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Ionic screening and dissociation are crucial for
understanding chemical self-propulsion in
polar solvents

Aidan T. Brown,*a Wilson C. K. Poon,a Christian Holmb and Joost de Graaf*ab

Polar solvents like water support the bulk dissociation of themselves and their solutes into ions, and the

re-association of these ions into neutral molecules in a dynamic equilibrium, e.g., H2O2 " H+ + HO2
�.

Using continuum theory, we study the influence of these association–dissociation reactions on the

self-propulsion of colloids driven by surface chemical reactions (chemical swimmers). We find that

association–dissociation reactions should have a strong influence on swimmers’ behaviour, and therefore

should be included in future modelling. In particular, such bulk reactions should permit charged swimmers

to propel electrophoretically even if all species involved in the surface reactions are neutral. The bulk

reactions also significantly modify the predicted speed of chemical swimmers propelled by ionic

currents, by up to an order of magnitude. For swimmers whose surface reactions produce both anions

and cations (ionic self-diffusiophoresis), the bulk reactions produce an additional reactive screening

length, analogous to the Debye length in electrostatics. This in turn leads to an inverse relationship

between swimmer radius and swimming speed, which could provide an alternative explanation for

recent experimental observations on Pt-polystyrene Janus swimmers [S. Ebbens et al., Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2012, 85, 020401]. We also use our continuum theory to investigate the

effect of the Debye screening length itself, going beyond the infinitely-thin-screening-length approximation

used by previous analytical theories. We identify significant departures from this limiting behaviour for

micron-sized swimmers under typical experimental conditions and find that the approximation fails entirely

for nanoscale swimmers.

1 Introduction

The 20th century witnessed a revolution in condensed matter
physics, due to the ready availability of well-characterised
colloidal particles (1 nm to 10 mm in size). These particles are
often viewed as ‘large atoms’: they are small enough to be subject
to Brownian motion, and thus to all the machinery of equili-
brium statistical physics, but large enough that their microscopic
dynamics and interactions can be observed and tuned. Studying
colloidal particles has led to fundamental breakthroughs.
Most notably, the observation and subsequent understanding
of Brownian motion in colloidal systems1 led to acceptance of
the molecular picture of matter.

Moving into the 21st century, physicists have started to recruit
colloids to tackle systems that are intrinsically out-of-equilibrium,

specifically where the components are themselves self-propelled.
This is the field of ‘active matter’. A wide range of novel, self-
propelled colloids2–9 have been synthesised—see example sketches
in Fig. 1 for two designs relevant to this work. Such self-propelled

Fig. 1 Cartoon of the two paradigmatic chemical swimmers discussed in the
text. Both swimmers move at a few mm s�1 in 10% H2O2 solution, powered by
the decomposition of H2O2 on their surfaces. (a) Bimetallic (typically gold–
platinum) rod,2 of typical length 2 mm and width 300 nm. The accepted
propulsion mechanism for these swimmers is via a H+ current, as shown.
(b) Platinum–polymer (usually polystyrene) Janus sphere,3 of typical radius 1 mm.
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colloids are intrinsically out of equilibrium—they continuously
transform chemical, thermal, or electromagnetic energy into
directed motion—and recent work has focussed on using these
systems to experimentally explore exciting non-equilibrium phenom-
ena such as phase separation and collective motion.10–13

In parallel with this research, much work has gone into
understanding the experimental propulsion mechanisms at the
level of surface chemical reactions.2–4,14–17 Working out how
these tiny motors function is a fundamental problem in its own
right. However, understanding the propulsion mechanism is
also an essential first step in understanding the experi-
mental collective behaviour. This is because unlike biological
swimmers such as E. coli, where the biochemical reactions
responsible for propulsion take place internally, synthetic
swimmers are usually propelled by surface chemical reactions
that directly modify the chemical, electrostatic, or temperature
fields of their surroundings. These fields modify the propul-
sion speed of other swimmers, generating so-called ‘phoretic’
swimmer–swimmer interactions in addition to the hydrodynamic
and contact interactions experienced by all swimmers.18–21 As
these phoretic interactions are directly coupled to the chemical
reactions responsible for propulsion, knowing how artificial
swimmers self-propel is essential for understanding their
collective behaviour.

This bottom-up approach contrasts with the tactic employed
by most theoretical modellers of active matter, which is to
explore the phenomenology arising from minimal or effective
models of swimmer–swimmer interactions, by which we mean
models that have no explicit connection with microscopic para-
meters. Minimal models include the Vicsek model22 or the active
Brownian model23,24 which considers only contact forces, while
more complex, but still effective, hydrodynamic25–27 and phore-
tic models18,28–31 are now also being explored. This research is
valuable in unlocking generic non-equilibrium physics principles
and is often able to reproduce experimental behaviour (phase
separation, etc.) surprisingly well. However, it is often unclear
whether such agreement is due to judicious tuning of parameters,
or whether there is a real correspondence in generic physics so
that details do not matter. In lieu of a general theory for non-
equilibrium physics, only in-depth knowledge of the microscopic
physics for specific swimmers is likely to allow the resolution of
this issue. If a microscopically justified model predicts the same
phenomenon as generic models, then details may indeed not
matter. On the other hand, if a microscopic model fails, then new
physics is indicated.

That said, current understanding of self-propulsion mecha-
nisms is often very incomplete, and hence the necessary founda-
tions for models which can reproduce multiparticle behaviour
from a bottom-up perspective are lacking. In particular, most
research so far has focussed on unravelling the surface chemistry
of the swimmer itself.2,14–17,32–34 This is understandable and
necessary, but it has meant that other aspects, such as the
chemistry of the bulk solvent, have been neglected.

In this article, we show that taking into account the chemistry
of common polar solvents such as water and hydrogen peroxide,
significantly, and often qualitatively, modifies the predicted

propulsion behaviour of almost all self-propelled synthetic
swimmers. In this first study, we limit our discussion to the
propulsion of single particles, because this is a necessary first
step in understanding more complex behaviour. For most of the
paper, we also do not go into the details of the surface chemistry,
which are not well understood. This allows us to highlight the
bulk solvent effects, at the expense of explicit predictions for the
propulsion speed. However, in Section 7, in order to compare our
results with experiments, we do examine the predicted propul-
sion speed obtained with suitably simple assumptions for the
surface chemistry. One of the main conclusions of our paper is
that more detailed experimental studies of both the surface
and bulk chemistry are crucial for a detailed understanding of
self-propulsion.

2 Chemical propulsion
2.1 Self-electrophoresis

We discuss here the most experimentally typical self-propelled
colloids, which we term ‘chemical swimmers’. They are most
easily defined by example. Fig. 1 shows two chemical swimmers,
both powered by the catalytic decomposition of hydrogen peroxide
on their surfaces. Because the colloid surface is anisotropic, this
reaction produces chemical gradients which, via interaction with
the particle surface, eventually lead to self-propulsion.

We say ‘eventually’ because the propulsion mechanism of
these swimmers is somewhat involved. For the example given in
Fig. 1a, H2O2 decomposition does not occur just by the simple
chemical reaction

2H2O2 - 2H2O + O2, (R1)

but also occurs partially electrochemically, with two half reac-
tions taking place preferentially on the Au or Pt surfaces2,4 for
example

H2O2 �!Pt O2 þ 2Hþ þ 2e�;

2e� þ 2Hþ þH2O2 �!Au
2H2O:

(R2)

These half reactions produce a proton gradient outside the
colloid, which generates a local electric field. The colloid sur-
face, like most surfaces in water, is charged, so this electric
field causes electroosmotic flow over the colloid surface, leading
to self-propulsion. This propulsion mechanism is called ‘self-
electrophoresis’.4 The electric field also generates a proton
current outside, which is balanced by an electric current inside
the conductive swimmer.

A large body of experimental evidence confirms that self-
electrophoresis is the appropriate propulsion mechanism for
these bimetallic swimmers. For example, their propulsion speed
scales inversely with salt concentration,11,16 which is expected
from a simple application of Ohm’s law. Recent results16,17

indicate that self-electrophoresis is also the appropriate propul-
sion mechanism for the type of colloid shown in Fig. 1b, which
has a single metallic coating. This is at first surprising because
there is no obvious mechanism for producing the ionic gradient
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needed for self-electrophoresis. However, geometrical differences
between the equator and pole of the catalytic coating, such as
thickness variation, may couple to the half-reaction rates in (R2)
and so provide the necessary asymmetry.17 In this paper, we go
further and show that these effects are not limited to swimmers
that can support ionic currents. All swimmers in aqueous
solution are likely to be self-electrophoretic to a major degree,
whatever their surface reaction mechanism.

2.2 Surface chemistry

Before we discuss the effects of the bulk solution, we point out
one general difficulty with self-electrophoresis that will also
apply to other complex propulsion mechanisms. This is that the
relevant surface reaction rates are extremely hard to measure. The
overall reaction rate (R1) can be easily obtained by measuring
reactant or product concentrations,16,17 but for self-electrophoresis
the important rate is the proton production rate (R2), and this
is likely to make up only a tiny proportion of the overall
reaction, with the remainder proceeding via (R1).2 Measuring
the rate of an individual reaction pathway like (R2) is challenging,
and has not yet been done, to our knowledge, for any self-
propelled particle.

This would not be a problem if we could predict these rates.
However, surface catalysis is a notoriously sensitive phenomenon,
and these surface reaction rates are likely to vary unpredictably
with almost every parameter, e.g., pH, ionic strength, and surface
roughness.35 Reversing the argument, the only currently available
method of estimating these reaction rates is from the particle
propulsion velocity itself. That is, with a sufficiently accurate
microscopic model, the surface reaction rates can be inferred from
the propulsion speed.32 The catalytic chemistry of micro- and
nanoparticles is of huge industrial importance, so this provides
another major motivation for obtaining a detailed theoretical
understanding of self-electrophoresis.

2.3 Bulk chemistry

At first glance, the chemistry of the bulk solution is much
simpler than that of the surface. However, a polar solvent such as
water presents two complications which have not yet been fully
taken into account. The first of these is electrostatic screening.
In so-called phoretic mechanisms, such as self-electrophoresis,
fluid flow is generated in a layer around the particle surface.
In self-electrophoresis, the thickness of this interaction layer is
given by the electrostatic screening or Debye length k�1: outside
this screening layer, the free charge density, which is responsible
for fluid flow, decays rapidly to zero.

Analytical studies typically make use of a thin-screening
approximation ka c 1, where a is the swimmer radius, because
this dramatically simplifies the calculation of propulsion
speed, flow fields, etc.16,17,33,36 However, this assumption is
not generally valid: k�1 is of order 100 nm for an experimentally
typical 3 M H2O2 solution,16 and active colloids typically range
in size from 10 nm37 to 10 mm.15 In this paper, we show that the
thin-screening approximation can be dropped from analytical
calculations, and that this dramatically reduces the predicted
propulsion speeds, by up to several orders of magnitude for

nanoscale swimmers. To the best of our knowledge, this result
has not been shown even with numerics, such as the finite
element method (FEM), for which the thin screening approxi-
mation is not employed.14,34 Here, we use FEM calculations to
verify the analytical results.

The second complication of aqueous and similar polar
environments is that the solvent is not chemically inert. It is
an ‘active fluid’ that can be driven out of chemical equilibrium
by the reactions on the particle surface. This consideration has
been appreciated for biological fluids such as the cytoplasm,20

where biomolecules are continuously synthesized and broken
down, but it is also true for simple fluids like water which
permit the ionic dissociation of both themselves and any polar
solutes, e.g., H2O " H+ + OH� and H2O2 " H+ + HO2

�. The
implications of these reactions for self-electrophoresis are the
main focus of this paper. The most striking implication is that
a gradient of a neutral molecule like H2O2 will result in ionic
gradients, here of H+ and HO2

� ions, which will themselves
produce electric fields. This means that a surface reaction with
only uncharged species like H2O2 or H2O can itself generate
self-electrophoretic propulsion.

