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SUMMARY 66 

 67 

Respiratory syncytial virus (RSV) is an important aetiological agent of respiratory infections, 68 

particularly in children. Much data regarding the immune response to RSV comes from 69 

animal models and in vitro studies. Here, we provide a comprehensive description of the 70 

human immune response to RSV infection, based on a systematic literature review of 71 

research in infected humans. 72 

 73 

There is an initial strong neutrophil response to RSV infection in humans, positively 74 

correlated with disease severity and mediated by IL-8. Dendritic cells migrate to the lungs as 75 

the primary antigen presenting cell. An initial systemic T-cell lymphopenia is followed by a 76 

pulmonary CD8+ T-cell response, mediating viral clearance. Humoral immunity to re-77 

infection is incomplete but RSV-IgG and -IgA are protective. B-cell stimulating factors 78 

derived from airway epithelium play a major role in protective antibody generation. IFN-γ 79 

has a strongly protective role and a Th2-biased response may be deleterious. Other cytokines 80 

(particularly IL-17A), chemokines (particularly CCL-5 and CCL-3) and local innate immune 81 

factors (including cathelicidins and IFN-λ) contribute to pathogenesis. 82 

 83 

In summary, neutrophilic inflammation is incriminated as a harmful response whereas CD8+ 84 

T-cells and IFN-γ have protective roles. These may represent important therapeutic targets to 85 

modulate the immunopathogenesis of RSV infection. 86 

87 
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INTRODUCTION 88 

 89 

Respiratory syncytial virus (RSV) is an enveloped single-stranded RNA virus belonging to 90 

the Pneumoviridae family of the Mononegavirales order. Infections occur worldwide, with 91 

outbreaks in temperate climates occurring primarily during the winter months. RSV is an 92 

important aetiological agent of respiratory infections, particularly in children, causing a 93 

spectrum of illness encompassing upper respiratory tract infections (URTI) and lower 94 

respiratory tract infections (LRTI), including pneumonia and bronchiolitis which are 95 

associated with greater morbidity and mortality. Natural infection results in incomplete 96 

immunity, permitting recurrent infection in childhood as well as infections in adults and the 97 

elderly. Much data regarding the immune response to RSV comes from murine and other 98 

animal models and in vitro human cell culture studies. While important for hypothesis 99 

generation, these methodologies may not provide a completely accurate reflection of the 100 

immune response during infection in humans. Here, we provide a comprehensive description 101 

of the human immune response to RSV infection, based on a systematic literature review 102 

exclusively of clinical, ex vivo and post mortem data from naturally and experimentally 103 

infected humans. 104 

 105 

In this review we consider the existing data describing the major cellular and humoral 106 

components of the immune response to RSV, distinguishing events occurring systemically 107 

from those occurring locally within the respiratory tract. First we describe the behaviour of 108 

all major immune cell types, encompassing neutrophils, dendritic cells, monocytes, 109 

macrophages, eosinophils and T-lymphocytes. Secondly, the anti-RSV antibody response and 110 

its regulation is discussed. Next, the distinct Th1 and Th2 responses to RSV and the effect of 111 

their balance on disease progression are considered. Several chemokines, cytokines and other 112 
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immune molecules have been demonstrated to be involved in the immune response and are 113 

reviewed. The global host transcriptional response is also discussed in the context of 114 

immune-related pathways. Certain key pathogen-host interactions described herein may 115 

represent targets for the development of novel therapeutics. For completeness, we summarise 116 

the association between RSV infection and subsequent asthma and also key differences 117 

between immune responses in humans and animals used in model systems of infection.  118 

 119 

METHODS OF SYSTEMATIC LITERATURE REVIEW 120 

 121 

We conducted a systematic literature review following PRISMA (Preferred Reporting Items 122 

for Systematic Reviews and Meta-Analyses) guidelines (PROSPERO registration number 123 

CRD42016047320). An electronic literature search of Medline, Embase and Web of Science 124 

was performed using the following search terms: ((RSV[Title] OR respiratory syncytial 125 

virus[Title])) AND (Immune response OR T-cell OR B-cell OR lymphocyte OR macrophage 126 

OR neutrophil OR monocyte OR natural killer cell OR dendritic cell OR immunoglobulin 127 

