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Abstract20

Determining the relationship between single-neuron spiking and transient (∼20 Hz) beta local21

�eld potential (β-LFP) oscillations is an important step for understanding the role of these oscillations22

in motor cortex. We show that while motor cortex �ring rates and beta spiking rhythmicity remain23

sustained during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast,24

as short transient events. Single-neuron mean �ring rates within and outside transient β-LFP events25

showed no di�erences, and no consistent correlation was found between the beta oscillations’ amplitude26

and �ring rates, as was the case for movement and visual-cue related β-LFP suppression. Importantly,27

well-isolated single units featuring beta-rhythmic spiking (43%, 125/292) showed no apparent or only28

weak phase-coupling with the transient β-LFP oscillations. Similar results were obtained for the29

population spiking. These �ndings were common in triple microelectrode-array recordings from30

primary motor (M1), ventral (PMv) and dorsal (PMd) premotor cortices in non-human primates31

during movement preparation. Although beta spiking rhythmicity indicates strong membrane potential32

�uctuations in the beta band, it does not imply strong phase coupling with β-LFP oscillations. The33

observed dissociation points to two di�erent sources of variation in motor cortex β-LFPs: one that34

impacts single-neuron spiking dynamics, and another related to the generation of mesoscopic β-LFP35

signals. Furthermore, our �ndings indicate that rhythmic spiking and diverse neuronal �ring rates,36

which encode planned actions during movement preparation, may naturally limit the ability of di�erent37

neuronal populations to strongly phase-couple to a single dominant oscillation frequency, leading to38

the observed spiking and β-LFP dissociation.39

New and Noteworthy40

We show that while motor cortex spiking rates and beta (∼20 Hz) spiking rhythmicity remain sustained41

during steady-state movement preparation periods, β-LFP oscillations emerge, in contrast, as transient42

events. Furthermore, the β-LFP phase at which neurons spike drifts: phase coupling is typically weak43

or absent. This dissociation points to two sources of variation in the level of motor cortex beta: one that44

impacts single-neuron spiking and another related to the generation of measured mesoscopic β-LFPs.45
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Introduction46

Sensorimotor cortex beta (β-) LFP oscillations result from coherent activity and re�ect in part the collective47

dynamics of neuronal populations embedded in local and large-scale brain networks. In the speci�c case48

of motor cortex, β-LFP oscillations are especially evident during movement preparation, planning, and49

also during the execution of isometric-force grip tasks (Baker et al., 1997, 2001, 2003; Jackson et al., 2003;50

Murthy and Fetz, 1992, 1996a,b; Sanes and Donoghue, 1993). The relationship between single-neuron51

spiking and β-LFP oscillations remains an important issue towards revealing the origin and function of52

these oscillations in the primate motor cortex. Addressing this issue may be critical for the development53

of new therapies for movement disorders, such as Parkinson’s disease (Beuter et al., 2014; Gale et al.,54

2008; Yang et al., 2014), and for the development of brain machine interfaces for people with paralysis.55

More generally, the relationship between single-neuron activity and collective activity is important for56

understanding the neural dynamics of motor steady states.57

Most previous studies have examined the relationship between neuronal spiking and ongoing β-LFPs58

using spike-triggered averages. Based on this approach, several studies have shown some level of phase59

coupling between spikes and LFP (e.g. Murthy and Fetz 1996b). However, assessing the coupling strength60

based on spike-triggered averages (STAs) is di�cult since STAs are expressed in �eld potential units61

rather than a direct measure of phase coupling. To address this issue, several other studies have used62

spike-�eld coherence and related measures, e.g. Baker et al. (2003) during the execution of isometric63

force precision grip tasks. However, it remains unclear how neuronal �ring rates and rhythmic spiking64

activity relate to transient β-LFP oscillations during controlled steady-state movement preparation periods,65

i.e. periods unperturbed by the strong in�uence of motor or sensory-stimuli driven transients in neural66

activity. In particular, how �ring rates, beta rhythmic spiking, and the phase coupling between spiking67

and β-LFPs behave within and outside transient β-LFP events has not been examined in detail. Clarifying68

these issues is an important step for understanding the function and mechanisms of beta oscillations in69

motor cortex.70

We address these issues in the context of a visually cued reaching and grasping task with instructed71

delays. Single units were simultaneously recorded via multiple microelectrode arrays implanted in areas72

M1, PMd and PMv, while non-human primate subjects performed reach and grasp actions in a 3D workspace.73

We focused on examining the relationship between well-isolated single units and β-LFP activity during74
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steady-state movement preparation stages of this task, which may potentially di�er from synchronization75

dynamics previously studied in association with isometric force during precision grip, as described above.76

Overall, we found a striking phenomenon that has been overlooked in previous studies. While β-LFP77

oscillations tended to appear as short transients, even during steady-state movement preparation periods,78

neuronal �ring rates and beta spiking rhythmicity, evident in the inter-spike time interval (ISI) distributions79

and autocorrelation functions, were sustained. Furthermore, di�erent spike-LFP phase coupling measures80

revealed that single-neuron beta-rhythmic spiking was at most weakly coupled to the β-LFP oscillations,81

even when the analysis was restricted to transient periods of high β-LFP power. We observed this phenomenon82

in many single units from the three recorded motor cortical areas. In addition, although single units83

clustered into two groups (narrow and wide extracellular action potentials) that showed di�erences84

in �ring statistics between groups, no consistent di�erences in the strength of their phase coupling to85

β-LFP oscillations were detected, indicating that the dissociation between spiking and β-LFP activity is86

present in di�erent neuronal populations.87

Methods88

The CGID task The Cued Grasp with Instructed Delay (CGID) task investigates neural activity89

in motor cortex associated with sensory integration, working memory across instructed delays, and90

planning of upcoming reach and grasp actions (see Vargas-Irwin et al. (2015) for additional details). All91

experimental procedures were conducted as approved by the local Institutional Animal Care and Use92

Committee (IACUC). The task requires a subject (macaque monkey) to reach out and grasp one of two93

objects using one of two possible grips. A sequence of visual cues instructs the subject which object to94

grasp, and which grip to use. When the task begins, the lights in the room are turned o�, and one of the95

two objects is rotated into place. One second later, said object is illuminated. The subject now knows96

which object to grasp, but not which grasp to perform. One second after object presentation, a cue light97

(red or yellow, left or right position) is illuminated, specifying the grip. If the light is red, the subject is98

to perform a power grip. If the light is yellow, the subject is to perform a precision grip or a key grip,99

depending on the object. Two seconds after the ‘Grip’ cue, a ‘Go’ cue (green light, middle position) is100

given. The subject may then reach out and grasp the object. If the subject moves before the ‘Go’ cue or101

uses the incorrect grip on the object, the trial is voided. If the subject uses the correct grip, he receives a102
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juice reward.103

In this paper, we refer to the task epochs preceding the ‘Go’ cue as the planning and preparatory104

period. Movement periods were de�ned as the time from when the subject lifts his hand from the holding105

position to the time when the subject contacts the object, as detected by capacitive touch sensors. We106

focus on two steady-state periods. The �rst period is the one second between the start of the trial and107

when the object is presented, during which the subject is waiting attentively and has not yet received108

the information needed to plan or prepare for movement. The second period is the one second preceding109

the ‘Go’ cue. In this period, the subject has been cued with the information needed to plan the reaching110

and grasping action, and the transient neural activity associated with the visual cues has passed. It is111

important to note that the visual cue lights were present until the ‘Go’ cue, so this second steady-state112

epoch represents a motor preparatory state and not a state that explicitly requires working memory.113

Neural recordings Data were recorded from triple microelectrode arrays (Blackrock Microsystems,114

Salt Lake City, UT), with an electrode depth of 1.5 mm targeting layers II/III-V of motor cortex. Neuronal115

spiking and LFP data were recorded on 10×10 (ventral premotor cortex PMv) and two 6×8 (dorsal premotor116

cortex PMd and primary motor cortex M1) arrays with 0.4 mm electrode spacing. Data from two subjects117

(R and S) were analyzed (see Vargas-Irwin et al. (2015) for additional details). Broadband LFPs recorded118

at 30 kilosamples/s (0.3 Hz - 7.5 kHz) were down-sampled (zero-phase 4th order Butterworth, ≤∼250 Hz119

MATLAB �lt�lt) to 1 kilosample/s for analysis.120

Spike sorting For each electrode, candidate spikes (extracellular action potentials) were identi�ed121

online via threshold crossing in the amplitude of the high-pass �ltered signal (250 Hz 4th order high-pass122

Butterworth �lter, Cerebus Data Acquisition System, Blackrock). Preliminary spike sorting was performed123

by a custom automated spike sorter (Vargas-Irwin and Donoghue, 2007), and veri�ed using the commercial124

Plexon O�ine Sorter (Plexon Inc.). Candidate units included in the analysis had a minimum signal-to-noise125

ratio (SNR) of 3.0, de�ned as one-half the average sorted spike waveform peak-to-valley height, divided126

by the standard deviation of the >250 Hz high-pass potential on the same channel (Vargas-Irwin and127