It is worth highlighting that these bulk reactions should also
qualitatively modify interparticle interactions. To demonstrate
this, we describe an effect called ‘reactive screening’,20 which will
underlie much of our later discussion. We illustrate this effect
with a simple 1D model, see Fig. 2. Let an uncharged molecule of
diffusivity D be produced uniformly at a plane surface z = 0 and
consumed in the bulk (z 4 0) with rate g. The steady-state
concentration profile c(z) then obeys

D
@2c

@z2
¼ gc; (1)

where diffusion, on the left, is balanced by consumption, on
the right. The solution to eqn (1) is an exponentially screened
concentration profile, c = c0 exp(�qz), with c0 the concentration
at the surface, and the reactive screening length q�1 = (D/g)1/2.
This uncharged model has been applied to the diffusiophoresis
of small particles inside a biological cell, where the relevant bulk
reactions are the breakdown of biomolecules in the cytoplasm.20

With self-electrophoresis, as we shall see, reactive screening

Fig. 2 Schematic representation of the simple 1D molecular screening
model introduced in the text. A wall releases molecules (red triangles) which
diffuse with D (black arrow) and are consumed in the bulk with a rate g (blue
symbol). This leads to an exponential decay of the concentration, as indicated
using the dashed red line and continuum-level red gradient.
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can also exponentially screen the electrostatic potential, effec-
tively turning off the long-range electrostatic interactions, which
would otherwise be inevitable. Hence, this reactive screening is a
qualitatively new effect of bulk reactions, which cannot be
ignored a priori even at the level of phenomenological models
of collective motion.

3 Overview of main results

The theory of self-electrophoretic propulsion is mathematically
involved, even without the introduction of additional bulk
reactions, so we will use this section to sketch out our main
results in advance. This will necessarily skim over or simplify
many relevant details that will be addressed fully in later
sections.

3.1 Overall framework

Our main mathematical result is that the self-electrophoretic
propulsion speed of an arbitrary, uniformly charged, spherical
swimmer can be written, if a suitable linearization is applied,
in the form

U = USM( js, csalt, s,. . .)F(ka)B(qa,. . .), (2)

where USM is the ‘standard model’ propulsion speed assuming
the thin screening limit without bulk reactions, explored for
example in ref. 33 and 38. USM depends on, among other para-
meters, the surface reaction rates js, the salt concentration csalt,
and the surface charge density s. Here we introduce two new
factors, F and B, to account for realistic electrostatic screening
and bulk reactions, respectively. These factors depend on the
dimensionless parameters ka and qa, with k and q the inverse
electrostatic and inverse reactive screening lengths, and a the
swimmer radius.

3.2 Electrostatic screening

The new dimensionless factor F(ka) is exactly analogous to the
well-known function f (ka) (Henry’s function39) that controls the
speed of a particle undergoing electrophoresis in an external
field via Uext = mEEN, with mE = zef(ka)/Z the electrophoretic
mobility, e the dielectric constant, z the particle’s surface
potential, Z the solution viscosity, and EN the external electric
field.39,40 Both f and F are plotted in Fig. 3. For ka { 1, i.e., for
small particles or low salt concentration, F decreases rapidly,
scaling as (ka)3. This is different from external electrophoresis
because of the different geometries of the driving fields—a
uniform field for external electrophoresis compared with a
dipole for self-electrophoresis.

The implication of this a3 scaling is that, other things being
equal, nanoswimmers should swim much slower than micro-
swimmers. Experimentally, however, nanoswimmers are found
to swim faster than equivalent microswimmers.37 From this we
conclude that other things are not equal: either the surface
reaction rates are much larger for nanoswimmers, or the standard
self-electrophoresis theory does not apply for these small swimmers.
If this issue can be resolved, which we do not attempt here,

it will likely also give insight into the related phenomenon of
directed motion in nanoscale biological enzymes.41,42

3.3 Bulk reactions

The effects of ionic dissociation depend upon the nature of the
surface reaction responsible for propulsion. A common feature
is the importance of the reactive screening length q�1 which
controls the propulsion behaviour through the parameter qa.
We can understand why qa is the relevant parameter as follows:
for qa { 1, the swimmer is smaller than the reactive screening
length, so any molecules produced at the swimmer surface will
diffuse away or return to the swimmer surface before they have
time to react. In this ‘reactionless limit’, the swimmer will behave
as though there are no bulk reactions, which is the usual, tacit
assumption. For swimmers larger than the reactive screening
length, qa c 1, we are in a ‘reactive limit’ where the bulk ionic
reactions dominate the behaviour. For typical experimental
conditions, e.g., 3 mol L�1 H2O2, we find a reactive screening
length q�1 E 70 nm, which is in the centre of the experimental
range of swimmer radii.15,37 Both the reactionless and reactive
limits, and the intermediate regime (qa E 1), should therefore
be experimentally relevant.

We now explain the effect of bulk reactions on specific types
of swimmer. The overall surface reaction we focus on is the
H2O2 decomposition reaction (R1). As we have seen, this overall
reaction can occur through several different pathways. We there-
fore define three model swimmers, shown in Fig. 4 with surface
reactions that are representative of these different pathways. A real
swimmer might exhibit any or all of these.

The upper panels (a–c) of Fig. 4 show these model swimmers
without bulk reactions. In (a), there is a single surface flux
of neutral H2O2 molecules. This models the purely neutral
decomposition of H2O2 in reaction (R1). Here we first make
three general points: first, O2 and H2O are not included here for
modelling simplicity. This is justified because O2 does not
dissociate, and H2O dissociates much less than H2O2, so neither
species should contribute strongly to self-electrophoresis.

Fig. 3 (a) Schematic showing the difference in boundary conditions
between external electrophoresis (upper) and self electrophoresis (lower).
Thick, coloured arrows show the direction of motion of positively charged
particles. (b) Henry’s function f (ka) which determines the mobility of a
particle in an external electric field (—), and F(ka), the equivalent function
for self-electrophoresis ( ).
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Second, we assume that the chemical fluxes are dipolar rather
than monopolar, i.e., they both leave and enter the particle
surface. For a uniformly charged particle, which we assume for
simplicity, only the dipolar component of the flux contributes to
the propulsion speed,33 so our choice of a dipolar surface-flux
profile does not affect our results, and simplifies the argument.
Third, we consider only self-electrophoresis here, and ignore
‘neutral self-diffusiophoresis’, which is propulsion generated
by a direct non-electrostatic interaction between a neutral
species, such as O2 and the swimmer surface,3,43 and which
is typically much weaker than self-electrophoresis.16,34,44 Hence
the model swimmer in (a) does not move, because, without bulk
reactions, a surface reaction involving only uncharged species
cannot generate electric fields, and therefore cannot produce
self-electrophoresis.

In (b) a surface proton flux generates an electric field via
reaction (R2). We assume the particle is positively charged, and
it then swims in the direction indicated by the white arrow.
This corresponds to the standard self-electrophoresis model,
e.g., for Au–Pt swimmers.2 The electric field has a dipolar form,
like the proton flux.

In (c), we have a third mechanism, with equal fluxes of
H+ and HO2

� ions. There is no net electrical current for this
swimmer since there are equal positive and negative fluxes.
However, self-propulsion still occurs. This is because the two
ions diffuse at different rates (H+ faster than HO2

�), and this
creates a so-called diffusion potential, which acts to prevent net
charge separation. The diffusion potential leads to an asso-
ciated (self-generated) electric field, which then produces
motion via electrophoresis in the usual way (white arrow). This
propulsion mechanism is called ‘ionic diffusiophoresis’,45 and
is typically used to model swimmers composed of solid salts,
which generate propulsion through dissolution of the swimmer
itself, e.g., AgCl(s) - Ag+(aq) + Cl�(aq).46 We include this

model here because ionic diffusiophoresis may contribute to
the propulsion of Pt-Janus swimmers, for example via

2H2O2 �!Pt 2Hþ þ 2OH� þO2 (R3)

with subsequent recombination of H+ and OH� in the bulk.
However, note that reaction (R3) is not the reaction shown
in Fig. 4c, where HO2

� is used instead of OH� for modelling
simplicity.

The lower half of Fig. 4(d–f) shows the effect on each of these
swimmers of a single ionic reaction occurring in the bulk,
aqueous phase

H2O2 " H+ + HO2
�. (R4)

As we mentioned before, this reaction will only begin to have a
significant effect when we are in the reactive, qa 4 1 regime.
In Fig. 4, the reactive screening length q�1 is indicated by the
dashed line: for these particular swimmers, qa E 3. The white
arrows show the qualitative effect of this reaction on the
propulsion speed, which is different for each of the swimmers.
For (a-d), the reaction generates propulsion, for (b-e) the
reaction increases the propulsion speed, and for (c-f) the
propulsion speed falls. We now briefly explain the reason for
these effects.

In the absence of a swimmer, reaction (R4) is in a state
of dynamic equilibrium. If a swimmer consumes or produces
molecules on either side of this equilibrium, then this will push
the reaction out of equilibrium, and the system will respond so
as to reduce the effect of that perturbation: this is Le Chatelier’s
principle. Thus, in Fig. 4d, the H2O2 flux injected from the
particle surface is to the left of the equilibrium, so the H2O2

partially dissociates into ions, producing ionic fluxes. In Fig. 4e
the proton flux is to the right of equilibrium, so there is net
ionic recombination in the bulk to give an H2O2 flux (this small
H2O2 flux is not shown because it does not significantly contri-
bute to self-electrophoresis) and an HO2

� flux in the opposite
direction to the original proton flux. In Fig. 4f, the proton and
HO2

� fluxes are both to the right of equilibrium, so these both
recombine with counterions in the bulk to give an H2O2 flux
instead of the ionic fluxes.

For (a-d), the new ionic fluxes produce a diffusion
potential, which generates motion. Hence a swimmer without
any electrochemical reactions on its surface can still exhibit
self-electrophoretic propulsion. Crucially, it will also display
the experimental behaviour that would be expected of a self-
electrophoretic swimmer, e.g., propulsion speed scaling inver-
sely with salt concentration (via the USM factor in eqn (2)). This
means that the kind of ionic behaviour observed in ref. 16, 17
and 32 does not a priori require an electrochemical surface
reaction. In practice, however, we find that, because of the weak
dissociation of H2O2, the simple non-electrochemical surface
reaction mechanism in Fig. 4a-d cannot account for the
magnitude of the experimentally observed propulsion in, e.g.,
ref. 16: genuine self-electrophoretic propulsion is still required.

In (b-e), the important point is that chemical reactions
conserve charge, and this also implies the conservation of

Fig. 4 Schematic of the effect of bulk ionic reactions on the propulsion of
three model swimmers. The upper panel shows the system without and the
lower panel with bulk reactions. Coloured arrows indicate fluxes of three
chemical species H2O2 (purple), H+ (red) and HO2

� (blue). The thickness of
the arrows corresponds very roughly to the relative intensity of the fluxes.
White arrows denote the direction of particle propulsion (x = no propulsion).
Arrow length indicates relative speed. Dashed semicircles show the approximate
extent of the reactive screening length q�1.
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electrical current. There is a net electrical current in (b), and
because this current is conserved it will have the same magni-
tude with or without bulk reactions. It is only the identity of the
current-carrying ions which changes: in this case, the current
becomes partially carried by HO2

� ions travelling in the opposite
direction, see Fig. 5. As we discuss later, the propulsion speed
scales inversely with the diffusivity of the current-carrying ion. In
this case HO2

� diffuses approximately 10 times slower than H+,
and this is why the speed increases. In fact, in the appropriate
environment of high pH (= high HO2

� concentration), the pre-
dicted speed increases ten-fold because the current becomes
entirely carried by HO2

� ions.
In (c-f), on the other hand, there is no net electric current to

be conserved and both anions and cations react freely with their
counterions in the bulk. Hence, far from the swimmer, the ionic
gradients become vanishingly small, with a resultant drop in
propulsion speed compared to the case without bulk reactions.
In detail, the presence of ions in the bulk, due to the surface
reactions, generates a diffusion potential (similar to the situation
in Fig. 4d). However, since the ions in Fig. 4f can recombine
through bulk reactions, the further one is from the swimmer
surface, the fewer ions generated by the surface reaction remain to
induce the diffusion potential. This shows up as an exponentially
screened potential, with screening length q�1. This also affects the
swimming speed, because we find that the magnitude of the
diffusion potential scales with the thickness of the screening layer,
leading to a scaling of U p 1/(qa) for large swimmers. This lowers
the predicted propulsion speed by up to a factor of approximately
100 for the largest E10 mm radius swimmers.

3.4 Comparison with experiments

As previously discussed, measurements of relevant surface
reaction rates are not currently available. This makes it difficult
for us (or others) to predict propulsion speeds that can imme-
diately be compared with experiments. Nevertheless, we will
present some speed calculations with the simplest assumption
of fixed surface reaction rates in Section 7. These comparisons
indicate that the U p 1/a scaling observed with Pt-polymer
Janus particles15 might come from an ionic diffusiophoretic
mechanism like that discussed above, see Fig. 4c-f. In addition,
our results indicate that the speed of nanoscale swimmers is too
high to be explained by self-electrophoresis with fixed surface
reaction rates, see Section 3.2.

