6= ∅.

Proof. [Sketch] This can be shown by an inductive argument, along the lines of the proof of Proposition 13,
using Propositions 7 and 13. 2

In particular, we obtain from this the following result for stratified programs.

Corollary 6. For every splitting sequence S of a stratified program P that is constraint-free, it holds that
SEQS(P) = EQ(P).

In conclusion, we obtain the following profile of split sequence SEQ-models with respect to the properties
(D1)-(D3).

Proposition 16. The split sequence SEQ-models semantics of a program P relative to a splitting sequence
S of P , given by SEQS(P), satisfies properties (D1)-(D2), and if P is constraint-free, also (D3).

6. Canonical Semi-Equilibrium Models

As we have pointed out in the discussion at the beginning of the previous section, the split semi-
equilibrium semantics depends in general on the choice of the particular splitting sequence. For illustration,
let us revisit the examples there.

Example 29. In the party program of Example 2, we obtain the first SEQ-model of P with respect to the
splitting set S = {go(Mark)}, but not the second SEQ-model. Similarly, in the company Example 24 we
obtained with respect to the considered splitting set S no SEQ-model, while we obtain the single SEQ-model
of the program with respect to S′ = {manager(sam), employee(sam), core staff (sam, sam)}. This
behaviour is unfortunate, the more as in program evaluation, it is not known which splitting sequence
is actually used by a solver for the evaluation, and this aspect should not matter from user perspective.
Likewise, it should not matter in which order independent subprograms of a program are evaluated.

We thus consider a way to obtain a refined split SEQ-semantics that is independent of a particular
splitting sequence, but imposes conditions on sequences that come naturally with the program and can be
easily tested. Along with this the question rises what information about the splitting sequences that are
(potentially) used for evaluation is available. If we just have a plain program P and no further information,
in principle any splitting sequence needs to be considered; if the program P is composed of subprograms
P1, . . . , Pm, then only splitting sequences that are “compatible” with the hierarchical ordering of the
subprograms need to be respected.

We base our development on the first setting, as it is at the core of program evaluation, and moreover a
generalization to the setting with subprograms is not hard to accomplish, once the notions and results for
this setting are established; we shall address this in Section 9.2.

The smallest possible splitting sets of a program are strongly connected components (SCCs) of the
program, which are at the heart of bottom up evaluation algorithms in ASP systems. Thus in lack of further
information on program decomposition, we shall base our development on splitting sequences that are
formed from SCCs of the program.

We then get the desired independence of a particular splitting sequence, such that we can then talk about
the SCC-models of a program.

Example 30. The program in the party Example 2 has two SCCs, namely C1 = {go(Mark)} and C2 =
{go(John), go(Bill), go(Peter)}), which form a single splitting sequence S = (C1, C2); thus, the model
Iκ1 is selected as the single SCC-model of the program.

However, a closer look reveals that independence might fail in presence of certain constraints that
join information in unrelated SCCs of a program. An illustration is given by the company program in
Example 24.

21

Example 31. The SCCs of the program in Example 24 are all singleton sets {a} where a is a ground
atom. For the emerging splitting sequences S = (S1, . . . , Sn) where core staff (sam) occurs before
has social sec(sam) (i.e., core staff (sam) ∈ Si and has social sec(sam) ∈ Sj \ Si with i < j),
we obtain no SEQ-model, but we obtain the single SEQ-model Iκ in the other cases. Intuitively, the
constraint in P accesses unrelated information from independent SCCs; if has social sec(sam) has
already been evaluated (to false), no beliefs help to make the constraint body false; otherwise, believing that
has social sec(sam) is true achieves this.

For this reason, we present a split SEQ-model semantics where the selected SEQ-models are truly inde-
pendent of the concrete admissible splitting sequence. The semantics is the maximal joinable components
(MJC) model semantics, which results by a lean merging of SCCs that violate independence due to inter-
action with constraints. In the company example, the SCCs {core staff (sam)} and {has social sec(sam)}
will be merged; this prevents that the constraint on social security is considered only after has social sec(sam)
has already been decided. The singleMJC-model of the program is then its single SEQ-model.

6.1. SCC-split Sequences and Models
We start with recalling further notions. The supergraph of a program P is the graph SG(P) =

〈VSG , ESG〉, whose nodes VSG are the SCCs of P and with an edge from an SCC C to a distinct SCC C ′ iff
the dependency graph of P has an edge from some atom in C to one in C ′; i.e., formally VSG = SCC(P)
and ESG = {(C,C ′) | C 6= C ′ ∈ SCC(P),∃a ∈ C,∃b ∈ C ′, (a, b) ∈ EDG}. Note that SG(P) is
a directed acyclic graph (dag); recall that a topological ordering of a dag G = 〈V,E〉 is an ordering
v1, v2, ..., vn of its vertices, denoted ≤, such that for every (vi, vj) ∈ E we have i > j. Such an ordering
always exists, and the set O(G) of all topological orderings of G is nonempty. Any such ordering of SG(P)
naturally induces a splitting sequence as follows.

Definition 9. Let P be a program and let ≤ = (C1, ..., Cn) be a topological ordering of SG(P). Then
the splitting sequence induced by ≤ is S≤ = (S1, ..., Sn), where S1 = C1 and Sj = Sj−1 ∪ Cj , for
j = 2, ..., n.

We call any such S≤ a SCC-splitting sequence; note that S≤ is indeed a splitting sequence of P .
We now show that for constraint-free programs, the split SEQ-models relative to SCC-split sequence are

independent of the concrete such sequence; in fact, we establish this result for programs in which certain
constraints do not occur.

Definition 10. A constraint r in P is a cross-constraint, if r intersects distinct SCCs Ci, Cj in SCC(P) that
are incomparable in SG(P), i.e., Ci ∩At(r) 6= ∅, Cj ∩At(r) 6= ∅, and SG(P) has topological orderings
of the forms (. . . , Ci, . . . , Cj , . . .) and (. . . , Cj , . . . , Ci, . . .).

For example, the constraint← b in the program P of Example 27 is trivially not a cross-constraint,
and likewise an additional constraint← a, b. However, an additional constraint← b, c would be a cross-
constraint. Intuitively, a cross-constraint joins information from different parts Ci and Cj of the program
that might be evaluated in either order under EQ-model semantics. If under SEQ-model semantics the
literals in the constraint over Ci evaluate to true, then making some atoms in Cj believed true may effect that
the constraint body becomes false, and we thus obtain a SEQ-model; if we proceed in the other order and
start with Cj , those atoms might be simply set to false and then there is no chance to arrive at a SEQ-model
when processing Ci. We illustrate this on a simple example.

Example 32. Consider the program P = { b; ← b, not a }. It has the SCCs {a} and {b} which are
incomparable in the supergraph SG(P); we may now set Ci = {a} and Cj = {b}. If we evaluate P
along the SCC-sequence S = ({a}, {b}), we obtain no SEQS-model; however, if we evaluate P along
S′ = ({b}, {a}), then we obtain the (single) SEQS

′
-model (b, ba).

We obtain the following result.

Theorem 6. Let P be a program without cross-constraints. Then for every ≤,≤′∈ O(SG(P)), we have
that SEQS≤(P) = SEQS≤′ (P).

22

Corollary 7. For every constraint-free program P , the SEQ-models of P relative to an SCC-split sequence
S are independent of the choice of S.

The proof of Theorem 6 is technically involving as it needs to be shown that changes in the ordering
of the SCCs do not matter in the end. It uses a series of lemmas which assert certain properties of semi-
equilibrium models (Ik, Jk) of the programs Pk that emerge in the bottom up characterization of Theorem 5,
and independence properties in certain cases; in particular, where for any setsM andM′ of HT-models,
their product is given byM×M′ = {(X ∪X ′, Y ∪ Y ′) | (X,Y) ∈M, (X ′, Y ′) ∈M′}:

Proposition 17. Let P be a program in which each constraint r fulfills either At(r) ⊆ S or At(r) ⊆
At(P) \ S. If S ⊆ At(P) is such that both S and At(P) \ S are splitting sets of P , then

SEQ(P) = SEQ(bS(P))× SEQ(tS(P)).

Theorem 6 is an analog of the Stratification Theorem [3, 46] which states that the perfect (stratified) model
of a logic program relative to a stratification is independent of the concrete stratification, and thus one can
simply refer to the perfect model of a stratified program; similarly, we thus can define the strongly connected
components models of a program as follows.

Definition 11 (SCC-models). For every program P without cross-constraints, the SCC-models of P are
given as M SCC(P) = SEQS≤(P) for an arbitrary topological ordering ≤ of SG(P).

Let us consider some examples.

Example 33. The party program P in the Example 25 is constraint-free; hence, it has some SCC-model.
The splitting sequence S for P given in Example 27 is in fact an SCC-splitting sequence, and thus the single
SEQS-model (b, bc) is the singe SCC-model of P .

Example 34. The program P = {← b; b ← not a} in Example 27 is cross-constraint free. It has the
SCCs {a} and {b}, and for the single SCC-split sequence S = ({a}, {a, b}), no split sequence SEQ- model
exists; does P has no SCC-model. As this example shows, SCCs may be too fine-grained sometimes to
obtain modular SEQ-models in the presence of constraints. This can be remedied by using coarser modules
that are defined by the user (cf. Section 9.2).

Example 35. Consider the program

P =

{
← a, d; a← c, not a; a← not b; b← not e; b← f ;
c← not d; c← g, not h; f ← b, not f ; g ← h; h← c, g

}
.

Its SCCs are C1 = {a}, C2 = {b, f}, C3 = {c, g, h}, C4 = {d} and C5 = {e}; as a depends on d, the
single constraint← a, d is not a cross-constraint. For the ordering ≤ = (C4, C5, C3, C2, C1), we obtain
that

SEQS≤(P) = SEQ(S2,S3,S4,S5)(PS1(∅, ∅)) = SEQ(S3,S4,S5)(PS2
1 (∅, ∅))

= SEQ(S4,S5)(PS3
2 (c, c)) = SEQ(S5)(PS4

3 (bc, bcf)) = {(bc, abcf)};

hence M SCC(P) = {(bc, abcf)}. For ≤′= (C5, C2, C4, C3, C1), we obtain SEQS≤′ (P) = {(bc, abcf)},
in line with Theorem 6. Note that SEQ(P) = {(bc, abcf), (b, bdf), (ac, ace)}.

Regarding the properties (D1)-(D3) of a paracoherent semantics in the Introduction, we obtain from
Proposition 16 immediately

Corollary 8. The SCC-models semantics, given by M SCC(P) for programs P without cross-constraints,
satisfies properties (D1)-(D2), and it satisfies (D3) for programs without constraints.

As for the properties of SCC-models, we focus here on a particular aspect that is important with respect
to an envisaged exploitation for paracoherent answer set construction; computational aspects are considered
in Section 7.

23

6.1.1. Modularity of SCC-models
In the definition of split SEQ-models, we made use of splitting sets as a major tool for modular

computation of equilibrium models (answer sets) of a logic program. Indeed, for any splitting set S of P , as
follows from [31] we have that

EQ(P) =
⋃

(X,X)∈EQ(bS(P))

EQ(tS(P) ∪ {a | a ∈ X} ∪ {← a | a ∈ S \X}). (11)

Note the similarity to the equation in (9) which we used to define SEQ-models of a program relative to a
splitting set; the major difference is that we use the mc(·) operator to single out smallest gaps at a global
level. And, in general for different S we shall obtain different SEQ-models from (9). However, if we confine
to SCC-models, then an analog to (11) and its generalization to splitting sequences holds.

That is, if we replace in Equation (10) SEQ, SEQS , and SEQS
′

all by MSCC , then the resulting equation
hold.

Theorem 7. Let S be a splitting set of a program P without cross-constraints. Then

M SCC(P) = mc
(⋃

(I,J)∈MSCC(bS(P))

M SCC(PS(I, J))
)
. (12)

Thanks to this result, we can compute the SCC-models of a given program modularly bottom up along an
arbitrary splitting sequence (using always M SCC); in particular, if an algorithm has processed a bottom part
bS(P) of a program P and found equilibrium models (answer sets) for it, and it encounters that an extension
of these equilibrium models using (11) does not yield any answer set, then it can switch to a “paracoherent
mode” and apply (7); as MSCC(bS(P)) = EQ(bS(P)), we obtain the same result as if we would compute
the SCC-models of P from scratch. That is, no backtracking or restarting of the computation is necessary.

We note none of the occurrences of M SCC in the equation (12) can be replaced with SEQ or an arbitrary
SEQS

′
in general, that is compute and use simply the semi-equilibrium models respectively the split semi-

equilibrium models of the bottom part and/or the remainder of the program relative to S′; in addition to all
SCC-models, we might get some semi-equilibrium models of the program P where the particular splitting
sequence S′ matters. Formally, the following property holds, which is an easy consequence of Theorem 5.

Proposition 18. Let S be a splitting sequence of a program P without cross-constraints. Then

M SCC(P) ⊆ SEQS(P) and M SCC(P) =
⋂

S∈SQ(P)

SEQS(P),

where SQ(P) is the set of all splitting sequences of P .

6.2. MJC-split Sequences and Models

Unfortunately, Theorem 6 fails if we allow arbitrary constraints in P , as witnessed e.g. by the programs
in Examples 32 and 24. To deal with this situation, different ways are possible.

(1) One way is to exclude constraints (or less restrictive, cross-constraints), and resort instead to the
usage of rules which create unstable negation; that is

← Body (13)

is replaced with
f ← Body , notf, (14)

where f is a fresh atom. Indeed, on some (early) implementations of answer set solvers constraints have
been provided in this way. The SEQ-model semantics is able to distinguish between (13) and (14); this
can be exploited to use (14) as a soft constraint that may intuitively be violated if needed to achieve an
EQ-model resp. answer set; indeed, this rule can always be satisfied by considering f as believed true.

24

(2) Another possibility is to remedy situations in which constraints are not embedded in ordered SCCs.
To this end, we consider merging of SCCs in such a way that (i) independence of concrete topological
orderings is preserved and, furthermore, (ii) merging is performed conservatively, that is only if it is deemed
necessary. This is embodied by the maximal joinable components of a program, which lead to so called
MJC-split sequences and models. Informally, relevant SCCs that are incomparable (thus unproblematic in
evaluation if we disregard cross-constraints) are merged if they both intersect with a constraint. The merging
is repeated until no cross-constraint violation exists with respect to the new (merged) components. In the
rest of this subsection, we formalize this approach on a declarative basis.

We start with introducing the notions of related pairs and joinable pairs of SCCs. We call a pair
(K1,K2) of SCCs of P a related pair, if either K1 = K2 or some constraint r ∈ P intersects both K1 and
K2, i.e., At(r) ∩K1 6= ∅ and At(r) ∩K2 6= ∅. By C(K1,K2)(P) we denote the set of all such constraints r.

Definition 12. A related pair (K1,K2) is a joinable pair, if K1 = K2 or some ordering (C1, . . . , Cn) in
O(SG(P)) exists such that (i) K1 = Cs and K2 = Cs+1 for some 1 ≤ s < n, (ii) (K2,K1) /∈ ESG and
(iii) some r ∈ C(K1,K2)(P) exists such that At(r) ⊆ C1 ∪ ... ∪ Cs+1. By JP(P) we denote the set of all
joinable pairs of P .

Intuitively item (i) states that in some topological ordering K1 immediately precedes K2; item (ii)
states that no atom in K2 directly depends on an atom from K1. If this does not hold, joining K1 and K2

to achieve independence is not necessary as their ordering is fixed. Finally item (iii) requires that some
constraint must access the two SCCs (which thus must be a cross-constraint) and appear in the evaluation in
the bottom of the program computed so far.

Example 36. Reconsider the program P = { b; ← b, not a } in Example 32 with the incomparable SCCs
{a}, {b} and the cross-constraint← b, not a. The pair (K1,K2) for K1 = {a} and K2 = {a, b} is related
and also joinable.

Example 37. For P = {← b, not a; ← b, not c; d ← not a; c ← not e; b ← c}, we have SCC(P) =
{{a}, {b}, {c}, {d}, {e}}. We observe that ({c}, {b}) is a related, but not a joinable pair, because ({c}, {b})
satisfies conditions (i) and (iii), but not (ii). On the other hand, ({a}, {b}) is a joinable pair.

Example 38. Reconsider the company program P in Example 24, and recall that the SCCs (of the ground
version) of P are all sets {a}, where a is a ground atom; for brevity, we abbreviate predicate names to the first
letter. In the supergraph SG(P), we then have the edges ({c(sam)}, {m(sam)), ({e(sam)}, {m(sam)),
({h(sam)}, {e(sam)}), and ({h(sam)}, {s(sam, sam)}).10 For K1 = {c(sam)} and K2 = {h(sam)},
we obtain that (K1,K2) is a related and also joinable pair. Similarly, ({c(sam)}, {e(sam)}) is a related
and joinable pair; while ({h(sam)}, {e(sam)}) is a related pair, it is not joinable (condition (ii) fails).

We now extend joinability from pairs to any number of SCCs.

Definition 13. Let P be a program. Then K1, ...,Km ∈ SCC(P) are joinable, if m = 2 and some
K ∈ SCC(P) exists such that (K1,K), (K,K2) ∈ JP(P), or otherwise Ki,Kj are joinable for each
i, j = 1, ...,m. We let JC (P) = {

⋃m
i=1Ki | K1, ...,Km ∈ SCC(P) are joinable} and call

MJC(P) = {J ∈ JC (P) | ∀J ′ ∈ JC (P) : J 6⊂ J ′}

the set of all maximal joined components (MJCs) of P .

Note that (K1,K2) ∈ JP(P) implies that K1 and K2 are joinable (choose K = K1).

Example 39 (continued). The program P = { b; ← b, not a } has the single joinable pair ({a}, {b}) and
thus the single maximal joined component {a, b}.

10Fixed builtin predicates like #int(·) can be disregarded in dependency analysis.

25

Example 40 (continued). In Example 37, ({a}, {b}) is the only nontrivial joinable pair; henceMJC(P) =
{{a, b}, {c}, {d}, {e}}.

Example 41 (continued). For the company program P in Example 24, the nontrivial joinable components
are ({c(sam)}, {h(sam)}) and ({c(sam)}, {e(sam)}); henceMJC(P) = {{e(sam), h(sam), c(sam)},
{m(sam)}, {s(sam)}}.

As easily seen,MJC(P) is a partitioning ofAt(P) that results from merging SCCs. We define a dependency
graph on them, called theMJC graph of P and denoted JG(P), that is analogous to the supergraph on
the SCCs. Formally, JG(P) = 〈VJG , EJG〉, where VJG = MJC(P) and EJG = {(J, J ′) | J 6= J ′ ∈
MJC(P),∃a ∈ J,∃b ∈ J ′, (a, b) ∈ EDG}. Note that JG(P) is like SG(P) a directed acyclic graph, and
hence admits a topological ordering; we denote by O(JG(P)) the set of all such orderings. We thus define

Definition 14. Let P be a program and ≤ = (J1, ..., Jm) be a topological ordering of JG(P). Then
the splitting sequence induced by ≤ is S≤ = (S1, ..., Sm), where S1 = J1 and Sk = Sk−1 ∪ Jk, for
k = 2, . . . ,m.

The sequence S≤ is again indeed a splitting sequence, which we call aMJC-splitting sequence. We
obtain a result analogous to Theorem 6, but in presence of constraints.

Theorem 8. Let P be a program. For every ≤,≤′∈ O(JG(P)), we have SEQS≤(P) = SEQS≤′ (P).

The proof of this result is similar to the one of Theorem 6, but uses different lemmas.

Similarly as SCC-models, we thus can define theMJC-models of a program.

Definition 15 (MJC-models). For any program P , theMJC-models of P are given as MMJC(P) =
SEQS≤(P) for an arbitrary topological ordering ≤ of JG(P).

Example 42 (continued). ReconsiderP in Example 37. Then for the ordering≤= ({a}, {d}, {e}, {c}, {b})
we obtain SEQS≤(P) = ∅, while for ≤′= ({e}, {c}, {b}, {a}, {d}) we obtain SEQS≤′ (P) = {(bc, abc)}.
On the other hand, JG(P) has the single topological ordering≤= ({e}, {c}, {a, b}, {d}), and SEQS≤(P) =
{(bc, abc)}; hence MMJC(P) = {(bc, abc)}. Note that SEQ(P) = {(bc, abc), (d, de)}.

The problem in Section 6.2 disappears when we use the MJCs.

Example 43 (continued). For P = { b; ← b, not a } in Example 32, the graph JG(P) has the single node
{a, b} and SEQS(P) = {(b, ab)} for S = {a, b}. Thus the singleMJC-model of P is (b, ab), as desired.

Example 44 (continued). For the company program P in Example 24, the join graph JG(P) has the edges
({e(sam), h(sam), c(sam)}, {m(sam)}) and ({e(sam), h(sam), c(sam)}, {s(sam)}). Thus twoMJC-
split sequences are possible, viz. S = (S1, S2, S3) where S1 = {m(sam)}, S2 = {m(sam), s(sam)},
and S3 = {m(sam), s(sam), e(sam), h(sam), c(sam)}; and S′ = (S′1, S

′
2, S
′
3) where S′1 = {s(sam)},

and S′2 = S2, and S′3 = S3. Both SEQS(P) and SEQS
′
(P) have the single SEQ-model Iκ = {m(sam),

e(sam), c(sam), Kh(sam)}, which is then the singleMJC-model of P .

Note that trivially, theMJC- and the SCC-semantics coincide for constraint-free programs (in fact,
also in absence of cross-constraints). As for the properties (D1)–(D3), again from Proposition 16 we obtain:

Corollary 9. TheMJC-models semantics, given by MMJC(P) for any program P , satisfies (D1)-(D2),
and if P is cross-constraint-free, also (D3).

Program coherence (D3) is not ensured byMJC-models, due to lean component merging that fully
preserves dependencies. To obtain a SEQ-model, blurring strict dependencies can be necessary, where two
aspects need to taken into account.

(A1) Inconsistency may still emerge from cross-constraints.

26

M SCC(P)

SEQS(P)

SEQ(P)

MMJC(P)EQ(P)AS(P)

SST (P)

⊆ ⊆

⊆⊆⊆

⊆
=

⊆

Figure 1: Inclusion between different semantics, where S is an arbitrary split sequence. MSCC(P) applies only to cross-constraint
free P and coincides with MMJC(P) on them; MSCC(P) (resp., MMJC(P)) coincides with SEQS for any S induced by a
topological sort of the strongly connected components of P (resp., the maximal joined components of P). MMJC(P) is included in
SEQS(P) forMJC-compatible S (dashed symbol). All semantics coincide if EQ(P) 6= ∅.

Example 45. Consider the program P = {← b, not a; b; b← a}. It has the SCCs {a} and {b}; as they
are not joinable, MJC(P) = {{b}, {a}}. The singleMJC-splitting sequence is ({a}, {a, b}), which
however does not admit a split SEQ-model; consequently, P has noMJC model.

This can be remedied by suitably merging components that intersect the same constraint.
(A2) A second, orthogonal aspect is dependence.

Example 46. The program P = { ← b; b← not a } has noMJC-model, as theMJC-splitting sequence
S = ({a}, {a, b}) admits no split SEQ-model; the culprit is a, which does not occur in the constraint.

Clearly, the problem extends to dependence via an (arbitrarily long) chain of rules; e.g. change in
Example 46 the rule b ← not a to b ← c1, c1 ← c2, . . . , cn−1 ← cn, cn ← not a. Again, this can be
remedied by merging components. Many merging policies to ensure (D3) are conceivable; however, such a
policy should ideally not dismiss structure unless needed, and it should be efficiently computable; we defer
a discussion to Section 8, as the complexity results in the next section will provide useful insight for it.