Donoghue, 2007). Additionally, we required that: (1) the inter-spike-interval (ISI) histogram display a128

clear refractory period to exclude multi-unit clusters; (2) that the units exhibit at least 100 inter-spike129

interval events during each one-second steady-state period of the CGID task within each session, to130
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provide for accurate estimation of ISI distributions; and (3) that units be clearly separated into di�erent131

clusters in the waveform PCA feature space. Electrodes exhibiting cross-talk or excess noise were excluded132

from analysis.133

ISI histogram statistics Isolated single units showed diverse �ring characteristics as assessed by134

the inter-spike interval (ISI) distribution and related statistics, both across time and across units. For a135

given unit, these statistics were computed from the ISI distribution from all inter-spike intervals pooled136

over all trials for a given one-second epoch of the CGID task. We computed mean �ring rates, the ISI137

mode, and the coe�cient of variation (CV; i.e. the standard deviation of the ISI distribution divided by138

the corresponding mean). We quanti�ed the tendency of units to �re bursts as the percentage of ISIs139

shorter than 10 ms.140

We summarized a single unit’s preferred �ring frequency (in Hz), by computing the inverse of the141

ISI mode, henceforth referred to mode frequency. The mode �ring frequency was identi�ed for unimodal142

and bimodal ISI histograms using kernel density estimation (Python scipy.stats.gaussian_kde).143

Because some units exhibited an ISI distribution with an additional mode corresponding to bursts, and144

since we were interested in slower ‘rhythmicities’, we considered only ISI events longer than 10 ms145

when estimating the mode �ring frequency. Because ISI distributions were right-skewed, we applied146

kernel density estimation to the transformed variable log(5 ms+ISI). The shift of 5 ms improved numerical147

stability close to zero, which was an issue in the subset of units that �red bursts of spikes.148

Unit categorization Units were categorized based on features of their ISI distributions during the149

movement preparation steady-state periods of the CGID task. Units exhibiting a clear mode in the ISI150

distribution between 10 and 100 ms were classi�ed as unimodal. Units that showed an additional peak151

below 10 ms in the ISI histogram were further classi�ed as bimodal (bursting/rhythmic) cells. All ISI152

events were included when categorizing unimodal vs. bursting neurons, in contrast to the calculation for153

mode frequency for which bursts were excluded. Units exhibiting exponential ISI distributions (allowing154

for refractoriness) were classi�ed as Poisson-like. Units displaying a mixture of these features, e.g. some155

amount of bursting, with an exponential ISI distribution exhibiting a long recovery period, were classed156

as “intermediate”. We restricted spike-�eld phase coupling analysis to well-isolated single-units classi�ed157

as unimodal or bimodal (bursting/rhythmic) that also displayed an ISI mode frequency between 10 and158
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45 Hz in at least one of the steady-state movement preparation epochs, and a mean rate at least one �fth159

the mode �ring frequency. Allowing low �ring rates permitted analysis of single units whose spiking160

was coupled to the beta phase, but did not �re in every beta cycle. The distribution of mean �ring rates161

across units during these epochs was concentrated below 30 Hz.162

Units were further classi�ed as narrow- and broad-spike based on their mean extracellular action163

potential waveform. In order to precisely align spikes, we upsampled waveforms using sinc interpolation.164

To minimize edge e�ects during upsampling, the linear trend in the waveform was removed, the de-trended165

waveforms were upsampled with re�ected boundary conditions, and the linear trend restored. We extracted166

mean waveforms by averaging peak-aligned upsampled waveforms. Waveforms were clustered based on167

the voltage of the mean waveform 300 µs after the spike peak. This feature led to better cluster separation168

than using the waveform width, since by this time narrow spike cells have recovered (and may exhibit169

afterhyperpolarization), while broad-spike cells remain depolarized. Average waveforms from all areas,170

sessions, and subjects, were combined for clustering. Clustering was performed using a 1D Gaussian171

mixture model and units were assigned as either narrow- or broad-spike based on likelihood ratio.172

Beta phase extraction and transient identi�cation For analysis, raw LFP traces (30 kilosamples173

per second) were low-pass �ltered at 250 Hz using a zero-phase 4th order Butterworth, ≤∼250 Hz MATLAB174

�lt�lt, and down-sampled to 1 kHz (Matlab decimate). In the Generalized Linear Model (GLM; Truccolo175

et al. 2005) assessment of spike-LFP phase coupling, the beta band was identi�ed separately for each176

session and channel, and separately for the two di�erent steady-state movement preparation periods.177

Beta was selected as the 5 Hz band surrounding the highest peak between 15 and 30 Hz in the LFP power178

spectrum. We estimated the power spectra for each 1-second epoch using multitaper spectral estimation179

(Mitra and Pesaran, 1999; Percival and Walden, 1993). We chose a 2.5 Hz half-bandwidth parameter,180

which resulted in 5 tapers. Tapers were computed by the dpss function in the Python package "spectrum."181

Spectral estimates were computed separately for each trial for a given epoch, then averaged over all182

trials.183

Once the beta peak was identi�ed, the beta LFP was extracted in the time domain using a 4th-order184

Butterworth band-pass �lter (centered at the highest peak in beta) applied forwards and backwards. Beta185

phase was extracted using the Hilbert transform (SciPy hilbert, Oliphant 2007), which generates186

a beta analytic signal z (t ) consisting of a real component (the �ltered beta signal) and an imaginary187
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component which is a π/2 phase-shifted copy of the �ltered beta signal. The instantaneous phase φ (t )188

and amplitude |z (t ) | can be extracted from the analytic signal z (t ) = |z (t ) | · exp(iφ (t )). We extracted189

transient periods of elevated beta power by examining the amplitude envelope of the beta analytic signal.190

First, the amplitude envelop |z | was smoothed with a 50 ms boxcar �lter. Events for which this smoothed191

amplitude signal exceeded 1.5 times the standard deviation of the �ltered beta signal for at least 40 ms192

(approximately one beta wavelength) were designated as high-beta events. We visualize (Figs. 1, 7) single-trial193

LFP activity using a Morlet continuous wavelet transform with a time-bandwidth ratio of 5, which enabled194

good time-resolution for higher frequencies while maintaining good frequency resolution at low frequencies;195

wavelets are normalized by the integral of their absolute magnitude (Torrence and Compo, 1998).196

Spike triggered LFP averages We estimated the spike triggered averages between spikes and the197

250 Hz low-pass �ltered (Butterworth, 4th-order, forward-backwards, Matlab filtfilt) LFP sampled198

at 1 kilosample on the same electrode. This approach does not remove the spiking contribution to the199

LFP. (The section “Spike contamination” below address this concern.) Instead, stable phase coupling of200

neuronal spiking to LFP oscillations appears as oscillatory components in the spike-triggered averages201

(STAs). However, estimation of spike-LFP phase coupling is susceptible to several biases. These biases202

are exacerbated if both the spike trains and the LFP signals exhibit autocorrelations at similar time scales.203

For example, if a rhythmic spike train (∼20 Hz) co-occurs with a burst of 20 Hz LFP oscillations, it might204

appear that the single unit is phase coupled to the LFP even if there is no relationship. Additional biases205

may emerge if changes in �ring rates are correlated with changes in LFP power. In addition, the STA206

does not o�er a direct assessment of the phase coupling magnitude, as it re�ects both phase-coupling207

and amplitude e�ects, and poorly visualizes variability around the mean trend. Because of the biases208

inherent in the STA, we used two complementary approaches to get unbiased estimates of spike-LFP209

phase coupling: pairwise phase consistency (PPC), and GLM point process models for assessment of210

phase coupling.211

Pairwise phase consistency Pairwise Phase Consistency (PPC; Vinck et al. 2010) is an estimate212

of spike-LFP phase coupling that is not biased by the �ring rate or correlated modulations in LFP power213

and �ring rate. Vinck et al. (2010) de�ne PPC as the average dot product between all pairs of spike-triggered214

phase measurements. We computed PPC using the equivalent expression (Aydore et al. 2013; Equation215
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11)216

PPC = N

N − 1

(
|z̄ |2 −

1
N

)
, (1)

where |z̄ | is the magnitude of the average over spike-triggered β-LFP phase vectors z̄ = 1
N

∑N
k=1 exp(iφk ),217

φk represents the phase measurement at a given spike time and k indexes over spikes. To compute PPC,218

we extracted instantaneous LFP phase estimates for a range of frequencies by taking the Fourier transform219

of the LFP in a ±100 ms window surrounding each spike. Each LFP segment was mean-subtracted and220

multiplied by a Hanning window to reduce boundary e�ects. To attenuate temporal dependencies among221

samples, spikes that occurred within 200 ms after a previous spike were excluded. We report the PPC222

value at the peak beta frequency, identi�ed separately for each subject, session, channel, and task epoch.223

The PPC bias correction requires that successive samples be independent. Although we reduced temporal224

correlations between successive samples by removing events for which the spike-triggered LFP segments225

would overlap, residual correlations may remain in both the spike trains and LFP. Therefore, we estimated226

the chance level empirically by phase randomizing LFP segments (Mammen et al., 2009), preserving the227

autocorrelation structure of the LFP.228

Point-process GLM-CIF models for spike-LFP phase coupling We used a discrete-time229

point-process generalized liner model (GLM) framework (Truccolo et al., 2005) to detect spike-LFP phase230

coupling in 1 ms time bins. This is similar to the approach used in Lepage et al. (2013), Zhou et al. (2015),231

and Rule et al. (2015). GLM point-process based estimators explicitly model the conditional intensity232

function (CIF) λ(t ) and include an o�set parameter µ as a separate regression term, therefore providing233

an estimate of spike-LFP phase coupling that is less susceptible to variations in �ring rate. We considered234