3.5 Summary

In brief, we find that ionic reactions and electrostatic screening
should have very significant and system-dependent effects on

the propulsion of a wide range of chemical swimmers. These
effects include increasing or decreasing the predicted speed by
several orders of magnitude, as well as the qualitatively new
behaviour of reactive screening. In addition, we find that even
swimmers with no ionic surface reaction can behave as though
they are self-electrophoretic. The remainder of this paper provides
a detailed account of the theory that gives rise to these results, and
compares them to experiments as far as current data allow.

4 Theoretical model

In this and the following two sections, we present a quantitative
model of self-electrophoresis. Here in Section 4, we will lay out
the general theoretical model and detail how this will be applied
to the specific H2O2 reaction system described above. In order to
obtain analytical results we also linearize our theory. We will then
apply this model to obtain explicit results, first for a system with
only surface reactions (Section 5), and then with bulk reactions
(Section 6).

4.1 General model

The standard theoretical approach to self-electrophoresis involves
coupling the chemical fluxes arising from reactions on the particle
surface to bulk differential equations (Nernst–Planck, Poisson, and
Navier–Stokes).14,34 This treatment generally ignores bulk chemical
reactions by assuming that each chemical species is conserved.
We adopt the standard approach, but include bulk reactions by
coupling chemical fluxes to local reaction rates. We solve this
model numerically using COMSOL. Separately, and in common
with previous work,33 we also linearize the model to obtain an
analytical approximation. Unlike in previous work, the analytical
solution does not require the assumption of a thin electrostatic
screening layer.

We consider a spherical swimmer of radius a and uniform
surface charge density s, see Fig. 6. The electrostatic boundary
condition of such a particle is

n̂ � rfðsÞ ¼ �s
e
; (3)

with f the electrostatic potential field and e the dielectric
constant of the fluid (the dielectric constant of the particle is
assumed to be zero). Here (s) and n̂ indicate evaluation at, and
the normal out of, the particle surface. We have chosen a
uniform, dielectric boundary condition for simplicity. However,
in Appendix A.5 we show formally that, with an appropriate
choice of surface potential, an equipotential (conducting)
surface gives the same swimming speed as a dielectric. We do
not deal with mixed dielectric/conducting particles here, but
this should not qualitatively affect the basic physics of the
self-propulsion.

Propulsion is generated by reactions on the swimmer surface.
These reactions produce and consume N different chemical
species, labelled l = 1. . .N. The surface production (or, if negative,
consumption) rate per unit area of each species is jsl (y), and is a
function only of y, the polar angle with respect to the symmetry
axis ẑ, see Fig. 6. The surface reaction rates can be equated to the

Fig. 5 The effect of bulk reactions on ionic currents. Regions with excess
H+ ions become depleted in HO2

� ions and vice versa. This means that an
initial H+ current flowing from excess to depleted regions (left) is partially
replaced by a HO2

� current flowing in the opposite direction (right).
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bulk flux jl of each species out of the particle surface, giving the
boundary condition

n̂�jl(s) = js
l (s). (4)

These bulk fluxes obey the classical Nernst–Planck equation34

jl ¼ clu�Dlrcl �
Dlzle

kBT
clrf; (5)

with zl, Dl, and cl, respectively the valence, diffusivity, and
concentration field of each chemical species, u the fluid flow
field, e the fundamental charge, kB Boltzmann’s constant, and
T temperature. Physically, eqn (5) expresses the bulk fluxes
as linear sums of advective, diffusive, and conductive terms
respectively. Eqn (5) is the standard flux expression used in
studies of self-electrophoresis. Its main simplification is the
neglect of cross-coupling terms between the molecular fluxes,
and this is valid as long as we are in the dilute limit with
relatively small ionic gradients,44 which is true here.

Without bulk reactions, conservation of chemical species
would require that the bulk fluxes are incompressible vector
fields, i.e., r�jl = 0. This is the standard approach, see ref. 14
and 34, and Section 5 here. Bulk chemical reactions can be
incorporated by writing instead

r�jl = Rl(c1. . .cN), (6)

where Rl is the local rate at which each chemical is produced
(if negative, consumed), in chemical reactions. In general,
Rl depends on the local concentration of all chemical species
involved in reactions with species l. Note that chemical reac-
tions are charge-conserving, i.e.,X

l

zlRl ¼ 0; (7)

everywhere, and combining this condition with eqn (6) implies
the conservation of electrical current

r�i = 0. (8)

where the electrical current i ¼ e
P
l

zl jl .

Infinitely far from the particle, the chemical concentrations
are labelled cNl , and are determined by equilibrium equations
and charge neutrality. The other boundary conditions at infinity
are jNl = 0, fN = 0, uN = 0 (in the lab frame), and pN = patm, where
p is the hydrostatic pressure field and patm is the atmospheric
pressure, whose absolute value does not affect the calculations.

The electrostatic potential f is determined by the Poisson
equation

er2f = �re, (9)

with charge density re ¼ e
P
l

zlcl . The interaction of the electro-

static potential and the unbalanced charge density (re a 0)
generates a force density

f = �rerf, (10)

and this drives fluid flow via the Stokes equations for low-
inertia, incompressible flow

Zr2u = rp � f, (11)

r�u = 0. (12)

Finally, the swimmer is not held in place, so fluid flow around
it will cause it to move with some propulsion velocity U. This
propulsion velocity is determined by the condition that there is
no net force acting on the total system of swimmer plus fluid out
to infinity.47 This force-free condition is simply a reflection of the
fact that all the forces are internal to this total system—there are
no long-range, external forces like gravity. The force-free condi-
tion can be translated into an expression for U by using the
Lorentz reciprocal theorem, which is a restatement of the Stokes
equations in integral form. This gives a closed-form expression
for the propulsion velocity48

U ¼ � ẑ

6pZa

ð
V

3a

2r
� a3

2r3
� 1

� �
cos yr̂

�

� 3a

4r
þ a3

4r3
� 1

� �
sin yŷ

�
� f dV ;

(13)

where r is the distance from the particle centre, r̂ and ŷ are unit
vectors in the r and y directions, and the scalar speed U is
defined by U = Uẑ. The volume integral is over the region outside
the particle.

4.2 Numerical solution

We solve the full non-linear model numerically using FEM imple-
mented in COMSOL. To do this, we make several modifications to
the above equation system. In particular, we define a new force
density fFEM to replace f in eqn (10). The two quantities are
related by

f FEM ¼ f � kBT
X
zla0

rcl : (14)

Fig. 6 Diagram of a model swimmer, highlighting the distinction between
bulk and surface parameters. In the bulk, we have an electrostatic potential
field f, chemical concentration fields cl, a pressure field p, and fluid velocity u.
Far from the particle, these fields approach uniform values (superscript N). On
the particle surface, the uniform surface charge density s and the nonuniform
molecular fluxes out of the surface jsl set boundary conditions for the bulk
potential and concentration fields, respectively. The particle, of radius a, is
axisymmetric around the z axis, so the surface fluxes are parameterized by the
polar angle y. The swimming velocity, which we calculate, is U = Uẑ.
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This redefinition does not influence the result of the calculation,
but limits spurious flows related to numerical artefacts in the
electrostatics.49 Our calculations are performed on an axi-
symmetric spherical domain of radius L = 10a + 25k�1, which
we verified to be sufficient to eliminate most finite-size effects
in our speed calculations. This frame co-moves with the colloid.
We impose no-slip at the colloid surface, and on the edge of the
domain we employ the same boundary conditions as the theory
has at infinity. For the fluid velocity we impose a no-stress
condition on the edge of the domain

[Z(ru + (ru)*) � pI]�n̂ = 0, (15)

with n̂ the normal to the domain, * denoting transposition, and
I the 3D identity matrix. This is equivalent to imposing a force-
free condition on the swimmer–fluid system.44,50

Our technique is to first obtain approximate numerical
solutions for the electrostatic and concentration fields in the
absence of advection, so neglecting the first term in eqn (5).
This approach is justified because experimental swimmers
generally have low Péclet numbers, i.e., molecular diffusion
D dominates over advection. The Péclet number is defined as
Pe = Ua/D, with U E 10 mm s�1, a E 1 mm, and D E 10�9 m2 s�1

typical for experiments on microswimmers, leading to Pe E 0.01.
The flow field is then computed self-consistently on the domain

by employing the force density, eqn (14), following from the
concentration and potential fields. The speed of the swimmer is
determined by taking the average of the fluid velocity on the edge
of the domain: U = �huir=L, where U is in the lab frame and u in
the co-moving frame. We subsequently verified the low-Pe approxi-
mation by solving the fully coupled equations (with advection)
directly in a limited number of cases, which gave agreement to
within a few per cent. See Appendix C for full details of the
numerical calculations.

4.3 Analytical solution

We also linearize the model to provide an analytical solution.
To do this we assume that the fields f and cl have only small
deviations from their values in the uncharged, unreactive state
where f = 0 and cl = cNl everywhere (for f, this assumption
corresponds to the usual Debye–Hückel approximation, f{ kBT/e).
We then expand the model to linear order in the small dimension-
less parameters c = fe/(kBT) and xl = (cl � cNl )/cNl . Applying this
linearization to eqn (5) gives

jl = �cNl Dl[rxl + zlrc], (16)

where the advection term has been dropped entirely because
u scales quadratically with the small parameters (eqn (10) con-
tains a product of re and f, which are both small). We must also
Taylor expand the production rates Rl to linear order, i.e.,

Rl ¼
X
m

klmxm þ O xm
2

� �
; (17)

where O (�) means ‘of order �’, and the elements

klm ¼
@Rl

@xm

				
x1;x2 ...xN¼0

: (18)

are components of a matrix k which we can call the linear reaction
matrix. Its meaning will become clearer when we consider specific
reactions. From eqn (6) and (16), we have, to linear orderX

m

klmxm ¼ �c1l Dl r2xl þ zlr2c

 �

: (19)

This set of N equations, together with the Poisson equation,
which we rewrite as

kBTe
2

e

X
l

c1l zlxl ¼ �r2c; (20)

makes up a system of N + 1 linear differential equations in N + 1
fields (xl, l A 1. . .N and c).

This system of equations is soluble in a spherical geometry
by standard spectral methods, and the electrostatic potential
field so obtained can then be used to calculate the propulsion
speed by evaluating the integral in eqn (13). In doing this, we
make the further usual assumption of a relatively small driving
field.39 That is, if we define f = feq + fsr where feq is the
electrostatic potential in the absence of surface reactions and
fsr is the additional potential generated by these reactions then
fsr { feq. As a result, the surface reaction rates js

l , which only
come into fsr, contribute linearly to the final velocity. The algebra
required to solve eqn (19) and (20) is significant, so we go through
this explicitly in Appendix A.

4.4 Specific H2O2 reaction model

The chemical reaction system we consider is the simplified
version of the H2O2 reaction system described in Section 3.
On the particle surface, H2O2 decomposes into O2 and H2O. For
simplicity, however, we ignore both products of this reaction:
O2 because it is electrically neutral and does not dissociate, and
H2O because it dissociates much less than H2O2—the respective
equilibrium constants51 are Keq,H2O = 1.0� 10�14 mol L�1 (pH = 7)
and Keq,H2O2

= 2.5� 10�12 mol L�1. In the bulk, we ignore any slow
decomposition of H2O2 via reaction (R1), and the only bulk
reaction we consider is the ionic dissociation reaction (R4), which
we rewrite here

H2O2Ð
kforward

kreverse
Hþ þHO2

�: (R40 )

We therefore have only three chemically active species, with
associated subscripts in brackets: H2O2 (�), H+ (+), and HO2

� (�).
Protonation reactions like (R40) are normally extremely rapid, with
kinetics controlled by the diffusion and collision of the ions,52

and with simple first order rate expressions

kforward = kdisc�,

kreverse = kasc+c�, (21)

where we estimate the association rate constant to be kas =
4.9 � 1010 mol�1 L s�1 using the Smoluchowski–Debye theory
for diffusion-limited reactions, see Appendix B. This theoretical
value agrees closely with experimentally measured rates for
similar reactions,52 e.g., H+ + HCO3

� " H2CO3 in water has
kas = 5 � 1010 mol�1 L s�1 (ref. 53).
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The dissociation rate constant kdis = 0.12 s�1 is then deter-
mined from the equilibrium constant Keq = kdis/kas = 2.5 �
10�12 mol L�1 (ref. 51). Far from the particle, the system is in
equilibrium, so we have

cN+ cN� = KeqcN� , (22)

The production rates are R+ = R� = kforward � kreverse and
R� = kreverse � kforward, and linearizing using eqn (18) gives the
linear reaction matrix

k ¼ kdisc
1
�

�1 1 1

1 �1 �1

1 �1 �1

0
BBB@

1
CCCA; (23)

where the order of rows and columns is �, +, �.
The three reactive species have diffusivities D� = 1.7 �

10�9 m2 s�1 (ref. 54), D+ = 9.3 � 10�9 m2 s�1 (ref. 55), and
D� = 0.9 � 10�9 m2 s�1 (ref. 56). We also have two unreactive
ions, which we take to be Na+ and Cl� with diffusivities
DNa+ = 1.3 � 10�9 m2 s�1 and DCl� = 2.0 � 10�9 m2 s�1 (ref. 57).
Because these ions are not involved in chemical reactions at the
surface or in the bulk, their concentration fields are in equilibrium
with the electrostatic potential. The implication is that the diffu-
sivity of these ions does not contribute to the propulsion speed in
the linear regime. We show this mathematically in Appendix A.1.