6.2.1. Modularity ofMJC-models
A naive generalization of the modularity property of SCC-models in Theorem 7 fails, as it does not hold

for arbitrary splitting sets. To wit, for P = {b; ← b, not a} and the splitting set S = {a}, the modular
computation (similar as in the right hand side of (12)) yields no models, while MMJC(P) = {(b, ba)}.
However, if we properly restrict S, then the generalization holds.

Theorem 9. Let S be a splitting set of a program P such that S =
⋃
M for someM⊆MJC(P). Then

MMJC(P) = mc
(⋃

(I,J)∈MMJC(bS(P))

MMJC(PS(I, J))
)
. (15)

Thus, the same evaluation strategy as for SCC-models can be applied. Furthermore, we have an analogue
to Proposition 18. We say that a split-sequence S = (S1, . . . , Sn) of a program P isMJC-compatible, if
for every J ∈MJC(P) and 1 ≤ i ≤ n, either J ⊆ Si or J ∩ Si = ∅ holds; intuitively, no maximal joint
component of P is split across different layers of S. Then,

Proposition 19. Let S be anMJC-compatible splitting sequence of a program P . Then

MMJC(P) ⊆ SEQS(P) and MMJC(P) =
⋂

S∈MSQ(P)

SEQS(P),

whereMSQ(P) is the set of allMJC-compatible splitting sequences of P .

27

6.3. Summary of model relationships
At the end of this section, we summarize the relationships between the various semantics introduced in

this paper. Figure 1 shows the inclusion relation between different notions of models, viewed as HT-models
respectively bi-models. Notably all inclusions collapse if the program has equilibrium models (EQ(P) 6= ∅);
otherwise, the semi-stable (SST) models are in general incomparable to the semi-equilibrium (SEQ) models
and any of its refinements, as can be seen e.g. from Example 22. The SCC-models are only defined for
programs without cross-constraints; each of them is a split SEQ-model with respect to an arbitrary splitting
sequence; in fact, the SCC-models are exactly the HT-models which are split models under every splitting
sequence. Furthermore, they coincide with theMJC-models, which for programs with cross-constraints
may not all be split SEQ-models with respect to an arbitrary splitting sequence. However, the inclusion
holds forMJC-compatible splitting sequences (dashed symbol), and theMJC-models are exactly the
HT-models which are split models under everyMJC-compatible splitting sequence.

7. Complexity and Computation

In this section, we turn to the computational complexity of the paracoherent model semantics that we
have considered in the previous sections. In this, we deal with the SEQ-model and the split SEQ-model
semantics in detail, while we treat the SST -model semantics more in passing; the reason is that the
complexity of SST -model semantics has been elucidated in more detail in [17], while the SEQ-model
semantics has been only briefly considered there.

Regarding SEQ-model semantics, we study the following major reasoning tasks:

(MCH) Given a program P and an HT-interpretation (X,Y), decide whether (X,Y)∈ SEQ(P).

(INF) Given a program P , an atom a and v ∈ {t, f ,bt}, decide whether a is a brave [resp. cautious]
SEQ-consequence of P with value v, denoted P |=b,v

SEQ a [resp. P |=c,v
SEQ a], i.e., a has value v in

some (every) (X,Y) ∈ SEQ(P) value v.

(COH) Given a program P , decide whether SEQ(P) 6= ∅.

The generalizations of these problems to split SEQ-semantics, where in addition a split sequence S
is part of the input and SEQ is replaced with SEQS , are denoted with MCH-S, INF-S, and COH-S,
respectively. We consider all problems for several classes of programs, viz. normal, disjunctive, stratified,
and headcycle-free programs11 and the split SEQ-models problems also for SCC- and MJC-splitting
sequences S,

The attentive reader might ask why positive programs are not considered here; they are of less interest,
as the (split sequence) SEQ-models coincide with the minimal models of P (see Corollaries 2 and 4).
Furthermore, we note that hcf-programs are under SEQ-semantics sensitive to body shifts; e.g., P =
{a ∨ b; a ← not a; b ← not b} has the SEQ-models (a, ab) and (b, ab), while its shift P→ = {a ←
not b; b ← not a; a ← not a; b ← not b} has the single SEQ-model (∅, ab). Thus results for hcf-
programs do not immediately carry over to normal program.

7.1. Overview of complexity results
Our complexity results are summarized in Tables 1 and 2. They show that SEQ-model semantics is with

respect to model checking (MCH) and inference (INF) one level higher up in the polynomial hierarchy than
the EQ-model (i.e., answer set) semantics; this is not surprising as the characterization of a SEQ-model
in Theorem 2 involves besides h-minimality also gap-minimality, while the EQ-model definition involves
only h-minimality. As gap-minimality is a global property and has to be checked across all h-minimal
HT-models of a program, intuitively an (additional) quantifier is needed to express that no h-minimal
HT-model with smaller gap exists; in particular, this causes SEQ-model checking for normal programs to
become intractable. The additional quantifier is then also needed for brave and cautious reasoning, where we

11Note that [17] did not consider stratified and hcf-programs.

28

need to find a suitable SEQ-model that establishes respectively refutes the query atom, with one exception
(this will be discussed below). For the coherence problem, however, the complexity is different compared
to the EQ-models semantics as it resorts to classical coherence, and thus to SAT; for some programs it is
lower (e.g., for programs without constraints, where EQ-model existence is NP-complete resp. Σp2-complete,
while COH is polynomial), while for others it is higher (e.g., for normal stratified programs with constraints
COH is NP-complete, while EQ-model existence is polynomial).

The results in Table 2 show that split SEQ-models have the same complexity as SEQ-models (i.e.,
structural information does not affect complexity) except on Problem COH, which is harder. Problems MCH
and INF do not become harder, as MCH reduces to polynomially many MCH instances without splitting;
the hardness results for arbitrary splitting sequences are inherited from respective results without splitting.

The reason for the complexity increase of COH is that coherence (D3) no longer holds for split SEQ-
model semantics. In particular, this means that imposing a structural condition on building SEQ-models
along SCCs may eliminate such models. The increase in complexity has a further important implication.
Namely, that under usual complexity hypotheses, no polynomial-time method µ exists that associates with
P a splitting sequence S = µ(P), using a polynomial-time checkable criterion on P , such that (i) µ respects
structure and does not become trivial, i.e., µ(P) 6= (At(P)) if SEQS(P) 6= ∅ for some S 6= (At(P)), and
(ii) µ preserves coherence, i.e., SEQ(P) 6= ∅ implies SEQS(P) 6= ∅. This negative result holds even if the
method µ is allowed to be nondeterministic, i.e., can for example “guess” a suitable splitting sequence S for
P . In other words, the price for ensuring coherence of a splitting sequence with tractable (or NP) effort is to
merge sometimes more components than necessary.

For SCC andMJC splitting sequences, we obtain analogous results; informally, the problems do not
get easier as splitting (which is a purely syntactic notion) can be blocked by irrelevant rules.

7.1.1. Semi-stable models
For semi-stable models, similar results hold as for SEQ-models in Table 1. The reason is that model

checking for semi-stable models amounts, by the characterization of Theorem 1, to a test that is similar to
the one for SEQ-models according to Theorem 2: testing (I, J) |=β P is like testing (I, J) |= P feasible
in polynomial time, and the conditions (i) and (ii) are analog to the conditions (i′) and (ii′). Similar
arguments as for SEQ-models establish then the membership results for SST -models. The matching
hardness results are derived, however, using different reductions, which can be found in [17]. Noticeably, the
proofs there establish hardness also under the restrictions to hcf, stratified normal, and disjunctive stratified
programs; for hcf-programs, membership of model checking in coNP follows from the fact that deciding
item (i) in Theorem 1 is feasible in polynomial time: as easily seen, this test amounts to deciding whether
I ∈ MM (P J); as P J is hcf and minimal model checking for hcf programs is polynomial [8], the tractability
follows.

7.2. Derivation of the results

In the following, we formally state and derive the results in Tables 1 and 2. Rather than going into
tiring technical details, we shall confine in the membership parts to the essential points and describe in the
hardness parts the constructed programs without proving the correctness in each case, which is routine.

We exploit that in most cases the split-variant Π-S of a problem Π features its full complexity already
for the trivial split sequence S = (At(P)); thus Π-S and Π have the same complexity.

Theorem 10. Given a program P , a splitting sequence S and an HT-interpretation (X,Y) recognizing if
(X,Y) ∈ SEQS(P) is

(i) coNP-complete for each of normal, stratified, and headcycle free P , and

(ii) Πp
2-complete for disjunctive and stratified disjunctive P .

In all cases, coNP- resp. Πp
2-hardness holds for S = (Σ), i.e., SEQ-model semantics.

Proof. The membership parts for MCH can be derived as follows. Given an HT-interpretation (X,Y) of a
program P , we can verify by Theorem 2 whether it is a SEQ-model of P by checking that (X,Y) |= P ,

29

Table 1: Complexity of SEQ-models (completeness results). The same results hold for SST models.

Problem / Program P : normal, strat. nor-
mal, headcycle-free

disj. strati-
fied, disjunc-
tive

(MCH) Model checking: (X,Y)∈SEQ(P)? coNP-c Πp
2-c

(INF) Brave reasoning: P |=b,v
SEQ a? Σp2-c Σp3-c

Cautious reasoning: P |=c,v
SEQ a? Πp

2-c Πp
3-c

(COH) Existence: SEQ(P) 6= ∅? NP-c NP-c

Table 2: Complexity of split SEQ-models (completeness results). The same results hold for canonical models (SCC-,MJC-split
sequences S).

Problem / Program P : normal, strat. nor-
mal, headcycle-free

disj. strati-
fied, disjunc-
tive

(MCH-S) Model checking: (X,Y)∈SEQS(P)? coNP-c Πp
2-c

(INF-S) Brave reasoning: P |=b,v
SEQS a? Σp2-c Σp3-c

Cautious reasoning: P |=c,v
SEQS a? Πp

2-c Πp
3-c

(COH-S) Existence: SEQS(P) 6= ∅ ? Σp2-c Σp3-c

which obviously is feasible in polynomial time, and proving h-minimality (item (i′)) and gap-minimality
(item (ii′)) of (X,Y); as for (i′), a guess for a HT-model (X ′, Y) of P such that X ′ ⊂ X can be verified
in polynomial time; thus h-minimality can be tested in coNP. Condition (ii′) on top can be decided using
an oracle for Πp

2 that no h-minimal model (X ′, Y ′) with gap(X ′, Y ′) ⊂ gap(X,Y) exists; this establishes
membership in Πp

2. In case that P is hcf or normal, deciding h-minimality is polynomial, since (i′) amounts
to X ∈ MM (PY); if P is hcf then also PY is hcf, and minimal model checking for such programs
is polynomial [8]; if P is normal, then PY is Horn and minimal model checking is well-known to be
polynomial.

As for split SEQ-models, by Theorem 5 deciding whether (X,Y) is a SEQ-model of P w.r.t. S =
(S1, ..., Sn) reduces to checking whether (X,Y) and all (X,Y)|Sk are SEQ-models of P resp. bSk(Pk−1),
for k = 1, . . . , n. Each program bSk(Pk−1) is normal (stratified normal, hcf, stratified disjunctive) if P has
this property. Hence the already established membership results for SEQ-models generalize to the case of
splitting sequences.

The matching hardness results for item (ii) and SEQ-models are proved in Appendix Appendix C.1;
for stratified normal programs, which covers also normal and hfc-programs, we give a simple reduction
from minimal model checking of positive programs P (which is well-known to be coNP-complete, cf. [16]).
For any rule r, let cs(r) be its constraint rewriting, i.e., cs(r) =← B+(r), notB−(r), notH(r), and let
cs(P) = {cs(r) | r ∈ P}. Then M ∈ MM (P) iff (∅,M) ∈ SEQ(cs(P)). All hardness results trivially
extend to arbitrary splitting sequences, which establishes the result. 2

Theorem 11. Given a program P , a splitting sequence S, an atom a and a value v ∈ {t, f ,bt}, deciding
whether

(i) P |=b,v
SEQS a is Σp2-complete for each of normal, stratified normal, and hcf P and Σp3-complete for

disjunctive and stratified disjunctive P ;

(ii) P |=c,v
SEQS a is Πp

2-complete for each of normal, normal stratified, and hcf P and Πp
3-complete for

disjunctive and stratified disjunctive P .

In all cases, Σp2/Πp
2- resp. Σp3/Πp

3-hardness holds for S = (Σ), i.e., SEQ-model semantics.

30

Proof. Membership of brave (resp. cautious) reasoning from SEQ-models w.r.t. S in Σp3 (resp. Πp
3) for

disjunctive programs follows from Theorem 10, and similarly membership for normal, normal stratified and
hcf-programs in Σp2 [resp. Πp

2]. The Σp3/Πp
3-hardness for brave [resp. cautious] reasoning from SEQ-models

from stratified disjunctive programs is proven in Appendix Appendix C.1 resp. Appendix C.2. The Σp2/Πp
2-

hardness for stratified normal programs (and thus for normal and hcf-programs) follows by a reduction
from brave (resp. cautious) reasoning from positive disjunctive programs P , which is Σp2- resp. Πp

2-hard
(see Appendix Appendix C.1). For every such P and atom a, we have that a ∈M for some M ∈ MM (P)

iff cs(P) |=b,bt
S a (resp. P |=f

c a iff cs(P) |=c,f
SEQ a); indeed, the SEQ-models of P and cs(P) are the

HT-models (M,M) resp. (∅,M), where M ∈ MM (P). 2

Notably brave reasoning has the same complexity in all cases, if we fix the truth value v arbitrarily,
already for S = At(P) (i.e., for SEQ-models). For cautious reasoning, this similarly holds, except that for
v = bt and S = At(P), the complexity drops to coNP resp. ΠP

2 (see Appendix Appendix C.2).

Theorem 12. Given a program P and a splitting sequence S, deciding whether SEQS(P) 6= ∅ is

(i) Σp2-complete for each of normal, stratified normal, and hcf P ; and

(ii) Σp3-complete for stratified disjunctive and disjunctive P ; and

(iii) NP-complete for all program classes considered, if S = (Σ) (i.e., for SEQ in place of SEQS).

Proof. The membership parts of (i) and (ii) follow easily from the results for MCH in Theorem 10, as a
candidate SEQ-model of P w.r.t. S can be guessed and checked with an NP resp. Σp2 oracle in polynomial
time. The hardness parts of (i) and (ii) can be obtained via a reduction from brave reasoning P |=v

b a in
Problem INF. The Σp3-hard (resp. Σp2-hard) instances are of a form such that P |=v

b a iff some SEQ-model
(X,Y) of P exists with a ∈ Y . Let b be a fresh atom and define then P ′ = P ∪ {← b; b← not a}. Then
P ′ has a SEQ-model w.r.t. S = (At(P), At(P ′)) iff P |=v

b a; this proves the Σp3- (resp. Σp2-) hardness.
The result in (iii) is an immediate consequence of the NP-completeness of SAT (satisfiability of a clause

set) in propositional logic and the classical coherence property (D3) of SEQ-model semantics. 2

Canonical split SEQ-semantics For SCC- andMJC-splitting sequences, we have

Theorem 13. The results on Problems MCH, INF and COH in Table 2 continue to hold if S is restricted to
SCC- (resp.MJC-) splitting sequences.

Proof. Indeed, the respective hardness proofs are extended to this setting. For a program P , let p be a fresh
atom and let Pcl = P ∪ {a ← a, p; p ← p, a | a ∈ Σ}. Clearly, P and Pcl have the same SEQ-models,
and Pcl has the single SCC Σ′ = Σ ∪ {p}. Exploiting this, the programs for MCH and INF have the single
splitting sequence S = (Σ′) and those for Problem COH have S′ = (Σ′,Σ′ ∪ {b}); these are SCC- and
MJC-splitting sequences. Furthermore, from S′ we conclude that no method µ as in Subsection 7.1 exists
(under usual complexity hypotheses). 2

7.3. Constructing and recognizing canonical splitting sequences

It is well-known that SCC(P) and SG(P) are efficiently computable from P (using Tarjan’s [53]
algorithm even in linear time); hence, it is not hard to see that one can recognize a SCC-splitting sequence S
in polynomial time, and that every such S can be (nondeterministically) generated in polynomial time (in
fact, in linear time). We obtain similar tractability results forMJC(P) andMJC-splitting sequences. To
this end, we first note the following useful proposition.

Proposition 20. Let P be a program and let K1,K2 ∈ SCC(P). Then K1 and K2 satisfy (i) and (ii) of
Definition 12 iff they are disconnected in SG(P), i.e., no path from K1 to K2 and vice versa exists.

Based on this proposition, we can characterize the joinable pairs that are witnessed by a constraint from
r as follows. As usual, let us call a SCC Ci in a set C ⊆ SCC(P) of SCCs maximal, if no Cj in C exists
that is comparable to Ci in SG(P) and ordered after Ci, i.e., every topological ordering of SG(P) is of the
form (. . . , Cj , . . . , Ci, . . .).

31

Corollary 10. Given a constraint r ∈ P , let C1, . . . , Cl be the maximal SCCs C of P in SG(P) such that
At(r) ∩ C 6= ∅. Then (K1,K2) where K1 6= K2 is a joinable pair of P witnessed by r (i.e., satisfies (iii)
for r) iff K1,K2 ∈ {C1, . . . , Cl}.

By exploiting this characterization, we can constructMJC(P) and furthermore JG(P) by the following
steps:

1. compute DG(P), SCC(P) and SG(P);

2. for every constraint r ∈ P , determine all maximal Cr1 , . . . , C
r
l in SCC(P) such that Cri ∩At(r) 6= ∅;

3. let Cr = Cr1 ∪ · · · ∪ Crl , and set MC := {Cr | r ∈ P,H(r) = ∅} and NMI := SCC(P) \
{Cr1 , . . . , Crl | r ∈ P,H(r) = ∅};

4. merge J1, J2 ∈ MC such that J1 ∩ J2 6= ∅ (i.e., set MC := (MC \ {J1, J2}) ∪ {J1 ∪ J2}) until no
longer possible;

5. setMJC(P) := MC ∪ NMI and JG(P) = (VJG , EJG) where VJG = MJC(P) and EJG =
{(J1, J2) | J1 6= J2 ∈MJC(P),∃a ∈ J1,∃b ∈ J2, (a, b) ∈ EDG}.

Example 47. Reconsider the program P from Example 37, which contains the constraints r1: ← b, not a
and r2: ← b, not c. We recall that SCC(P) = {{a}, {b}, {c}, {d}, {e}}. In Step 2 of the procedure,
the maximal SCCs of r1 are {a}, {b} and the single maximal one of r2 is {b}; thus in Step 3, we have
MC = {{a, b}, {b}} and NMI = {{c}, {d}, {e}}. In Step 4, {a, b} and {b} are merged, resulting in
MC = {{a, b}}. Finally, in Step 5MJC(P) is assigned MC ∪ NMI = {{a, b}, {c}, {d}, {e}}; this is
the correct result.

The following result states the correctness of the procedure and that it can be implemented to run in
bilinear time.

Theorem 14. Given a program P , MJC(P) and JG(P) are computable in time O(cs·‖P‖), where
cs = |{r ∈ P | H(r) = ∅}| is the number of constraints in P and ‖P‖ is the size of P .

In particular, the algorithm runs in linear time if the number of constraints is bounded by a constant. It
remains as an interesting open issue whether the same time bound is feasible without this constraint.

8. Related Work

In this section, we first review some general principles for logic programs with negation, and we then
consider the relationship of semi-stable and semi-equilibrium semantics to other semantics of logic programs
with negation. Finally, we address some possible extensions of our work.

8.1. General principles

In the context of logic programs with negation, several principles have been identified which a semantics
desirably should satisfy. Among them are:

• the principle of minimal undefinedness [59], which says that a smallest set of atoms should be
undefined (i.e., neither true nor false);

• the principle of justifiability (or foundedness) [59]: every atom which is true must be derived from the
rules of the program, possibly using negative literals as additional axioms.

• the principle of the closed world assumption (CWA), for models of disjunctive logic programs (Eiter
et al. [19]): “If every rule with an atom a in the head has a false body, or its head contains a true atom
distinct from a w.r.t. an acceptable model, then a must be false in that model.”

32

It can be shown that both the semi-stable and the semi-equilibrium semantics satisfy the first two
principles (properly rephrased and viewing bt as undefined), but not the CWA principle; this is shown
by the simple program P = {a ← not a} and the acceptable model {Ka}. However, this is due to
the particular feature of making, as in this example, assumptions about the truth of atoms; if the CWA
condition is restricted to atoms a that are not believed by assumption, i.e., Iκ(a) 6= bt in a semi-stable resp.
semi-equilibrium model Iκ, then the CWA property holds.

We eventually remark that Property N can be enforced on semi-stable models by adding constraints
← a, not a for all atoms a to the (original) program. However, enforcing Property K on semi-stable models
is more involved and efficient encodings seem to require an extended signature.

8.2. Related semantics

In this section, we relate the semi-stable and semi-equilibrium semantics to several semantics in the
literature that allow for models even if a no answer set of a program exists.

8.2.1. Evidential Stable Models
Motivated by the fact that a disjunctive deductive database (DDDB) may lack stable models or even

P-stable models, Seipel [51] presented a paracoherent semantics, called the evidential stable model (ESM)
semantics, which assigns some model to every DDDB (that is, to every constraint-free disjunctive logic
program), such that the properties (D1)-(D3) in the Introduction are satisfied. Similar to [49], but guided by
slightly different intuition, he defined the evidential stable models of a program P in a two-step process.
First P is transformed into a positive disjunctive program P E , called the evidential transform of P , whose
answer sets, i.e., its minimal models are considered. Among them are in the second step those selected that
are informally preferred according to the amount of reasoning by contradiction that they involve. While
Seipel did not consider constraints, his approach naturally extends to programs with constraints, and we
consider this extension in the sequel.

Formally, for a given Σ let ΣE = Σ ∪ {Ea | a ∈ Σ}, where Ea intuitively means that there is evidence
that a is true. Given a program P , its evidential transformation P E consists of the following rules:

1. H(r) ∪ EB−(r)← B+(r) and

2. EH(r) ∪ EB−(r)← EB+(r), for each rule r ∈ P of form (1), and

3. Ea← a, for each a ∈ Σ.

where for every set S ⊆ Σ of atoms, ES = {Ea | a ∈ S}. Intuitively, the rules in (2) and (3) correspond to
the rules that are added to Sakama and Inoue’s program Pκ in the epistemic transformation to ensure the
Properties N and K (see Definition 6); the rules in (2), however, are quite different from Pκ. They intuitively
infer evidence for the truth of some atom bj under negation (m < j ≤ n) from the violation of the positive
part of the rule (i.e., if all bj , 1 ≤ j ≤ m are true and no ai, 1 ≤ i ≤ l is true).

An interpretation I over ΣE is an evidential stable model, if (1) I is a minimal model of P E , and
(2) I has among all minimal models of P E a ⊆-minimal E-violation set VE(I), which is defined as
V(I) = {a ∈ Σ | Ea ∈ I, a /∈ I}.

Now the following can be shown. For every bi-interpretation (X,Y) let (X,Y)E = X ∪ EY , and for
every I ⊆ ΣE , let β(I) be the inverse of ·E , i.e., β(I) = (X,Y) such that (X,Y)E = I .

Theorem 15. Let P be a program over Σ. Then for every bi-interpretation (X,Y) over Σ, it holds that
(X,Y) ∈ SEQ(P) iff (X,Y)E is an evidential stable model of P .