GLM point process models of the form235

ln[λ(t | φLFP (t ))] = µ + α cos(φLFP (t ) − φ0) = µ + β1 cosφLFP (t ) + β2 sinφLFP (t ), (2)

where µ is a mean-rate parameter, φ0 is the preferred phase of �ring relative to the LFP, φLFP (t ) is the236

time-varying instantaneous Hilbert phase of the LFP signal, and α is the strength of phase coupling. In237

this study we assess the predictive power of the model using receiver operating characteristic (ROC)238

curve analysis (Fawcett, 2006; Rule et al., 2015; Truccolo et al., 2010). The area under the ROC curve239

(AUC) summarizes the accuracy of spike times predicted by the model, and ranges from 0.5 (chance240
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level) to 1.0 (perfect prediction). We report predictive power (PP) as normalized AUC values such that241

0 is chance level and 1 is perfect prediction. Chance level was estimated using phase randomized LFP242

(Mammen et al., 2009) and by shu�ing the LFP trial blocks relative to the spike trains.243

Point-process GLM-CIF models for relating single neuron spiking to population spiking244

activity We also used CIF models to relate single units to the population spiking activity A(t ), de�ned245

as the total number of spikes across all of the recorded single units (except the predicted neuron) in a246

given motor area within 1 ms time bins, followed by a 25 ms boxcar �lter. The CIF model consisted of:247

ln[λ(t | A(t ))] = µ + β · A(t ), (3)

where µ is a mean-rate parameters, β re�ects the coupling of the single unit to the population spiking248

activity A(t ), and λ(t |A(t )) is the point process intensity function conditioned on the population spiking249

activity. As a second measure of population activity, we also considered multi-unit activity (MUA) recorded250

in the same electrode as the single unit. MUA was de�ned as the amplitude envelope of > 250 Hz LFP251

bandpass �ltered in the 5 Hz band surrounding the peak beta frequency.252

Assessing coupling between population spiking activity and ongoing β-LFP We assessed253

the relationship between the population spiking activity and the ongoing β-LFP activity by computing254

their cross-correlation functions. Population spiking activity was de�ned as above, except that in this255

case, all well-isolated single units were included (for the spiking population history model, the unit256

being predicted was excluded from the population rate). Statistical tests were applied to the peak of the257

cross-correlation functions computed for time lags ranging over one beta cycle (±25 ms).258

Spike contamination In this study, we examined statistical relationships between neuronal spiking259

activity and local �eld potentials recorded on the same electrode. In this case, the spikes themselves260

contribute to LFP power, even at frequencies as low as the ∼20 Hz beta band investigated here (Waldert261

et al., 2013). Waldert et al. (2013) found that the spiking contribution to low-frequency LFPs can arise262

from both low-frequency components of the spike waveform, including slow afterhyperpolarization263

potentials (AHPs), as well as spike-train rhythmicity at low-frequencies. We elected not to use spike264

removal procedures like those of Zanos et al. (2011) for several reasons. We are primarily interested265
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in the observed phenomenon of weak spike-�eld phase coupling demonstrated in the Results section.266

Contributions of neuronal spikes to the overall LFP signal can only in�ate our estimated phase coupling,267

and thus making these estimates more conservative with respect to the main point being made here. It268

is possible that there is ambiguity between spike-locked local network oscillations and low-frequency269

components of the extracellular spike waveform (e.g. slow AHPs). Since it is possible that low-frequency270

components of the spike waveform relate to the origins of LFP, we wish to avoid erroneously removing271

a true contributor to β-LFP. Nevertheless, we can distinguish between action potential contamination272

and other spike-LFP phase interactions by inspecting the PPC spectrum. True spike-LFP phase coupling273

leads to a PPC peak at the beta band, whereas spiking contamination leads to a broad-band monotonically274

increasing PPC spectrum.275

Results276

We analyzed three CGID task sessions each from two subjects (R, S) with simultaneous microelectrode277

array (MEA) implants in three motor areas (M1, PMv, PMd) (Methods ‘The CGID task’). Each session278

yielded between 46 and 114 correctly executed seven-second CGID trials, collected over twenty minutes279

to one hour. For each session, each MEA yielded between 7 and 48 well-isolated and high SNR single280

units, for a total of 699 unit recordings. Of these, 292 exhibited su�cient �ring rates during the steady-state281

movement preparation periods of the task to permit further analysis. Steady-state periods corresponded282

to an attentive waiting period in the �rst second before object presentation, and a movement preparation283

period one-second before the ‘Go’ cue (Methods).284

Sustained neuronal �ring rates and β-rhythmic spiking can be dissociated from β-LFP oscillations285

during steady-state movement preparation periods286

We observed isolated single units that exhibited sustained rhythmic �ring at beta frequencies during287

the steady-state movement preparation periods of the CGID task (e.g. Figs. 1, 4). Concurrently, beta LFP288

power was elevated during steady-state movement preparation periods of the CGID task, including the289

�rst second of the task before object presentation and the one second leading up to the ‘Go’ cue. The290

phase of the β-LFP at which example single-units spiked appeared to drift over various short β-LFP291

transients (e.g. Fig. 1c). Inspection of spike-triggered averages revealed little reliable phase relationship,292
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and examples, shown in Figure 1c, con�rmed these initial observations, showing only a spiking artefact,293

i.e. a residual of the extracellularly recorded action potential in the lowpass �ltered LFP data. We explore294

in depth this apparent decoupling of highly rhythmic single neurons from the population oscillation295

evidenced on the LFP in the following sections.296

In order to investigate systematically the relationship between neurons that �re rhythmically at297

beta frequencies with the β-LFP, we developed criteria to identify β-rhythmic neurons within the population.298

We categorized units based on features of their ISI distributions (Methods ‘ISI histogram statistics’) during299

the steady-state movement preparation periods (Figure 2a,b). 699 units exhibited well-isolated spiking.300

Of those, 71% (499/699) met the minimum SNR cuto� of 3.0 for inclusion in the analysis, 54% (377/699)301

exhibited at least 100 ISI events during the task steady-state epochs, and 42% (292/699) met both conditions302

and were suitable for analysis. (See Methods for more details in the inclusion criteria.) Out of these 292303

well-isolated single units that satis�ed the inclusion criteria, 66% (192/292) showed a unimodal peak in304

ISI events longer than 10 ms during the two steady-state movement preparation periods. A subset of305

units (25%, 72/292) exhibited bursting as evidenced by bimodal ISI distributions with a second peak in306

short latency (<10 ms) ISI events, while also exhibiting an overall slower rhythmicity. A minority of307

units (7%, 21/292) showed low �ring rates and irregular Poisson-like spiking, or had an ISI distribution308

that could not be clearly categorized (2%, 7/292).309

We considered identifying the above three classes, (refractory) Poisson-like spiking, bimodal (bursting/rhythmic),310

and unimodal (rhythmic) units with the three neuron types I, II and III described in Chen and Fetz (2005),311

which each exhibit di�erent characteristic spike waveforms. However, Baranyi et al. (1993a,b) describe a312

larger number of neuronal subtypes in motor cortex, with overlapping �ring statistics and spike waveform313

shapes, and we found that 63% (185/292) of units exhibited ISIs that could not be clearly identi�ed with314

any of the categories in Chen and Fetz (2005). We tentatively identi�ed 38% (21/55) irregular Poisson-spiking315

units with type I, 31% (22/72) bursting units with type II, and 33% (64/192) units exhibiting fast regular316

spiking with type III.317

The overlap between the distributions of �ring statistics for each neuronal subtype in our data was318

too large to allow classi�cation. Previous work has highlighted that intrinsic neural properties can be319

heterogeneous (Battaglia et al., 2013). Because of these ambiguities in identifying neuronal subtypes320

based on spike train statistics, we focused on units that exhibited a clear mode in the ISI between 20321

and 100 ms, which may potentially exhibit rhythmicity at the same frequencies as β-LFP. Two summary322
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statistics, the ISI coe�cient of variation (CV) and mean �ring rate, are shown in Figure 2c.323

We also note that several of the single units that exhibited rhythmic �ring during the movement324

preparation periods dramatically changed their �ring statistics during the movement execution period325

(Fig. 3). Following the ‘Go’ cue, many units increased or decreased their �ring rates (e.g. Fig. 3a,c,d)326

as expected. Some units did not show abrupt changes following the ‘Go’ cue, but rather a gradual shift327

over the course of the preparatory period (e.g. Fig. 3b). In this task, the cue times were predictable, and328

these gradual shifts may have re�ected ramping in anticipation of the cue. More importantly, some units329

that exhibited unimodal/bimodal ISI distributions (a potential signature of rhythmic �ring) during the330

preparatory period shifted to more Poisson-like spiking following the ‘Go’ cue (example 4, Fig. 3). This331

�nding suggests that rhythmic spiking need not be a �xed subthreshold resonance property of these332

neurons, and instead likely re�ects the network state during the preparatory and delay periods.333

We observed that most rhythmically �ring units tended to �re in a sustained manner during the334

examined steady-state periods, with high reproducibility across trials in terms of mean �ring rates and335

ISIs (e.g. Fig. 4). Inspection of the �ring mode frequency for rhythmic units (Figs. 5) revealed that the336

preferred �ring frequencies were concentrated between 10 and 45 Hz, overlapping the β range. In the337