The chemical concentrations at infinity are determined by
the chemical equilibrium, eqn (22) and by charge balance

c1� þ c1Cl� ¼ c1þ þ c1Naþ : (24)

These two equations (eqn (22) and (24)) connect five concentra-
tions, so we can set three concentrations freely. In practice, we
choose instead to set the H2O2 concentration, the total ionic
strength, and the pH. The reaction scheme presented here is the
simplest possible that gives the necessary freedom: bulk ionic
dissociation reactions require at least three reactive species, and
the two non-reactive ions are necessary to allow the ionic strength
to be modified independent of other parameters.

For the variable parameters, our base set, used unless specified
otherwise, is 1 mmol L�1 salt, i.e., c1Naþ ¼ c1Cl� ¼ 1 mmol L�1,
a = 500 nm, and cN� = 3 mol L�1. For these parameters,
k�1 = 10 nm, and cN+ = cN� = 3 � 10�6 mol L�1. These values
were chosen because micron-sized particles and H2O2 concen-
trations of order 3 mol L�1 are experimentally typical,16 while
the 1 mmol L�1 baseline salt concentration allows us to scan a
wide range of the important parameter ka for realistically sized
particles.

Meanwhile, the surface reactions are specified by surface
fluxes jsl , l A {�, +, �}, of the three active species. We consider
the three model swimmers shown in Fig. 4, referred to as: S�, the
nominally neutral swimmer; S+, powered by a proton current;
and S=, powered by ionic diffusiophoresis. As mentioned above,
only the dipolar part of the fluxes, that is the 1st Legendre
component, contributes to the propulsion speed of uniformly
charged swimmers,33 so we include only this term by setting
jsl � jsl,1 cosy for each surface flux where jsl,1 is a constant coefficient.

For S�, only j s
�,1 is finite; for S+, only j s

+,1 is finite; and for S=, j s
+,1

and j s
�,1 are equal and finite, with j s

�,1 = 0.
Our model makes a number of simplifications. This includes

those chemical simplifications already discussed, as well as the
neglect of potential contaminants such as CO2, which also
undergo ionic dissociation. The main purpose of this paper is
to illustrate the physical principles behind the effect of bulk
reactions on self-propulsion. These physical principles will also
apply to a more complex and realistic H2O2 reaction system, as
well as to other chemical systems.58,59 We also neglect any
dependence of the surface parameters on environmental condi-
tions, so, for example, we take s = constant, independent of pH,
salt concentration etc. This does not imply that surface para-
meters are independent of the environment; it is just that
detailed knowledge of this dependence is currently lacking.
The ‘pure’ effect of bulk reactions which we capture will occur
in addition to any such interdependence.

5 Electrophoresis without bulk
reactions

Before discussing the effect of bulk ionic reactions, it is important
to set out the basic theory for propulsion by self-electrophoresis
without such reactions. This theory has been set out multiple
times before for the limit of vanishing electrostatic screening
length, ka c 1, ref. 14, 33, 34, 36, and 60. Here we extend the
theory to include the effect of a finite ka.

For comparison, we first write down the standard results for
electrophoresis in an external, linear field,40 Fig. 3a (top). We
align the external field along the z axis and consider the velocity
Uextẑ of a uniformly charged spherical particle with radius a and
small surface (z) potential40

z ¼ sa
eð1þ kaÞ; (25)

in an externally imposed electric field E = �rf. Far from the
particle, E is a constant linear field E = ENẑ. The particle is
suspended in an aqueous solution of a monovalent salt, e.g.,
NaCl. In a weak field, particle velocity is proportional to electric
field strength, Uext = mEEN, with mE called the electrophoretic
mobility. The standard expression for mE for small z is39,40

mE ¼
ze
Z
f ðkaÞ; (26)

where f (ka) is Henry’s function,39 which accounts for electro-
static screening and depends only on ka, the ratio between
particle radius a and the electrostatic screening length k�1. The
function f is plotted in Fig. 3b: it has constant limits of f (N) = 1,
(the Debye or Smoluchowski limit) corresponding to high salt
concentration or large particles, and f (0) = 2/3, (the Hückel limit)
corresponding to small particles or non-polar solvents. Eqn (26),
typically in either the high or low ka limit, is the expression
commonly used to compute colloidal z potentials from mobility
measurements in, e.g., commercial Zetasizers.

In self-electrophoresis, the independent parameters are the
surface reaction rates, and therefore the ionic fluxes, rather than
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the electric field. To facilitate understanding, we translate the
expression for external electrophoresis into these terms. We
write down expressions for the inverse electrostatic screening
length

k2 ¼ e2

ekBT

X
l

c1l ; (27)

the ionic conductivity

K ¼ e2

kBT

X
l

Dlc
1
l ; (28)

and the concentration-averaged diffusivity

�D ¼
X
l

Dlc
1
l

 !, X
l

c1l

 !
; (29)

together with Ohm’s law

E1 ¼ i1

K
; (30)

which relates the electric field to the ionic current density at
infinity iNẑ and which we can rewrite as

rf ¼ � i1ẑ

ek2 �D
: (31)

Combining eqn (31) with eqn (26) we then have

Uext ¼ i1
1

Zk2 �D
zf ðkaÞ: (32)

Note that for electrophoresis in an external field, the particle
speed is inversely proportional to the concentration-averaged
diffusivity

�
D.

We now compare eqn (32) with the analogous expression for
the most well-studied self-electrophoretic swimmer, a proton-
powered bimetallic swimmer.14,36 Consider a spherical swimmer
of radius a, with surface charge density s, a surface proton flux
js+(y) = js+,1 cos y and no bulk reactions: we call this model SNBR

+ .
In this case eqn (19) and (20) can be easily solved to yield, after
some algebra

f ¼ sa
eð1þ kaÞ

a

r

� 
e�kðr�aÞ þ

eajsþ;1
2k2Dþe

a

r

� 2
cos yþ � � � ; (33)

where the first and second terms are feq and fsr, the potentials
generated, respectively, by the surface charge and the surface
reactions. The � � � indicate additional, electrostatically screened
terms that are necessary to match the electrostatic boundary
conditions, but which make no contribution to the propulsion,
see Appendix A.5. The propulsion speed is obtained by evaluating
eqn (13) with eqn (33) to give

UNBR
þ ¼

�jsþ;1e
3

1

Zk2Dþ

s
ek
FðkaÞ; (34)

where F is, like f, a function of ka only. The full form of F is
given in Appendix A.3.

Eqn (34) corresponds closely to eqn (32), the particle velocity
with external electrophoresis, and we compare these expres-
sions factor by factor:

(I) The relevant current density iN becomes �js
+,1e/3 because

of the exclusive dependence of the propulsion speed on the first
Legendre component of the flux33 discussed in Section 4.4.

(II) The relevant diffusivity
�
D becomes D+ because, for self-

electrophoresis in steady state, the ionic current can only be
carried by the active ion involved in reactions at the particle
surface, in this case H+. There can be no net flux of the other ions,
or they would build up at the particle surface. In fact, the other
ions are in local equilibrium with the electrostatic potential f,
i.e., cNaþ ¼ c1Naþ exp �f=kBTð Þ etc., from standard Debye–Hückel
theory,40 and the swimmer behaviour therefore cannot depend
on their dynamic properties at all. The appropriate version of
Ohm’s law for the self-electrophoretic swimmer is thus not
eqn (31), but instead61

rf ¼ � i

k2eDþ
; (35)

which depends only on the mobility of the active ion, and the
electrical current. Eqn (33) and the propulsion speed have the
same dependencies. This difference between external- and self-
electrophoresis has been confirmed in numerical calculations60,61

and the inverse scaling of self-propulsion speed with the diffusivity
of the active ion will be crucial for understanding the effects of
bulk ionic reactions in Section 6.

(III) We have chosen to parameterize our model in terms of
s rather than z because this is the most natural choice from a
microscopic point of view. Much of the charge on the surface,
both of conducting and dielectric particles, is due to surface-
absorbed groups, leaving s fixed as other parameters, such as k,
vary. This has been demonstrated experimentally for dielectric
particles.62 Nevertheless, the experimental evidence indicates
that self-electrophoretic propulsion speeds scale with k�2

(ref. 11, 16 and 32) which is consistent with a fixed z, not a
fixed s, though to our knowledge there is no microscopic justi-
fication for this. Since we are most interested in bulk effects, we
do not insist upon a particular surface parameterization, and
eqn (25) can be used to translate our results into a parameter-
ization where z is fixed, which gives at small radius, a speed
scaling as a2/k rather than a3 as in eqn (36) below. Note that
this point is distinct from the choice between conducting and
dielectric boundary conditions on the particle surface, which is
discussed in Section 4.1.

(IV) We have replaced f (ka) with an equivalent expression
for self-electrophoresis, F(ka), shown in Fig. 3b. In the thin-
screening limit, F(ka - N) = 1, and eqn (34) then agrees with
previous self-electrophoresis results in the thin-screening
limit,33 except that ref. 33 incorrectly assumes that the propulsion
is controlled by the total ionic diffusivity %D, (see point II above).
In the opposite limit, F(ka - 0) = (ka/2)3, so that for small ka the
propulsion speed scales with a3

UNBR
þ ¼ �

jsþ;1ea
3s

24eZDþ
: (36)

The reason that F(0) - 0, while f (0) is finite, is the different
geometry of the driving currents, as illustrated in Fig. 3a. For
self-electrophoresis, the driving potential is a local, dipolar field
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which decays over a length of order a, see eqn (33), whereas
in external electrophoresis the driving potential is infinite in
extent. Therefore, in self-electrophoresis, additional factors of
a in the propulsion speed are to be expected.‡

Several of the features of eqn (34) have been verified experi-
mentally for bimetallic swimmers2,4 like the Au–Pt swimmers
in Fig. 1a, which explains the wide-acceptance of the self-
electrophoretic model for this system. As discussed above,
this equation has also been found to be applicable to single-
catalyst swimmers such as Pt-polystyrene Janus particles,11,16,17

suggesting that these swimmers are also powered by proton
currents.16,17

The additional screening parameter F(ka), is more proble-
matic. It predicts that the speed of a swimmer will drop off
sharply as ka decreases, Fig. 3. This drop-off is significant for
surprisingly large ka: F(10) E 0.5, while F(1) o 0.1. This shows that
the thin-screening limit, which is commonly employed,16,17,21,33,63

is not justified even for the common situation of a 1 mm radius
swimmer in 3 mol L�1 H2O2, where ka E 10 (ref. 16). However,
to the best of our knowledge, there is no experimental evidence
for this drop off. In fact, a small number of experiments show
a larger speed for nanoswimmers37,64 than is typical for
microswimmers.3,65 We discuss this experimental comparison
in more detail in Section 7.

6 Electrophoresis with bulk reactions

We now examine the effect of bulk reactions on the propulsion
of model swimmers, in particular of reaction (R40), H2O2 "

H+ + HO2
�, on the three model swimmers depicted again

for convenience in Fig. 7a. In Section 6.1 we write down the
general form of expressions for the swimming speed when bulk
reactions are included, before focussing on the effect of two
experimentally relevant parameters—swimmer radius and H+

concentration—on the swimming speed, in Sections 6.2–6.5.
In Section 7 we will compare our predictions with experimental
observations.