Thus the SEQ-model semantics coincides with the evidential stable model semantics for disjunctive
logic programs. The theorem above gives a characterization of evidential stable models in terms of HT-
logic, and in turn we obtain with P E a simpler program to describe the SEQ-models than the epistemic
transformation Pκ in Section 4. Note, however, that the program is not a straightforward encoding of
the semantic characterization of SEQ-models in Theorem 2; the class of P E -models does not contain all
h-minimal HT-models of P , but sufficiently many to single out all the SEQ-models by gap minimization.

33

8.2.2. CR-Prolog
In order to deal with inconsistency in answer set programs, Balduccini and Gelfond introduced CR-

Prolog [4] as a declarative approach for inconsistency removal from program. Roughly speaking, each
program P is equipped with a further set of rules CR of the form

r : h1 or . . . or hk
+← l1, . . . , lm, not lm+1, . . . , not ln.

where intuitive reading is: if l1, . . . , lm are accepted beliefs while lm+1, . . . , ln are not, then one of
h1, . . . , hk “may possibly” be believed. In addition, a preference relation on the rules may be provided.

Rules from this pool CR can be added to restore consistency of the program P if no answer set exists,
applying Occam’s razor. Informally, a subset-minimal set R ⊆ CR of rules is chosen such that P ′ = P ∪R′
is coherent, where R′ is R cast to the ASP syntax; the answer sets of P ′ are then accepted as CR-answer
sets of P . Formally, P and CR are compiled into a single abductive logic program where an abducible atom
appl(r) is used for the each rule r from CR to control (and be aware of) its applicability; a minimal set of
abducibles may be assumed to be true without further justification. For simplicity, however, we use the
abstract description from above.

The CR-Prolog approach is different from semi-stable and SEQ-model semantics in several respects.
First, it provides a (syntactic) inconsistency management strategy, not a semantic treatment of incoherence
at the semantic level of interpretations. Second, it remains with the user to ensure coverage of all cases of
incoherence; this bears risk that some cases are overlooked. On the other hand, depending on the application
it might be preferred that this is pointed out.

Even if CR consists of all atoms in P , CR-answer sets and SEQ-models may disagree, as adding facts, as
done in this case by CR-Prolog, is stronger than blocking negated atoms as in semi-stable and SEQ-models
semantics (which then admits more answer sets).

Example 48. Consider the program P = {a ← not a; c ← not b; b ∨ c ← a}. This program has the
unique SEQ-model (c, ac); i.e., c is true, b is false, and a is believed true.

Let CR = {ra : a
+←; rb : b

+←; rc : c
+←} and assume that there are no preferences. ThenR′ = {ra}

is the single minimal subset of CR such that P ′ = P ∪ R′ is coherent, and P ′ = {a ← not a; c ←
not b; b ∨ c← a; a←} has two answer sets, viz. {a, c} and {a, b}, which are then both CR answer sets.

The program in the previous example shows that adding a as a fact is stronger than blocking the use of
a under negation. We remark that this similarly applies to the generalised stable model semantics [30], in
which abducible facts may be added to the program P in order to obtain a stable model.

8.2.3. Well-founded Semantics
The most prominent approximation of the stable semantics is the well-founded semantics (WFS) [56].

It assigns each normal logic program P , in our terminology, an HT-model WF (P) = (I, J) (called the
well-founded model) such that all atoms in I are regarded as being true and all atoms not in J being false;
all the remaining atoms (i.e., those in gap(WF (P))) are regarded as undefined (rather than possibly true,
as in HT-logic). Intuitively, the false atoms are those which can never become true, regardless of how the
undefined atoms will be assigned. Extending WFS to disjunctive program is non-trivial and many proposals
have been made, but there is no general consensus on the “right” such extension (see [57, 13] for more
recent proposals); we comment on the proposal of Cabalar et al. [13] in the subsection on partial stable
models below.

The well-founded semantics has many different characterizations; among them is the well-known
alternating fixpoint-characterization, cf. [55, 5]: for normal constraint-free programs P , the operator
γP (X) = LM (PX), X ⊆ Σ is anti-monotonic, where LM (Q) denotes the unique minimal model of Q
(which for Q = PX exists). We then have WF (P) = (I, J) where I is the least fixpoint of the monotonic
operator γ2P (X) = γP (γP (X)), and J = γP (I). Furthermore, the well-founded model is the least partial
stable model (see Section 8.2.4 below); it has been characterized in the logic HT2 in terms of the partial
equilibrium model that leaves the most atoms undefined [14].

With regard to Section 8.1, WFS does not satisfy minimal undefinedness, but justifiability and naturally
the CWA principle. It does not satisfy answer set coverage (D1) nor congruence (D2) (even if a single
answer set exists), but coherence (D3). Roughly speaking, the well-founded model remains agnostic about

34

atoms that are involved in cycles through negation whose truth value can not be determined from other parts
of the program, and it propagates undefinedness. This may effect that all atoms remain undefined; e.g., the
program in Example 22 has this property.

It is well-known that the well-founded model WF (P) = (I, J) approximates the answer sets of P in
the sense that I ⊆M ⊆ J for each answer set M of P ; it is thus geared towards approximating cautious
inference of literals from all answer sets of P , rather than towards approximating individual answer sets. If
no answer set exists, WFS avoids trivialization and still yields a model; however, the notion of undefinedness
and the associated propagation may lead to less informative results, as shown in Example 4.
SEQ-refinement of the WFS A closer look at the WFS reveals that the SEQ-model semantics refines it in
the following sense.
Notation. Let for HT-interpretations M = (X,Y) and M ′ = (X ′, Y ′) denote M vM ′ that X ′ ⊆ X and
Y ⊆ Y ′, i.e., M is a refinement of M ′ that results by assigning atoms in gap(M ′) either true of false.12

Recall that an HT-interpretation (X,Y) of a program P is h-minimal, if no HT-model (X ′, Y) exists
such that X ′ ⊂ X; for normal P , this means that X is the least model of PY .

Proposition 21. Let M = (X,Y) be an h-minimal model of a (constraint-free) normal program P . If
gap(M) ⊆ gap(WF (P)), then M vWF (P), i.e., M is a refinement of the well-founded model of P .

Note that this proposition is not immediate as we just compare gaps, not models themselves. The result
follows from some well-known properties of WF (P) and its relationship to the answer set semantics.

First, as already mentioned above, WFS is an approximation of the stable semantics:

Lemma 2. For every equilibrium (stable) model M = (Y, Y) of P , it holds that M vWF (P).

Furthermore, WF is such that by making yet unassigned atoms true, the values of the already assigned
atoms are not affected. That is,

Lemma 3. For every set G ⊆ gap(WF (P)), it holds that WF (P ∪G) vWF (P).

Intuitively, this is because for each atom a outside gap(WF (P)), a rule already fires resp. all rules are
definitely not applicable. Next, h-minimality allows for unsupported atoms (the gap). By making them facts,
we get an answer set:

Lemma 4. If M = (X,Y) is a h-minimal model of P , then M ′ = (Y, Y) is an answer set of P ′ =
P ∪ gap(M).

Indeed,X is the least model ofPY , so each atom inX can be derived fromPY ; by adding gap(M) = Y−X ,
all atoms of Y can be derived from PY ∪ gap(M) = P ′Y , and clearly no proper subset can be derived.

Armed with these lemmas, we now prove the proposition.
Proof. [of Proposition 21] LetM = (X,Y) be a h-minimal model ofP such that gap(M) ⊆ gap(WF (P)),
and let WF (P) = (I, J). By Lemma 4, N = (Y, Y) is an answer set of P ′ = P ∪ gap(M). By Lemma 2,
N vWF (P ′), and by Lemma 3, WF (P ′) vWF (P). As refinement is transitive, we obtainN vWF (P);
it follows that Y ⊆ J .

Regarding X , by the alternating fixpoint characterization of WF (P) we have I = LM (P J), and
thus WF (P) is a h-minimal model of P ; as M is a h-minimal model of P , we have X = LM (PY). As
γP (I) = LM (P I) is anti-monotonic and Y ⊆ J , it follows that X ⊇ I .

Thus, we get M = (X,Y) v (I, J) = WF (P). This proves the proposition. 2

From this proposition, we obtain a refinement result for arbitrary normal programs, i.e., programs that
may contain constraints. For such a program P , we define its well-founded model as WF (P) = WF (P ′),
where P ′ is the constraint-free part of P , if WF (P ′) |= P \P ′; otherwise, WF (P) does not exist. Note that
each constraint r in P must have a false body in WF (P), i.e., either some bi ∈ B+(r) is false in WF (P)
or some cj ∈ B−(r) is true in WF (P) (this can be seen from the alternating fixpoint characterization).

12That is, M vM ′ iff M ′ ≤p M , where ≤p is the precision ordering.

35

Corollary 11 (of Proposition 21). Every normal program P such that WF (P) exists has a SEQ-model
M such that M vWF (P). In fact, every SEQ-model M of P such that gap(M) ⊆ gap(WF (P)) satisfies
M vWF (P).

Proof. Indeed, SEQ-models are special h-minimal models (global gap-minimization), so the result follows
from Proposition 21 and the fact that WF (P) = WF (P ′) = (I, J) is h-minimal (as I = LM (P J) =

LM (P ′
J

)), where P ′ is the constraint-free part of P . 2

Note, however, that not every SEQ-model refines the well-founded model. E.g., take P = {a ←
not a, not b}. Then WF (P) = (∅, {a}) but the SEQ-models are M1 = (∅, {a}) and M2 = (∅, {b}), and
M2 has a gap outside the gap of WF (P).

If desired, one can easily restrict the SEQ-models of a program P to those which refine its well-founded
model WF (P) = (I, J), by replacing P with

Pwf = P ∪ I ∪ {← A | A ∈ Σ \ J}.

Note that WF (Pwf) exists whenever WF (P) exists. We then obtain the following result.

Proposition 22. For every normal program P such that WF (P) exists, SEQ(Pwf) = {M ∈ SEQ(P) |
gap(M) ⊆ gap(WF (P))}.

By combining Corollary 11 and Proposition 22, we get a paracoherent way to refine the well-founded
semantics for query answering, which coincides with the answer set semantics for coherent programs and
provides in general more informative results and reasoning by cases (see Examples 4 and 5).

8.2.4. Partial Stable Model Semantics
P-stable (partial stable) models, which coincide with the 3-valued stable models of [47], are one of

the best known approximation of answer sets. Like the well-founded model, P-stable models can be
characterized in several ways (cf. [19]); with respect to equilibrium logic, Cabalar et al. [14] semantically
characterized P-stable models in the logic HT2 in terms of partial equilibrium models. For the concerns
of our discussion, we use here a characterization of P-stable models (X,Y) in terms of the multi-valued
operator γ̂P (X) = MM (PX) as the HT-interpretations (X,Y) such that Y ∈ γ̂P (X) andX ∈ γ̂P (Y); this
characterization is easily obtained from [19]. In particular, for normal programs WF (P) is a P-stable model
of P (and in fact the least refined such model w.r.t. v), and every answer set M of P (as M = LM (PM))
amounts to a P-stable model (M,M) of P ; in this vein, according to Cabalar et al. [13, 14] the well-founded
models of a disjunctive program P are the least refined P-stable models M of P (i.e., no P-stable model
M ′ 6= M of P exists such that M vM ′); however, no well-founded model might exist.

The P-stable models, while more fine-grained than the well-founded model, behave similarly with regard
to the properties in Subsection 8.1 and the properties (D1)–(D3) in the Introduction. Among the refinements
of P-stable models in [19], the one that is closest in spirit to semi-stable and SEQ-models are the L-stable
models, which are the P-stable models that leave a minimal set of atoms undefined.

In fact, L-stable models satisfy all properties in Subsection 8.1 and (D1)–(D3), with the exception that
coherence (D3) fails for disjunctive programs, as such programs may lack a P-stable model, and thus also an
L-stable model.

Example 49. The program

P = {a← not b; b← not c; c← not a; a ∨ b ∨ c } (16)

has no P-stable models, while it has multiple SEQ-models, viz. (a, ac), (b, ab), and (c, bc), which coincide
with the SST -models. Intuitively, one of the atoms in the disjunctive fact a ∨ b ∨ c, say a, must be true;
then c must be false and in turn b must be true. The resulting (total) interpretation (ab, ab), however, does
not fulfill that {a, b} is a minimal model of P {a,b} = {b←; a ∨ b ∨ c}. With a symmetric argument for b
and c, we conclude that no P-stable model of P exists. However, by adopting in addition that c is believed
true, we arrive at the SEQ-model (a, ac).

36

The main difference between that L-stable semantics and semi-stable resp. semi-equilibrium semantics is
that the former takes —like P-stable semantics—a neutral position on undefinedness, which in combination
with negation may lead to weaker conclusions.

For example, the program P in Example 4 has a single P-stable model, and thus P has a single L-stable
model which coincides with its well-founded model; thus we can not conclude under L-stable semantics
from P that visits barber(joe) is false.

Also the program in Example 22 has a single P-stable (and L-stable) model in which all atoms are
undefined, while c is true under SEQ-model semantics. Similarly, the program

P = {a← not b; b← not c; c← not a} (17)

has a single P-stable (and thus L-stable) model in which all atoms are undefined; if we add the rules d← a,
d ← b, and d ← c to P , the new program cautiously entails under both semi-stable and SEQ-model
semantics that d is true, but not under L-stable semantics.

Possible SEQ-refinement of the L-stable semantics. As the SEQ-semantics refines the WFS as shown
in Section 8.2.3, the natural question is whether a similar refinement property holds for L-stable models.
Unfortunately this is not the case, even for normal programs without constraints (which always possess
L-stable models); this is witnessed e.g. by the following example.

Example 50. Consider the program

P =

{
a← not b, d; b← not a, d; c← not c
d← not c; d← not a, not e; d← not b, not e

}
∪ {e← not a, not b.}.

Intuitively, the rules with heads a and b make a guess a or b, if d is true; c must be undefined as there is no
other way to derive c than from its negation; d is true if one of a and b is false but not both, i.e., we have a
guess for a and b. Thus proper guessing on a and b makes the gap smallest.

Under WFS, all atoms must be undefined as each atom occurs in P only on cycles with negation.
Furthermore, N1 = (ad, acd) and N2 = (bd, bcd) are L-stable models, because they are partially stable
and no smaller gap than gap(N1) = gap(N2) = {c} is possible. There is no further L-stable model (d
would need to be true in it, which means that e must be false and hence either a false or b false; thus we end
up with N1 or N2), and actually also no other P-stable model.

As one can check, M = (e, ec) is a h-minimal model of P , and gap(M) = {c}. Thus M is an
”additional” h-minimal model of P , and M does neither refine N1 nor N2.

If we slightly extend P in (17) to

P ′ = P ∪ {c′ ← not c, not c′}, (18)

then we get a similar situation. Again, as c only occurs in the head of the rule c← not c, it must be undefined
in each partial stable model, and hence the same follows also for c′. Thus we obtain that N ′1 = (ad, acc′d)
and N ′2 = (bd, bcc′d) are the L-stable models of P ′, and they have gap(N ′1) = gap(N ′2) = {c, c′}. On the
other hand, M is also an h-minimal model of P ′, and gap(M) = {c}; thus M is the unique SEQ-model of
P ′, and the models are unrelated.

Possible SEQ-refinement of disjunctive P-stable models. The previous example showed that SEQ-models
with smaller gaps than L-stable models do not necessarily refine them. However, as they refine always some
P-stable model (the WFM) of a normal program, it does not rule out that they refine some P-stable model
of a disjunctive program P , and in particular a well-founded model (i.e., a least refined (w.r.t. v) P-stable
model). It appears that this refinement property does not hold.

Example 51. Consider the following variant of the program on line (16) in Example 49:

P = {a← not b; b← not c; c← not a; a ∨ b ∨ c← d; d ∨ e; d← e, not d }.
By the disjunctive fact d ∨ e, either d or e must be true in each h-minimal model (and thus in each P-stable
resp. SEQ-model of P). If d is true, then the clauses containing a, b, c, do not admit a P-stable model;

37

if e is true, the single P-stable model is M = (e, abcde). On the other hand, the SEQ-models of P are
M1 = (ad, acd), M2 = (bd, abd), and M3 = (cd, bcd); note that each h-minimal model of P in which e is
true must have d and some atom from a, b, c believed true but not true, and thus can not be gap-minimal. As
each Mi has smaller gap than M but does not refine it, the refinement property does not hold.

Note that the example shows even more: different from normal programs, for disjunctive programs the
SEQ-models do not refine the intersection of all P-stable models (i.e., the HT-interpretation (X,Y) where
X resp. Σ \ Y is what is true resp. false in every P-stable model of P). Thus in conclusion, for disjunctive
programs, P-stable and SEQ-models are in general unrelated.

8.2.5. Further Semantics
The regular model semantics [59] is another 3-valued approximation of answer set semantics that

satisfies least undefinedness and foundedness, but not the CWA principle. However, it is classically coherent
(satisfies (D3)). For the odd loop program P in (17) the regular models coincide with the L-stable models;
the program P ′ in (18) has the regular models {a}, {b}, and {c}. While regular models fulfill answer set
coverage, they do not fulfill congruence. For more discussion of 3-valued stable and regular models as well
as many other semantics coinciding with them, see [19].

Revised stable models [43] are a 2-valued approximation of answer sets; negated literals are assumed
to be maximally true, where assumptions are revised if they would lead to self-incoherence through odd
loops or infinite proof chains. For example, the odd-loop program P in (17) has three revised stable models,
viz. {a, b}, {a, c}, and {b, c}. The semantics is only defined for normal logic programs, and fulfills answer
set coverage (D1) but not congruence (D2), cf. [43]. Similarly, the so called pstable models in [39], which
should not be confused with P-stable models, have a definition for disjunctive programs however, satisfy
answer set coverage (D1) (but just for normal programs) and congruence (D2) fails. Moreover, every pstable
model of a program is a minimal model of the program, but there are programs, e.g. P in (17) again, that
have models but no pstable model, thus classical coherence does not hold.

8.3. Modularity
To our knowledge, modularity aspects of paracoherent semantics have not been studied extensively.

A noticeable exception is [19], which studied the applicability of splitting sets for several partial models
semantics, among them the P-stable and the L-stable semantics that were already considered above. While
for P-stable models a splitting property similar to the one of answer sets holds, this is not the case for
L-stable models, due to global gap-minimization however, an analogue to Theorem 7, with L-stable models
in place of SCC-models is expected to hold.

Huang et al. [28] showed that hybrid knowledge bases, which generalize logic programs, have modular
paraconsistent semantics for stratified knowledge bases; however, the semantics aims at dealing with
classical contradictions and not with incoherence in terms of instability through cyclic negation.

Pereira and Pinto [45], using a layering notion that is similar to SCC-split sequences, introduce layered
models (LM) semantics which is an alternative semantics that extends the stable models semantics for
normal logic programs. The layered models of a program P are a superset of its answer sets, and this
inclusion can be strict even if P is coherent; thus, property (D2) does not hold. In a sense, the CWA is
relaxed more than necessary in the model construction process.

Faber et al. [20] introduced a notion of modularity for answer set semantics, based on syntactic relevance,
which has paracoherent features. However, this notion was geared towards query answering rather than
model building, and did not incorporate gap minimization at a semantic level.

Finally, we look at models related to a splitting sequence. Not every SEQ-model of P that is a refinement
of WF (P) is a SCC-model of P ; we might “lose” SEQ-models by splitting. E.g.,

P = { a← not a; b← not b, not a; c← not b, not c }

has the SCCs C1 = {a}, C2 = {b} and C3 = {c}, and WF (P) = (∅, abc); the single SCC-model of P is
M = (∅, ac), while P has a further SEQ-model M ′ = (∅, ab); the latter is lost along the splitting sequence
S = (a, ab, abc), as restricted to C1, M has smaller gap (viz. {a}) than M ′ (whose gap is {a, b}). However,
we get an analogue to Corollary 11 (recall that normal programs with constraints lack a well-founded model
if the constraints are violated).

38

Proposition 23. Let P be a normal program (possibly containing constraints) such that WF (P) exists and
let S be an arbitrary splitting sequence of P . Then P has some SEQS-model M such that M vWF (P),
and moreover every SEQS-model M of P such that gap(M) ⊆ gap(WF (P)) satisfies M vWF (P).

The reason is that the well-founded semantics satisfies modularity with respect to splitting sequences.
This is a consequence of the following lemma.

Lemma 5. For every splitting set S of a normal program P (possibly containing constraints) such that
WF (P) exists, it holds that

1. WF (P)|S is a partial stable model of bS(P) (recall that |S denotes restriction to S), and

2. WF (P) = WF (tS(P) ∪ I ∪ {A← notA | A ∈ J \ I}), where WF (bS(P)) = (I, J).

This lemma in turn follows from Proposition 12 in [19], which states this property for partial stable models
of constraint-free (even disjunctive) programs, and WF (P) is the least partial stable model; note also that
constraints in P merely determine the existence of WF (P) but do not influence the truth valuation of atoms.

An immediate corollary to Proposition 23 is that normal programs P for which the well-founded model
exists and the SCC-model semantics is applicable have some SCC-model that refines the well-founded
model WF (P), and moreover that every SCC-model of P which adopts some the undefined atoms in
WF (P) as believed true refines WF (P); the same holds forMJC-models.

We finally note that we can, as in the case of all SEQ-models of P , restrict the split SEQ-models of P
to those which refine WF (P) by adding respective constraints; recall that Pwf = P ∪ I ∪ {← A | A /∈ J}
where WF (P) = (I, J).

Proposition 24. Let P be a normal program (possibly containing constraints) such that WF (P) exists.
Then for every splitting sequence S of P , it holds that SEQS(Pwf) = {M ∈ SEQS(P) | gap(M) ⊆
gap(WF (P))}.

Proof. [Sketch] By Proposition 22, SEQ(Pwf) = {M ∈ SEQ(P) | gap(M) ⊆ gap(WF (P))}. The
result can then be shown by induction along the split sequence S, using Theorem 5 and Lemma 5. 2

As a consequence of Propositions 23 and 24, in particular the SCC- andMJC-models of a normal
program can be easily restricted such that they refine its well-founded semantics in a paracoherent manner,
as discussed at the end of Subsection 8.2.3.

9. Further Issues

9.1. Infinite splitting sequences

As mentioned earlier, we concentrate in this article on finite splitting sequences; however split SEQ-
models can be easily extended to infinite splitting sequences S = (S1, S2, . . . , Si, . . .). To this end, we can
define the split-SEQ models of P relative to a splitting sequence S by SEQS(P) =

⋂∞
i≥1 SEQ

S[1..i](P),
where S[1..i] = (S1, . . . , Si) is the initial segment of S of length i. Indeed, any extension of the finite
sequence S[1..i] by some Si+1 may lead to the loss of SEQ-models; on the other hand, after passing Si, no
new model candidates relative to Si will be encountered.

9.2. User-defined subprograms and focusing

In the previous sections, we were considering the issue of paracoherence at a principled level without
further input from the user. Important such input could be, for example, an intended modular structure of
the program and/or a focus of attention when looking for a paracoherent model. As we briefly discuss, our
notions and results can be easily extended to such settings.

39

9.2.1. User-defined subprograms
In the design of an ASP program, users often proceed by definining (implicitly) subprograms that are

composed in a hierarchically manner to a global program. That is, the latter is of the form P = P1∪· · ·∪Pm
where each Pi is a subprogram that “defines” atoms in a signature Σi, such that Σ = Σ1 ∪ · · · ∪ Σm, where
the Σi are pairwise disjoint, and S = (S1, . . . , Sm), Si =

⋃
j≤i Σj , 1 ≤ i ≤ m, is a splitting sequence of

P .13 A particular example are stratified logic programs, where each Pi is meant to define atoms Σi that
form the i-th layer.