�rst steady-state epoch preceding the visual cues, 76% (78/103) of units showed an ISI mode frequency338

between 10 and 45 Hz for subject R, and 74% (119/161) for subject S. In the second steady-state epoch339

following the visual cues and preceding the ‘Go’ cue, 73% (75/103) of units in subject R and 60% (96/161)340

of units in subject S fell between 10-45 Hz. Mode frequencies increased to some extent between the341

pre-cued and post-cued movement preparation periods (e.g. Fig. 4a), with the median mode frequency342

shifting from 30 to 34 Hz for subject R, and from 32 to 39 Hz for subject S. This increase was statistically343

signi�cant (p<0.05) in 5/6 sessions after a Benjamini-Hochberg false discovery correction for multiple344

comparisons (Benjamini and Hochberg, 1995).345

Dissociation between β-rhythmic spiking and β-LFP during steady-state movement preparation346

periods: Summary over population.347

Given that a majority of isolated single units exhibited sustained rhythmicity close to beta frequencies348

during the steady-state movement preparation periods of the CGID task, we investigated the extent349

to which this β-rhythmicity was evident in local �eld potential (LFP) oscillations. In both subjects, the350

LFP showed task-related changes in its power spectrum, especially in the beta band. Consistent with351
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previous studies, the movement period was associated with suppression of β-LFP power. Importantly,352

beta was also transiently suppressed following the visual cues. In contrast, beta was elevated during353

steady-state movement preparation periods of the CGID task, including the �rst second of the task before354

object presentation, and the one second leading up to the ‘Go’ cue.355

For subject S, the beta peak was identi�ed between 22 and 25 Hz for all areas and sessions. Subject356

R exhibited two beta frequency peaks, 16-19 Hz and 23-36 Hz. These two di�erent beta frequencies may357

potentially correspond to the beta1 (∼15 Hz) and beta2 (∼25 Hz) oscillations previously examined in358

experimental and computational studies (Kopell et al., 2011; Roopun et al., 2008, 2006). Roopun et al.359

(2008) suggest that beta1 emerges as a result of a concatenation of one period of beta2 with one period of360

a (∼40 Hz) gamma oscillation. Whether the dual bands observed in subject R are related to this concatenation361

phenomenon remains an open question. Because the second beta peak in subject R was much broader,362

we focused the analyses here on the 16 - 19 Hz beta activity for this subject, and on 22 - 25 Hz for subject363

S.364

To comprehensively quantify the relationship between single-unit �ring and the phase of ongoing365

β-LFP oscillations, we used two measures of spike-�eld coupling that are designed to avoid the biases366

inherent to STA and spike-�eld coherence approaches: the pairwise phase consistency (Vinck et al.,367

2010) (Methods: Pairwise phase consistency), and generalized linear (GLM) point-process models that368

expressed the conditional intensity (instantaneous spiking rate) as a function of the phase of the ongoing369

β-LFP oscillations (Methods: Point-process GLM-CIF models for spike-LFP phase coupling). Pairwise370

phase consistency assesses the tendency of a neuron to �re at the same phase of the ongoing β-LFP371

oscillation. It ranges from 0 for no phase coupling to 1 for perfect phase coupling.372

For assessing spike-LFP phase coupling, we analysed single units that showed unimodal or bimodal373

ISI distributions, and exhibited a preferred �ring frequency (ISI mode frequency) between 10 and 45374

Hz. We observed that mean �ring rates were typically lower than 10 Hz, and on inspection found that375

rhythmic single units could skip some beta cycles. For this reason, we also required that units exhibit376

mean rates of at least 20% their mode frequency. Overall, 47% (125/264) of units were selected as exhibiting377

beta rhythmicity under these criteria. Of the selected, 23% (29/125) exhibited bimodal (bursting/rhythmic)378

ISIs and 77% (96/125) had unimodal ISIs. Both of these groups were analysed for spike-LFP phase coupling.379

Of the units with unimodal ISIs, 40% (38/96) exhibited oscillations in their autocorrelation functions, 40%380

(38/96) exhibited a non-oscillatory post-recovery rebound, and 21% (20/96) exhibited irregular Poisson-like381
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spiking with a long recovery period that placed their mode frequency in the beta range.382

We found that PPC values during the 1-second steady-state epochs were typically close to zero (Fig.383

6a), with the median PPC for each session, area, and task epoch within the 0 to 0.12 range. Overall, 95%384

(118/125) of units had a PPC value smaller than 0.03 during the pre-object period and less than 0.01385

during the pre-go period. No unit had a PPC value that exceeded the 95% con�dence interval for the386

null-hypothesis PPC distribution, assessed by computing PPC between spikes and trial-shu�ed LFPs.387

PPC values were surprisingly weak, given that one might expect the β-LFP and the β-rhythmic spiking388

to relate to the same ongoing network phenomenon, and thus be more strongly phase coupled. We also389

found similar qualitative results for the phase coupling if the analysis was restricted to the 200 ms immediately390

preceding the Grip and Go cues, indicating that phase coupling was not noticeably enhanced in anticipation391

of the task cues.392

As a complementary approach, we summarized phase coupling between single neuron spiking and393

β-LFP oscillations by assessing the conditional intensity function (CIF) phase models’ ability to predict394

the timing of spikes (Methods). We report a measure of model performance ‘predictive power’ (PP),395

which ranges from 0 for no prediction and 1 for perfect prediction (Methods ‘Point-process GLM-CIF396

models for spike-LFP phase coupling’). In terms of phase coupling, a predictive power of zero implies397

no coupling, and a predictive power of 1 implies perfect phase coupling. During the steady state epoch398

preceding object presentation, 39% (49/125) units exceeded the 95% con�dence interval for the null PP399

distribution, and during the steady state epoch preceding the ‘Go’ cue 19% (24/125) of units exceeded400

their 95% chance level. This suggests that true phase coupling is present. Although the predictive power401

was sometimes statistically signi�cant (in one case as high as 0.24), it remained extremely low for the402

vast majority of units, with 95% (118/128) of units exhibiting a GLM phase model predictive power less403

than 0.1. Thus, consistent with the PPC results, the CIF phase model found relatively little stable phase404

coupling of spikes to β-LFP oscillations (Fig. 6).405

We considered the possibility that trial-to-trial variability in β-LFP dynamics a�ected our ability to406

detect β-LFP phase coupling. On inspection of the data, we noticed that β-LFP power was rarely sustained407

across the entire steady-state task epoch, but rather occurred as short transient bursts (Fig. 7a). The408

timing of these transients varied, and they did not exhibit a characteristic duration that might indicate409

e.g. a stereotyped event or input into motor cortex (Fig. 7b). We tested the hypothesis that β-LFP phase410

coupling might be weak overall, but strong during these high-power transients due to increased collective411
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β-LFP activity. We found that PPC values remained very small when the analysis was restricted to these412

transient high-beta LFP events (Fig. 8a). Nevertheless, such events were associated with an increase in413

phase coupling that was statistically signi�cant in seven out of twelve session/epochs, indicating that414

the β-LFP power transients correlate with changes in spike-LFP phase coupling and synchronization415

(corrected for multiple comparisons using Benjamini-Hochberg procedure for 12 comparisons and a false416

discovery rate (FDR) of 0.05, Benjamini and Hochberg 1995).417

Additionally, we found that there was relatively little di�erence in �ring rate statistics during beta418

transients compared to periods outside beta transients (Fig. 9). In contrast, �ring rates were signi�cantly419

higher during movement-related beta suppression, showing statistically signi�cant increases between420

the pre-object and movement period in 5 out of 6 sessions, and between the pre-go period and movement421

in 3 out of 6 sessions. (Wilcoxon signed-rank tests for di�erence in the median, corrected for 24 multiple422

comparisons using the Benjamini-Hochberg procedure for a FDR of 0.05.) This �nding indicates that the423

modulations in β-LFP power during steady-state movement preparation periods were dissociated from424

changes in the �ring rates of the underlying neuronal population, as was the case during the movement425

execution and visual cue related beta suppression.426

Previous studies from our group, some using the same datasets analysed here, have shown that427

object and grip type can be decoded from spiking activity in the neuronal population during the movement428

preparation (Vargas-Irwin et al., 2015, 2010). Despite the observed weak coupling between spiking and429

β-LFPs, we examined whether β-LFPs also carried information about object and grip type during these430

steady-state movement preparation periods. We performed a decoding analysis by classifying object431

(2-class) and grip (3-class) based on discriminative features consisting of single-channel β-power in432

either the 200 ms or 400 ms preceding the Grip cue or Go cue. The β-power was computed on the +-5433

Hz band around β-LFP peak (multi-taper PSD, 10 Hz bandwidth). We used linear discriminant analysis434

(LDA) with leave-one-out cross validation. Chance levels and p-values were determined by sampling435

from a null hypothesis distribution generated by randomly permuting the grip and object labels for each436

trial. We have found no statistically signi�cant classi�cation (p-values > 0.05) of the object or upcoming437

grip movement from β-LFP power during the examined steady-state movement preparation periods.438
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Population spiking activity also shows only weak coupling to transient β-LFP oscillations439

We examined the possibility that the phase coupling between spiking and the transient β-LFP oscillations440

could be too weak to be detected, but much stronger if assessed at the level of the population spiking441

activity. Population spiking activity was de�ned here as the total number of spikes (1 ms time bins)442

summed across the well-isolated single units within a given motor area, smoothed by a 25 ms boxcar443