6.1 General form of the solutions

Mathematically, the bulk reactions make it impractical to solve
even the linearized problem by hand. Instead, we solve the
system of equations, eqn (19) and (20) symbolically in MATLAB,
see Appendix A. The final solution is very similar to the reaction-
less solution, with an extra bulk reaction factor B(qa,. . .), so for
each of our model swimmers, we can write

Uy ¼
esjsy

3Zek3Dþ
FðkaÞ

� �
By; (37)

in the form of eqn (2). Here, † indicates a particular swimmer
type, i.e., † A {�, +, =} and j s

† is the appropriate surface flux
density for that swimmer. We define js

† = js
�,1 for the S� swimmers,

and js
† = js

+,1 for the S+ and S= swimmers. The use of D+ in the

denominator of eqn (37) is an arbitrary definition. Under this
definition, the bulk reaction factors in the absence of bulk
reactions have the constant values BNBR

� = 0, BNBR
+ = �1 and

BNBR
= = (d+ � d�)/(d+d�) = 9.3. Here, dl is a rescaled diffusivity,

dl = Dl/D+. By definition, d+ = 1, but we retain d+ for symmetry of
notation.

Note that the expression in square brackets in eqn (37) is
identical to eqn (34). This emphasizes that all the propulsion
mechanisms, S�, S+, and S=, are really forms of self-electrophoresis,
and display all the responses to, e.g., salt-concentration, particle
radius, and surface charge, which standard self-electrophoresis
models predict. The inclusion of bulk reactions just adds a new
layer of phenomena on top of this behaviour.

6.2 Influence of bulk reactions on swimming

We study the bulk reactions by varying two common experi-
mental parameters: particle radius, and proton concentration,
i.e., pH, Fig. 7b and c, respectively. Including bulk reactions
(solid curves = analytic; solid symbols = FEM numerics) intro-
duces a range of effects compared to the case with no bulk
reactions (broken, horizontal lines), with qualitatively different
behaviour for the three swimmer models.

Examining Fig. 7b first, the bulk reactions permit propul-
sion of the neutral swimmer S� (inset), and B� increases with
radius, saturating for large radii. However, the magnitude of B�
always remains smaller than that of the other swimmers by
a factor of order 10�6. In practice, this is typically partially
compensated for by the much larger flux of the neutral species.
For the proton-current-driven swimmer S+, B+ shows plateaux
at both large and small radius, with the large-radius plateau

Fig. 7 (a) Recap of the model swimmers S�, S+, and S= and the effect of
bulk reactions, from Fig. 4. (b and c) Magnitude of the dimensionless bulk
reaction factors |B| for type S� ( , insets), S+ ( ), and S= (K) propulsion,
from analytical theory with (solid curves) and without (broken curves) bulk
reactions; and FEM simulations (symbols). � indicates the base parameter
set defined in text. For (b) the particle radius and (c) the proton concen-
tration cN

+ , at fixed k.

‡ The precise a3 factor in eqn (36) can be obtained from a scaling argument.
We do not include this, as it is involved, and barely more informative than this
qualitative explanation.
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approximately twice as high. For the ionic-diffusiophoretic
swimmer S=, B= scales inversely with radius for large radius,
but has a plateau at small radius.

Meanwhile, varying the proton concentration cN+ , as in
Fig. 7c, produces a peak in B� and B=, and decreases the
overall value of B= by at least a factor of 5 compared to without
reactions. For S+ there are again two plateaux, at high and low
cN+ , with the low cN+ plateau now a factor of approximately
10 higher than the other. The main control parameter for all
these effects is qa, and there is a qualitative change of behav-
iour for all three swimmers at qa E 1: the vertical lines on
Fig. 7b are for qa = 1. In Table 1, we write down the bulk para-
meters for each of the model swimmers in the limits qa { 1
and qa c 1. The full analytical expressions, which are lengthy,
are provided in Appendix A.4, but the basic physics can be
understood from the limiting behaviour. For the table, we have
also assumed weak ionic dissociation, i.e., Keq { cN� which is
valid here, and thin electrostatic screening, ka c 1. These
assumptions also apply to the analytical expressions given in
the rest of this section. Table 1 matches Fig. 7 in all but one
respect, which is the scaling of B� at qa { 1, and this difference
occurs because the assumption ka c 1 does not hold for small
a in Fig. 7b. The parameters a and d* will be defined below. For
Fig. 7c, qa E 7 or larger, so we will assume that this figure is
always in the qa c 1 limit.

To understand the results shown in Fig. 7 and Table 1,
we will examine the bulk reactions in terms of three physical
principles: reactive screening, the composition of the electrical
current, and the dissociation of the neutral flux. Though we focus
on these underlying principles, which are crucial for understand-
ing the effect of bulk chemical reactions on any swimmer, this
structure also allows us to discuss the three model swimmers in a
logical order: S=, S+ and S�.

6.3 Reactive screening (model S=)

If an ion is released from the particle surface, it will react and
come into local equilibrium with the surrounding solution. The
characteristic distance over which this approach to equilibrium
occurs can be called a ‘reactive screening length’ q�1. As for the
simple model discussed in Section 2.3, the reactive screening
length is a balance between molecular diffusion and the

reaction rate. However, the expression for q is more complex
than in the simple model. We find

q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kas

c1þDþ þ c1�D�

DþD�

� �s
: (38)

Mathematically, q corresponds to one of the eigenvalues of the
linear system of equations, eqn (19) and (20), see Appendix A.2.
For our base parameter set, we obtain a screening length
q�1 = 74 nm.

Just as for the simple model, reactive screening gives an
exponential decay of chemical concentrations with distance from
the particle surface. The inclusion of charged species means
that the electrostatic potential can now also become screened.
However, we observe this reactive electrostatic screening only
for S= swimmers, where the two ions released from the surface
both react with oppositely charged ions in the bulk solution,
causing an exponential decay in the resulting diffusion potential,
see Fig. 8a.

For S+ swimmers, no such screening is observed, see Fig. 8b.
This is because the electrical current is conserved, so cannot be
screened, and hence the associated electrical field also retains
its unscreened dipolar form. Similarly, the H2O2 concentra-
tion field c� remains unscreened because this field is approxi-
mately conserved in the weak-dissociation limit. This results
in an unscreened electrostatic potential field for S� swimmers
(not shown).

For S= swimmers, reactive screening also explains the 1/(qa)
scaling of B= at high qa, as we show with a simple scaling
argument: from eqn (4) and (5), we expect a fixed ratio between
the surface reaction rates and the concentration gradients normal
to the surface. For example, at r = a

@cþ
@r
� � jsþ

Dþ
; (39)

independent of other parameters. For qa c 1, the concentra-
tion decays exponentially away from the surface

c+ p exp(�qr). (40)

Differentiating this equation with respect to r gives qc+/qr E �qc+

and comparing this with eqn (39) yields

cþðr ¼ aÞ �
jsþ
Dþq

: (41)

Since the diffusion potential is proportional to the ionic con-
centrations (c+, c�), and the propulsion speed U= is proportional
to the diffusion potential, we have U= p q�1. On the other
hand, without bulk reactions the only relevant length scale is a,
so a similar argument gives UNBR

= p a. Therefore, one obtains
B= p U=/UNBR

= = 1/(qa). Physically, for qa c 1, the concentration
flux only has the small screening length q�1 over which to set
up a diffusion potential, whereas without bulk reactions a length
of order a is available.

This 1/(qa) scaling immediately explains the B= p 1/a
scaling in Fig. 7b. We can also understand the peak in B= in
Fig. 7c by noting that the screening length q�1 vanishes both for
high cN+ and for high cN� in eqn (38). Since cN� scales inversely

Table 1 The bulk mobility factors predicted in the thin-screening ka c 1,
ka c qa, and low dissociation cN

+ ,cN

� { cN

� limits, for low, qa { 1 and
high qa c 1 reaction rates. In both limits the prefactor should be multiplied
by the relevant expression in the right-hand columns. The full expressions
are given in Appendix A.4

Prefactor � qa { 1 qa c 1

B� a
dþ � d�
dþd�

ðqaÞ2
2

1

B+ 1 � 1

dþ
� 1

d�

B= dþ � d�
dþd�

1 2

qa
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with cN+ due to the ionic equilibrium of eqn (22), this means
that q�1 vanishes at either end of the cN+ scale. As B= p q�1,
it too vanishes at either extreme and is peaked for intermediate
cN+ . Physically, at either end of the cN+ scale, the high concen-
tration of ions screens electric fields, preventing the formation
of a diffusion potential.

6.4 Composition of the electrical current (model S+)

The total electrical current in the bulk is a conserved quantity,
and is therefore not screened. However, the individual ionic
fluxes making up that current are not conserved, and the bulk
reactions modify the identity of the current-carrying ions. As
discussed in Section 5, this is important because the swimming
speed scales inversely with the diffusivity of the current-carrying
ion or ions. In our system, an initially pure proton current will be
partially replaced by HO2

� ions travelling in the opposite direc-
tion, as illustrated in Fig. 5. In the reactive, qa c 1 limit we can
calculate the composition of this electrical current relatively
simply. From this, we will obtain the propulsion speed of the
S+ swimmer.

In the qa c 1 limit, at any point outside the thin reactive
screening layer, the ions released from the surface will have had
time to come into equilibrium with each other. This is equiva-
lent to requiring that the chemical production rates vanish, i.e.,
Rl = 0. In the linear approximation, see eqn (17), this meansX

m

klmxm ¼ 0: (42)

In other words, the deviations in concentration xl of each of the
reactive chemical species are coupled by the reaction matrix k

given in eqn (23). This concentration coupling also implies a
coupling of the chemical fluxes, in the same way that charge
conservation implies the conservation of electrical current.
Consider the linearized flux equation, eqn (16). Multiplying
both sides by kml/(Dlc

N

l ) and summing over l yields

�
X
l

kml jl
Dlc

1
l

¼ r
X
l

kmlxl þrc
X
l

kmlzl : (43)

Then, from eqn (42), with l and m exchanged, the first term on
the right vanishes, while charge conservation in reactions impliesP
l

kmlzl ¼ 0 (see eqn (7)), so the second term vanishes too.

Hence, the general flux coupling equation isX
l

kml jl
Dlc

1
l

¼ 0: (44)

For our specific system, substituting the expression for k from

eqn (23) into eqn (44) then gives

jþ
Dþc1þ

þ j�
D�c1�

¼ j�
D�c1�

: (45)

The physical meaning of eqn (45) is that each of the molecular
fluxes has a characteristic scale set by Dlc

N

l , and that, with this
scaling, the relationship between the currents is set by the
stoichiometry of the bulk reactions. Eqn (45) can be rearranged
to give each of the ionic fluxes j	 in terms of the conserved
quantities i and j�

j	 ¼ 	
i

e

D	c
1
	

D� c1þ þ c1�
� �þ j�a; (46)

where D* is the concentration-averaged diffusivity of the active
ions§

D� ¼ Dþc
1
þ þD�c

1
�

c1þ þ c1�
; (47)

and the dimensionless factor a, which specifies the equilibrium
decomposition of a neutral current into ionic currents, is

a ¼
D�c

1
�

� ��1
Dþc1þð Þ�1þ D�c1�

� ��1: (48)

The meaning of the first term in eqn (46), which is relevant for
S+ swimmers, is that the electric current is carried by a fixed
proportion of H+ ions travelling in one (positive) direction,
and a counter current of HO2

� ions in the opposite (negative)
direction. In the second term, which is relevant for S� swimmers,
the neutral flux j� continuously dissociates into H+ and HO2

�

ions, producing small, equal fluxes of these ions, which travel
with the neutral flux.

If we are also outside the electrostatic screening length, which
is the case in the ka c 1 limit, we also have a zero-charge-density
condition, which reads X

l

c1l xlzl ¼ 0: (49)

Fig. 8 Normalized surface-reaction-generated potential fsr for (a) S= and
(c) S+ swimmers, with (right) and without (left) bulk reactions. In each case,
the potentials are normalized by the largest value of |fsr| without bulk
reactions. (b) Normalized radial decay of fsr along X–X0 for (b) S= and (d) S+.
Solid curves are with bulk reactions, dashed curves without.

§ Note that D* a
�
D (eqn (29)), as

�
D includes the diffusivity of the inactive ions.
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Just as above, but now multiplying eqn (16) by zl/Dl, we can
derive a direct relationship between the electric field and the
chemical fluxes61

rf ¼ � e

k2e

X
l

jlzl

Dl
; (50)

which, combined with eqn (46), yields a version of Ohm’s law
for the reactive limit

rf ¼ 1

k2e
� 1

D�

� �
i þ a

Dþ �D�
DþD�

� �
ej�

� �
: (51)

Comparing the first term of this equation with eqn (35) for
self-electrophoresis without bulk reactions, we see that they are
identical apart from the switch from D+ to D*.