Example 52. A more elaborated version of the company program in Example 24 could have more complex
subprograms that define different categories of workers (core staff, employees), and social security regula-
tions; the current program P just contains single-rule definitions of the concepts. Note that P is stratified,
and it is reasonable to expect that more elaborated versions will also have this property.

However, the programs Pi may, in general, also include unstratified negation.

Example 53. The barber program in Example 3, extended with a rule shaved(X)← shaves(Y,X) might
be a subprogram P1 defining shaved , and P2 a subprogram on top that classifies persons, e.g., with rules

boy(X)← male(X), not shaved(X); adult(X)← shaved(X).

Example 54. As mentioned earlier in Section 5, the program P composed of P1 being the party program in
Example 2 and P2 = {← balcony ,#count({X : go(X)}) > 3; balcony ∨ living room} could be used to
determine the location for the party. Each of the SEQ-models of the given P1 would be extended to two
SEQ-models of P , one with balcony true and one with living room true, as the constraint is not violated.

Exploiting the notions of Section 5, we can readily define the SEQ-models of P , viewing subprograms
as atomic blocks, as the SEQS-models of P for the sequence S above. However, if subprograms Pi and
Pj are mutually independent, i.e., Σi has empty intersection with each rule body in Pj and vice versa, the
order of Pi and Pj may matter for the result. As in the case of SCCs, we can make the semantics robust
by requiring that SEQS(P) = SEQSπ (P) for every Sπ = (Sπ(1), . . . , Sπ(m)) where π(1), π(2), . . . , π(m)
is a permutation of 1, . . . ,m, and Sπ(i) = Σπ(1) ∪ · · · ∪ Σπ(i), 1 ≤ i ≤ m; then, every constraint-free
program P has well-defined subprogram SEQ-models that are induced by {Σ1, . . . ,Σm}. Furthermore,
this can be extended to programs P that have no cross-module constraints, i.e., no constraints r that have
nonempty intersection with “incomparable”14 Σi and Σj , and one can define maximal joinable subprograms
SEQ-models analogous as for SCCs.

Note that the SCCs C1, . . . , Cm of a program P can be viewed as atom sets Σi = Ci defined by
subprograms Pi that contain all rules r from P with nonempty head contained in Σi. The subprogram
SEQ-models of P induced by {C1, . . . , Cm} coincide then with the SCC-models of P . Thus, we can view
the “syntactic” SCC-models as extremal case of a user definition with no information about modules.

Furthermore, we can reduce the subprogram semantics of program P w.r.t. Σ1, . . . ,Σm to SCC-
semantics of another program P ′ by a simple rewriting. For each Pi, we use a fresh atom pi and let
P ′i = P ∪ {a← pi, a; pi ← pi, a | a ∈ Σi}. Clearly, the rules added to Pi are tautologic and thus have no
semantic effect on Σi; however they enforce that all atoms in Σi are in the same SCC of P ′ = P ′1∪· · ·∪P ′m.

9.2.2. Focusing
Another aspect is focusing the use of paracoherence at the semantic level. One natural way to incorporate

this is to constrain the atoms that can be believed true without further justification to a set B of atoms. This
corresponds to adopting a set of assumptions or hypotheses in abduction. The effect of such focusing is that
simply all SEQ-models (X,Y) of a program are pruned which do not satisfy gap(X,Y) ⊆ B.

13For technical reasons, we assume here w.l.o.g. that in each constraint r in Pi some atom from Σi occurs.
14That is, Σi ⊆ Sπ(k) ∧ Σj 6⊆ Sπ(k) and Σj ⊆ Sπ′(k′) ∧ Σi 6⊆ Sπ′(k′) for some π, π′, k, k′.

40

Example 55. Let us reconsider the party visit program in Example 2 again. It may perfectly make sense
to question for each person whether we are comfortable with adopting an unjustified belief. If we require
provable evidence for Mark and Peter , then B = {go(John), go(Bill)} and from the original SEQ-
modelsM2 = ({go(John)}, {go(John), go(Bill)}) remains. If on the other hand, we would simply require
provable evidence for all persons but Mark , then the SEQ-model M1 = (∅, {go(Mark)}) remains.

Example 56. In the company Example 24, it is natural to put a focus on B = {has social sec(sam)},
as it does not make sense to believe the (syntactic) atom ssnr(sam, sam); furthermore, even if we would
have considered a modelling in which realistic social security numbers are considered, to believe any
particular social security number (SSNR) out of a (big) range might be too strong an assumption; believing
has social sec(sam), which would be implied by the former releases us from adopting a particular SSNR.

In general, such pruning can be easily accomplished. The computational complexity of the reasoning
tasks that we considered in Section 7 (Tables 1 and 2) remains the same except that Problem COH is
Σp2-complete for disjunctive and disjunctive stratified programs (the problem amounts to deciding whether
some h-minimal HT-model (X,Y) of the program P exists such that gap(X,Y) ⊆ B, which is in Σp2; the
matching hardness follows immediately from the results on answer set existence in [16]).

9.3. Language extensions
As already mentioned, semi-stable semantics has originally been developed as an extension to p-minimal

model semantics [49], a paraconsistent semantics for extended disjunctive logic programs, i.e., programs
which besides default negation also allow for strong (classical) negation. A declarative characterization of
p-minimal models by means of frames was given by Alcantara et al. [1], who coined the term Paraconsistent
Answer-set Semantics (PAS) for it. This characterization has been further simplified and underpinned with a
logical axiomatization in [37] by using Routley models, i.e., a simpler possible worlds model.

Our characterizations for both, semi-stable models and semi-equilibrium models, can be easily extended
to this setting if they are applied to semantic structures which are given by quadruples of interpretations rather
than bi-interpretations, respectively to Routley here-and-there models rather than HT-models. Intuitively,
this again amounts to considering two ‘worlds’, each of which consists of a pair of interpretations: one for
positive literals (atoms), and one for negative literals (strongly negated atoms). The respective epistemic
transformations are unaffected except for the fact that literals are considered rather than atoms. One can
also show for both semantics that there is a simple 1-to-1 correspondence to the semi-stable (resp. semi-
equilibrium) models of a transformed logic program without strong negation: A given extended program P
is translated into a program P ′ over Σ ∪ {a′ | a ∈ Σ} without strong negation by replacing each negative
literal of the form −a by a′. If (I, J) is a semi-stable (semi-equilibrium) model of P ′, then

(I ∩ Σ, {−a | a′ ∈ I}, J ∩ Σ, {−a | a′ ∈ J})

is a semi-stable (semi-equilibrium) model of P . Note that semi-stable (semi-equilibrium) models of extended
logic programs obtained in this way generalize the PAS semantics, which means that they are paraconsistent
as well as paracoherent. Logically this amounts to distinguishing nine truth values rather than three, with
the additional truth values undefined, believed false, believed inconsistent, true with contradictory belief,
false with contradictory belief, and inconsistent. The computational complexity for extended programs is
the same.

Compared to [49], we have confined here to propositional programs, as opposed to programs with
variables (non-ground programs). However, respective semantics for non-ground programs via their
grounding are straightforward. Alternatively, in case of semi-equilibrium models one can simply replace
HT-models by Herbrand models of quantified equilibrium logic [41]. Similarly for the other semantics,
replacing interpretations in the semantic structures by Herbrand interpretations over a given function-free
first-order signature, yields a characterization of the respective models.

Finally, as equilibrium logic is a conservative extension of answer sets of programs consisting of rules to
the full propositional language, the notion of SEQ-model immediately extends to richer classes of programs
with propositional connectives, e.g., to programs with negation in the head [34] and nested logic programs
[33]. Furthermore, it can also be easily extended to programs with weight constraints [22], aggregates [21],
or more general external atoms [18], and to hybrid knowledge bases [12] (for the latter, see [23]).

41

9.4. Parametric merging semantics
By the results of Section 7, tractable merging policies that ensure classical coherence (D3) will sometimes

merge more components than necessary. To deal with the issues (1) and (2) in Section 6.2, i.e., with all
cross-constraints and dependence, a parametric approach that gradually merges more SCCs seems attractive.
We briefly outline here one possible such approach, which merges components within bounded distance.

Denote for every C ∈ SCC(P) by Dk(C) the set of all descendants of C in SG(P) within distance
k ≥ 0; then we may proceed as follows.

1. create a graph Gk with a node vr for each constraint r in P , which is labeled with the set

λ(vr) = clp

(⋃
{Dk(Ci) | Ci ∈ SCC(P), Ci ∩At(r) 6= ∅}

)
of SCCs; that is, all SCCs within distance k to a SCC Ci that intersects with r are collected into one
set, and on the resulting collection D of SCCs a function clp(D) is applied. The latter closes D with
respect to SCCs C that are on some path between members C1 and C2 of D in SG(P).

2. Merge then nodes vr and vr′ (and their labels, using clp) such that λ(vr) ∩ λ(v′r) 6= ∅ as long as
possible.

3. After that, create a node v for each SCC C that does not occur in any label of the graph, and set
λ(v) = {C};

4. add an edge from v to v′, if v 6= v′ and SG(P) has some edge (Ci, Cj) where Ci ∈ λ(v) and
Cj ∈ λ(v′).

The resulting graph Gk is acyclic and distinct nodes have disjoint labels. Similar as for JG(P), any
topological ordering ≤ of Gk induces a splitting sequence S≤ (via the node labels λ(v), which are taken as
union

⋃
λ(v) of the SCCs they contain); thanks to an analog of Theorem 8, one can define theMk-models

of P asMk(P) = SEQS≤(P) for an arbitrary ≤.
For k = 0, we have Dk(C) = {C} and thus the node vr in the initial graph G0 contains in its label

λ(vr) the SCCs that intersect r; the final graph G0 is such that each Jx <∈ MJC(P) is included in
some node label (i.e., J ⊆ λ(v) for some node v). Hence, MMJC(P) ⊆ M0(P) holds. As clearly
Mk(P) ⊆ Mk+1(P) holds for every k ≥ 0, andMk(P) = SEQ(P) for large enough k; as holds, we
have a hierarchy of models between MMJC(P) and SEQ(P) which eventually establishes (D3); however,
the results of Section 7 imply that predicting the least k such thatMk(P) 6= ∅ is intractable.

Other relaxed notions of models (using different parameters for cross-constraints and direct dependency)
are conceivable; we leave this for future study.

10. Conclusion

In this paper, we have studied paracoherent semantics for answer set programs, that is, semantics
that ascribes models to (disjunctive) logic programs with non-monotonic negation even if no answer set
(respectively stable model) exists, due to a lack of stability in models caused by cyclic dependency through
negation, or due to constraints. Ideally, such a semantics approximates the answer set semantics faithfully
and delivers models whenever possible, as expressed by the properties (D1)–(D3); this can be beneficially
exploited in scenarios where unexpected inconsistency arises and one needs to stay operational, such as in
inconsistency tolerant query answering. Among few well-known semantics which feature these properties
are the semi-stable model semantics [49], and the novel semi-equilibrium model semantics, which amends
the semi-stable model semantics by eliminating some anomalies. For both semantics, which are defined
by program transformations, we have given model-theoretic characterizations in terms of bi-models and
HT-models, respectively; in particular, semi-equilibrium models relax the notion of equilibrium models,
which reconstruct answer sets in HT-logic, by allowing for minimal sets of unsupported assumptions. We
have then refined the semi-equilibrium model semantics with regard to modular program structure, by
defining models via splitting sets and splitting sequences; this constrains the set of semi-equilibrium models,
in a way that is amenable to modular bottom up evaluation of programs. For that, we have presented

42

canonical semi-equilibrium models for which, in analogy to the classical Stratification Theorem for logic
programs, the particular evaluation order does not matter, and we have identified modularity properties for
these semantics that allow for flexible rearrangement in evaluation.

Furthermore, we have characterized the complexity of major reasoning tasks of all these semantics,
and we have compared semi-equilibrium semantics to related proposals for paracoherent semantics and
approximations of answer sets in the literature. Notably, it appeared that semi-equilibrium models coincide
with evidential stable models in [51]; our semantic and computational results thus carry over to them.
Different from other formalisms such as CR-Prolog [4] or generalized stable models [30], unsupported
assumptions in semi-stable and semi-equilibrium models serve to block rules but not to establish positive
evidence for deriving atoms from rules. Furthermore, we have shown that the well-founded model of a normal
logic program is refined by semi-equilibrium models, and that the program can be easily modified such that all
semi-equilibrium models refine the well-founded model; the same holds also for canonical semi-equilibrium
models. This provides a paracoherent way to refine the well-founded semantics for inconsistency-tolerant
query answering, which coincides with the answer set semantics for coherent programs and is in general
more informative than the well-founded semantics and supports reasoning by cases, being as close to answer
sets as possible.

As for computation, an attractive feature is that canonical semi-equilibrium semantics allows for easy
switching from a coherent (answer set) mode to a “paracoherent” evaluation mode in the bottom up
evaluation of a program, if incoherence is encountered. And notably, this is possible also for disjunctive
logic programs.

10.1. Open issues and outlook

Several issues remain for future work and investigations. A natural issue is to introduce paracoherence
for further language extensions besides strong negation and non-ground programs. Fortunately, the generic
framework of equilibrium logic makes it easy to define SEQ-semantics for many such extensions, among
them those mentioned in Section 9.3. It remains to consider modularity in these extensions and to define
suitable refinements of SEQ-models. Particularly interesting are modular logic programs [29, 15], where
modules can be organized non-hierarchically and explicit (by module encapsulation) and implicit modularity
(by splitting sets) occur at the same time. Related to the latter are multi-context systems [10], in which
knowledge bases exchange beliefs via non-monotonic bridge rules; based on ideas and results of this paper,
paracoherent semantics for certain classes of such multi-context systems may be devised.

Besides language extensions, another issue is generalizing the model selection. To this end, preference in
gap minimization may be supported, especially if domain-specific information is available; subset-minimality
is a natural instance of Occam’s razor in lack of such information. Furthermore, preference of higher over
lower program components may be considered; however, this intuitively requires more guessing and hinders
bottom up evaluation.

On the computation side, developing efficient algorithms and their implementation remain to be done, as
well integration into an answer set building framework. Currently, experimental prototypes for computing
SST (P) and SEQ(P) based on the semantic characterizations are available. Another computation method
is filtering the answer sets of the epistemic transformation Pκ resp. its extension PHT or the evidential
transform P E , which are computed with an ASP solver. However such simple postprocessing is not efficient
in general; indeed, the ΣP3 /ΠP

3 -completeness of brave/cautious reasoning, respectively, calls for better
methods. An interesting issue in this context is a polynomial transformation of the evaluation of normal and
hcf-programs into disjunctive ASP, which by our results is feasible.

We have considered paracoherence based on program transformation, as introduced by Inoue and
Sakama [49]. Other notions, like forward chaining construction and strong compatibility [58, 35] might be
alternative candidates to deal with paracoherent reasoning in logic programs; this remains to be explored.

Finally, another issue is to investigate the use of paracoherent semantics in AI applications such as
diagnosis, where assumptions may be exploited to generate candidate diagnoses, in the vein of the generalised
stable model semantics [30], or in systems for planning and reasoning about actions based on ASP, where
emerging incoherence should be meaningfully tolerated.

43

Acknowledgments

We would like to thank the reviewers of preliminary conference versions of parts of this paper and of
this article for their helpful and constructive comments, as well as José Alferes and Tomi Janhunen for
interesting discussions and suggestions. We are grateful to Diemar Seipel for pointing us to his work on
evidential stable models.

Appendix A. Appendix: Proofs

Appendix A.1. Section 3
Proof of Proposition 4. Let r be a rule over Σ, and let (I, J) be a bi-interpretation over Σ.

(⇐) Suppose that (I, J) satisfies (a), i.e., B+(r) ⊆ I and J ∩B−(r) = ∅ implies I ∩H(r) 6= ∅ and
I ∩B−(r) = ∅. We prove that (I, J) |=β r, considering three cases:

1) Assume that B+(r) 6⊆ I . Then (I, J) 6|=β a, for some atom a ∈ B+(r), and thus (I, J) 6|=β B(r)
which implies (I, J) |=β r.

2) Assume that J ∩B−(r) 6= ∅, Then (I, J) 6|=β ¬a, for some atom a ∈ B−(r), and thus (I, J) 6|=β B(r)
which implies (I, J) |=β r.

3) Assume that B+(r) ⊆ I and J ∩ B−(r) = ∅. Then, since (I, J) satisfies (a), it also holds that
I ∩H(r) 6= ∅ and I ∩B−(r) = ∅. From B+(r) ⊆ I and I ∩B−(r) = ∅, we conclude that I |= B(r).
Moreover, I ∩H(r) 6= ∅ implies (I, J) |=β H(r). Thus, (I, J) |=β r.

By our assumption, one of these three cases applies for (I, J), proving the claim.
(⇒) Suppose that (I, J) |=β r. We prove that (I, J) satisfies (a), distinguishing two cases:

1) Assume that (I, J) 6|=β B(r). Then either (I, J) 6|=β a, for some atom a ∈ B+(r), or (I, J) 6|=β ¬a,
for some atom a ∈ B−(r). Hence, B+(r) 6⊆ I or J ∩ B−(r) 6= ∅, which implies that (I, J) satisfies
(a).

2) Assume that (I, J) |=β H(r) and I |= B(r). Then I ∩H(r) 6= ∅ and I ∩B−(r) = ∅, and thus (I, J)
satisfies (a).

By our assumption, one of the two cases applies for (I, J), which proves the claim. 2

Proof of Proposition 5. Let P be a program over Σ. Part (1). First, let (I, J) be a bi-model of P . We
prove that (I, J)

κ,P |= Pκ.
Towards a contradiction assume the contrary. Then there exists a rule r′ in Pκ, such that (I, J)

κ,P 6|= r′.
Suppose that r′ is not transformed, i.e., r′ ∈ P and B−(r′) = ∅. Since (I, J) |=β r

′, by Proposition 4
we conclude that B+(r′) ⊆ I implies I ∩H(r′) 6= ∅ (recall that B−(r′) = ∅). By construction (I, J)

κ,P

restricted to Σ coincides with I . Therefore, B+(r′) ⊆ (I, J)
κ,P implies (I, J)

κ,P ∩ H(r′) 6= ∅, i.e.,
(I, J)

κ,P |= r′, a contradiction.
Next, suppose that r′ is obtained by the epistemic transformation of a corresponding rule r ∈ P of the

form (1), and consider the following cases:

– r′ is of the form (3): then {b1, . . . , bm} ⊆ (I, J)
κ,P , which implies B+(r) ⊆ I . Moreover, H(r′) ∩

(I, J)
κ,P

= ∅ by the assumption that (I, J)
κ,P 6|= r′. By construction of (I, J)

κ,P , this implies J∩B−(r) =
∅. Since (I, J) |=β r, we also conclude that I ∩ H(r) 6= ∅ and that I ∩ B−(r) = ∅. Consequently,
J |= B−(r), ai ∈ I for some ai ∈ H(r), and I |= B(r). Note also, that B−(r) 6= ∅ by definition of the
epistemic transformation. According to the construction of (I, J)

κ,P , it follows that λr,i ∈ (I, J)
κ,P , a

contradiction to H(r′) ∩ (I, J)
κ,P

= ∅.

– r′ is of the form (4): in this case, (I, J)
κ,P 6|= r′ implies λr,i ∈ (I, J)

κ,P and ai 6∈ (I, J)
κ,P . However,

by construction λr,i ∈ (I, J)
κ,P implies ai ∈ I; from the latter, again by construction, we conclude ai ∈

(I, J)
κ,P , a contradiction.

44

– r′ is of the form (5): in this case, (I, J)
κ,P 6|= r′ implies λr,i ∈ (I, J)

κ,P and bj ∈ (I, J)
κ,P . Note that

bj ∈ (I, J)
κ,P iff bj ∈ I . A consequence of the latter is that I 6|= B(r), contradicting a requirement for

λr,i ∈ (I, J)
κ,P (cf. the construction of (I, J)

κ,P).

– r′ is of the form (6): by the assumption that (I, J)
κ,P 6|= r′, it holds that λr,k ∈ (I, J)

κ,P and ai ∈
(I, J)

κ,P , but λr,i 6∈ (I, J)
κ,P . From the latter we conclude, by the construction of (I, J)

κ,P , that ai 6∈ I ,
since all other requirements for the inclusion of λr,i (i.e., r ∈ P , B−(r) 6= ∅, I |= B(r), and J |= B−(r))
must be satisfied as witnessed by λr,k ∈ (I, J)

κ,P . However, if ai 6∈ I , then ai 6∈ (I, J)
κ,P (again by

construction), contradiction.

This concludes the proof of the fact that if (I, J) is a bi-model of P , then (I, J)
κ,P |= Pκ.

Part (2). Let M be a model of Pκ. We prove that β(M ∩ Σκ) = (I, J) is a bi-model of P . Note
that by construction I = M ∩ Σ and J = {a | Ka ∈ M}. First, we consider any rule r in P such that
B−(r) = ∅. Then r ∈ Pκ, J ∩B−(r) = ∅ and I ∩B−(r) = ∅. Hence, by Proposition 4, we need to show
that B+(r) ⊆ (M ∩ Σ) implies (M ∩ Σ) ∩H(r) 6= ∅. Since r ∈ Pκ, this follows from the assumption,
i.e., M |= Pκ implies M |= r, and therefore if B+(r) ⊆M , then M ∩H(r) 6= ∅. Since r is over Σ, this
proves the claim for all r ∈ P such that B−(r) = ∅.

It remains to show that (I, J) |=β r for all r ∈ P such that B−(r) 6= ∅. Towards a contradiction assume
that this is not the case, i.e., (i)B+(r) ⊆ (M ∩Σ), (ii) J ∩B−(r) = ∅, and either (iii) (M ∩Σ)∩H(r) = ∅
or (iv) (M ∩ Σ) ∩B−(r) 6= ∅ hold for some r ∈ P of the form (1), such that B−(r) 6= ∅. Conditions (i)
and (ii), together with M |= Pκ, imply that λr,i is in M , for some 1 ≤ i ≤ l (cf. the rule of the form (3)
in the epistemic transformation of r). Consequently, ai is in M (cf. the corresponding rule of the form (4)
in the epistemic transformation of r), and hence ai ∈ (M ∩ Σ). This rules out (iii), so (iv) must hold, i.e.,
bj ∈ (M ∩ Σ), for some m + 1 ≤ j ≤ n. But then, M satisfies the body of a constraint in Pκ (cf. the
corresponding rule of the form (5) in the epistemic transformation of r), contradicting M |= Pκ. This
proves that there exists no r ∈ P such that B−(r) 6= ∅ and (I, J) 6|=β r, and thus concludes our proof of
(I, J) |=β r. Since r ∈ P was arbitrary, it follows that β(M ∩ Σκ) is a bi-model of P . 2

Proof of Theorem 1. Let P be a program over Σ. The proof uses the following lemmas.

Lemma 6. If M ∈ AS(Pκ), then β(M ∩ Σκ) satisfies (i).