�lter (Methods). For each motor area we computed the cross-correlation function between the population444

spiking activity and the β-LFP averaged across the channels in the area. Cross-correlation functions445

were computed for time lags ranging over one beta cycle (±25 ms). A cross-correlation function was446

computed for each area, epoch, session and subject.447

The extrema of the cross-correlation functions between population spiking activity and the mean448

β-LFP were also very small, ranging from .0039 to .042. After correcting for 36 (subject, session, area,449

epoch) comparisons using the Benjamini-Hochberg procedure with a FDR of 0.05 (Benjamini and Hochberg,450

1995), three correlations were statistically signi�cant, all in subject S. Subject S area PMv showed signi�cant451

correlations of .036 and .033 for sessions 1 and 3, and subject S area M1 showed a signi�cant correlation452

of .042 for session 3. P-values were obtained from a chance level distribution: cross-correlation function453

peaks were computed from resampled data generated by shu�ing the LFP trials (2000 resamples).454

Single units show weak coupling to measures of population activity455

Previous studies in sensorimotor cortex have demonstrated strong coupling of single neuron spiking456

to both the population spiking activity (Aghagolzadeh and Truccolo, 2014, 2016; Okun et al., 2015) and457

ensemble spiking histories (Truccolo et al., 2010) during sensory stimulation and movement execution.458

In particular, Aghagolzadeh and Truccolo (2014, 2016) showed that, in the same datasets examined here,459

single neuron spiking is strongly coupled to low-dimensional representations of the neuronal ensemble460

activity during the movement execution phase of the CGID task. For completeness, we thus also considered461

the possibility that spiking could be only weakly coupled to the transient β-LFP, but at the same time462

show strong coupling to other measures of the population activity during the movement preparation463

epochs. Using point process GLM analysis (Methods ‘Point-process GLM-CIF models for relating single464

neuron spiking to population spiking activity’), we found that single neuron spiking was only weakly465

related to the population spiking activity during the steady state movement preparation periods (Fig.466
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10a). In contrast, and consistent with previous work (Rule et al., 2015), predictive power was higher467

during the one second movement phase following the ‘Go’ cue.468

Qualitatively similar results were obtained when using another measure of population activity469

consisting of multi-unit activity (MUA) de�ned as >250 Hz LFP amplitude �uctuations (Fig. 10b), bandpass470

�ltered in the 5 Hz band surrounding the peak beta frequency (Methods). Speci�cally, median predictive471

power (PP) values during the two movement preparation epochs (pooled across motor areas) was distributed472

around chance level, ranging from 0 to 0.05 (pre-object period) and pre-go period median PP ranged and473

from -0.02 to 0.03 (pre go cure period). During the movement period, median predictive power values474

ranged from 0.06 to 0.11. Predictive power values during movement were statistically signi�cantly higher475

than those in the pre-object period in two sessions for subject S, and higher than those in the pre-go476

period in one session in subject R and all sessions in subject S. (Wilcoxon signed-rank test with Benjamini-Hochberg477

correction for a FDR of 0.05 for 12 comparisons.) This analysis con�rmed that measures of population478

activity in the CGID task could predict single-unit spiking, but that this predictive information was479

relatively weaker during the steady-state movement preparation periods. Corroborating the increased480

coupling of single units to populating activity, we observed that the peak cross-correlation values (25 ms481

bins) between pairs of neurons were substantially higher during the movement period (Fig. 10c).482

Finally, we investigated whether multi-unit activity might show more substantial phase coupling483

to β-LFP. We examined two measures of multi-unit activity: (1) all threshold crossings (unsorted spikes)484

occurring on the same channel and the four nearest neighbor channels (spiking-MUA), summed in 1ms485

bins and (2) the amplitude envelope in >250 Hz �ltered LFP as described previously (LFP-MUA). Beta486

coherence between these measures of multi-unit activity and the β-LFP on the same channel were weak:487

We found a statistically signi�cant coherence peak between β-LFP and LFP-MUA in 4% of channels, and488

between β-LFP and spiking-MUA in 8% channels. A strong coherence peak between even spiking-LFP489

and MUA-LFP was rare, with only 9% of channels exhibiting a signi�cant beta peak. All coherence results490

are reported at the p<.05 level, corrected for a FDR of 0.05 using the Benjamini-Hochberg correction.491

The β-LFP peak was identi�ed as the largest local maximum within 10-45 Hz. All p-values were computed492

as in Jarvis and Mitra 2001; Pesaran et al. 2008.493

Overall, the above results show a stark contrast between collective dynamics during the steady-state494

movement preparation periods in the CGID task, where spiking activity appears to be much more asynchronous,495

and collective dynamics during movement execution, where both the ability of population activity to496
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predict single neuron spiking and pairwise correlations are much higher.497

Narrow- and broad-spike waveform neurons show similar weak phase-coupling to β-LFP498

oscillations during preparatory steady-states499

Waveform features of recorded extracellular action potentials can correlate with neuronal types. We500

further examined whether the examined single neurons showed waveforms that clustered into di�erent501

groups and whether these groups showed distinct properties in the terms of spike β-LFP phase coupling.502

Recorded extracellular action potential waveforms tended to cluster into ‘narrow’ (42%, 124/292) and503

‘broad’ (58%, 168/292) classes (Fig. 11a,b; Methods: Unit categorization). We observed a partial agreement504

between ISI features and the extracellular waveform categorizations consistent with Chen and Fetz (2005):505

62% (13/21) of putative type I neurons exhibited broad spikes, and 86% (19/22) of type II (bursting) neurons506

and 72% (46/64) of putative type III (fast rhythmic) neurons exhibited narrow spikes. We note that Chen507

and Fetz (2005) suggest that the rhythmic �ring observed in the bursting neurons in their study was508

likely to arise from network interactions and not intrinsic neuronal properties, as is the case for the type509

III neurons.510

These two classes appeared to exhibit di�erences in �ring statistics. Overall, narrow spike neurons511

exhibited more short-ISI events (<10 ms) indicative of bursting, �red at higher rates, and had greater512

coe�cients of variation (Fig. 11c). The ISI mode frequency of narrow-spike units appeared typically513

slightly higher during the steady-state movement preparation periods. In addition, narrow-spike units514

appeared to show a greater increase in their mode �ring frequency during movement as compared to515

broad-spike neurons (Fig. 11d). These apparent di�erences between the two classes, even though consistent516

across subjects and sessions, were not statistically signi�cant (Mann-Whitney U test with Benjamini-Hochberg517

correction for multiple comparisons for positively dependent samples and a FDR of 0.05). Additionally,518

no consistent di�erences were found between narrow and broad spike units with respect to spike and519

β-LFP phase coupling (Fig. 11e).520

Discussion521

In this study, we have characterized a strong dissociation between sustained neuronal �ring rates and522

β-rhythmic spiking, and transient β-LFP oscillations in primate motor cortex during steady-state movement523
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preparation periods of a visually cued reaching and grasping task. We observed that �ring during steady524

states was rhythmic and sustained for many of the recorded single neurons. In contrast, β-LFP oscillations525

emerged as short transients that exhibited high trial-to-trial variability during the same movement preparation526

periods. The fact that single neuron �ring rates were neither a�ected by the occurrence of transient527

β-LFP events nor correlated with β-LFP amplitude suggests that the modulations in β-LFP power during528

these steady-state periods did not result from changes in the level of beta rhythmicity in the underlying529

neuronal population activity re�ected in the recorded β-LFP signals, as is the case for movement and530

visual cue related beta suppression. Furthermore, two complementary measures of spike-LFP phase531

coupling (pairwise phase consistency and predictive power of point process GLMs) showed that the532

coupling was at chance level for the majority of the neurons. This dissociation between steady rhythmic533

spiking and β-LFP oscillations has implications for understanding the multi-scale (single neuron and534

ensembles) dynamics underlying the generation of the measured mesoscopic β-LFP signals, and for535

understanding the functional role of beta oscillations in motor cortex, including putative roles for beta in536

modulating communication among cortical areas and phase coding. Our �ndings also contribute to the537

characterization of the statistical properties of neocortical electrical signals recorded via microelectrode538

arrays.539

Precedence for dissociation between single neuron spiking activity and narrowband540

LFP oscillations in neural systems Among various components, LFPs are thought to re�ect to541

a large extent synaptic activity, i.e. inputs to neurons (e.g Buzsáki et al. 2012). The intuition that spiking542

outputs re�ect synaptic inputs suggests that strong LFP oscillations might imply strong spike-LFP phase543

coupling. Our �ndings of weak phase coupling, then, might seem to challenge this intuition. However,544

LFP re�ects spatial averages of synaptic activity over relatively large ensembles of neurons. How strongly545

correlated LFPs are to synaptic activity in single neurons remains an open question, and is likely to546

depend on neural state and cortical area. Several previous experimental and theoretical studies (Ardid547

et al., 2010; Baker et al., 2003; Brunel and Wang, 2003; Geisler et al., 2005; Harvey et al., 2009; Hoseini548

and Wessel, 2016; Truccolo et al., 2014, 2011) have shown that narrowband LFP oscillations can coexist549

with weakly coupled single-neuron spiking activity, from which a population oscillation can nevertheless550

emerge as a collective mean �eld e�ect of the neuronal ensemble dynamics.551

In particular, a precedent for the dissociation between single-unit rhythmicity and ongoing LFP552
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oscillations has been studied in rodents for many years as the hippocampal “theta phase precession” (e.g.553