For an S+ swimmer, j� = 0, and for high qa all of the electric
field outside a thin screening layer will be determined by the
first term of eqn (51). From this we can understand the 1/D*
factor which appears in B+, see Table 1. Just as without bulk
reactions (see eqn (34)) the propulsion speed is inversely propor-
tional to the diffusivity of the current-carrying ion. However,
the current is now made up of two ions, with a total effective
diffusivity D*. This explains the 2� speed increase in Fig. 7b: D+ at
low a is replaced by D* at high a, and for cN+ = cN� , which is the
case in Fig. 7b, D* = (D+ + D�)/2 E D+/2.

To understand the effect of varying cN+ , Fig. 7c, we examine
the form of D* in eqn (47). At high cN+ , D* E D+, while at low
cN+ (=high cN� ), D* E D�. Physically, this is again simply a result
of the relative number of each ionic species: if there is an
overwhelming number of protons in solution, then the ionic
current must be carried predominately by protons. This explains
the factor of D+/D� E 10 speed difference between the two
plateaux for B+ in Fig. 7c.

6.5 Dissociation of the neutral flux (model S�)

To understand the dissociation of a purely neutral flux, we
examine the parameter a in eqn (48). The form of a can be
explained by the fact that in the absence of a net electrical
current, e.g., for S� swimmers, the ionic currents are con-
strained by j+ = j�. This means that the total ionic flux will be
limited by whichever ion has the lower value of Dlc

N

l , as this ion
will contribute most to the flux balance in eqn (45). Hence the
parameter a, like q�1, vanishes at the extreme ends of the
cN+ scale: at low cN+ it is limited by the low proton concentration,
and at high cN+ , by the low HO2

� concentration.
The dissociation of the neutral flux generates a diffusion

potential. Hence, the prefactor for B� in Table 1 is made up of
two factors: a and (d+ � d�)/(d+d�), the latter of which controls
the diffusion potential just as for B=. The peak in B� as a function
of cN+ then follows directly from the behaviour of a.

Interestingly, both S� and S= show peaks in speed at inter-
mediate cN+ , but for two different reasons. For S=, the reason is
that the reassociation of ions is slowest at intermediate concen-
trations. For S�, the reason is that the least conductive fraction of
the solution limits the total carrying capacity, and this effect is
strongest at either extreme in pH.

7 Comparison with experiments

We now compare our theoretical predictions with experimental
results, in so far as this is possible at present. We stress here
again the lack of understanding of the surface chemistry, and
in particular of the effect of experimental parameters on the
ionic surface reaction rates. We have not attempted to predict
these reaction rates, so we cannot immediately test our theore-
tical predictions. In this section alone, we will make the simple
and typical3,15,16 assumption that the surface properties, i.e.,
surface reaction rates and surface charge densities, vary only
with fuel concentration and are otherwise constant, so that
U p k�3F(ka)B(qa) for all swimmers (eqn (37)). This allows us to
make some suggestive comparisons with experiments. We note
that more complex reaction rate dependencies based on electro-
chemical modelling of the surface have been proposed pre-
viously.14,17,36 However, to the best of our knowledge, these
models do not have independent experimental justification,
or experimental validation from speed experiments beyond that
achieved by the assumption of uniform surface properties.

Independent of bulk reactions and swimmer type, we pre-
dict a speed scaling with a3 for small particles. In particular, for
a proton powered swimmer UNBR

+ , the predicted speed depen-
dence is as shown in Fig. 9a (solid curve), due mostly to the new
electrostatic screening parameter F(ka)—the bulk reactions
do not significantly modify the form of this curve. Here, we
have matched the solution parameters to those of the typical
microswimmer experiments of ref. 65, choosing the (constant)
surface parameters to give a speed of 7 mm s�1 (blue circle) for a
1 mm radius bimetallic sphere, as in that paper (see Appendix B
for the surface parameters used). We also plot nanoswimmer
data (black triangle) from ref. 37, where a swimmer of radius
10 nm had U = 650 mm s�1. These two experiments used similar
concentrations of H2O2, but differed in salt concentration.
Thus, to predict the nanoswimmer results, we also plot a
theoretical curve (dashed), with the salt concentration modified
to match those of the nanoswimmer experiment,37 but keeping

Fig. 9 Comparison between theory and experiments. (a) The predicted
speed of a swimmer powered by a proton current, in the presence of
chemical reactions, with parameters chosen to match typical measure-
ments on microparticles (red solid, theory; blue circle, experiment65); and,
with the same surface parameters, but bulk solution parameters chosen to
match experiments on a nanoswimmer (red dashed, theory; black triangle,
experiment37). (b) The speed of an S= swimmer plotted against experimental
data on Janus-Pt microswimmers.15 The experimental error bars are smaller
than the data points.
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the surface parameters the same as in the microswimmer
experiments.65

If the assumption of constant surface properties holds true,
then this dashed curve should agree with the experimental value
for nanoswimmers. Instead, there is a clear disparity amounting
to several orders of magnitude. This is not the result of our linear
approximation: we find a good match between analytics and
numerics up to values of s and js+ higher than those used in
plotting Fig. 9a (Appendix C). The disparity is also not signifi-
cantly reduced if we assume uniform z rather than uniform s,
see Section 5. The discrepancy could be explained in at least two
ways. It may be that self-electrophoresis is not the correct
propulsion mechanism for bimetallic nano-swimmers. It has
recently been found that nanometre scale biological enzymes
also exhibit self-propulsion,41,42 and a range of mechanisms has
been proposed for this propulsion,66 some of which might also
apply to bimetallic nano-swimmers. Alternatively, it may be that
the assumption of constant surface properties is inappropriate.
That is, the proton current density could be much higher for
these nano-swimmers than for micro-swimmers. Whatever the
explanation, this discrepancy highlights the need for more
systematic studies of identical or comparable swimmers over
wide parameter ranges, as in ref. 15–17, and for independent
measurements of the relevant ionic reaction rates.

For Pt-polystyrene Janus particles, such systematic studies
do exist.15 These show a U p a�1 scaling for 0.2 mm o a o 5 mm
(this scaling has also been observed over a narrower range for
some bimetallic swimmers65). Self-electrophoresis S+, reaction
(R2), is currently the preferred mechanism for Pt-polystyrene
Janus swimmers,16,17 but comparison of this 1/a scaling with
Fig. 7b suggests self-ionic diffusiophoresis S= as an alternative
mechanism, corresponding to reaction (R3). This is plausible:
ion release without net electrical currents, which would corre-
spond to reaction (R3), has previously been observed for H2O2

decomposition on Pt.67 This mechanism would also avoid the
conceptual difficulty of producing a net ionic current in single-
catalyst systems.16,17 However, when we plot the experimental
data from ref. 15 against our theoretical predictions for S=

propulsion, Fig. 9b—which is again scaled to match the experi-
mental data for 1 mm radius swimmers, see Appendix B—we see
that the fit fails at small a, again due to the F(ka) parameter.
It is possible that evaluation of the complete H2O2–H2O reac-
tion system would provide a better fit, but this goes beyond the
scope of this work.

Note that the 1/a scaling has previously been explained by
postulating that the overall surface reaction rate j s

� is limited by
diffusion,15 and therefore scales as 1/a just from geometrical
arguments. However, the diffusion-limit implies a large flux
density j s

� E D�c
N

� /a, which for a 1 mm radius swimmer in 3 M
H2O2, as in ref. 15 requires j s

�E 3 � 1024 m�2 s�1. So far, only
much smaller rates, j s

� E 1022 m�2 s�1, have been measured,
both by us16 and by the authors17 of ref. 15. Therefore, these
swimmers do not appear to be in the diffusion limited regime,
so this explanation for the 1/a scaling cannot hold.

Next, we have previously calculated the values of the uncharged
flux js

� and the charge density s for Pt-coated Janus swimmers.16

We estimated that the propulsion speed of such swimmers was
too high to be explained by a purely uncharged reaction like
(R1).16 This estimate did not allow for bulk ionic reactions.
However, including these reactions, we calculate in Appendix C
that such a mechanism could still only account for E5% of the
observed speed of these swimmers. Hence, a model with just
surface reaction (R1), even with bulk dissociation, cannot explain
the propulsion of H2O2-powered swimmers, so that such swim-
mers probably still require more complex ionic surface reaction
schemes like (R2) and (R3). Nevertheless, purely neutral-surface-
reaction mechanisms could still be relevant for swimmers powered
by more dissociative fuels, such as hydrazine.59

Turning to the effect of pH, there have been two suggestive
studies,16,59 but no systematic investigation. First, we found that
NaOH reduced the swimming speed of Pt-polystyrene Janus
swimmers, but that this effect was much weaker than the speed
reduction due to NaCl.16 This is consistent with our prediction
that increasing pH at fixed Debye length should raise the
swimming speed for any of the 3 swimming mechanisms
discussed. Raising the pH corresponds to moving left from
the � symbol in Fig. 7c; for all swimming mechanisms the value
of B increases in this direction.

Second, the silica–iridium swimmers of ref. 59 show a clear
spike in speed as a function of fuel (hydrazine) concentration
similar in form to the peaks in Fig. 7c. This spike could be due
to modulation of pH by the reaction product ammonia, which
would imply that either neutral self-diffusiophoresis or self-ionic
diffusiophoresis dominates this swimmer’s self-propulsion. In
both these experiments, however, variation of the reaction rates
with pH could also explain the results,68 so further systematic
study is necessary.

Finally, we note that the bulk ionic dissociation rates are also
not well known, see Section 4.4. Our estimate of the association
constant kas is a diffusion limited rate, and is therefore an
upper limit, though for a proton exchange reaction, this is likely
an accurate estimate.52 Nevertheless, it might be argued that
the effects of bulk reactions will not be observed in practice for
lower reaction rates, as we require qa ] 1. However, since
q�1

p kas
�1/2, see eqn (38), for a much lower value of kas, say

1000 times lower, we still find q�1 B 2 mm, well within the
experimental microswimmer size range. Further, the value
of q�1 becomes arbitrarily small in both high and low pH
solutions, see eqn (38).

8 Conclusion

In this article, we have theoretically explored the influence of
common polar solvents such as water and hydrogen peroxide
on the propulsion behaviour of chemically-propelled, synthetic
microswimmers. We have focussed on two unavoidable proper-
ties of such polar solvents—electrostatic screening and ionic
dissociation—and calculated their effect on the swimming
speed of a wide range of microswimmers propelled by chemical
reactions on their surfaces. These effects have not been studied
systematically before; nevertheless, they are highly significant,
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and including these effects can modify predicted swimming
speeds by several orders of magnitude.

By ionic dissociation, we mean the breaking up of neutral
molecules, including water, into charged species, for example,
H2O2 " H+ + HO2

�. One of our main predictions is that this
kind of ionic dissociation reaction allows even microswimmers
whose surface chemistry does not involve any ions, e.g.,
swimmers propelled by the simple decomposition of hydrogen
peroxide, 2H2O2 - 2H2O + O2, to generate ionic gradients
and thereby electric fields. The implication of this is that all
microswimmers in water should experience some degree of
self-electrophoresis, i.e., propulsion via self-generated electric
fields. This is significant because self-electrophoresis is much
more efficient than other putative propulsion mechanisms and
is likely to dominate over them. Put simply: our results imply
that all swimmers in aqueous solution are likely to be self-
electrophoretic to a large degree.

The second major prediction of our work is that for some
chemically-propelled swimmers, ionic dissociation reactions may
result in a kind of exponential ‘reactive-screening’.20 Electrical
and chemical concentration fields generated by surface reac-
tions on microswimmers are usually taken to decay slowly into
the bulk solution, that is, as a power-law with distance. Ionic
dissociation can instead produce a short-ranged exponential
decay of these fields, just as in electrostatic screening. This
is significant since these chemical and electrical fields are
implicated in inter-swimmer interactions and collective behav-
iour, and the interaction range will play a crucial role in this
behaviour.

Our third prediction relates to electrostatic screening itself.
Most analytical treatment of microswimmers has focussed on the
thin-screening limit, where the electrostatic screening length is
much smaller than the swimmer size. For very small swimmers,
this limit does not apply, and we find that this massively reduces
the predicted swimming speed. This is important because experi-
ments on nanoscale swimmers37 show that these in fact swim
faster than microswimmers, in apparent contradiction to our
predictions. This opens up the exciting possibility that nanoscale
swimmers move by entirely novel mechanisms compared to their
microscopic counterparts.