Proof. Towards a contradiction assume that M ∈ AS(Pκ) and β(M ∩ Σκ) = (I, J) does not satisfy (i).
Then, there exists a bi-model (I ′, J) of P , such that I ′ ⊂ I . By Proposition 5, (I ′, J)

κ,P |= Pκ. Note
that (I ′, J)

κ ⊂ (M ∩ Σκ). Let S′ = {λr,i | λr,i ∈ (I ′, J)
κ,P } and let S = {λr,i | λr,i ∈ M}. We show

that S′ ⊆ S. Suppose that this is not the case and assume that λr,i ∈ S′ and λr,i 6∈ S, for some r ∈ P of
the form (1) and 1 ≤ i ≤ l. By the construction of (I ′, J)

κ,P , we conclude that ai ∈ I ′, I ′ |= B(r), and
J |= B−(r). Since I ′ ⊂ I , it also holds that ai ∈ I and that I |= B+(r). Consider the rule of the form
(3) of the epistemic transformation of r. We conclude that {b1, . . . , bm} ⊆ M (due to I |= B+(r)), and
that M 6|= Kc1 ∨ . . . ∨Kcn (due to J |= B−(r)). But M |= Pκ, hence λr,k is in M , for some 1 ≤ k ≤ l.
However, considering the corresponding rule of the form (6) of the epistemic transformation of r, we also
conclude that λr,i ∈ M , a contradiction. Therefore S′ ⊆ S holds, and since (I ′, J)

κ ⊂ (M ∩ Σκ), we
conclude that (I ′, J)

κ,P ⊂M . The latter contradicts the assumption that M is an answer-set, i.e., a minimal
model, of Pκ. This concludes the proof of the lemma. 2

Lemma 7. If (I, J) is a bi-model of P that satisfies (i) and (ii), then there exists some M ∈ AS(Pκ), such
that β(M ∩ Σκ) = (I, J).

Proof. Let (I, J) be a bi-model of P that satisfies (i) and (ii). If (I, J)
κ,P ∈ AS(Pκ), then (c) holds since

β((I, J)
κ,P ∩ Σκ) = (I, J). If (I, J)

κ,P 6∈ AS(Pκ), then there exists a minimal model, i.e. an answer
set, M ′ of Pκ, such that M ′ ⊂ (I, J)

κ,P . Let (I ′, J ′) = β(M ′ ∩ Σκ). Then I ′ ⊆ I and J ′ ⊆ J holds by
construction and the fact that M ′ ⊂ (I, J)

κ,P . Towards a contradiction, assume that I ′ ⊂ I . We show that
then (I ′, J) is a bi-model of P . Suppose that (I ′, J) is not a bi-model of P . Then, by Proposition 4, there
exists r ∈ P , such that B+(r) ⊆ I ′, J ∩B−(r) = ∅, and either I ′ ∩H(r) = ∅ or I ′ ∩B−(r) 6= ∅. Note

45

that B+(r) ⊆ I ′ implies B+(r) ⊆ I , and since (I, J) is a bi-model of P , we conclude I ∩H(r) 6= ∅ and
I ∩B−(r) = ∅. The latter implies I ′ ∩B−(r) = ∅, hence I ′ ∩H(r) = ∅ holds. If B−(r) = ∅, then r is in
Pκ and M ′ 6|= r, contradiction. Thus, B−(r) 6= ∅. However, in this case the epistemic transformation of r
is in Pκ. Since J ∩B−(r) = ∅ and J ′ ⊆ J together imply J ′ ∩B−(r) = ∅, we conclude that for the rule
of the form (3) of the epistemic transformation of r, it holds that {b1, . . . , bm} ⊆M ′ (due to B+(r) ⊆ I ′),
and that M ′ 6|= Kc1 ∨ . . . ∨Kcn (due to J ′ ∩B−(r) = ∅). Moreover M ′ |= Pκ, hence λr,i is in M ′, for
some 1 ≤ i ≤ l. Considering the corresponding rule of the form (4) of the epistemic transformation of r, we
also conclude that ai ∈M ′, a contradiction to I ′ ∩H(r) = ∅. This proves that (I ′, J) is a bi-model of P ,
and thus contradicts the assumption that (I, J) satisfies (i). Consequently, I ′ = I . Now if J ′ ⊂ J , then we
obtain a contradiction with the assumption that (I, J) satisfies (ii). Therefore also J ′ = J , which concludes
the proof of the Lemma. 2

The proof of Theorem 1 is then as follows.

Part (1). Let (I, J) be a bi-model of P that satisfies (i)-(iii). We prove that (I, J)
κ ∈ SST (P). By

Lemma 7, we conclude that there exists some M ∈ AS(Pκ) such that β(M ∩ Σκ) = (I, J). It remains
to show that M is maximal canonical. Towards a contradiction assume the contrary. Then, there exists
M ′ ∈ AS(Pκ) such that gap(M ′) ⊂ gap(M). Let (I ′, J ′) = β(M ′ ∩ Σκ). By Lemma 6, (I ′, J ′)
satisfies (i), and by construction since gap(M ′) ⊂ gap(M), it holds that J ′ \ I ′ ⊂ J \ I . However,
this contradicts the assumption that (I, J) satisfies (iii). Therefore, M is maximal canonical, and hence
(I, J)

κ ∈ SST (P).
Part (2). Let Iκ ∈ SST (P). We show that β(Iκ) is a bi-model of P that satisfies (i)-(iii). Let (I, J) =

β(Iκ) and let M be a maximal canonical answer set of Pκ corresponding to Iκ. Then, β(M ∩ Σκ) = (I, J)
by construction, and (I, J) satisfies (i) by Lemma 6.

Towards a contradiction first assume that (I, J) does not satisfy (iii). Then there exists a bi-model
(I ′, J ′) of P such that (I ′, J ′) satisfies (i) and J ′ \ I ′ ⊂ J \ I . Let M ′ = (I ′, J ′)

κ,P and note that if
M ′ ∈ AS(Pκ), we arrive at a contradiction to M ∈ mc(AS(Pκ)), since gap(M ′) ⊂ gap(M). Thus,
there exists M ′′ ∈ AS(Pκ), such that M ′′ ⊂M ′. Let (I ′′, J ′′) = β(M ′′ ∩ Σκ). We show that (I ′′, J ′) is a
bi-model of P , and thus by (i) it follows that I ′′ = I ′. Towards a contradiction, suppose that (I ′′, J ′) is not
a bi-model of P . Then, by Proposition 4, there exists r ∈ P , such that B+(r) ⊆ I ′′, J ′ ∩B−(r) = ∅, and
either I ′′ ∩H(r) = ∅ or I ′′ ∩ B−(r) 6= ∅. Note that B+(r) ⊆ I ′′ implies B+(r) ⊆ I ′, and since (I ′, J ′)
is a bi-model of P , we conclude I ′ ∩H(r) 6= ∅ and I ′ ∩B−(r) = ∅. The latter implies I ′′ ∩B−(r) = ∅,
hence I ′′ ∩H(r) = ∅ holds. If B−(r) = ∅, then r is in Pκ and M ′′ 6|= r, contradiction. Thus, B−(r) 6= ∅.
However, in this case the epistemic transformation of r is in Pκ. Since J ′ ∩ B−(r) = ∅ and J ′′ ⊆ J ′

together imply J ′′∩B−(r) = ∅, we conclude that for the rule of the form (3) of the epistemic transformation
of r, it holds that {b1, . . . , bm} ⊆ M ′′ (due to B+(r) ⊆ I ′′), and that M ′′ 6|= Kc1 ∨ . . . ∨Kcn (due to
J ′′ ∩ B−(r) = ∅). Moreover M ′′ |= Pκ, hence λr,i is in M ′′, for some 1 ≤ i ≤ l. Considering the
corresponding rule of the form (4) of the epistemic transformation of r, we also conclude that ai ∈ M ′′,
a contradiction to I ′′ ∩ H(r) = ∅. This proves that (I ′′, J ′) is a bi-model of P . From the assumption
that (I ′, J ′) satisfies (i), it follows that I ′′ = I ′. Therefore gap(M ′′) ⊆ gap(M ′) holds, which implies
gap(M ′′) ⊂ gap(M), a contradiction to M ∈ mc(AS(Pκ)). This proves (I, J) satisfies (iii).

Next assume that (I, J) does not satisfy (ii). Then, there exists a bi-model (I, J ′) of P , such that J ′ ⊂ J .
We show that (I, J ′) satisfies (i). Otherwise, there exists a bi-model (I ′, J ′) of P , such that I ′ ⊂ I; but
then also (I ′, J) is a bi-model of P . To see the latter, assume that there exists a rule r ∈ P , such that
B(r) ⊆ I ′, J ∩B−(r) = ∅ and either I ′ ∩H(r) = ∅ or I ′ ∩B−(r) 6= ∅. Since J ′ ⊂ J , it then also holds
that J ′ ∩B−(r) = ∅. This contradicts the assumption that (I ′, J ′) is a bi-model of P , hence (I ′, J) |=β P .
The latter is a contradiction to the assumption that (I, J) satisfies (i), proving that (I, J ′) satisfies (i). Since
(I, J) satisfies (iii), we conclude that J ′ \ I = J \ I . Now let S′ = {λr,i | λr,i ∈ (I, J ′)

κ,P } and let
S = {λr,i | λr,i ∈M}. It holds that S′ 6⊆ S (otherwise (I, J ′)

κ,P ⊂M , a contradiction to M ∈ AS(Pκ)),
i.e., there exists r ∈ P of the form (1) and 1 ≤ i ≤ l, such that λr,i ∈ S and λr,i 6∈ S′. From the former,
since M is a minimal model of Pκ, we conclude that I |= B+(r), ai ∈ I , and J ∩ B−(r) = ∅. Since
J ′ ⊂ J , also J ′ ∩B−(r) = ∅. This implies that λr,k ∈ S′, for some 1 ≤ k 6= i ≤ l (otherwise (I, J ′)

κ,P

does not satisfy the rule of form (3) corresponding to r in Pκ, a contradiction to (I, J ′)
κ,P |= Pκ). However,

since ai ∈ I , and thus ai ∈ (I, J ′)
κ,P , and since λr,k ∈ (I, J ′)

κ,P , we conclude that λr,i ∈ (I, J ′)
κ,P

46

(cf. the respective rule of form (6) of the epistemic transformation of r). This contradicts λr,i 6∈ S′, and thus
proves that (I, J) satisfies (ii). 2

Appendix A.2. Section 4

Proof of Proposition 6. Let P be a program over Σ.
Part (1). Let (I, J) be a bi-model of P , such that (I, J)

κ satisfies Property N and Property K, for all
r ∈ P . We show that (I, J) is an HT-model of P . Since (I, J)

κ satisfies Property N, it holds that a ∈ I
implies a ∈ J , therefore I ⊆ J , i.e., (I, J) is an HT-interpretation. For every rule r ∈ P , (I, J) |=β r
implies (I, J) 6|=β B(r), or (I, J) |=β H(r) and I |= B(r). First suppose that (I, J) 6|=β B(r). Then
(I, J) 6|= B(r) (note that for a conjunction of literals, such as B(r), the satisfaction relations do not
differ). Moreover, since (I, J)

κ satisfies Property K for r, it holds that J |= r. To see the latter, let Kr
denote the rule obtained from r by replacing every a ∈ Σ occurring in r by Ka, and let KJ denote the
set {Ka ∈ (I, J)

κ | a ∈ Σ}. Then, (I, J)
κ satisfies Property K for r iff KJ |= Kr. Observing that

KJ = {Ka | a ∈ J}, we conclude that J |= r. This proves (I, J) |= r, if (I, J) 6|=β B(r). Next assume
that (I, J) |=β H(r) and I |= B(r). We conclude that (I, J) |= H(r) (the satisfaction relations also
coincide for disjunctions of atoms). As (I, J)

κ satisfies Property K for r, it follows J |= r. This proves
(I, J) |= r , for every r ∈ P ; in other words, (I, J) is an HT-model of P .

Part (2). Let (H,T) be an HT-model of P . We show that (H,T)
κ satisfies Property N and Property K,

for all r ∈ P . As a consequence of H ⊆ T , for every a ∈ (H,T)
κ such that a ∈ Σ, it also holds that

Ka ∈ (H,T)
κ, i.e., (H,T)

κ satisfies Property N. Moreover, (H,T) |= P implies T |= r, for all r ∈ P .
Let KT = {Ka | a∈T} and let Kr as above; T |= r implies KT |= Kr, for all r ∈ P . By construction of
(H,T)

κ and definition of Property K for r, we conclude that (H,T)
κ satisfies Property K for all r ∈ P . 2

Proof of Theorem 2. Let P be a program over Σ.
Part (1). Let (H,T) be an HT-model of P that satisfies (i′) and (ii′). We show that (H,T)

κ ∈ SEQ(P).
Towards a contradiction, first assume that (H,T)

κ 6∈ MM (HTκ(P)). Then, there exists an HT-model
(H ′, T ′) of P , such that H ′ ⊆ H , T ′ ⊆ T , and at least one of the inclusions is strict. Suppose that H ′ ⊂ H .
Then (H ′, T) is an HT-model of P (by a well-known property of HT), a contradiction to the assumption
that (H,T) satisfies (i′). Hence, H ′ = H and T ′ ⊂ T must hold. Moreover, by the same argument (H ′, T ′)
also satisfies (i′). But, since T ′ \ H ′ ⊂ T \ H , this is in contradiction to the assumption that (H,T)
satisfies (ii′). Consequently, (H,T)

κ ∈ MM (HTκ(P)). We continue the indirect proof assuming that
(H,T)

κ 6∈ mc(MM (HTκ(P))), i.e., there exists an HT-model (H ′, T ′) of P , such that T ′ \H ′ ⊂ T \H
and (H ′, T ′)

κ ∈ MM (HTκ(P)). The latter obviously implies that (H ′, T ′) satisfies (i′). Again, this
contradicts that (H,T) satisfies (ii′), which proves that (H,T)

κ ∈ SEQ(P).
Part (2). Let Iκ ∈ SEQ(P). We show that β(Iκ) is an HT-model of P that satisfies (i′) and (ii′). Let

β(Iκ) = (H,T). Towards a contradiction first assume that (H,T) is not an HT-model of P . Then by the
definition of SEQ(P), and the fact that Iκ uniquely corresponds to sets H and T , we conclude that Iκ 6∈
mc(MM (HTκ(P))), i.e., Iκ 6∈ SEQ(P); contradiction. Next, suppose that (H,T) does not satisfy (i′).
Then, Iκ 6∈ MM (HTκ(P)), as witnessed by (H ′, T)

κ for an HT-model (H ′, T) such that H ′ ⊂ H ,
which exists if (H,T) does not satisfy (i′). Therefore, Iκ 6∈ mc(MM (HTκ(P))), i.e., Iκ 6∈ SEQ(P);
contradiction. Eventually assume that (H,T) does not satisfy (ii′). Then, Iκ 6∈ mc(MM (HTκ(P))),
as witnessed by (H ′, T ′)

κ for an HT-model (H ′, T ′), such that T ′ \ H ′ ⊂ T \ H and (H ′, T ′) satis-
fies (i′)—note that (H ′, T ′) exists if (H,T) does not satisfy (ii′). To see that (H ′, T ′)

κ is a witness for
Iκ 6∈ mc(MM (HTκ(P))), observe that either (H ′, T ′)

κ ∈ MM (HTκ(P)) or there exists an HT-model
(H ′, T ′′), such that (H ′, T ′′)

κ ∈ MM (HTκ(P)) and T ′′ ⊂ T ′ (which implies T ′′\H ′ ⊂ T ′\H ′ ⊂ T \H).
This proves that Iκ 6∈ SEQ(P), again a contradiction. This concludes the proof that β(Iκ) is an HT-model
of P that satisfies (i′) and (ii′). 2

Proof of Theorem 3. Let P be a program over Σ, and let Iκ be an interpretation over Σκ. The proof uses
the following lemmas.

Lemma 8. If M |= PHT , then β(M ∩ Σκ) is an HT-model of P .

47

Proof. Let (I, J) = β(M ∩ Σκ). Since M |= Pκ, (I, J) is a bi-model of P by Proposition 5. Moreover,
M ∩ Σκ = (I, J)

κ and (I, J)
κ satisfies Property N, otherwise there is an atom a ∈M such that Ka 6∈M ,

a contradiction to M |= Ka ← a. Also, (I, J)
κ satisfies Property K for all r ∈ P ; otherwise, if

Property K does not hold for some r ∈ P of the form (1), then M |= Kb1 ∧ . . . ∧ Kbm and M 6|=
Ka1 ∨ . . . ∨Kal ∨Kc1 ∨ . . . ∨Kcn, i.e., M 6|= PHT ; contradiction. Hence by Proposition 6, (I, J) is a
HT-model of P . 2

Next, we prove:

Lemma 9. If (H,T) is an HT-model of P , then (H,T)
κ,P |= PHT .

Proof. Note that every HT-model of P is a bi-model of P . Assume the contrary; then (H,T) |= r
and (H,T) 6|=β r, for some r ∈ P . Then, H 6|= B(r), while (H,T) |= B(r), must hold. However,
(H,T) |= B(r) implies B+(r) ⊆ H and B−(r) ∩H = ∅, and therefore H |= B(r); contradiction. This
proves that (H,T) is a bi-model of P . Consequently, (H,T)

κ,P |= Pκ by Proposition 5. Moreover, since
(H,T) is an HT-model, (H,T)

κ satisfies Property N (and Property K for all r ∈ P) by Proposition 6.
Because (H,T)

κ,P ∩ Σκ = (H,T)
κ, this implies that (H,T)

κ,P |= r, for all rules of the form Ka ← a
in PHT \ Pκ (this is an obvious consequence of Property N). For the remaining rules r in PHT \ Pκ,
(H,T)

κ,P |= r is a simple consequence of T |= P . This proves (H,T)
κ,P |= PHT . 2

Lemma 10. For every M ∈ AS(PHT), β(M ∩ Σκ) satisfies (i′) in Theorem 2.

Proof. Towards a contradiction assume the contrary. Then there exists an HT-model (H ′, T) of P such
that H ′ ⊂ H . Note that M ∈ AS(PHT) implies M = β(M ∩ Σκ)

κ,P . Since the latter is a model of
PHT by Lemma 9, M must be a subset thereof; however it obviously cannot be a strict subset on Σκ.
By construction of β(M ∩ Σκ)

κ,P and the rules of form (6) of the epistemic transformation, we also
conclude that λr,i ∈ β(M ∩ Σκ)

κ,P implies λr,i ∈M , for any r ∈ P of the form (1) and 1 ≤ i ≤ l. This
proves M = β(M ∩ Σκ)

κ,P . Now consider M ′ = (H ′, T)
κ,P . Then, M ′ ⊂ M by construction, and

M ′ |= PHT by Lemma 9. This is a contradiction to the assumption that M ∈ AS(PHT), and thus proves
that β(M ∩ Σκ) satisfies (i′). 2

Lemma 11. For every HT-model (H,T) of P that satisfies (i′) of Theorem 2, there exists some M ∈
AS(PHT) such that gap(M) ⊆ gap((H,T)

κ
).

Proof. Since (H,T)
κ,P |= PHT by Lemma 9, there exists M ∈ AS(PHT), such that M ⊆ (H,T)

κ,P .
To prove the lemma, it suffices to show that M ∩ Σ = H . Assume the contrary; then by (d) there exists an
HT-model (H ′, T ′) of P , such that H ′ ⊂ H and T ′ ⊆ T . However, then (H ′, T) |= P , which contradicts
the assumption that (H,T) satisfies (i′). 2

The proof of Theorem 3 is then as follows.
(⇐) Suppose that Iκ ∈{M ∩ Σκ | M ∈mc(AS(PHT))}. We prove Iκ ∈ SEQ(P) via Theorem 2.

Let M ∈ mc(AS(PHT)), such that Iκ = M ∩ Σκ, and let (I, J) = β(M ∩ Σκ). Then, (I, J) is an
HT-model of P by Lemma 8 and (I, J) satisfies (i′) in Theorem 2 by Lemma 10. We prove that (I, J)
satisfies (ii′) in Theorem 2. Towards a contradiction, assume that this is not the case, then there exists an
HT-model (H,T) of P , such that T \H ⊂ J \ I and (H,T) satisfies (i′). According to Lemma 11, there
exists M ′ ∈ AS(PHT), such that gap(M ′) ⊆ gap((H,T)

κ
), which implies gap(M ′) ⊂ gap(M) due to

T \ H ⊂ J \ I . This contradicts the assumption that M ∈ mc(AS(PHT)), and thus proves that (I, J)
satisfies (ii′) in Theorem 2. We conclude that Iκ ∈ SEQ(P).

(⇒) Suppose that Iκ ∈ SEQ(P). We prove Iκ ∈{M ∩ Σκ |M ∈ mc(AS(PHT))}. Let (H,T) =
β(Iκ). By Theorem 2, (H,T) is an HT-model of P that satisfies (i′) and (ii′). We show that there
exists M ∈ mc(AS(PHT)) such that β(M ∩ Σκ) = (H,T). Since (H,T)

κ,P |= PHT , there exists
M ∈ AS(PHT) such thatM ⊆ (H,T)

κ,P . Since (H,T) satisfies (i′), it holds thatM ∩Σ = H . Moreover,
M ∩ Σκ ⊂ (H,T)

κ contradicts the fact that (H,T) satisfies (ii′), because then β(M ∩ Σκ) = (H,T ′)
is an HT-model of P , such that T ′ \ H ⊂ T \ H and (H,T ′) satisfies (i′) due to Lemma 10. Hence,
β(M ∩ Σκ) = (H,T). It remains to show that M ∈ mc(AS(PHT)). If this is not the case, then
some HT-model (H ′, T ′) of P exists such that T ′ \ H ′ ⊂ T \ H . Since (H ′, T ′) = β(M ′ ∩ Σκ) for

48

some M ′ ∈ AS(PHT), we conclude by Lemma 10 that (H ′, T ′) satisfies (i′), which again leads to a
contradiction of the fact that (H,T) satisfies (ii′). This proves thatM ∈ mc(AS(PHT)). AsM∩Σκ = Iκ,
we conclude that Iκ ∈ {M ∩ Σκ |M ∈ mc(AS(PHT))}. 2

Proof of Proposition 7. Let P be a program over Σ. If P has a model M , then (M,M) is an HT-model
of P . Therefore HTκ(P) 6= ∅, which implies MM (HTκ(P)) 6= ∅, and thus mc(MM (HTκ(P))) 6= ∅.
We conclude that SEQ(P) 6= ∅, i.e., P has a semi-equilibrium model. 2

Proof of Proposition 8. Let P be a coherent program over Σ, and let Y ∈ AS(P). Then (Y, Y) is an
HT-model of P that satisfies (i′) in Theorem 2, since it is in equilibrium. Moreover, it trivially satisfies also
(ii′) because Y \ Y = ∅. Hence, (Y, Y)

κ ∈ SEQ(P).
As P is coherent, there exists (T, T) ∈ HT (P) that satisfies (i′) in Theorem 2 and (trivially) (ii′).

Hence, gap(Iκ) = ∅ for all Iκ ∈ SEQ(P). Moreover, β(Iκ) is of the form (Y, Y), and Y ∈ AS(P). 2

Appendix A.3. Section 5

Proof of Proposition 10. If (X,Y) ∈ SEQS(P), then there exists some (I, J) ∈ SEQ(bS(P)) such that
(X,Y) ∈ SEQ(PS(I, J)). We will prove that (I, J) = (X,Y)|S . Obviously I ⊆ J ⊆ S. Moreover
because (X,Y) |= a for each a ∈ I , we have a ∈ X for all a ∈ I , so I ⊆ X; because (X,Y) |= {←
not a | a ∈ J}, then a ∈ Y for all a ∈ J , so J ⊆ Y ; and because (X,Y) |= {← a | a ∈ S \J}, then a 6∈ Y
for all a ∈ S \J , so (S \J)∩Y = ∅. In particular we obtain that I ⊆ X ∩S and J ⊆ Y ∩S. We know that
(X,Y) |= PS(I, J). So if we consider a ∈ X∩S, then a ∈ H(r) for some rule r ∈ P \bS(P)∪{a | a ∈ I}.
But because a ∈ S, it follows that r 6∈ P \ bS(P), so r ∈ {a | a ∈ I}. Therefore a ∈ I , that is I = X ∩ S.
Moreover if we consider an atom a ∈ Y ∩S, then a ∈ Y and a ∈ S, and because (S \J)∩Y = ∅, we obtain
that a ∈ J , that is J = Y ∩ S. In conclusion, we have that (X ∩ S, Y ∩ S) = (I, J) is a semi-equilibrium
model of bS(P). 2

Proof of Lemma 1. Suppose that (X,Y) is an HT-model of PS(I, J). Hence, (X,Y) |= P \ bS(P). It
remains to show that (X,Y) |= r for every r ∈ bS(P). Suppose that r has the form (1). By assumption
(I, J) ∈ SEQ(bS(P)), hence we conclude that (I, J) |= bS(P).