Harvey et al. 2009). During spatial navigation, the phase at which place cells �re relative to theta LFP554

depends on the animals past, present, and planned location. As a result, the phase at which neurons555

spikes relatively to the ongoing theta LFP drifts. Because of this, units show weak phase coupling to556

LFP if averaged even over short time periods (i.e. a few cycles). Despite this weak coupling, Harvey557

et al. (2009) �nd that place cell spiking is nevertheless strongly phase coupled to theta oscillations in558

the intracellular membrane potential. Their �nding indicates that the “local” synaptic oscillation that559

impinges upon single unit spiking can appear dissociated from the population oscillation re�ected in the560

LFP. It illustrates that LFP oscillations need not be a good proxy for the synaptic input and membrane561

potentials driving the spiking of speci�c single neurons. As discussed in Harvey et al., several alternative562

computational models have been put forward to explain the drift leading to phase precession and the563

resulting weak coupling. It remains to be clari�ed whether neurons in motor cortex also exhibit a similar564

phase drift phenomenon, and if so whether phase drifts are explained by a more complex relationship565

(e.g. phase precession) or have any functional signi�cance.566

In the visual cortex, recent work by Haider et al. (2016) shows that LFPs can predict excitatory and567

inhibitory postsynaptic potentials (EPSPs and IPSPs, respectively). However, the explained variance was568

relatively small for both EPSPs and IPSPs, with the latter being better predicted during stimulation.569

Furthermore, Haider et al. note that their �nding is not inconsistent with previous studies showing570

weakly correlated spiking activity in neuronal pairs in V1, and the signi�cant decorrelation between571

single-neuron spiking and nearby LFPs during visual stimulation (Nauhaus et al., 2009; Ray and Maunsell,572

2011). In fact, they argue that because inhibition may enhance processing by decorrelating spiking activity573

in a neuronal population, and because LFPs in V1 tend to be more correlated with IPSPs during stimulation,574

one should observe a decorrelation between single-neuron spiking and the population signal re�ected in575

LFP oscillations.576

In the case of narrowband gamma oscillations, Brunel and Wang (2003) have demonstrated with577

computational analyses how the previously observed coexistence of narrowband gamma and highly578

irregular spiking (and therefore weak phase coupling) can emerge in neocortical activity. Recent experimental579

results by our own group based on spike-LFP PPC analyses have shown weak coupling (PPC values <0.1)580

between single unit spiking and narrowband (∼50 Hz) gamma LFP oscillations induced by optogenetic581

stimulation in nonhuman primate motor cortex during awake and behavior states (Lu et al., 2015). More582
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recently, (Ni et al., 2016), using a similar optogenetic stimulation protocol in cat area 21a (homologous583

to V4), �nd even weaker coupling between multiunit and narrowband gamma LFP (mean peak PPC584

values of ∼0.003 and ∼0.014 in two cats, respectively). Jia et al. (2013; e.g. Figure 1B), using spike-�eld585

coherence instead of PPC, also �nd low mean coherence values in V1-V1 pairs (mean values < 0.1, computed586

across all pairs), based on both multiunit and single-unit data during visual evoked responses.587

In the particular case of motor cortex β-LFPs, other studies have examined the issue of spike-LFP588

coupling. Witham and Baker (2007) found that the level of β-LFP power in a given area need not correlate589

with the corresponding single unit rhythmicity in the same area, and Baker et al. (2003) observed relatively590

weak spike-�eld coherence in beta during the execution of an isometric force precision grip task. We591

emphasize that our work goes beyond these studies by examining neural activity during steady-state592

movement preparation and instructed delay periods, as opposed to execution of isometric force precision593

grip tasks. In addition, we note that, in contrast to spike-�eld coherence, the phase coupling measures594

adopted here can correctly quantify strong phase coupling even if single-neuron spiking, although phase595

locked to a LFP oscillation, skips most cycles of the oscillation. Beyond these studies based on isometric596

force tasks, we have shown that phase coupling remains weak even when the short transient nature597

of β-LFP events is taken into account, i.e. by restricting the analysis to transient periods of elevated598

beta activity. More recently, analyses in Denker et al. (2007) have indicated that phase coupling may599

occur primarily during beta transients during movement preparation periods. Our work extends the600

characterization of preparatory beta oscillation by explicitly examining the relationship between transient601

β-LFP and single-unit �ring rates and rhythmicity. Given our focus on neurons showing β-rhythmic602

spiking during β-LFPs, we also note that the phenomenon reported here di�ers from the scenario examined603

in Brunel and Wang (2003), where spiking remains highly irregular despite narrowband LFP oscillations.604

The coexistence of sustained β-rhythmic spiking with β-LFP transients, as well as the relatively weak605

phase coupling of single units to the β-LFP and mean population activity, are important features that606

should be recapitulated in computational models of motor cortex.607

Statistical considerations When both LFP and spikes exhibit autocorrelations in the form of narrow-band608

oscillations, there is risk of detecting apparent phase coupling by chance. This is true even for estimators609

that correct for spike-rate biases like the pairwise phase consistency. We addressed this problem by610

obtaining empirical chance level distributions through phase-randomization and shu�ing of trials. Nevertheless,611
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any potential spurious contributions of these temporal correlations to in�ated phase coupling assessments612

would only reinforce the points being made here. As stated above, both the PPC and point process GLM613

phase coupling assessments are capable of detecting a preferred phase of �ring relative to the β-LFP614

even when cells do not spike on every cycle. This is because the PPC relies primarily on the distribution615

of spike-triggered LFP phases (as does the point process GLM, albeit indirectly), and a phase locked unit616

that �res only occasionally still exhibits a concentrated spike-triggered distribution of LFP phase.617

Localization of β-LFP activity A natural question is whether the dissociation between spiking618

and β-LFP oscillations results from LFPs being not as local as commonly thought (Kajikawa and Schroeder,619

2011). We observed that adjacent electrodes often exhibited very di�erent β-LFP phases, indicating that620

localization on the order of the electrode spacing (400 µm or smaller) is possible. As a cautionary note,621

however, this does not exclude the possibility that local beta oscillations may mix with remote sources622

during transient globally synchronous states. Nevertheless, a recent study in primate visual cortex (Dubey623

and Ray, 2016) using the same type of microelectrode array as in our recordings also suggests a localization624

on the order ∼400 µm. Another possibility is that the single units and the sources of the LFP signal were625

located in di�erent cortical layers. Identifying the laminar origin of β-LFP is not possible with the MEA626

recording setup used here because LFP can conduct between layers. Previous studies have shown that627

β-LFP power is highest in layer V of motor cortex (Murthy and Fetz, 1996a; Witham and Baker, 2007)628

and that pyramidal tract layer V neurons �re rhythmically in the beta frequency (Wetmore and Baker,629

2004). Given the uncertainty about the depth of the MEA implant, it is possible that the single units630

we recorded were from layer II-III, and that single-unit spiking activity could then be dissociated from631

β-LFP arising in layer V. If so, the existence of rhythmic layer II/III spiking and its dissociation from632

β-LFP in deep layers would raise important questions about the role of di�erent cortical layers in beta633

oscillations, as well as the interpretation of spiking activity and LFPs recorded from MEAs.634

Origins of single-neuron spiking β-rhythmicity and β-LFP transients The origin of sustained635

β-rhythmic spiking and its weak coupling to β-LFP transients across movement preparation remains636

puzzling. One possibility is that very speci�c subsets of neuronal types (e.g. inhibitory interneurons,637

etc.) might show a stronger coupling with the ongoing β-LFP oscillations. Recorded single units clustered638

into two classes of narrow- and broad-spikes, suggesting di�erent types of neurons. These two classes639
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are commonly associated with putative inhibitory interneurons and principal cells, respectively (Barthó640

et al., 2004; McCormick et al., 1985). However, the unique features of pyramidal tract neurons (PTNs)641

makes identifying putative inhibitory interneurons vs. excitatory pyramidal cells from extracellular642

spike width and �ring properties challenging. Some PTNs show higher �ring rates and narrow spike643

waveforms and can be mistaken for fast spiking interneurons (Vigneswaran et al., 2011). More advanced644

approaches that identify or manipulate speci�c neuronal subtypes will be needed to clarify the relation645

between single-unit beta rhythmic spiking and β-LFP. Previous computational and experimental studies646

on the origin of beta oscillations have emphasized a variety of mechanisms ranging from the role of647

thalamic inputs (Jones et al., 2009) to more local or intrinsic features of cortical dynamics (Kopell et al.,648

2011; Roopun et al., 2006). Regarding the latter, Kopell et al. (2011) proposes that the ‘beta1’ rhythm (∼15649

Hz) in rat association cortex arises as a consequence of rebound from inhibition, and can be maintained650

without strong collective activity. Roopun et al. (2006) also �nd in in vitro neocortical slices from rats a651

20-30 Hz rhythm in layer V pyramidal tract neurons that depends on intrinsic currents, and is synchronized652

by gap junctions. Thus, β-rhythmicity may be supported by the subthreshold dynamics of single-units,653

possibly related to the slow afterhyperpolarizations identi�ed by Chen and Fetz (2005) in type III rhythmic654

neurons. Conversely, beta oscillations could be mediated by collective network reverberations in small-scale655

networks inaccessible in LFPs as recorded by the used MEAs.656

Previous studies have examined the transient nature of β-LFP oscillations (e.g. Denker et al. (2007);657