Finally, the general conclusion that we draw from our results
is that more experimental work is required to understand self-
propulsion mechanisms. The effect of ionic dissociation in
particular depends crucially on the type of surface reactions
which are responsible for propulsion—and the details of these
reactions remain almost universally unknown. What is most
urgently required in this regard is the independent measure-
ment of surface reaction rates, which is challenging, and has so
far only been achieved in the simplest of cases. However, recent
results with electroosmotic pumps69 suggest that such measure-
ments will not long remain beyond our reach. We particularly
hope that our theoretical results will lead to renewed efforts in
this direction.

Looking ahead, our results suggest that a deeper under-
standing of self-propulsion will lead to greater insights into
swimmer–swimmer interactions and collective effects. This is

particularly relevant to synthetic swimmers, as their propulsion
is closely coupled to their interactions through self-generated
electrostatic, chemical, and hydrodynamic flow fields. We have
shown here that reactive screening can qualitatively change
the electrostatic interactions between swimmers. A detailed
follow-up study will look explicitly at such interactions. Further
theoretical work will focus on applying our calculations to
fully realized experimental systems, e.g., mixed metal-dielectric
swimmers.

Appendix

A Calculation of the analytical solution

In this appendix, we explicitly calculate the propulsion speed for
a general swimmer. This calculation is based on the linearized
model described in Section 4, but now with a more concise
notation, A.1. From this linearized model, we determine first the
electrostatic potential fields, A.2, then the propulsion speed, A.3,
as set out in Section 4. In A.4, we apply this general calculation to
determine the speed of the model swimmers presented in the
main text. Finally, in A.5, we demonstrate the equivalence of
uniform charge and uniform potential boundary conditions for
the calculation of the propulsion speed.

A.1 The linearized model

We begin with the linearized model described in Section 4.3.
For notational convenience, we define a composite dimension-
less parameter yl by combining the linearized potential c and
concentration xl fields

yl ¼
c; l ¼ 0;

xl ; l ¼ 1; 2 . . .N:

(
(52)

With this notation, the linear system of equations, eqn (19) and
(20) is given by

r2yl ¼
� e2

ekBT
PN
m¼1

zmc
1
m ym; l ¼ 0;

�zlr2y0 �
1

Dlc
1
l

PN
m¼1

klmym; l ¼ 1; 2 . . .N:

8>>>><
>>>>:

(53)

Eqn (53) represents a system of N + 1 linear equations. How-
ever, several of the species, typically inactive ions such as Na+ or
Cl�, may not be involved in any bulk or surface reactions, and
we will now show that these inactive species can be eliminated.
We specify that the first N0 indices (N0 o N) correspond to the
reactive species. For the remaining, unreactive species, all the
bulk reaction coefficients, klm are zero, and there is no surface
flux, so eqn (53) can only be satisfied if

yl = �zl y0, l 4 N0. (54)

This is the linear approximation to the Boltzmann distribution,
which one expects, since these unreactive species should be in
equilibrium with the electric field. Using eqn (54), these ions
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can be eliminated from the remaining N0 + 1 parts of eqn (53)
to yield

k�2r2yl ¼

�
PN0
m¼1

wmym
zm
þ 1�

PN0
m¼1

wm

 !
y0; l ¼ 0;

PN0
m¼1

zlwm
zm
� klmk�2

Dlc
1
l

� �
ym � zl 1�

PN0
m¼1

wm

 !
y0; l ¼ 1; 2 . . .N 0;

8>>>>>><
>>>>>>:

(55)

where k is the inverse Debye screening length

k ¼ 4plB
XN
l¼1

zl
2c1l

 !1
2

: (56)

with the Bjerrum length, lB = e2/(4pekBT), and where wl is a
dimensionless ionic concentration

wl = 4plBk
�2zl

2cNl . (57)

Eliminating the inactive ions makes it clear that the motion of
the swimmer cannot depend on the diffusivity of these ions,
and is only affected by them through the value of k and through
charge balance.

Finally, linearizing the boundary conditions in eqn (3) and (4)
gives

n̂ � ryl sð Þ þ zlry0 sð Þð Þ ¼ � jsl
Dlc

1
l

;

n̂ � ry0 sð Þ ¼ � se
kBTe

:

(58)

A.2 Calculation of the electrostatic potential

Eqn (55) has the form of a matrix equation with components
corresponding to the chemical concentrations and the electro-
static potential, so it is convenient to introduce some additional
matrix notation. The bold font is reserved for real-space vectors,
such as the fluid velocity u, while vectors in this concentration-
potential space will be underlined. A general vector �t will have
N0 + 1 components labelled tl, while a matrix T will have

(N0 + 1) � (N0 + 1) components labelled Tlp. A point in the
concentration-potential space is specified by the vector �y, with

components yl, as defined in eqn (52). Using this notation,
we can rewrite eqn (55) as

r2y ¼My; (59)

which can be solved by finding the N0 + 1 eigenvectors of the
matrix M, with eigenvalues mp. These eigenvectors define a new

basis, in which M is diagonal. Defining �w as the representation

of �y in this basis, we have

r2w ¼ G2w; (60)

where the matrix G is diagonal, with components Glp = dlpgp,

where dlp is the Kronecker delta and gp ¼ ffiffiffiffiffimpp is an inverse

screening length. For the model system described in the main
text, the unique values of gp are k, 0 and q, as given in eqn (38).
Here, for clarity, we use the index p to refer to the screening
lengths, and the indices l or m to refer to the concentrations
and potentials, even where these are dummy indices.

Eqn (60) is a series of N0 + 1 independent Helmholtz
equations, and the full solution to this equation is just a vector
of individual solutions to the Helmholtz equation. In spherical
polar coordinates, these solutions have the form20,70

wp ¼
X
n

wp;nPnðcos yÞ
a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (61)

with wp,n an as yet undetermined surface coefficient, Pn the
Legendre polynomial of order n,71 y the polar angle, and

TnðxÞ ¼
Xn
s¼0

2sn!ð2n� sÞ!
s!ð2nÞ!ðn� sÞ!x

s: (62)

We refer to the Legendre components by the subscript n through-
out, and where we have multiple subscripts, the Legendre
subscript shall be preceded by a comma. Transforming back
into the original coordinate frame linearly combines the solu-
tions in eqn (61), so that the final form for the electrostatic
potential is

f ¼
X
p;n

fp;nPnðcos yÞ
a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (63)

with analogous expressions for each concentration field. Here,
fp,n are surface coefficients which we will now determine.

Transformation back into the original coordinate system is
achieved with a transformation matrix K

y ¼ K w; (64)

where each element Klp of K is equal to the lth component

(in the original coordinate system) of the pth eigenvector.
Applying this transformation to eqn (61) gives

yl ¼
X
p;n

Klpwp;nPnðcos yÞ
a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ: (65)

The boundary conditions specified in eqn (58) can also be
rearranged into a matrix equation

Bn̂ � ry
			
r¼a
¼ b; (66)

where �b is a vector specifying each of the boundary fluxes or
charge density. We define the harmonic components �bn of �b by
b ¼

P
n

Pnðcos yÞbn, with analogous expressions defining B
n
. The

solution to the boundary conditions is found by inverting eqn (66)
to yield

wn ¼ L
n
bn; (67)

where

L
n
¼ B

n
K D

n

h i�1
; (68)

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 0

2/
02

/2
01

8 
11

:3
6:

38
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1039/c6sm01867j


This journal is©The Royal Society of Chemistry 2017 Soft Matter, 2017, 13, 1200--1222 | 1217

in which the diagonal matrix D
n

has elements

Dlp;n ¼ dlp gp
@ logTnðxÞ

@x

				
x¼gpa

� nþ 1

a
þ gp

� �" #
: (69)

Inserting the boundary conditions into eqn (65) then gives

yl ¼
X
p;n

ylp;nPnðcos yÞ
a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (70)

where the surface coefficients are

ylp;n ¼ Klp

X
m

Lpm;nbm;n: (71)

In particular, this yields for the surface coefficients of the
electrostatic potential (for which the index l = 0)

fp;n ¼
kBT

e
K0p

X
m

Lpm;nbm;n: (72)

Eqn (72), together with eqn (63) completely determines the
electrostatic potential field.

We can also determine the equilibrium and non-equilibrium
components of the potential. Writing f = feq + fsr, where
feq = f({jsl } - 0) is the equilibrium potential distribution
without any surface chemical reactions (here, {js

l } is the com-
plete set of surface fluxes), and fsr = f(s - 0) is the additional
potential generated by the surface reactions, we have

feq ¼
X
p;n

feq
p;nPnðcos yÞ

a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (73)

fsr ¼
X
p;n

fsr
p;nPnðcos yÞ

a

r

� nþ1Tn gpr
� �

Tn gpa
� �e�gpðr�aÞ; (74)

with surface coefficients

feq
p;n ¼

kBT

e
K0p

X
m

Lpm;nb
eq
m;n: (75)

fsr
p;n ¼

kBT

e
K0p

X
m

Lpm;nb
sr
m;n: (76)

Here �b
eq = �b({jsl } - 0) is the vector specifying the boundary

conditions for a charged but unreactive particle, and �b
sr =

�b(s - 0) specifies the boundary conditions for an uncharged
but reactive particle.

A.3 Calculation of the propulsion speed

Having determined the electrostatic potential, we calculate the
fluid flow by making use of the Lorentz reciprocal theorem.38

This allows one to transform the Stokes equation, eqn (11),
from a 3D partial differential equation into an integral equation
on the 2D domain boundary (the swimmer surface). Using this
approach, a general formula for the propulsion velocity U of a

non-slip sphere generated by an axisymmetric distribution of
force density f has been derived48

U ¼ � ẑ

6pZa

ð
V

3a

2r
� a3

2r3
� 1

� �
cos yr̂

�

� 3a

4r
þ a3

4r3
� 1

� �
sin y

�
� f dV ;

(77)

where the volume integral is over the region outside the sphere,
and the scalar speed U used in the main text is defined by
U = Uẑ. Here f = �rerf from eqn (10).

For a uniformly charged sphere, the equilibrium potential
distribution is

feq ¼ sa2e�kðr�aÞ

reð1þ kaÞ : (78)

Making the usual assumption of a small driving field, i.e.,
fsr { feq then gives

U ¼ 2s
3Za

X
p

k� gp

kþ gp
� �2fsr

p;1F ka; gpa
� �

; (79)

where the fsr
p,1 are to be read out from eqn (76) and

Fðx; yÞ ¼ ðxþ yÞ3
6ð1þ xÞð1þ yÞe

xþy

�
ð1
1

ðt� 1Þ2ð2tþ 1Þ
t5

ð1þ xtÞð1þ ytÞe�tðxþyÞdt;

(80)

which is the self-electrophoretic equivalent of the Henry func-
tion for electrophoresis in an external field.39 We have verified
that eqn (79) is also obtained by solving the 3D Stokes equa-
tions directly, following Henry’s methods.39,40,70 We also write
down a single-argument form of the self-electrophoretic func-
tion F(x) = F(x,0), which is useful when considering swimmers
without bulk reactions, for which y = qa = 0

FðxÞ ¼ x3ex

6ð1þ xÞ

ð1
1

ðt� 1Þ2ð2tþ 1Þ
t5

ð1þ xtÞe�txdt: (81)

This is the function discussed in Section 6.

A.4 Propulsion speed for the model swimmers

We now write down the propulsion speed for the 3 model
swimmers discussed in the main text. These expressions
were determined by solving eqn (79) symbolically in MATLAB,
and making the further assumption of weak ionic dissocia-
tion. We find that the bulk reaction factors, as defined in
eqn (37) are

B� ¼
dþ � d�ð ÞKeq

c1þ þ c1�
� �

d�d�
1�Yðka; qaÞ½ 
;

Bþ ¼ �
1

d�
1� c1� dþ � d�ð Þ

dþ c1þ þ c1�
� �Yðka; qaÞ

" #
;

B¼ ¼
dþ � d�
dþd�

Yðka; qaÞ;

(82)
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where Y(ka,qa) depends on the relationship between the
3 length scales a, k�1 and q�1 and is

Yðka; qaÞ ¼ ka
kaþ qa

� �3
2ðaqþ 1Þ

ðaqÞ2 þ 2aqþ 2

Fðka; qaÞ
FðkaÞ : (83)

With the limits k c q, and either qa c 1 or qa { 1, we obtain
the expressions given in Table 1.