If (I, J) |= ai for some ai ∈ H(r), then ai ∈ I and because (X,Y) |= PS(I, J), we have (X,Y) |= ai,
i.e. (X,Y) |= r.

If we assume that (I, J) 6|= b1 ∧ ... ∧ bm ∧ ¬c1 ∧ ... ∧ ¬cn, then there exists some bj ∈ B+(r) such
that (I, J) 6|= bj or some ck ∈ B−(r) such that (I, J) 6|= ¬ck, that is, by definition of HT-satisfaction that
bj 6∈ I respectively ck ∈ J .

In the first case, bj is not in the head of any other rule in P \bS(P), for which bj 6∈ X and so (X,Y) |= r.
In the second case, we have in PS(I, J) the rule← not ck; this implies ck ∈ Y , and therefore, also in

this case, (X,Y) |= r. 2

Proof of Proposition 11. Let (X,Y) ∈ SEQS(P). Then there exists (I, J) ∈ SEQ(bS(P)) such that
(X,Y) ∈ SEQ(PS(I, J)). By Lemma 1, (X,Y) is an HT-model of P . So, by definition of semi-equilibrium
model, remains to prove the h-minimality and the gap-minimality of (X,Y). Suppose by contradiction that
there exists some (X ′, Y) |= P withX ′ ⊂ X . So that (X ′, Y) |= tS(P) and (X ′, Y) |= bS(P). By this last
sentence we also obtain that (X ′∩S, Y ∩S) |= bS(P), but by Proposition 10, (X∩S, Y ∩S) ∈ SEQ(bS(P)).
So by the h-minimality of the semi-equilibrium model (X ∩ S, Y ∩ S) of the bottom of P , we have that
(X ′∩S) 6⊂ (X∩S). But becauseX ′ ⊂ X implies that (X ′∩S) ⊆ (X∩S), then necessarilyX ′∩S = X∩S.
So that (X ′ ∩ S, Y ∩ S) = (X ∩ S, Y ∩ S) = (I, J). Therefore

(X ′ ∩ S, Y ∩ S) |= {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}.

In particular (X ′, Y) |= {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J}. And because
(X ′, Y) |= tS(P), we conclude that (X ′, Y) |= PS(I, J) against the h-minimality of (X,Y) respect to
PS(I, J). Similarly, suppose by contradiction that there exists some (X ′, Y ′) |= P and

(1) there is no (X ′′, Y ′) |= P such that X ′′ ⊂ X ′ and
(2) Y ′ \X ′ ⊂ Y \X .

Moreover, we suppose that

49

(3) gap(X,Y) is minimal among the gaps of the HT-models that satisfy (1) and (2).
Because (X ′, Y ′) |= P , it holds that (X ′, Y ′) |= tS(P) and (X ′, Y ′) |= bS(P). From this we obtain

that (X ′ ∩ S, Y ′ ∩ S) |= bS(P) and by condition (2) we obtain that

(Y ′ ∩ S) \ (X ′ ∩ S) = (Y ′ \X ′) ∩ S ⊆ (Y \X) ∩ S = (Y ∩ S) \ (X ∩ S).

Moreover (X ′, Y ′)|S satisfies the h-minimality with respect to bS(P). In fact if by contradiction there
exists (I ′, Y ′ ∩ S) |= bS(P), such that I ′ ⊂ X ′ ∩ S, then (I ′ ∪ (X ′ \ S), Y ′) |= P and I ′ ∪ (X ′ \ S) ⊂
(X ′ ∩ S) ∪ (X ′ \ S) = X ′ against the condition (1). By Proposition 10, (X ∩ S, Y ∩ S) ∈ SEQ(bS(P)),
so we have necessarily that (Y ′ ∩ S) \ (X ′ ∩ S) = (Y ∩ S) \ (X ∩ S) = J \ I . Otherwise (X,Y)|S
could not be a semi-equilibrium model of bS(P), because (X ′, Y ′)|S contradicts the gap-minimality of
(X,Y)|S . Therefore (X ′, Y ′)|S ∈ SEQ(bS(P)), because if there exists (Î , Ĵ) |= bS(P), that satisfies the
h-minimality property and Ĵ \ Î ⊂ (Y ′ ∩ S) \ (X ′ ∩ S), then Ĵ \ Î ⊂ (Y ∩ S) \ (X ∩ S), and therefore
(X,Y)|S 6∈ SEQ(bS(P)), contrary to what is assumed. Now we show that (X ′, Y ′) must be a semi-
equilibrium model of PS(X ′ ∩ S, Y ′ ∩ S). First since (X ′, Y ′) |= tS(P) and (X ′, Y ′)|S ∈ SEQ(bS(P)),
it follows that (X ′, Y ′) |= PS(X ′ ∩ S, Y ′ ∩ S). We prove the h-minimality of (X ′, Y ′) with respect to
PS(X ′∩S, Y ′∩S). If by contradiction there exists (X̂, Y ′) |= PS(X ′∩S, Y ′∩S) with X̂ ⊂ X ′, then, by
Lemma 1, (X̂, Y ′) |= P against the hypothesis (1). Finally we prove the gap-minimality of (X ′, Y ′) respect
to PS(X ′ ∩ S, Y ′ ∩ S). If by contradiction there exists (X̂, Ŷ) |= PS(X ′ ∩ S, Y ′ ∩ S), that satisfies the
h-minimality property and, moreover, Ŷ \ X̂ ⊂ Y ′ \X ′, then there exists (X̂, Ŷ) |= P (by Lemma 1) that
satisfies the h-minimality property and Ŷ \ X̂ ⊂ Y ′ \X ′, against the hypothesis (3). In conclusion we have
proved that (X ′, Y ′) ∈ SEQ(PS(X ′ ∩ S, Y ′ ∩ S)) and since hypothesis (2), Y ′ \X ′ ⊂ Y \X , it follows
that (X,Y) would not be a semi-equilibrium model relative to S. And so we come to a contradiction, so a
supposed (X ′, Y ′) can not exist. Therefore (X,Y) satisfies the gap-minimality property respect to P , so
that (X,Y) ∈ SEQ(P). 2

Proof of Proposition 12. Let (X,Y) ∈ SEQ(P) and (X,Y)|S ∈ SEQ(bS(P)). To demonstrate that
(X,Y) ∈ SEQS(P), first we will prove that (X,Y) is a semi-equilibrium model of PS(X ∩ S, Y ∩ S).
Since (X,Y) ∈ SEQ(P), we obtain in particular that (X,Y) |= tS(P). Now because X ∩ S ⊆ X
then (X,Y) |= {a | a ∈ X ∩ S}, because Y ∩ S ⊆ Y then (X,Y) |= {← not a | a ∈ Y ∩ S},
and because (S \ (Y ∩ S)) ∩ Y = ∅ then (X,Y) |= {← a | a ∈ S \ (Y ∩ S)}. So that (X,Y) is
an HT-model of PS(X ∩ S, Y ∩ S). So it remains to prove the h-minimality and the gap-minimality
of (X,Y) as regards to PS(X ∩ S, Y ∩ S). If, by contradiction, we suppose that there exists X ′ such
that X ′ ⊂ X and (X ′, Y) |= PS(X ∩ S, Y ∩ S), then, by Lemma 1, (X ′, Y) |= P and this contradicts
the h-minimality of (X,Y) as regards to P . Similarly if, by contradiction, we assume that there exists
(X ′, Y ′) |= PS(X ∩ S, Y ∩ S) that satisfies the h-minimality property and Y ′ \ X ′ ⊂ Y \ X , then by
Lemma 1, we obtain that (X ′, Y ′) |= P and this contradicts the gap-minimality of (X,Y) as regards to
P . Finally, it must be shown that there is no (X̂, Ŷ) ∈ SEQ(PS(I, J)) with (I, J) ∈ SEQ(bS(P)), such
that gap(X̂, Ŷ) ⊂ gap(X,Y). In fact if, by contradiction, there exists such a (X̂, Ŷ), then (X̂, Ŷ) |= P
(by Lemma 1), (X̂, Ŷ) satisfies the h-minimality property respect to P and gap(X̂, Ŷ) ⊂ gap(X,Y); i.
e. (X,Y) does not satisfy the gap-minimality property respect to P , against the hypothesis. Therefore, in
conclusion, (X,Y) ∈ SEQS(P). 2

Proof of Corollary 3. By Theorem 4, SEQS(P) = {(X,Y) ∈ SEQ(P) | (X,Y)|S ∈ SEQ(bS(P))}.
As SEQ(P) 6= ∅, by Proposition 8 SEQ(P) = EQ(P), and SEQ(bS(P)) = EQ(bS(P)); by Proposition 2
and the identity (2) (i.e., by identity (11), it follows that SEQS(P){(X,Y) ∈ EQ(P) | (X,Y)|S ∈
EQ(bS(P))} = EQ(P). As for any positive program P , EQ(P) = {(M,M) | M ∈ MM (P)}, the result
follows. 2

Proof of Proposition 13. If P is constraint-free, then P has some model, hence also bS(P) (⊆ P) has
some model, and thus by Proposition 7, SEQ(bS(P)) 6= ∅. For any (I, J) ∈ SEQ(bS(P)), the program
PS(I, J) also has a model, e.g. J ∪ (Σ \ S). Thus, SEQ(PS(I, J)) 6= ∅ by Proposition 7, and hence it
follows SEQ(PS) 6= ∅. 2

Proof of Theorem 5. We proceed by induction on the length n ≥ 1 of the splitting sequence. If
n = 1, then we have S = (S1) and S′ = ∅, so SEQS(P) = SEQS1(P) and, by Theorem 4, we

50

obtain that (X,Y) ∈ SEQS(P) if and only if (X,Y) ∈ SEQ(P) and (X,Y)|S ∈ SEQ(bS(P)), that is
(X,Y)|S1

∈ SEQ(bS1
(P)). We assume that the statement is valid for a splitting sequence of length n− 1

and consider a splitting sequence S = (S1, ..., Sn) of length n. As usual, we put S′ = (S2, . . . , Sn). Then
(X,Y) ∈ SEQS(P) if and only if there exists (I1, J1) ∈ SEQ(bS1(P)) such that (X,Y) ∈ SEQS

′
(P1)

and (X,Y) is a maximal canonical HT-interpretation. Applying the induction hypothesis to (X,Y) ∈
SEQS

′
(P1), we know that (X,Y) ∈ SEQ(P1) and (X,Y)|Sk ∈ SEQ(bSk(Pk−1)), for k = 2, . . . , n. Now

(X,Y) ∈ SEQ(P1) with (I1, J1) ∈ SEQ(bS1(P)) and (X,Y) is a maximal canonical HT-interpretation
is equivalent, by definition, to (X,Y) ∈ SEQS1(P). So that, by Theorem 4, (X,Y) ∈ SEQ(P) and
(X,Y)|S1

∈ SEQ(bS1
(P)). In conclusion we have demonstrated that (X,Y) ∈ SEQS(P) if and only if

(X,Y) ∈ SEQ(P) and (X,Y)|Sk ∈ SEQ(bSk(Pk−1)), for some Pk−1, for k = 1, . . . , n. 2

Proof of Corollary 6. This is immediate from Proposition 15 and Corollary 4, given that as well-known
EQ(P) 6= ∅ for every stratified program. 2

Appendix B. Section 6

Proof of Theorem 6. The proof of uses the following lemmas.

Lemma 12. Let P be a program and let S = (S1, ..., Sn) be a splitting sequence of P . We let as above
P0 = P and Pk = (Pk−1)Sk(Ik, Jk), where (Ik, Jk) ∈ SEQ(bSk(Pk−1)), with k = 1, ..., n. Furthermore,
we let Ak = {a|a ∈ Ik} ∪ {← not a|a ∈ Jk} ∪ {← a|a ∈ Sk \ Jk}. Then

Pk = P \ bSk(P) ∪Ak

for k = 1, ..., n.

Proof . We will prove this statement by induction on k ≥ 1. If k = 1, we obtain by definition that

P1 = (P0)S1(I1, J1) = P0 \ bS1(P0) ∪A1 = P \ bS1(P) ∪A1.

We assume that the statement is true for k = j − 1 and consider Pj . By definition we have that
Pj = (Pj−1)Sj (Ij , Jj) = Pj−1 \ bSj (Pj−1) ∪Aj . Now we can applying the inductive hypothesis on Pj−1
and we obtain that

Pj = (P \ bSj−1(P) ∪Aj−1) \ bSj (P \ bSj−1(P) ∪Aj−1) ∪Aj .

Since Sj−1 ⊆ Sj , we have that bSj (Aj−1) = Aj−1, and so

Pj = (P \ bSj−1
(P) ∪Aj−1) \ (bSj (P \ bSj−1

(P)) ∪Aj−1) ∪Aj
= (P \ bSj−1

(P)) \ bSj (P \ bSj−1
(P)) ∪Aj .

Moreover since bSj−1(P) ⊆ bSj (P), we can conclude that

Pj = (P \ bSj−1(P)) \ (bSj (P) \ bSj−1(P)) ∪Aj = P \ bSj (P) ∪Aj .
2

Lemma 13. Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P . Let P0 = P and let
Pk and (Ik, Jk) for k = 1, ..., n− 1 be defined as above. If (X,Y) ∈ SEQ(Sk+1,...,Sn)(Pk), then Ik ⊆ X ,
Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅ for k = 1, ..., n− 1.

Proof . Let (X,Y) ∈ SEQ(Sk+1,...,Sn)(Pk). We remember that Pk = (Pk−1)Sk(Ik, Jk), where (Ik, Jk) ∈
SEQ(bSk(Pk−1)), for k = 1, ..., n and P0 = P . By Theorem 5 we have that (X,Y) ∈ SEQ(Pk) and by
Lemma 12,

Pk = P \ bSk(P) ∪ {a | a ∈ Ik} ∪ {← not a | a ∈ Jk} ∪ {← a | a ∈ Sk \ Jk}.

So that Ik ⊆ X , Jk ⊆ Y and (Sk \ Jk) ∩ Y = ∅. 2

51

Lemma 14. Let P be a program. Let S = (S1, ..., Sn) be a splitting sequence of P such that At(P) = Sn.
If (X,Y) ∈ SEQ(S1,...,Sn)(P), then there exists (Ik, Jk) ∈ SEQ(bSk(Pk−1)) for k = 1, ..., n such that

(X,Y) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

with (Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1), for k = 2, ..., n.

Proof . We proceed by induction on the length n ≥ 1 of the splitting sequence. If n = 1, then
At(P) = S1 and (X,Y) ∈ SEQS1(P) imply that there exists some (I1, J1) ∈ SEQ(bS1(P)) such that
(X,Y) ∈ SEQ(PS1(I1, J1)), but PS1(I1, J1) = P \ bS1(P) ∪A1 = A1, so that

SEQ(PS1(I1, J1)) = SEQ(A1)

= SEQ({a | a ∈ I1} ∪ {← not a | a ∈ J1} ∪ {← a | a ∈ S1 \ J1}) = {(I1, J1)},

that is (X,Y) = (I1, J1).
Now we suppose that the statement is valid for splitting sequence of length n − 1 and we con-

sider (X,Y) ∈ SEQ(S1,...,Sn)(P). Then there exists (I1, J1) ∈ SEQ(bS1(P)) such that (X,Y) ∈
SEQ(S2,...,Sn)(P1) andAt(P1) = Sn, so by the inductive hypothesis there exists (Ik, Jk) ∈ SEQ(bSk(Pk−1))
for k = 2, ..., n such that (X,Y) = (I2 ∪ (I3 \ I2) ∪ ... ∪ (In \ In−1), J2 ∪ (J3 \ J2) ∪ ... ∪ (Jn \ Jn−1))
with Ik \ Ik−1 ⊆ Jk \ Jk−1 ⊆ Sk \ Sk−1, for k = 3, ..., n. Moreover, by Lemma 13, I1 ⊆ X , J1 ⊆ Y
and (S1 \ J1) ∩ Y = ∅ and because (I2, J2) ∈ SEQ(bS2

(P1)) we obtain that I1 ⊆ I2, J1 ⊆ J2 and
(S1 \ J1) ∩ J2 = ∅. These last results imply that I2 \ I1 ⊆ J2 \ J1 ⊆ S2 \ S1. 2

Lemma 15. Let P be a program and let S ⊆ At(P) such that both S and At(P) \ S are splitting sets of
P . If for each constraint r, At(r) ⊆ S or At(r) ⊆ At(P) \ S, then

SEQ(P) = SEQS(P).

Proof . The inclusion SEQS(P) ⊆ SEQ(P) follows from Proposition 11. So we have just to prove that
SEQ(P) ⊆ SEQS(P).

Let (X,Y) ∈ SEQ(P). We want to prove that (X ∩ S, Y ∩ S) ∈ SEQ(bS(P)).
We know that (X,Y) |= bS(P). As S is a splitting set of P , At(bS(P)) ⊆ S and so (X ∩ S, Y ∩ S) |=

bS(P).
Now we prove the claim showing that (X ∩ S, Y ∩ S) satisfies h-minimality and gap-minimality.
If by contradiction some I ⊂ X ∩S exists such that (I, Y ∩S) |= bS(P), then X ′ = I ∪ (X ∩ (At(P)\

S)) ⊂ X and (X ′, Y) |= P which contradicts the h-minimality of (X,Y).
Similarly, if by contradiction, some (I, J) |= bS(P) exists such that (I, J) satisfies h-minimality and

J \ I ⊂ (Y ∩S) \ (X ∩S), then having set X ′ = I ∪ (X ∩ (At(P) \S)) and Y ′ = J ∪ (Y ∩ (At(P) \S)),
we obtain that (X ′, Y ′) |= P , satisfies the h-minimality and Y ′ \ X ′ ⊂ Y \ X in contradiction to the
gap-minimality of (X,Y).

Therefore (X∩S, Y ∩S) ∈ SEQ(bS(P)). Then, by Theorem 4, (X,Y) ∈ SEQS(P); hence SEQ(P) =
SEQS(P). 2

For any setsM andM′ of HT-models, define their productM×M′ as the set of HT-models given by
M×M′ = {(X ∪X ′, Y ∪ Y ′) | (X,Y) ∈M, (X ′, Y ′) ∈M′}.

Lemma 16. Let P be a program in which each constraint r fulfills either At(r) ⊆ S or At(r) ⊆ At(P)\S.
If both S and At(P) \ S are splitting sets of P , then

SEQS(P) = SEQ(bS(P))× SEQ(tS(P)).

Proof . If SEQ(bS(P)) = ∅, then

SEQ(bS(P))× SEQ(tS(P)) = ∅

52

and
SEQS(P) = mc

(⋃
(I,J)∈SEQ(bS(P))

SEQ(PS(I, J))
)

= ∅.

Let (I, J) ∈ SEQ(bS(P)). For each rule r ∈ bS(P), no atom of r is in some rule of tS(P) and vice
versa, that is At(bS(P)) ∩At(tS(P)) = ∅. Hence

SEQ(tS(P) ∪ {a | a ∈ I} ∪ {← not a | a ∈ J} ∪ {← a | a ∈ S \ J})
= {(X,Y) | X = X1 ∪ I, Y = Y1 ∪ J, (X1, Y1) ∈ SEQ(tS(P))}
= SEQ(tS(P))× {(I, J)}.

Then

SEQS(P) = mc
(⋃

(I,J)∈SEQ(bS(P))

SEQ(tS(P))× {(I, J)}
)

= mc (SEQ(bS(P))× SEQ(tS(P)))

= SEQ(bS(P))× SEQ(tS(P)).

2

Proof of Proposition 17. Follows immediately from Lemmas 15 and 16. 2

Lemma 17. Let P be a program without cross-constraints. Let (C1, ..., Cn) and (C1, ..., Ci−1, Ci+1, Ci,
Ci+2, ..., Cn) be two topological orderings of SCC(P). If we put Sk = C1 ∪ ... ∪ Ck for k = 1, ..., n and
S′i = Si−1 ∪ Ci+1 then

bS′i(P \ bSi−1
(P)) = bSi+1

(P \ bSi(P)).

Proof . In general we know that bSi(P) \ bSi−1
(P) = bSi(P \ bSi−1

(P)). Hence it is sufficient to prove
that bSi+1

(P) \ bSi(P) = bS′i(P) \ bSi−1
(P).

Let r ∈ P , and assume that r ∈ bSi+1
(P) and r 6∈ bSi(P). If r is a constraint, then At(r) ∩ Ci+1 6= ∅.

As P has no cross-constraints, it follows that At(r) ∩Ci = ∅. If r is not a constraint, then there exists some
a ∈ H(r) such that a ∈ Ci+1. But because there is no edge between Ci and Ci+1, we obtain again that
At(r) ∩ Ci = ∅. Therefore r ∈ bSi−1∪Ci+1

(P) and clearly r 6∈ bSi−1
(P).

Conversely, assume that r ∈ bSi−1∪Ci+1
(P) and r 6∈ bSi−1

(P). Then r ∈ bSi−1∪Ci+1
(P) ⊆ bSi+1

(P).
Moreover r ∈ bSi−1∪Ci+1

(P) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1
(P), it follows that

r 6∈ bSi(P). 2

Lemma 18. Let P be a program without cross-constraints. Let (C1, ...Cn) and (C1, ..., Ci−1, Ci+1, Ci,
Ci+2, ..., Cn) be two topological orderings of SCC(P). If we put Sk = C1 ∪ ... ∪ Ck for k = 1, ..., n and
S′i = Si−1 ∪ Ci+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P).

Proof . Let (X,Y) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P). Since At(P) = C1 ∪ ... ∪ Cn = Sn, by
Lemma 14 we obtain that

(X,Y) = (I1 ∪ (I2 \ I1) ∪ ... ∪ (In \ In−1), J1 ∪ (J2 \ J1) ∪ ... ∪ (Jn \ Jn−1))

where (Ik, Jk) ∈ SEQ(bSk(Pk−1)) for k = 1, ..., n, with

(Ik \ Ik−1) ⊆ (Jk \ Jk−1) ⊆ (Sk \ Sk−1) = Ck

for k = 2, ..., n.
First we show that

(X,Y)|S′i ∈ SEQ(bS′i(Pi−1)).

53

We know that

(X,Y)|S′i = (X,Y)|Si−1∪Cj+1
= (Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)).

Moreover, using Lemma 17, we obtain

bS′i(Pi−1) = bSi−1∪Cj+1
(Pi−1) = bSi−1∪Ci+1

(P \ bSi−1
(P) ∪Ai−1)

= bSi−1∪Ci+1
(P \ bSi−1

(P)) ∪Ai−1
= bSi+1

(P \ bSi(P)) ∪Ai−1.

And we note that

bSi+1
(Pi) = bSi+1

(P \ bSi(P) ∪Ai)
= bSi+1

(P \ bSi(P)) ∪Ai−1 ∪ (Ai \Ai−1).