Feingold et al. (2015)). Our data highlights this transiency in motor cortex: β-LFP power �uctuates during658

steady-state movement preparation periods in our task, even while the �ring rates of beta-rhythmic659

single neurons remains constant. We conjecture that the observed �uctuations in β-LFP power during660

movement preparation could arise from changes in the synchronization among more local sources of661

β-rhythmic network activity. It is possible that β-LFP power �uctuations represent transient synchronization662

of a large population of weakly coupled single units, such that, although the macroscopic LFP power663

exhibits a transient amplitude increase, individual spike-LFP phase coupling remains weak. These transient664

changes in the level of synchrony and spatial coherence might result from the locally evolving dynamics665

in the neocortical patches or from the interaction with transient inputs originating in other cortical and666

subcortical areas. In the more general scenario of weakly coupled oscillators, Popovych and Tass (2011)667

found that, when oscillators with slightly heterogeneous frequencies are driven by a common oscillatory668

input, transient power �uctuations are expected to result from momentary synchronization between669
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oscillators, in a mechanism akin to the beats heard from two slightly out of tune notes.670

The above scenarios are to be contrasted with the attenuation of β-LFP power during movement671

execution. During movement execution, the majority of units exhibit large excursions in �ring rate and672

many rhythmic single units shift their �ring frequencies up and out of the beta frequency band, while673

other units switch from rhythmic to irregular �ring. Therefore, it is likely that movement-related beta674

suppression relates to a reduction of total β-rhythmic network activity. This points to two processes675

governing variability of β-LFP power in motor cortex: an overall modulation of the level of β-rhythmicity676

that is evidenced by changes in single-unit �ring properties during movement preparation and execution,677

and an additional source of variability that gives rise to the transient �uctuations in β-LFP power despite678

sustained β-rhythmicity at the level of single neuron spiking during movement preparation steady-states.679

Implication for encoding and motor steady-states Previous decoding analyses from our680

group (Bansal et al., 2012; Zhuang et al., 2010) show that β-LFP power improves, although by a small681

amount, the decoding performance of reach/grasp kinematics during movement execution. In these two682

studies, beta tends to show the lowest decoding performances in comparison to other lower and higher683

frequency bands. In contrast, during steady-state movement preparation periods, our decoding analysis684

showed no signi�cant classi�cation performance of object and grip type based on β-LFP activity. Our685

conjecture is that the contribution of β-LFP activity found during movement execution relates more to686

discriminating moving versus not moving, rather than carrying speci�c information about movement687

kinematics per se, e.g. time varying 3D positions/trajectories and velocities of the hand/arm during688

reach and grasp actions. We also note that Rule et al. (2015) examine the contribution of several LFP689

features to spiking variability during execution of reach and grasp movements, including β-LFP power,690

and does �nd some contribution. Importantly, however, a similar analysis performed during the steady-state691

movement preparation periods (Fig. 9) found no such relationship during movement preparation.692

Mode �ring frequencies of single neurons were not identical, but rather varied within the beta693

band. This diversity in mode frequencies and �ring rates increased following visual cue presentation,694

after which the subjects had presumably prepared for a speci�c reach and grasp action plan. Indeed,695

Vargas-Irwin et al. (2015), examining the same datasets considered here from the perspective of neural696

decoding, demonstrates that planned upcoming movements (object and grip type) can be decoded from697

the spike patterns in the recorded neuronal ensemble during the preparation period. The information698
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about object and grip type was sustained across the instructed delay period. It may be that both diverse699

rates and rhythmic �ring are instrumental to the maintenance of preparatory states in motor cortex. If700

so, this would naturally limit the ability of single-neurons and di�erent neuronal populations to strongly701

phase-couple to a single dominant β-LFP oscillation, resulting in the observed spike-LFP weak coupling.702

In sum, as argued above, although our �ndings may appear initially counter-intuitive from the703

perspective of input-output relationship in neurons pointed out by the reviewer, several scenarios can704

lead to the weak coupling between single-neuron spiking and narrow-band LFP oscillations, as seen in705

our results and in the referred previous studies. We think that the most immediate need pointed by our706

�ndings is for new experiments to probe multiple levels of activity: intracellular membrane potentials,707

single-neuron spiking activity, and LFPs during these movement preparation states in motor cortex.708

Future work709

Beta oscillations in the brain remain an intriguing and heterogeneous phenomenon, and further work is710

needed to clarify their origin and function. The work here raises interesting questions about the nature711

of motor steady states during attentive waiting and movement preparation. It will be important to examine712

the coupling between single neuron activity and β-LFP oscillations in instructed delay tasks that test713

working memory, something not required in the task examined here. This additional instructed delay714

condition might elucidate which features of beta activity relate to the active maintenance of the preparatory715

state versus simply the hold condition prior to movement execution. The extent to which motor cortex716

beta rhythmic spiking arises from nonlocal oscillatory network inputs, local recurrent dynamics, or the717

intrinsic electrical properties of single neurons, remains unclear. Combined extracellular and intracellular718

in-vivo recordings akin to those performed by Harvey et al. (2009) may be illuminating. We have identi�ed719

several features of beta oscillations that should inform future modeling work, with relevance to a theoretical720

understanding of maintenance of neural states over long timescales with oscillatory dynamics.721

In summary, the dissociation of single-unit β-rhythmicity and β-LFP reported here, both in terms of722

power modulation and phase coupling, is an important �nding that has not been thoroughly investigated.723

It is possible that the nature of the beta states revealed here allows multiple cell assemblies, each resonant724

at slightly di�erent frequencies, to coexist with relatively little interference or competition. Future work725

is needed to evaluate the functional importance of beta phase and frequency diversity during preparatory726

steady-states in motor cortex, especially with respect to evaluating potential roles for this diversity in727
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encoding, attentional processes, gating communication and assisting the binding together of functional728

assemblies of neurons (e.g. Maris et al. 2016).729
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Figure 1: Single units exhibit sustained �ring rates and β-rhythmicity that appear dissociated from the phase of transient β-LFP

oscillations. (A) Shown here is an example well-isolated unit recorded from primary motor cortex that displayed sustained
�ring rates and rhythmic spiking at beta frequency (∼20 Hz) during the steady-state movement preparation periods of the
CGID task. (B) The spike raster plot shows reliable and steady �ring during the steady-state movement preparation periods.
In contrast, the example single trial β-LFP spectrogram plot shows transient β-LFP events. (C) An inspection of neuronal
spiking and β-LFP oscillations during the �rst second of this trial reveals that the phase at which single units �red relative to
the β-LFP oscillations drifted, and that β-rhythmic spiking remained steady while β-LFP power �uctuated. The spike-triggered
LFP average (STA) plot shows primarily an artifact from spike contamination (Methods), and reveals some weak beta phase
coupling both during the �rst second of the task and the one second before ‘Go’ cue. Note that it is di�cult to assess the
overall magnitude of spike-LFP phase coupling from the STA plot alone. Pairwise phase consistency plots corroborated this
�nding, showing mainly a broad-band increase in high frequency phase coupling associated with contamination of the LFPs by
extracellular action potentials (Methods). This example is from isolated unit 26, area PMd, subject R, session 2.
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Figure 2: A subset of units �re rhythmically during steady-state movement preparation periods of the CGID task. (A) Inter-spike
interval (ISI) distributions from selected well-isolated units during the steady-state periods of the CGID task. In each plot, from
left to right, we see rhythmically �ring units, units that exhibit both bursting and rhythmicity, units that exhibit Poisson-like
�ring, and units that exhibit intermediate ISI distributions. The ISI coe�cient of variation (CV) re�ects the dispersion of the ISI
distribution, with low CV correlating with rhythmicity; SNR = signal to noise ratio for unit waveform. (B) Single units were
categorized based on ISI features (Methods) as unimodal (rhythmic), bimodal (bursting and rhythmic), Poisson process-like
(i.e. exponential with refractory period), or intermediate ISI distributions. In both subjects and all areas, single units with
unimodal and bimodal ISIs were most prevalent. (C) A summary of ISI mean and CV statistics for the same units. Statistics of
ISI distributions varied continuously and did not form discrete clusters. Mean rate was variable, with 25% of units exhibiting
mean rates higher than 10 Hz. Because some rhythmic units start and stop �ring during the steady-state epochs, and because
the rhythmic frequency may change over time and across trials, the e�ective CVs were larger than expected for sustained
rhythmic �ring at a single narrowband frequency.
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Figure 3: Single-unit ISI statistics change across di�erent stages of the task. Shown here are four examples of how the ISI
distributions change for well-isolated units over the course of the CGID task. The insets specify the mean rate µ and the
mode frequency derived from the mode of the ISI distribution. Each ISI histogram was computed based on non-overlapping
one-half second time windows of the CGID task. All trials within a session were combined. Examples, from top to bottom,
illustrate: (A) a highly rhythmic unit (subject R, session 2, unit 101) that decreased its mean �ring rate during the movement
epoch (1/2 second after ‘Go’ cue), without changing it’s mode; (B) A highly rhythmic unit (subject S, session 1, unit 74) that
steadily increased both its ISI mode frequency and mean �ring rate, transitioning gradually over the task from µ=25 Hz at
the trial outset to µ=66 Hz during the movement epoch; (C) A unit (subject R, session 3, unit 92) whose �ring became more
variable, with a slight decrease in mode frequency, only during the movement epoch; (D) A unit (subject R, session 1, unit 88)
that switched from rhythmic �ring at beta frequency ∼11-17 Hz, to Poisson-like �ring ate a much higher rate (123 Hz). These
examples emphasize that the rhythmicity observed in a subset of units during the steady-state movement preparation periods
of the CGID task was unlikely to arise exclusively from intrinsic neuronal properties (e.g. subthreshold resonance). Instead, this
rhythmicity likely re�ected and was modulated by the collective network state. The colored traces represent the transformed
KDE estimate of the distributions used to determine the ISI mode, and is shown to con�rm that the mode estimation procedure
approximates well the location of the ISI mode �ring frequency (Methods ‘ISI histogram statistics’).
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Figure 4: Well-isolated single units �re rhythmically at beta frequency, and �ring rates are stable across trials during movement