A.5 A note on electrostatic boundary conditions

In this section, we show that a particle with fixed, uniform
surface charge s has the same propulsion velocity as an equiva-
lent particle with fixed, uniform surface potential z, as long as

z ¼ sa
eð1þ kaÞ: (84)

To do this, we first need to show that modifying the electro-
static boundary conditions of the particle has only a limited
effect on the fields of concentration and potential; namely,
that such modifications can only introduce electrostatic fields
corresponding to the equilibrium Debye–Hückel solutions
around passive colloids.

We take a swimmer, in a given chemical environment, and
apply to it three sets of boundary conditions. Boundary condi-
tions (1) and (2), with corresponding solutions �y

(1) and �y
(2), have

equal chemical flux boundary conditions (equal surface reac-
tion rates), but have arbitrary, different electrostatic boundary
conditions. Boundary condition (3) consists of a no flux condi-
tion on all species (no surface reactions), and the electrostatic
boundary condition

y(3)
0 (s) = y(2)

0 (s) � y(1)
0 (s). (85)

Since there are no fluxes through this particle’s surface, each
chemical species is in equilibrium, and the solution to this
boundary condition is just the equilibrium, Debye–Hückel
solution

y
ð3Þ
l ¼

ec
kBT

l ¼ 0;

�ezlc
kBT

l ¼ 1; 2 . . .N 0;

8>>><
>>>: (86)

where the equilibrium potential field c must satisfy both the
electrostatic boundary condition, eqn (85), and the Debye–Hückel
equation

r2c = k2c. (87)

One can then show by direct substitution of eqn (86) into
eqn (55), that the solutions to the three boundary problems
are related by �y

(2) � �y
(1) = �y

(3). In particular, f(2)� f(1) = c, which
implies, from eqn (87)

r2[f(2) � f(1)] = k2[f(2) � f(1)]. (88)

Hence the difference f(2) � f(1) between the electric potential
fields of particles (1) and (2) corresponds to an equilibrium
Debye–Hückel solution around a passive colloid.

As before, we make the assumption of a small driving field,
fsr { feq, where f = feq + fsr. Now, consider two particles (10)

and (20), with equal surface reactions, but where (10) has uni-
form surface charge density s, and (20) has uniform surface
potential z, with s and z satisfying eqn (84). In this case, the two
equilibrium fields are equal, i.e., f(10)eq = f(20)eq, and are given
by eqn (78). Subtracting this equality from eqn (88) yields, for
the remaining, non-equilibrium part of the potential

r2[f(20)sr � f(10)sr] = k2[f(20)sr � f(10)sr]. (89)

In other words, the difference in the reaction-generated electro-
static potential field between (10) and (20) is an equilibrium,
Debye–Hückel type field, which has an inverse screening length
gp = k. Since there is a (k � gp) factor in eqn (79), we see that
such a field can have no effect on the propulsion speed. This
proves the assertion that, to linear order, a particle with fixed,
uniform surface charge s will have the same propulsion velocity
as an equivalent particle with fixed, uniform surface potential z,
as long as eqn (84) is satisfied.

In fact, one can make a more general statement, which we will
not prove. For any two particles (10) and (20), with equal arbitrary
shape, surface reactions, and equilibrium (possibly non-uniform)
fields feq, not only the propulsion speed but the entire flow field
will be the same. A physical justification for this conclusion
is that if the interaction between one equilibrium field (feq)
and another (the difference field between (10) and (20)) could
generate fluid flow, then this would constitute a perpetual-
motion machine. Analogous conclusions have also been drawn
for electrophoresis in an external field.72

B Experimental parameters
B.1 The ionic association constant

An important parameter in our calculations is the ionic reac-
tion association constant kas in (R40), H+ + HO2

� " H2O2 in
water, see Section 4.4. We were unable to find a value for this
constant in the literature. However, reactions involving the
transfer of a proton or a hydroxyl ion are normally sufficiently
fast to be diffusion limited.52 It has been shown,73 that the
diffusion-limited rate constant between two species, A and B,
with diffusivities DA, DB, and valences zA, zB, which react at a
short distance rAB is74

kas = [4p(DA + DB)rAB]f (zAzB,rAB). (90)

Here, f (zAzB,rAB) is a modifier for charged species

f ¼ zAzBe
2

4perABkBT
exp

zAzBe
2

4perABkBT

� �
� 1

� ��1
: (91)

For reactions between oppositely charged species, over a typical
reaction distance in water of rAB = 0.2 nm,74 f (�1,rAB) = 3.59.
For the reaction between H+ (species A) and HO2

� (species B),
this yields, using the diffusivities quoted in the main text,
kas = 4.9 � 1010 mol�1 L s�1.

B.2 Comparison with experiments

For the comparison of self-electrophoretic micro- and nano-
swimmers in Fig. 9, we take experimental parameters from
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ref. 65 (microswimmers) and ref. 37 (nanoswimmers). For micro-
swimmers, we use a = 1 mm, cN� = 1.5 mol L�1 and no added salt.
For nanoswimmers, we use a = 15 nm, cN� = 1.5 mol L�1,
pH 7 and 5 mmol L�1 NaCl (this has the same Debye length as
1 mmol L�1 trisodium citrate, which was used in practice37).
For both swimmers, we take s = 10�2 e nm�2 (ref. 21) and
js
+,1 = 1.66 � 10�7 mol m�2 s�1, which is chosen to match the

microswimmer speed in ref. 65.
For comparison between S= and polystyrene-Pt Janus particles,

we take experimental parameters from ref. 15, which are
cN� = 3 mol L�1 with no added salt. We used s = 10�2 e nm�2

again and js
+,1 = 6.42 � 10�6 mol m�2 s�1, which is chosen to

match the experimental propulsion speed at a = 1 mm s�1.

C Finite element method calculations

In this section we give additional details for the numerical
FEM calculations discussed in Section 4.2. FEM calculations
are performed using the COMSOL 5.1 Multiphysics Modelling
package.

We employed the following strategies to accelerate the
calculations and obtain high quality results. (i) The solutions
were obtained in a 2D cylindrically symmetric geometry. (ii) We
ignored the advective coupling term in eqn (5). This allowed us
to split the problem into electrostatic plus hydrodynamic parts,
as for the linear theory, and thus solve the uncoupled equations
more efficiently. This approach is justified, since the Péclet
number (Pe) t 10�2 for typical experimental systems. We also
verified this directly, by including the advective coupling term
in a subset of the data points, finding good agreement. (iii) We
created a physics-specific mesh, see Fig. 10, on which we solved
the system. Quadrilateral elements were used out to a distance
of 3k�1 from the colloid surface. These elements grow expo-
nentially in size with increasing distance, whilst maintaining a
constant number along the tangential direction. The remainder
of the domain was meshed with triangular elements which
grow larger with distance from the colloid. This approach is
necessary to ensure convergence of the model. (iv) The following
polynomial orders were employed for the test functions: electro-
statics (3), diffusion (5) and hydrodynamics (2 + 3). These higher
orders proved necessary to reduce spurious flow (see also ref. 44).
(v) Finite-size scaling was employed to check for artefacts arising
from the finite extent of the simulation domain, we found that
for L = 10a + 25k�1 the effects on the speed of the particle were
negligible. (vi) Mesh refinement was used for several simulations
to determine the dependence of our result on the element size.
(vii) We also varied the tolerance on the residual for a few cases
to verify that our solutions had sufficiently converged.

To verify the analytic results, we first performed calculations
with sufficiently low values of the surface charge density and
flux to remain in the linear regime. These js and s are given in
Table 2. Fig. 7 in the main text shows that there is excellent
correspondence between the theory and FEM calculations
in this regime. Different fluxes were used for the different
propulsion models because the low efficiency of type S� and

S= propulsion mean that numerical errors become significant
more quickly as the flux density is reduced for these models.

In addition, the FEM calculations and the linearized theory
produce essentially identical electrostatic potential fields. Fig. 11a
illustrates this for type S+ electrophoresis. Note that we had to
use a much smaller computational domain than we typically
use (L = 6a here, rather than L = 10a + 25k�1), in order to show
details in Fig. 11a. This means that the deviation from the
theory, which stems from the f = 0 boundary condition on the
edge of the domain (Fig. 11b), occurs closer to the particle
than in our regular calculations. However, the potential and

Fig. 10 The mesh on which the FEM calculations are performed. This
particular mesh was generated for radius a = 0.5 mm and a salt concen-
tration of 10�5 mol L�1, but illustrates the generic features of all the meshes.
The rotational symmetry of the simulation domain is exploited to calculate
on a quasi-2D domain: the symmetry axis is indicated by the dashed red line.
The domain typically has a radius L = 10a + 25k�1 in size. This domain is
subdivided into two pieces on which triangular and quadrilateral elements
are used. In a range of 3k�1 around the colloid the domain consists of
quadrilaterals, which grow in size geometrically, see the zoom-in (blue box).
Beyond this range the elements are triangular and are allowed to grow
out linearly to best fit the domain boundary and reduce the overall number
of elements.

Table 2 The charge densities and the first Legendre components of
the surface flux densities used in Fig. 7 in the main text and Fig. 12 here.
The flux densities have units mol m�2 s�1, and the charge densities have
units e nm�2. The final column gives the product of s and the relevant
non-zero flux density, with units e mol m�2 nm�2 s�1

Fig. Type j s
�,1 j s

+,1 j s
�,1 s sj s

7 S� 3 � 10�1 0 0 10�4 3 � 10�5

S+ 0 3 � 10�7 0 10�4 3 � 10�11

S= 0 3 � 10�5 3 � 10�5 10�4 3 � 10�9

12 S� 1.5 � 10�2 0 0 10�2 1.5 � 10�4

S+ 0 1.5 � 10�5 0 10�2 1.5 � 10�7

S= 0 1.5 � 10�5 1.5 � 10�5 10�2 1.5 � 10�7
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flow-fields decay sufficiently rapidly that this does not affect the
potential near the particle, or the propulsion speed beyond a
few per cent.

We can also use the FEM to go beyond the linear approxi-
mation. We defer to future work a systematic investigation of
the non-linear behaviour, and here focus on the propulsion
speed for selected experimentally relevant values of the surface
charge density and chemical fluxes. These values are taken
from measurements on the Pt-polystyrene Janus swimmers in
ref. 21, and are listed in Table 2. The neutral flux density j s

�,1 is
that which would be produced by a Janus particle which uni-
formly consumes H2O2 on one hemisphere at a rate G = 8 � 1010

molecules per second per particle. This rate was measured for
a = 1 mm radius particles in 3 mol L�1 H2O2.16 The surface charge
density is taken from the electrophoretic mobility measurements
made on the same particles in ref. 16. The ionic fluxes are unknown,
but we arbitrarily set j s

	,1 = 10�3 j s
�,1, so that S+ electrophoresis

gives a speed of order 100 mm s�1, which is somewhat larger than
typical experimental values, E10 mm s�1 for Au–Pt spherical
microswimmers.10,65 Hence, our results should overestimate the
non-linear behaviour of the propulsion speed. Note that though
the ionic flux densities for the experimentally realistic case
are sometimes lower than those for the linear case, the product
of charge density and surface flux is always greater in the
experimentally realistic case, Table 2.

Fig. 12a and b, both with 1 mmol L�1 NaCl, correspond to
Fig. 7 in the main text. We see that the analytical theory con-
tinues to match the FEM calculations well even for these
realistic values of the flux and charge densities. However, many
experiments are performed with no added salt, and as shown in
Fig. 12c, the agreement worsens as the salt concentration falls.
This is to be expected, since it is low salt that generates a high-z,
large-screening-length regime where linear approximations
break down.75 In fact, with 0 mmol L�1 NaCl, the dimension-
less zeta-potential ze/(kBT) = 5.6 for these particles, well beyond
the Debye–Hückel regime of ze/(kBT) { 1. Nevertheless, for all
propulsion types, the agreement remains semi-quantitative
between simulations and theory over the whole radius range
for 0 mmol L�1 NaCl, Fig. 12d.

From Fig. 12d, we obtain a speed of 0.5 mm s�1 for type S�
electrophoresis with particles of radius a = 1 mm, no salt, and
3 M H2O2 (the black arrow indicates the relevant data point).
As stated in the main text, this predicted speed can account for
at most 5% of the experimentally measured propulsion speed of
15–20 mm s�1 obtained for Pt-polystyrene Janus particles under
the same conditions.16
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