Now in the program bSi+1
(Pi) both Si−1 ∪ Ci+1 and Ci are splitting sets and in particular

bSi−1∪Ci+1(bSi+1(Pi)) = bSi+1(P \ bSi(P)) ∪Ai−1

and
bCi(bSi+1

(Pi)) = Ai \Ai−1.
Therefore by Proposition 17 we obtain that

SEQ(bSi+1
(Pi)) = SEQ(bSi+1

(P \ bSi(P)) ∪Ai−1)× SEQ(Ai \Ai−1).

So we have that

SEQ(bSi+1(Pi)) = SEQ(bSi−1∪Cj+1(Pi−1))× {(Ii \ Ii−1, Ji \ Ji−1)},

and since

(X,Y)|Si+1 = (Ii−1 ∪ (Ii \ Ii−1) ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji \ Ji−1) ∪ (Ji+1 \ Ji)) ∈ SEQ(bSi+1(Pi)),

it follows
(Ii−1 ∪ (Ii+1 \ Ii), Ji−1 ∪ (Ji+1 \ Ji)) ∈ SEQ(bSi−1∪Cj+1

(Pi−1)).

By Theorem 5, we know that if (X,Y) ∈ SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P), then

(X,Y) ∈ SEQ(P), (X,Y)|S1
∈ SEQ(bS1

(P)), . . . , (X,Y)|Si−1
∈ SEQ(bSi−1

(Pi−2)),

(X,Y)|Si ∈ SEQ(bSi(Pi−1)), (X,Y)|Si+1
∈ SEQ(bSi+1

(Pi)),

(X,Y)|Si+2
∈ SEQ(bSi+2

(Pi+1)), . . . (X,Y)|Sn ∈ SEQ(bSn(Pn−1)),

We want to prove that (X,Y) ∈ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P). That is, by Theorem 5:

(X,Y) ∈ SEQ(P), (X,Y)|S1 ∈ SEQ(bS1(P)), . . . (X,Y)|Si−1 ∈ SEQ(bSi−1(Pi−2)),

(X,Y)|S′i ∈ SEQ(bS′i(Pi−1)), (X,Y)|Si+1 ∈ SEQ(bSi+1(P \ bS′i(P) ∪Ai−1 ∪ (Ai+1 \Ai))),
(X,Y)|Si+2 ∈ SEQ(bSi+2(Pi+1)), . . . , (X,Y)|Sn ∈ SEQ(bSn(Pn−1)),

So it remains to prove that

(X,Y)|Si+1 ∈ SEQ(bSi+1(P \ bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai))).

We know that

bSi+1
(P\bS′i(P) ∪Ai−1 ∪ (Ai+1 \Ai))

= bSi+1(P \ bSi−1∪Ci+1(P)) ∪Ai−1 ∪ (Ai+1 \Ai)
= bSi(P \ bSi−1(P)) ∪Ai−1 ∪ (Ai+1 \Ai)
= bSi(P \ bSi−1(P)) ∪Ai−1) ∪ (Ai+1 \Ai)
= bSi(Pi−1) ∪ (Ai+1 \Ai).

54

Now in this program both Si and Ci+1 are splitting sets and in particular

bSi(bSi(Pi−1) ∪ (Ai+1 \Ai)) = bSi(Pi−1)

and
bCi+1

(bSi(Pi−1) ∪ (Ai+1 \Ai)) = Ai+1 \Ai.
Therefore by Proposition 17 we obtain that

SEQ(bSi+1
(P\bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai)))

= SEQ(bSi(Pi−1))× SEQ(Ai+1 \Ai)
= SEQ(bSi(Pi−1))× {(Ii+1 \ Ii, Ji+1 \ Ji)}.

Now since (Ii, Ji) ∈ SEQ(bSi(Pi−1)), we obtain that

(Ii+1, Ji+1) = (X,Y)|Si+1
∈ SEQ(bSi+1

(P \ bS′i(Pi−1) ∪Ai−1 ∪ (Ai+1 \Ai))).

In conclusion, we have proved that

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sn)(P) ⊆ SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sn)(P).

The proof of the reverse inclusion is similar. 2

Theorem 6 is then proven as follows. Let (Ci1 , ..., Cin) ∈ O(SG(P)). We define a function

t(Ci1 ,...,Cin) : O(SG(P)) −→ O(SG(P)).

Let (Cj1 , ..., Cjn) ∈ O(SG(P)). If Cir = Cjr for r = 1, ..., l, Cil+1
6= Cjl+1

and there exists k+1 > l+1
such that Cjk+1

= Cil+1
, then

t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = t(Ci1 ,...,Cin)(Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cjk , Cil+1
, Cjk+2

, ..., Cjn)

= (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn),

else t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Cj1 , ..., Cjn) = (Ci1 , ..., Cin). This function is well-defined because
there are no edges from Cim to Cil+1

for m = l + 2, ..., n. That is there are no edges from Cjk to
Cil+1

, therefore (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn) is another topological ordering
of SCC(P). Moreover for each (Cj1 , ..., Cjn) ∈ O(SG(P)), there exists some finite N such that

tN(Ci1 ,...,Cin)
(Cj1 , ..., Cjn) = (Ci1 , ..., Cin).

During the proof, in order not to introduce additional symbols, we shall denote the splitting sequence Si

with (Ci1 , ..., Cin) and Sj with (Cj1 , ..., Cjn).
Let N be such that tN(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). We will prove the theorem using

induction onN . IfN = 1, then t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin), i.e. (Cj1 , ..., Cjn) and (Ci1 , ...,
Cin) differ at most by the exchange of two consecutive strongly connected components. Then, by Lemma 18,
SEQ(Ci1 ,...,Cin)(P) = SEQ(Cj1 ,...,Cjn)(P). Now we suppose that the theorem is valid for topological
orderings (Cs1 , ..., Csn) such that tN−1(Ci1 ,...,Cin)

(Cs1 , ..., Csn) = (Ci1 , ..., Cin). We consider (Cj1 , ..., Cjn)

such that tN(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cin). By definition of the function t(Ci1 ,...,Cin), we know
that

t(Ci1 ,...,Cin)(Cj1 , ..., Cjn) = (Ci1 , ..., Cil , Cjl+1
, ..., Cjk−1

, Cil+1
, Cjk , Cjk+2

, ..., Cjn).

Therefore, by Lemma 18, we have that

SEQ(Cj1 ,...,Cjn)(P) = SEQt(Ci1 ,...,Cin)(Cj1 ,...,Cjn)(P).

But now tN−1(Ci1 ,...,Cin)
(t(Ci1 ,...,Cin)(Cj1 , ..., Cjn)) = (Ci1 , ..., Cin) such that, by the induction hypothesis,

we obtain that
SEQt(Ci1 ,...,Cin)(Cj1 ,...,Cjn)(P) = SEQ(Ci1 ,...,Cin)(P).

55

In conclusion, we have proved that SEQ(Cj1 ,...,Cjn)(P) = SEQ(Ci1 ,...,Cin)(P). 2

Proof of Theorem 7. First we observe that for every splitting set S of a program P , we can always write
S as the union of some SCCs of P . More in detail, if SCC(P) = {C1, ..., Cn}, then we can assume that
S = C1 ∪ ... ∪ Ck, where C1, ..., Ck are consecutive in some topological ordering (C1, ..., Ck, ..., Cn) of
SCC(P).

By definition, we have that
M SCC(P) = SEQ(S1,...,Sn)(P),

where Sj = ∪ji=1Ci, for 1 ≤ j ≤ n; note that S = Sk.
If we explicate the computation of SEQ(S1,...,Sn)(P) up to k-th union, we obtain

M SCC(P) = mc
(⋃
Mk∈Mk

SEQ(Sk+1,...,Sn)(P \ bSk(P) ∪Mk)
)

(B.1)

whereMk is last in a sequenceMi, 1 ≤ i ≤ k of setsMi of HT-models Mi = (Ii, Ji), over Si, such that
M1 = SEQ(bS1(P)) andMi+1 = mc(

⋃
Mi∈Mi

SEQ((bSi+1(P) \ bSi(P)) ∪Mi), 1 ≤ i < k, where in
abuse of notation ”∪Mi” stands for ∪{a | a ∈ Ii} ∪ {← not a | a ∈ Ji} ∪ {← a | a ∈ Si \ Ji}. Note that
all Mi 6= M ′i ∈Mi have incomparable gaps, i.e., gap(Mi) 6⊆ gap(M ′i).

Now we show that the setMk coincides with M SCC(bS(P)). Indeed, by definition, we know that

M SCC(bS(P)) = SEQ(S1,...,Sk)(bS(P)).

Therefore, applying k-times the definition of semi-equilibrium models relative to a splitting sequence, we
obtain

SEQ(S1,...,Sk)(bS(P)) = mc
(⋃
M ′k∈M

′
k

SEQ(bS(P) \ bSk(P) ∪M ′k)
)

(B.2)

where M′k and M ′k are analogously defined to Mk and Mk using bS(P) instead of P , i.e., M′1 =
SEQ(bS1

(bS(P))) andM′i+1 = mc(
⋃
M ′i∈M′i

SEQ((bSi+1
(bS(P)) \ bSi(bS(P))) ∪M ′i), 1 ≤ i < k. As

bSi(bS(P)) = bSi(P) for each i, theMi and theM′i coincide; as bS(P) = bSk(P), we thus obtain from
(B.2)

SEQ(S1,...,Sk)(bS(P)) = mc
(⋃
Mk∈Mk

SEQ(Mk)
)

=
⋃

Mk∈Mk

Mk =Mk;

here we use that the Mk have incomparable gaps. This proves the claim thatMk = M SCC(bS(P)).
To prove the result, it remains by (B.1) to show that for each Mk ∈Mk,

SEQ(Sk+1,...,Sn)(P \ bS(P) ∪Mk) = M SCC(P \ bS(P) ∪Mk).

We observe that the programs Q = P \ bS(P) ∪Mk and P have the same atoms but in general different
SCCs. However it is easy to see that every atom in a ∈ Sk induces a SCC Ca = {a} w.r.t. Q, and thus
Sk = Ca1 ∪· · ·∪Ca` where Sk = {a1, . . . , a`}. Furthermore, Q contains only constraints r such that either
At(Q) ⊆ Sk or At(Q) ∩ Sk = ∅. As (Ca1 , ..., Ca` , Ck+1, ...Cn) is a topological ordering of SCC(Q), we
obtain

M SCC(Q) = SEQ(Sa1 ,...,Sa` ,Sk+1,...,Sn)(Q) = SEQ(Sk+1,...,Sn)(Q).

where Sai =
⋃
j≤i Caj . The last equality can be seen by noting that, for each j = 1, ..., `, we have

SEQ(bSaj (Q)) = {Mk|Saj } (where Mk|Saj denotes the restriction of Mk to Saj) and thus for each
(Xj , Yj) ∈ SEQ(bSaj (Q)),

Q \ bSaj (Q) ∪ (Xj , Yj) = (Q \Mk|Saj) ∪ (Xj , Yj) = Q.

In conclusion, by replacing in Equation (B.1)Mk ∈Mk with (I, J) ∈ M SCC(bSk(P)) and SEQ(Sk+1,...,Sn)(P\
bSk(P)∪Mk) with M SCC(P \ bSk(P)∪ (I, J)) and reminding that Sk = S and PS(I, J) = P \ bSk(P)∪
(I, J), we have proved that

M SCC(P) = mc
(⋃

(I,J)∈MSCC(bS(P))

M SCC(P \ bS(P) ∪ (I, J))
)
.

56

2

Proof of Proposition 18. Suppose that S = (S1, . . . , Sn), where n ≥ 1. Then there exists a splitting
sequence S′≤ = (S′1, . . . , S

′
n) induced by some topological ordering ≤ of SG(P) such that Si = S′ki , for

some 1 ≤ ki ≤ n′, for every 1 ≤ i ≤ n; such a sequence can be obtained by refining Si \ Si−1, 1 ≤ i ≤ n
where S0 = ∅ along strongly connected components in SG(P) to Si,1, . . . , Si,ji such that Si,ji = Si.
As M SCC(P) = SEQS

′
(P), the inclusion M SCC(P) ⊆ SEQS(P) is then an immediate consequence

of Theorem 5 (for given (X,Y), S′ imposes more conditions for membership in SEQS
′
(P) than S for

membership in SEQS(P)); the equation M SCC(P) =
⋂
S∈SQ(P) SEQ

S(P) follows as S′ ∈ SQ(P). 2

Proof of Theorem 8. For the proof of Theorem 8, we use the following lemmas.

Lemma 19. Let P be a program. Let MJC(P) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1, Ji+2, ..., Jm)
and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put Sk = J1 ∪ ... ∪ Jk for
k = 1, ...,m and S′i = Si−1 ∪ Ji+1 then

bS′i(P \ bSi−1
(P)) = bSi+1

(P \ bSi(P)).

Proof . In general we know that bSi(P) \ bSi−1(P) = bSi(P \ bSi−1(P)). So that is sufficient to prove that
bSi+1(P) \ bSi(P) = bS′i(P) \ bSi−1(P).

Let r ∈ P . We assume that r ∈ bSi+1
(P) and r 6∈ bSi(P).

If r is not a constraint, then there exists some a ∈ H(r) such that a ∈ Ji+1. But because there is no edge
among Ji and Ji+1, we obtain that At(r)∩ Ji = ∅. Therefore r ∈ bSi−1∪Ji+1

(P) and clearly r 6∈ bSi−1
(P).

If r is a constraint then there exists a ∈ (B+(r) ∪B−(r)) ∩ Ji+1. If, by contradiction, we assume that
there exists some b ∈ (B+(r) ∪B−(r)) ∩ Ji, then there exist Ki,Ki+1 ∈ SCC(P) such that Ki+1 ⊆ Ji+1

and Ki ⊆ Ji with r ∈ CKi,Ki+1(P). But because there is no edge among Ji and Ji+1, then there exists a
topological ordering of strongly connected components of P that are in Ji and Ji+1, such that Ki precedes
Ki+1. So there exists (C1, ..., Cn) ∈ O(P) in which Cl = Ki and Cl+1 = Ki+1 for some l = 1, ..., n− 1
and moreover At(r) ⊆ C1 ∪ ... ∪ Cl+1. Then (Ki,Ki+1) is a joinable pair and therefore Ki,Ki+1 are
joinable components, but this contradicts the maximality of Ji and Ji+1. So that (B+(r)∪B−(r))∩Ji = ∅.
That is r ∈ bSi−1∪Ji+1(P) and clearly r 6∈ bSi−1(P).

Conversely we assume that r ∈ bSi−1∪Ci+1(P) and r 6∈ bSi−1(P). Then r ∈ bSi−1∪Ci+1(P) ⊆
bSi+1

(P). Moreover r ∈ bSi−1∪Ci+1
(P) implies that At(r) ∩ Ci = ∅, and because r 6∈ bSi−1

(P), then
r 6∈ bSi(P). 2

Lemma 20. Let P be a program. LetMJC(P) = {J1, ..., Jm}. Let (J1, ..., Ji−1, Ji, Ji+1, Ji+2, ..., Jm)
and (J1, ..., Ji−1, Ji+1, Ji, Ji+2, ..., Jm) be two topological orderings. If we put Sk = J1 ∪ ... ∪ Jk for
k = 1, ...,m and S′i = Si−1 ∪ Ji+1 then

SEQ(S1,...,Si−1,Si,Si+1,Si+2,...,Sm)(P) = SEQ(S1,...,Si−1,S
′
i,Si+1,Si+2,...,Sm)(P).

Proof . The proof is mutatis mutandis the same as that of Lemma 18, and one identifies bS′i(P \ bSi−1(P))
and bSi+1(P \ bSi(P)) using Lemma 19 instead of Lemma 15. 2

The proof of Theorem 8 is the same as that of Theorem 6, but uses Lemma 20 instead of Lemma 18. 2

Proof of Theorem 9. The proof is very similar to the one of Theorem 7: under the premise, the MJCs
which form S respectively the SCCs constituting them are in the initial segment of some topologic ordering,
like the SCCs in the proof of Theorem 7. Thus the same line of argumentation applies. 2

Proof of Proposition 19. The proof is analogous to the one of Proposition 18. Similarly, for every
MJC-compatible split sequence S = (S1, . . . , Sn), n ≥ 1, anMJC-split sequence S′≤ = (S′1, . . . , S

′
n)

induced by some topological ordering ≤ of JG(P) exists such that Si = S′ki , for some 1 ≤ ki ≤ n′,
for every 1 ≤ i ≤ n; we can obtain S′ by refining Si \ Si−1, 1 ≤ i ≤ n where S0 = ∅ along maximal
joined components in JP(P) to Si,1, . . . , Si,ji such that Si,ji = Si. As MMJC(P) = SEQS

′
(P),

MMJC(P) ⊆ SEQS(P) follows from Theorem 5, and MMJC(P) =
⋂
S∈MSQ(P) SEQ

S(P) follows as
S′ ∈MSQ(P). 2

57

Appendix C. Section 7

Appendix C.1. Hardness results for semi-equilibrium semantics
Several results about Problem MCH and INF for disjunctive program under semi-equilibrium model

semantics (S = (At(P))) can be shown using a reduction from deciding the validity of a quantified Boolean
formula (QBF) of the form

Φ = ∃Z∀Y ∃X.E(X,Y, Z)

where X = {x1 . . . xr}, Y = {y1 . . . ys} and Z = {z1 . . . zt}We may assume without loss of generality
that E(X,Y, Z) =

∧m
i=1(li1 ∨ li2 ∨ li3) where each lij is a literal over X ∪ Y ∪ Z (i.e., 3-CNF form). We

define a program P0 with the following rules:

1. p← l∗i1, l
∗
i2, l
∗
i3, where l∗ij =

{
v, if lij = v
v, if lij = ¬v and v ∈ X ∪ Y ∪ Z;

2. x← p and x← p for each x ∈ X;

3. y ∨ y for each y ∈ Y ;

4. x ∨ x for each x ∈ X .

We assume for the moment that Z is void (i.e., Z = ∅); then one can show the following property [16]:

Some M ∈ MM (P0) exists s.t. p ∈M iff ¬(∀Y ∃X.E(X,Y)) is true. (C.1)

As P0 is positive, SEQ(P0) = {(M,M) |M ∈ MM (P0)}; it follows from this that brave reasoning from
the SEQ-models of a positive disjunctive program, i.e., deciding P |=b,t

SEQ p, is ΣP2 -hard; furthermore,
cautious reasoning P |=c,f

SEQ p, is ΠP
2 -hard.

Now we construct a new program P1 that is obtained by adding a fresh atom q in each rule head of P0

and the following rules:

5. p′ ← p and

6. ← not p′.

It is easy to see that {q} is a minimal model of P1. Now the following property holds:

({q} , {q, p′}) ∈ SEQ(P1) if and only if ∀Y ∃X.E(X,Y) is true. (C.2)

Clearly, the program is stratified; consequently, Problem MCH under SEQ-semantics is ΠP
2 -hard for

disjunctive and stratified disjunctive programs, which proves the hardness part of item (ii) in Theorem 10.
Eventually, we consider the target case in which Z 6= ∅. We construct a final program P given by the

union of P1 with the following rules:

7. z ∨ z for each z ∈ Z and

8. ← z, not bz and← z, not bz for each z ∈ Z where bz and bz are fresh atoms.

Intuitively, the effect of these rules is that in each SEQ-model (I, J), either bz or bz but not both must be
contained in gap(I, J), for each z ∈ Z; this serves to emulate quantification over Z. For each Z ′ ⊆ Z, the
HT-interpretation (IZ , JZ) = ({bz | z ∈ Z ′} ∪ {q}, {q, p′} ∪ {bz | z ∈ Z \ Z ′}) is a HT-model of P ; it
will be a SEQ-model of P precisely if ∀Y ∃X.E(X,Y, Z = Z ′) is true. Formally, one can show:

Some (I, J) ∈ SEQ(P) exists s.t. p′ ∈ J \ I iff Φ = ∃Z∀Y ∃X.E(X,Y, Z) is true. (C.3)

Note that the program P is stratified; it follows that brave reasoning under SEQ-semantics is ΣP3 -hard
for disjunctive and stratified disjunctive programs; this proves the respective hardness parts of item (i)
in Theorem 11. For cautious reasoning from disjunctive and stratified disjunctive programs under SEQ-
semantics, ΠP

3 -hardness of item (ii) in Theorem 11 is shown by a slight extension of the reduction, which is
carried out in Subsection Appendix C.2 to derive this result for fixed truth value v.

58

Appendix C.2. Hardness results for Problem INF with fixed truth value
Appendix C.2.1. Brave reasoning

The construction in Section 7.2 for normal, stratified normal and hcf programs uses bt, but in no
SEQ-model any atom is true (all rules are constraints); thus we can add b← not a and ask for b about the
truth value f , and add further c← not b and ask for c about the truth value t.

For disjunctive programs, we consider the ΣP3 -hardness proof for brave reasoning under SEQ-semantics
in Section Appendix C.1. Then for the program P constructed from the QBF Φ and the particular atom
q, we have that P |=b,t

SEQ q iff the QBF Φ evaluates to true, and P |=b,t
SEQ q is equivalent to P |=b,bt

SEQ p′.
Furthermore, q has never value bt in the SEQ-models of the program P ; if we let P ′ = P ∪ {q′ ← not q},
then P ′ |=b,f

SEQ q′ iff P |=b,t
SEQ q. So for each fixed value v, brave inference from the SEQ-models of a

(stratified) disjunctive program is ΣP3 -hard; this trivially generalizes to SEQ-models relative to arbitrary
splitting sequences S.

Appendix C.2.2. Cautious reasoning
For fixed truth value v = bt, the cautious inference problem is for SEQ-models easier than for a truth

value given in the input:

Proposition 25. Given a program P and an atom a, deciding whether P |=c,bt
SEQ a is (i) in coNP for each

of normal, normal stratified, and hcf P and (ii) in Πp
2 for disjunctive P .

This holds because in this case, P 6|=c,bt
SEQ a iff some h-minimal HT-model (X,Y) of P exists such that

a /∈ Y \X; such a h-minimal model can be guessed and verified in polynomial time in case (i) resp. in
polynomial time with an NP oracle in case (ii).

For the other truth values, the construction in Section 7.2 for normal, stratified normal and hcf programs
uses truth value f for cautious reasoning, and as in no SEQ-model any atom is true, we can add b← not a
and ask whether b has cautiously value t; if we add another split layer with a rule b← not b, not a (such
that S = (S1, S2) and b ∈ S2 \ S1), then we can ask whether b has cautiously value bt.

Regarding disjunctive programs, we had above in the programs P and P ′ for brave reasoning with fixed
truth values t and f query atoms q resp. q′ whose truth values are opposite in the SEQ-models of P ′ and
always true or false; so we immediately obtain the ΠP

3 -hardness for cautious reasoning. If we add another
split layer with b← not b, p similarly as above, then we can ask whether b has cautiously value bt.

Appendix C.3. Constructing and recognizing canonical splitting sequences
Proof of Proposition 20. Let P be a program. First we prove that conditions (i) and (ii) in Definition 12
imply that there is no path from K1 to K2 and vice versa. By contradiction, first suppose that there is a
path from K1 to K2, i.e., there exist K ′1, . . . ,K

′
m ∈ SCC(P) such that such that K1 = K ′1, K ′m = K2

and (K ′i,K
′
i+1) ∈ ESG for 1 ≤ i < m. As in each topological ordering (C1, . . . , Cn) ∈ O(SG(P))

K ′i+1 must precede K ′i, for 1 ≤ i < m, it follows that K2 precedes K1, which contradicts condition (i).
Otherwise, suppose that there exists some path from K2 to K1. Let K ′1, . . . ,K

′
m ∈ SCC(P) be an arbitrary

such path, i.e., K ′1 = K2, (K ′i,K
′
i+1) ∈ ESG for 1 ≤ i < m and K ′m = K1. By condition (ii) we know

that (K2,K1) 6∈ ESG . Hence m > 2 and K ′m−1 6= K1, K ′m−1 6= K2; thus in every topological ordering
(C1, . . . , Cn) ∈ O(SG(P)), K1 precedes K ′m−i and K ′m−i precedes K2, which contradicts condition (i).