preparation periods. Shown here are three well-isolated units that exhibited β-rhythmicity during the steady-state movement
preparation periods of the CGID task. Spike rasters, which show trial number on the vertical axis and task time on the
horizontal axis for the two steady-state epochs, reveal that these units �red in a rhythmic manner that was reliable over
trials and sustained across the steady-state periods. The modes of the ISI distributions for these units, expressed in terms
of frequency, show that these units �red with a preferred frequency in the beta range. In several cases the mode frequency
di�ered between the steady state period at the beginning of the trial, before visual cues have been provided, and the one second
period preceding the ‘Go’ cue. (A) unit 43 from area PMd, subject S, session 3. (B) unit 49 from area PMd, subject S, session 2.
(C) unit 20 from area M1, subject S, session 3.
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Figure 5: The preferred �ring frequency of rhythmic units varies, but typically falls within the beta band. Shown here are
summary distributions, pooled over all sessions and areas, for both subjects during the two steady-state movement preparation
epochs for units that showed unimodal and bimodal ISI distributions. Mode �ring frequency for isolated single units ranged
between 10 and 80 Hz, but for each money and epoch between 60% and 75% of units fell within 10-45 Hz range. Firing rates
are higher in the pre-‘Go’ delay period that follows visual cue presentation. (Wilcoxon signed rank test, p<0.05; 5/6 sessions
signi�cant with Benjamini-Hochberg correction for a FDR of 0.05.)
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Figure 6: Spike-LFP phase coupling at the peak beta frequency is typically small during the steady-state movement preparation

periods. (A) Left: box plots summarize the magnitude of the pairwise phase consistency (PPC) value at the beta peak (Methods:
‘Pairwise phase consistency’). Whiskers extend to the minimum and maximum values. Each area is summarized separately
for each subject, and for two steady-state periods: the �rst second of the task before object presentation, and the one second
before ‘Go’ cue. Right: histograms representing the distribution of PPC values for each subject in the two task epochs. All
sessions and areas are combined here. Despite the spiking rhythmicity at beta and elevated β-LFP power, PPC values between
spikes and LFP were typically negligible, with 95% of units showing PPC values below 0.04 for any given session or area. No
units showed PPC above the 95% chance level as assessed by phase randomization of the LFP signals. (B) Spike-LFP phase
coupling assessed by the predictive power of point process GLMs based on the phase of the ongoing beta oscillations (see
Methods: ‘Point-process GLM-CIF models for spike-LFP phase coupling’) was also marginally close to zero. Although select
units displayed predictive power as high as 0.24, predictive power was less than 0.1 for 95% (118/125) of units during both
epochs. During the �rst steady-state period, the predictive power exceeded the 95% chance level con�dence interval for 39%
(49/125) of the units. During the second steady-state period (one second before go cue), the predictive power exceeded the
95% chance level con�dence interval for 19% (24/total) of the units. We report these numbers without correcting for multiple
comparisons, so 5% of units are expected to be above the 95% chance level. Point process GLMs based on the beta phase were
able to detect weak phase coupling that the PPC did not.
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Figure 7: β-LFP oscillations occur in transients and exhibit high trial-to-trial variability. (A) Shown here are three representative
example trials from a single session, subject S, areas M1, session 1. In each example, the top plot shows the ‘raw’ LFP, the
middle plot the bandpass �ltered β -LFP, and the bottom plot shows the spectrogram. Transient beta events were de�ned as
periods for which β-LFP amplitude was elevated (≥1.5 standard deviations, shaded in gray). Inspection of β-LFP activity in
single trials revealed that beta oscillations were rarely sustained, occurring as transients lasting commonly a few oscillation
cycles. (B) However, as evidenced by the absence of modes in the histograms of the durations of high beta transients, there was
no characteristic duration for these transients, and periods of sustained beta oscillations lasting up to 8 or more beta cycles (e.g.
<200 milliseconds) were also observed in many trials.
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Figure 8: Pairwise phase consistency increases marginally for some units when the analysis is restricted to high beta transient

events. The box plots show PPC values at the peak beta frequency computed based only during (transient) beta events with
high power. Whiskers extend to the minimum and maximum values. Beta events were associated with a small but statistically
signi�cant increase in phase coupling in seven out of the twelve sessions/conditions. (p-values were computed using the
Wilcoxon signed-rank test for di�erence of medians, and corrected with the Benjamini-Hochberg procedure for 12 comparisons
with a FDR of 0.05.) The number of spikes used to compute PPC was matched between the high and low beta conditions by
randomly thinning the group with more spikes. This analysis con�rms that spike-LFP coupling remained weak even during
high-beta events, but also suggests that such events may also be associated with a modest increase in coupling.
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Figure 9: Single unit �ring rates during steady-state movement preparation periods are not a�ected by beta transients. During
the steady-state movement preparation periods of the CGID task, β-LFP oscillations occurred as transient events. In contrast,
rhythmic single-unit spiking at beta frequencies was sustained. Single-unit �ring rates did not change between high-beta
(Hilbert amplitude >1.5σ ) and low-beta time periods during these steady-state periods (box plots; whiskers extend to the
minimum and maximum values). In contrast, beta suppression associated with movement execution (after the go cue) was
associated with increased �ring. (p-values were computed using the Wilcoxon signed-rank test for di�erence in medians, and
corrected for 24 multiple comparisons; 4 comparisons per session: high-low beta within each steady state epoch, and high beta
in each epoch to movement-related low-beta; Benjamini-Hochberg procedure for a FDR of 0.05.) This result suggests that the
transient beta power �uctuations during steady-state movement preparation periods may arise from a di�erent mechanism
than the power �uctuations (beta suppression) associated with visual cue presentation and movement execution.
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Figure 10: Contrasting collective neural dynamics between steady-state movement preparation and movement execution periods.
(A,B) Predictive power of point process GLM models for β-rhythmic single neuron spiking based on the population spiking
activity (Methods; under cross-validation). (A) Spiking prediction based on the population spiking activity measured on
the same MEA (excluding the unit being predicted). Each box plot summarizes the distribution of predictive power values
for one session and epoch (whiskers extend to the minimum and maximum values). Predictive power during steady-state
movement preparation periods (colored bars) was typically distributed around chance level. In contrast, population spiking
activity predicted single unit spiking above chance levels during movement execution (black bars). (B) Single neuron spiking
prediction based on MUA using the same point process GLM approach as in (A). MUA was de�ned as the >250 Hz LFP
amplitude envelope bandpass �ltered in the 5 Hz band surrounding the peak beta frequency. Predictive power trends are
similar to those obtained in (A) for the population spiking activity. (C) Box-plots summarize the distribution of peak absolute
pairwise (Pearson) correlation coe�cients of 25 ms binned spike counts. Pairwise correlations were weaker during steady-state
movement preparation periods compared to the movement execution period.
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Figure 11: Single units cluster into narrow- and broad-spike waveform groups, but these groups show no consistent di�erences

in PPC values. Spike waveforms recorded in motor cortex exhibited a diversity of spike widths that clustered into two
main groups. (A) Histograms show the clustering of well isolated units according to spike widths, including all sessions,
areas, and subjects. Clustering based on the amplitude of the normalized waveform 300 µs after the spike peak provided
better separation than the traditional approach of estimating the spike width at half maximum. Narrow-spike units are
denoted in blue, broad-spike in red. (B) Traces of the mean waveform for narrow-spike and broad spike units illustrate the
di�erences between the unit classes. (C) Narrow- and broad-spike units showed consistent di�erences in �ring statistics. On
average, narrow-spike units �red more bursts (top), �red at a higher mean rates (middle), and exhibited higher coe�cients
of variation (bottom). However, none of these apparent di�erences were statistically signi�cant. (Mann-Whitney U test with
Benjamini-Hochberg correction for a FDR of 0.05, for dependent samples and 18 comparisons.) Box plot whiskers extend to the
minimum and maximum values. (D) Preferred spiking frequency (ISI mode) of narrow-spike and broad-spike units changed
with di�erent CGID task stages. Units for all sessions, subjects, and areas were combined in these summary histograms. During
the �rst second of the task, both narrow- and broad-spike units �red rhythmically around beta frequency. During movement
execution, �ring rates increased on average, but the increase was most notable for narrow-spike units. (E) Beta-peak PPC
values showed no consistent trend in the di�erences for narrow versus broad spike units. Furthermore, none of the di�erences
were statistically signi�cant. (Mann-Whitney U test with Benjamini-Hochberg correction for a FDR of 0.05, for dependent
samples and 18 comparisons.)
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