Now we prove that the disconnectedness hypothesis implies conditions (i) and (ii). As there is no path
from K2 to K1, condition (ii) trivially holds. Moreover for each topological ordering of SCC(P) there
exist maximal (possibly empty) sets Ai ⊆ SCC(P) such that for each K ′i ∈ Ai, K ′i precedes Ki, i = 1, 2.
Because there is no path from K1 to K2, it follows that K2 6∈ A1 and because there is no path from K2

to K1, it follows that K1 6∈ A2. Therefore we can construct a topological ordering in which all strongly
connected components in A1 ∪A2 precede K1 (this is possible because if there exists some K ∈ A2 such
that K1 precedes K, then K1 precedes K and K precedes K2; this contradicts the hypothesis that no path
from K2 to K1 exists), and K1 precedes immediately K2, i.e., condition (i) holds (this is possible because
there is no K ∈ A1 such that K2 precedes K). 2

Proof of Corollary 10. (⇒) If (K1,K2) is a joinable pair witnessed by r, then by Proposition 20 K1

and K2 are disconnected in SG(P); i.e., they are incomparable in the partial order on SCC(P) induced by

59

SG(P). By condition (iii), At(r) ⊆ C1 ∪ · · · ∪ Cs+1 holds with Cs = K1 and Cs+1 = K2; as every SCC
C 6= K1,K2 such that At(r) ∩ C 6= ∅ occurs in C1, . . . , Cs−1, no path in SG(P) from C can reach K1 or
K2; consequently, K1 and K2 are maximal SCCs in SG(P) such that At(r) ∩ C 6= ∅

(⇐) Suppose without loss of generality that K1 = C1 and K2 = C2. Then, K1 and K2 must
be disconnected; hence by Proposition 20, K1 and K2 satisfy condition (i) and (ii) of a joinable pair.
Furthermore, as all Ci, Cj , 1 ≤ i 6= j ≤ l, must be pairwise disconnected, by extending the argument in the
proof of Proposition 20, we can build from a topological ordering ≤= (C1, . . . , Cn) of SG(P) another
topological ordering of SG(P) in which all SCCs in A =

⋃l
i=1Ai ∪ {C3, . . . , Cl} precede K1 and K1

immediately precedes K2, where Ai = {K ∈ SCC(P) | K < Ci}; this is possible since no K ∈ A exists
such that K2 precedes K. As A ∪ {C1, C2} must contain all SCCs C such that At(r) ∩ C 6= ∅, it follows
that condition (iii) holds; hence (K1,K2) is a joinable pair. 2

Proof of Theorem 14. By Corollary 10, the joinable pairs (K1,K2), K1 6= K2 witnessed by constraint
r are given by all Cri , C

r
j from Cr1 , . . . , C

r
l computed in Step 2, 1 ≤ i 6= j ≤ l; hence, this collection is

joinable, if l > 1; if l = 1, K1 = Cr1 , K2 = Cr1 is trivially joinable. Thus, in Step 3 Cr ∈ JC (P) holds.
Furthermore, merging J1 and J2 in Step 4 results in a set J1 ∪ J2 ∈ JC (P): by an inductive argument,
all Criji that have been merged into Ji, i = 1, 2 are joinable; thus if J1 ∩ J2 6= ∅, then some J ∈ J1 ∩ J2
exists such that all (Cr1j1 , C) and (C,Cr2j2) are joinable pairs; hence all Crj merged into J1 ∪ J2 are joinable
and J1 ∪ J2 ∈ JC (P). Finally, suppose that after Step 4 MJC(P) 6= MC ∪ (SCC(P) \ NMI); by
construction of MC and the maximality condition onMJC(P), it follows that some J ′ ∈MJC(P) and
J ∈ MC ∪ (SCC(P) \NMI exist such that J ⊂ J ′. From Corollary 10, it follows that all SCCs C merged
into J ′ are joinable and that J ∈ MC must hold; otherwise, J is a non-joinable SCC, which implies J = J ′.
Furthermore, some SCC Crj merged into J must be joinable to some SCC C merged into J ′ but not into J ;
as the joinable pair (Crj , C) is witnessed by some constraint r′, Crj , C were merged into some J ′′inMC ;
but this means J ∩ J ′′ 6= ∅, and hence Step 4 for MC would not have been completed, a contradiction. Thus
MJC(P) = MC ∪NMI holds. The correctness of the constructed JG(P) is then obvious.

Regarding the time complexity, we note the following:
In Step 1, DG(P), SCC(P) and SG(P) are constructable in linear time;
We can compute the SCCs Cr1 , . . . , C

r
l efficiently, e.g. by using a stratified program P r with the

following rules:

1. rj ← , for each Cj ∈ VSG such that Cj ∩At(r) 6= ∅;

2. rj ← ri and n max rj ← ri, for each (Ci, Cj) ∈ ESG ;

3. max rj ← rj , not n max rj , for each Ci ∈ VSG .

Informally, the atom rj encodes reachability of the component Cj in the SCC-graph from a component that
contains atoms from the constraint r; max rj and n max rj are used to single out the topmost (maximal)
reached components using double negation. The single answer set of Pr yields then the desired maximal
components Cr1 , . . . , C

r
l ; as Pr can be built and evaluated in linear time, Step 2 is feasible in linear time for

each r.
Step 3 is clearly feasible in linear time; also Step 4 (iterative merging the J1, J2) is feasible (if properly

done) in linear time, and similarly Step 5 givenMJC(P) and SG(P).
Thus in total,MJC(P) and JG(P) are computable in time O(cs·‖P‖), which proves the result. 2

Appendix D. Section 8

Proof of Theorem 15. The proof proceeds as follows. We first show that (1) the models of P E correspond
to the HT-models (X,Y) of P via ·E ; next, we establish that (2) for every minimal model P E , the
corresponding HT-model of P is h-minimal and (3) that every SEQ-model of P is among the models in (2),
i.e., {(X,Y)E | (X,Y) ∈ SEQ(P)} ⊆ MM (P E). As the E-violation set V(I) of any model I = (X,Y)E

of P E corresponds to the gap of (X,Y) (precisely, V(I) = Egap(X,Y)), it follows that I ∈ MM (P E) has
a ⊆-minimal E-violation set, i.e., is an evidential stable model of P , iff (X,Y) is a SEQ-model of P .

60

As for (1), it is readily seen that for every HT-model (X,Y) of P , I = (X,Y)E = X∪EY is a model of
P E : all rules (2) are satisfied as Y |= P , and all rules (3) as X ⊆ Y . Finally for the rules (1), as (X,Y) |= r,
either H(r) ∩X 6= ∅, or B+(r) 6⊆ Y (which implies B+(r) 6⊆ X), or B−(r) ∩ Y 6= ∅; hence I satisfies
the rules (1). The proof of the converse, for every model I of P E , β(I) is a HT-model of P , is similar.

Regarding (2), if I ∈ MM (P E), in particular no model J ⊂ I of P E exists such that I \ Σ = J \ Σ;
thus if β(I) = (X,Y), no HT-model (X ′, Y) of P exists such that X ′ ⊂ X .

As for (3), towards a contradiction assume that some (X,Y) ∈ SEQ(P) fulfills I = (X,Y)E /∈
MM (P E). Hence, some J = (X ′, Y ′)E ∈ MM (P E) exists such that J ⊂ I . As X ′ ⊆ X , Y ′ ⊆ Y , and
(X,Y) is h-minimal, it follows that Y ′ ⊂ Y . As PY ⊆ PY ′ it follows thatX ′ |= PY ; sinceX ∈ MM (PY)
and X ′ ⊆ X , it follows X ′ = X . Therefore, gap(X ′, Y ′) ⊂ gap(X,Y); as by (2) (X ′, Y ′) is h-minimal,
(X,Y) /∈ SEQ(P), which is a contradiction. This proves the result. 2 2

Proof of Proposition 22. (⊆) If M = (X,Y) is a SEQ-model of Pwf , then M is a h-minimal model of
Pwf and gap(M) ⊆ gap(WF (Pwf)) = gap(WF (P)). Corollary 11 implies that M v WF (Pwf)) =
WF (P) = (I, J), and thus Y ⊆ J . By antimonotonicity of γP (.), we have γP (Y) ⊇ γP (J) = I , and
thus γPwf (Y) = γP (Y) ∪ I = γP (Y) = X . Thus M is also a h-minimal model of P . If M were not a
SEQ-model of P , then by Corollary 11 some refinement M ′ of WF (P) with gap(M ′) ⊂ gap(M) would
be a SEQ-model of P . But M ′ would then be a h-minimal model of Pwf and contradict that M is a
SEQ-model of Pwf . Thus M is a SEQ-model of P .

(⊇). Let M be a SEQ-model of P such that gap(M) ⊆ gap(WF (P)). Then by Corollary 11 M refines
WF (P) and thus is clearly a model of Pwf , and moreover h-minimal. If M were not a SEQ-model of Pwf ,
then some SEQ-model M ′ of Pwf with smaller gap exists; we can then as in the case (⊆) infer that M ′ is
also a h-minimal model of P , which contradicts that M is a SEQ-model of P . 2

Proof of Proposition 23. Consider any splitting sequence S = (S1, S2, ...) of the program P and let
M = (X,Y) be any SEQ-model of P such that M v WF (P) (by Corollary 11 such an M exists). Let
M1 = M |S1

and P1 = bS1
(P).

Then, M1 is a HT-model of P1 and moreover h-minimal for P1 (for otherwise, M would not be h-
minimal for P : we could make X on S1 smaller, as we can keep the same valuation for the atoms in Σ \ S1;
note that PY is positive and atoms from S1 occur in tS1(P) only in rule bodies). Furthermore, we have
M1 vWF (P)|S1 . Now some SEQ-modelN1 = (X1, Y1) of P1 must exist such that gap(N1) ⊆ gap(M1);
as gap(M1) ⊆ gap(WF (P)|S1

), Corollary 11 and Lemma 5 imply that N1 v WF (P1) (observe that
WF (P)|S1

= WF (P1), which follows from items 1 and 2 of Lemma 5).
If we consider the program P2 = PS1(X1, Y1), then by an inductive argument on the length of the

splitting sequence it has some SCC-model N2 w.r.t. S′ = (S2, ..., Sn) such that N2 vWF (P2), provided
WF (P2) exists; however, PS1(X1, Y1) adds a constraint ← not a for each a ∈ Y1 \ X1, and as a does
not occur in any rule head of P2, WF (P2) does not exist if X1 ⊂ Y1. To address this, we use in the
argument a variant of the transformation PS1(X1, Y1), denoted P̂S1(X1, Y1), that adds a rule a← not a
for each a ∈ Y1 to PS1(X1, Y1); clearly, PS1(X1, Y1) and P̂S1(X1, Y1) have the same splitting sets
and the same SEQ-models w.r.t. any splitting sequence; let P̂2 = P̂S1(X1, Y1), Then we claim that
WF (P̂2) exists and WF (P̂2) v WF (P) holds. Indeed, consider the constraint-free part P ′ of P ; then
WF (P ′) = WF (P) and, if Q′ denotes the (constraint-free) program for P ′ according to item 2 of Lemma 5,
we have WF (Q′) = WF (P ′) = WF (P). If we add to Q′ all constraints of P , then the resulting program
Q fulfills WF (Q) = WF (P). If we modify Q by (i) adding from P̂S1(X1, Y1) all facts a ∈ X1 and all
constraints {a ← not a | a ∈ Y1} ∪ {← a | a ∈ S1 \ Y1}, and (ii) remove all rules a ← not a such that
a ∈ S1 \ Y1, the resulting program Q′′ is such that WF (Q′′) vWF (Q) = WF (P) if WF (Q′′) exists, as
assigning any atoms in gap(WF (P)) true or false does not affect the already assigned atoms. But as every
constraint r in P has some body literal that is false in WF (P), this holds also for Q′′, and thus WF (Q′′)
exists. Now we note that Q′′ = P̂2; this proves the claim.

Consequently,N2 is an SCC-model of P̂2 andN2 vWF (P̂2) vWF (P) holds. Now the SEQS-models

61

of P are, by definition,

SEQS(P) = mc
(⋃

(X,Y)∈SEQ(bS1 (P))

SEQS
′
(PS1(X,Y)

)
= mc

(⋃
(X,Y)∈SEQ(bS1 (P))

SEQS
′
(P̂S1(X,Y)

)
.

If the model N2 appears in this set, then it is an SEQS-model of P that refines WF (P) and proves the first
claim of the proposition. Otherwise, some SEQS-model N ′ of P must exist such that gap(N ′) ⊂ gap(N2);
asN ′ is a SEQ-model of P and gap(N ′) ⊆ gap(WF (P)), it follows from Corollary 11 thatN ′ vWF (P),
and also in this case an SEQS-model of P that refines WF (P) exists; this proves the first claim of the
proposition. As for the second claim, by Corollary 11 every SEQ-model M of P , and thus in particular
every SEQS-model M of P such that gap(M) ⊆ gap(WF (P)) satisfies M vWF (P); thus if we let M
in the argument above be an arbitrary SEQS-model of P , we arrive at N2 = M and thus the second claim
holds. This proves the result. 2

References

[1] Alcântara, J., Damásio, C.V., Pereira, L.M.: A declarative characterization of disjunctive paraconsistent
answer sets. In: de Mántaras, R.L., Saitta, L. (eds.) Proc. 16th European Conf. Artificial Intelligence
(ECAI 2004). pp. 951–952. IOS Press (2004)

[2] Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: Fermé, E., Leite, J. (eds.)
Proc. 14th European Conf. Logics in Artificial Intelligence (JELIA 2014). pp. 457–471. LNCS/LNAI
8761, Springer (2014)

[3] Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In: Minker [36], pp. 89–148

[4] Balduccini, M., Gelfond, M.: Logic programs with consistency-restoring rules. In: McCarthy, J.,
Williams, M.A. (eds.) International Symp. Logical Formalization of Commonsense Reasoning, AAAI
2003 Spring Symposium Series. pp. 9–18 (2003)

[5] Baral, C., Subrahmanian, V.S.: Dualities between alternative semantics for logic programming and
nonmonotonic reasoning. J. Automated Reasoning 10(3), 399–420 (1993)

[6] Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge Univ.
Press (2003)

[7] Baral, C., Greco, G., Leone, N., Terracina, G. (eds.): Proc. 8th International Conf. Logic Programming
and Nonmonotonic Reasoning (LPNMR 2005), Diamante, Italy, September 5-8, 2005, LNCS 3662.
Springer (2005)

[8] Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals of
Mathematics and Artificial Intelligence 12, 53–87 (1994)

[9] Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic programming. Theor. Comput. Sci. 68(2),
135–154 (1989)

[10] Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In: Proc.
22nd Conf. Artificial Intelligence (AAAI ’07), July 22-26, 2007, Vancouver. pp. 385–390. AAAI Press
(2007)

[11] Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Comm. ACM 54(12),
92–103 (2011)

[12] de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A semantical framework for hybrid knowledge
bases. Knowl. Inf. Syst. 25(1), 81–104 (2010)

62

[13] Cabalar, P., Odintsov, S.P., Pearce, D.: Logical foundations of well-founded semantics. In: Do-
herty, P., Mylopoulos, J., Welty, C.A. (eds.) Proc. 10th International Conf. Principles of Knowledge
Representation and Reasoning (KR 2006), pp. 25–35. AAAI Press (2006)

[14] Cabalar, P., Odintsov, S.P., Pearce, D., Valverde, A.: Partial equilibrium logic. Ann. Math. Artif. Intell.
50(3-4), 305–331 (2007)

[15] Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular nonmonotonic logic programming
revisited. In: Hill, P., Warren, D. (eds.) Proc. 25th International Conf. Logic Programming (ICLP
2009). pp. 145–159. LNCS 5649, Springer (2009)

[16] Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence 15(3/4), 289–323 (1995)

[17] Eiter, T., Fink, M., Moura, J.: Paracoherent answer set programming. In: Proc. 12th International Conf.
Principles on Knowledge Representation and Reasoning (KR 2010). pp. 486–496. AAAI Press (2010)

[18] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order reasoning
and external evaluations in answer set programming. In: Kaelbling, L.P., Saffiotti, A. (eds.) Proc.
19th International Joint Conf. Artificial Intelligence (IJCAI-05). pp. 90–96. Professional Book Center
(2005)

[19] Eiter, T., Leone, N., Saccà, D.: On the partial semantics for disjunctive deductive databases. Annals of
Mathematics and Artificial Intelligence 19(1/2), 59–96 (1997)

[20] Faber, W., Greco, G., Leone, N.: Magic sets and their application to data integration. J. Comput. Syst.
Sci. 73(4), 584–609 (2007)

[21] Ferraris, P.: Answer sets for propositional theories. In: Baral et al. [7], pp. 119–131,

[22] Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. TPLP 5(1-2), 45–74 (2005)

[23] Fink, M.: Paraconsistent hybrid theories. In: Brewka, G., Eiter, T., McIlraith, S.A. (eds.) KR. pp.
391–401. AAAI Press (2012)

[24] Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Synthesis
Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers (2012),

[25] Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique for debugging answer-
set programs. In: Proc. 23rd Conf. Artificial Intelligence (AAAI 2008), Chicago, Illinois, USA. pp.
448–453. AAAI Press (2008)

[26] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New
Generation Computing 9, 365–385 (1991)

[27] Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preussischen
Akademie der Wissenschaften 16(1), 42–56 (1930)

[28] Huang, S., Li, Q., Hitzler, P.: Reasoning with inconsistencies in hybrid MKNF knowledge bases. Logic
Journal of the IGPL 21(2), 263–290 (2013)

[29] Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models.
J. Artif. Intell. Res. (JAIR) 35, 813–857 (2009)

[30] Kakas, A.C., Mancarella, P.: Generalized stable models: A semantics for abduction. In: Proc. 9th
Eureopean Conf. Artificial Intelligence (ECAI 1990). pp. 385–391, IOS Press (1990)

[31] Lifschitz, V., Turner, H.: Splitting a logic program. In: Proc. International Conf. Logic Programming
(ICLP-94). pp. 23–38. MIT-Press (1994)

63

[32] Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Log.
2(4), 526–541 (2001)

[33] Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Ann. Math. Artif. Intell.
25(3-4), 369–389 (1999),

[34] Lifschitz, V., Woo, T.Y.C.: Answer sets in general nonmonotonic reasoning (preliminary report). In:
Nebel, B., Rich, C., Swartout, W.R. (eds.) Proc. 3rd International Conf. Principles of Knowledge
Representation and Reasoning (KR’92). Cambridge, MA, October 25-29, 1992. pp. 603–614. Morgan
Kaufmann (1992)

[35] Marek, V.W., Nerode, A., Remmel, J.B.: Logic programs, well-orderings, and forward chaining.
Annals of Pure and Applied Logic 96(1-3), 231–276 (1999)

[36] Minker, J. (ed.): Foundations of Deductive Databases and Logic Programming. Morgan Kaufman,
Washington DC (1988)

[37] Odintsov, S.P., Pearce, D.: Routley semantics for answer sets. In: Baral et al. [7], pp. 343–355

[38] Oetsch, J., Pührer, J., Tompits, H.: Stepwise debugging of description-logic programs. In: Correct
Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz. pp. 492–508. No. 7265 in
LNCS, Springer (2012) !!

[39] Osorio, M., Ramı́rez, J.R.A., Carballido, J.L.: Logical weak completions of paraconsistent logics. J.
Log. Comput. 18(6), 913–940 (2008)

[40] Pearce, D.: Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2), 3–41 (2006)

[41] Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In:
de la Banda, M.G., Pontelli, E. (eds.) Proc. 24th International Conf. Logic Programming (ICLP 2008).
Lecture Notes in Computer Science, vol. 5366, pp. 546–560. Springer (2008)

[42] Pereira, L.M., Alferes, J.J., Aparı́cio, J.N.: Contradiction removal semantics with explicit negation.
In: Masuch, M., Pólos, L. (eds.) International Conf. Logic at Work: Knowledge Representation and
Reasoning Under Uncertainty. Lecture Notes in Computer Science, vol. 808, pp. 91–105. Springer
(1992)

[43] Pereira, L.M., Pinto, A.M.: Revised stable models - a semantics for logic programs. In: Bento, C.,
Cardoso, A., Dias, G. (eds.) Proc. 12th Portuguese Conf. Artificial Intelligence (EPIA 2005). Lecture
Notes in Computer Science, vol. 3808, pp. 29–42. Springer (2005)

[44] Pereira, L.M., Pinto, A.M.: Approved models for normal logic programs. In: Dershowitz, N., Voronkov,
A. (eds.) Proc. 14th International Conf. Logic for Programming, Artificial Intelligence, and Reasoning
(LPAR 2007). Lecture Notes in Computer Science, vol. 4790, pp. 454–468. Springer (2007)

[45] Pereira, L.M., Pinto, A.M.: Layered models top-down querying of normal logic programs. In: Gill, A.,
Swift, T. (eds.) Proc. 11th International Symposium on Practical Aspects of Declarative Languages,
(PADL 2009). Lecture Notes in Computer Science, vol. 5418, pp. 254–268. Springer (2009)

[46] Przymusinski, T.C.: On the declarative semantics of deductive databases and logic programs. In:
Minker [36], pp. 193–216

[47] Przymusinski, T.C.: Stable semantics for disjunctive programs. New Generation Computing 9, 401–424
(1991)

[48] Saccà, D., Zaniolo, C.: Partial models and three-valued stable models in logic programs with negation.
In: Subrahmanian, V. (ed.) Proc. First Workshop on Logic Programming and Nonmonotonic Reasoning
(LPNMR 1991), pp. 87–101. MIT Press (1991)

64

[49] Sakama, C., Inoue, K.: Paraconsistent stable semantics for extended disjunctive programs. J. Log.
Comput. 5(3), 265–285 (1995)

[50] Sakama, C., Inoue, K.: An abductive framework for computing knowledge base updates. Theory and
Practice of Logic Programming 3(6), 671–713 (2003)

[51] Seipel, D.: Partial evidential stable models for disjunctive deductive databases. In: Dix, J., Pereira,
L.M., Przymusinski, T.C. (eds.) Proc. Third International Workshop on Logic Programming and
Knowledge Representation (LPKR ’97), Selected Papers. LNCS 1471, pp. 66–84. Springer (1997)

[52] Syrjänen, T.: Debugging inconsistent Answer-Set Programs. In: Proc. 11th International Workshop
on Nonmonotonic Reasoning (NMR 2006), pp. 77–83. TU Clausthal, Dept. Informatics, Tech. Rep.
IfI-06-04 (2006)

[53] Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(2), 146–160 (1972)

[54] Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. Theory and
Practice of Logic Programming 3(4-5), 609–622 (2003),

[55] van Gelder, A.: The alternating fixpoint of logic programs with negation. J. Comput. Syst. Sci. 47(1),
185–221 (1993),

[56] van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs. J. ACM
38(3), 620–650 (1991)

[57] Wang, K., Zhou, L.: Comparisons and computation of well-founded semantics for disjunctive logic
programs. ACM Trans. Comput. Log. 6(2), 295–327 (2005)

[58] Wang, Y., Zhang, M., You, J.H.: Logic programs, compatibility and forward chaining construction. J.
Comput. Sci. Technol. 24(6), 1125–1137 (2009)

[59] You, J.H., Yuan, L.: A three-valued semantics for deductive databases and logic programs. J. Computer
and System Sciences 49, 334–361 (1994)

65