OR IgG OR IgA OR IgE OR cytokine OR chemokine OR interleukin OR interferon) AND 128 

(Human OR clinical OR experimental OR neonate OR infant OR children OR adult OR 129 

elderly)). 130 

 131 

The last search was conducted on 16th May 2016. The results from the databases were 132 

merged and duplicates removed. The combined results of the electronic database search were 133 

assessed independently by two authors and discrepancies discussed and agreed upon 134 

according to the inclusion and exclusion criteria. Publications in all languages describing 135 

primary research in humans were included (clinical, ex vivo, post mortem). Editorials, 136 

reviews, commentaries and opinion pieces were excluded. Articles were limited to those 137 
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published after 1990. Additional articles of interest were identified from reviewing the 138 

bibliographies of relevant articles. The literature search resulted in 2541 publications after 139 

removal of duplicates and pre-1990 publications. Two authors reviewed titles and abstracts 140 

and identified 268 records that then underwent full text review. Of these, 166 met the 141 

inclusion criteria. A further 9 articles were identified through other sources including 142 

bibliographies of identified articles. 143 

 144 

SYSTEMIC AND PULMONARY IMMUNE CELL RESPONSES TO RSV 145 

INFECTION 146 

 147 

Neutrophils 148 

 149 

RSV infection elicits a strong systemic and especially respiratory tract neutrophil response 150 

(1-4). Neutrophils are the predominant cell type in bronchoalveolar lavage (BAL) from the 151 

lungs of ventilated infants with severe RSV-bronchiolitis and those with milder infection (5). 152 

These cells are activated during the initial pathogenesis of RSV-LRTI, producing neutrophil 153 

elastase (6, 7) and expressing activation markers (CD11b, CD18 and CD54 [ICAM-1]) (8, 9). 154 

The peak neutrophil response coincides with maximum clinical severity and viral load, and 155 

by the time infants with severe infection are discharged from the intensive care unit (ICU) 156 

after ventilation, neutrophil counts in peripheral blood have normalised (10). Widespread 157 

neutrophil infiltration is seen in lung tissue from fatal cases of RSV-LRTI (3, 11).  158 

 159 

During severe infection the virus interacts directly with neutrophils. Cells from peripheral 160 

blood and BAL express RSV proteins F, G, and N proportionately, implying stoichiometric 161 

expression thus intact intracellular virions (12). RSV genomic RNA and mRNA is also 162 
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present intracellularly (12, 13). This could be explained by phagocytosis of virions or 163 

replication of RSV within neutrophils. These RSV-containing neutrophils detected in the 164 

peripheral blood may have transmigrated from the lungs into the circulation. 165 

 166 

Neutrophil apoptosis and neutrophil extracellular trap formation (‘NETosis’; a unique form 167 

of neutrophil cell death) are active during infection. Proteins involved in apoptosis (Annexin 168 

V and the Fas death receptor CD95) are up-regulated in nasopharyngeal fluid and NETs are 169 

present in BAL from ventilated children (8, 14). NETs may prevent spread of infectious 170 

virions and comprise a web-like DNA backbone studded with histones and 171 

cytotoxic/antimicrobial proteins.  172 

 173 

Natural Killer (NK) cells 174 

 175 

RSV infection results in reduced total systemic NK cell counts albeit with an increase in an 176 

activated sub-set that lacks expression of CD94 (15, 16). Circulating NK cells have higher 177 

expression of the inhibitory leukocyte immunoglobulin-like receptor subfamily B member 178 

(LILRB1) suggesting they may contribute to regulation of inflammation during infection 179 

(17). Lower systemic total counts correlate with greater severity of infection and NK cells are 180 

sparse in lung tissue from fatal cases (3, 15, 18, 19). In contrast, there is accumulation of 181 

granzyme B-expressing NK cells in the respiratory tract of infants ventilated due to severe 182 

RSV-bronchiolitis (BAL and tracheal aspirate), possibly suggesting migration to the lungs 183 

(20, 21). 184 

 185 

Dendritic Cells (DC) 186 

 187 
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Conventional (cDC) and plasmacytoid (pDC) DCs are mobilized from the circulation to the 188 

nasal mucosa early during infection with a further increase in DC counts during subsequent 189 

convalescence (22, 23). The RSV fusion protein is present within HLA-DR+ DCs in the nasal 190 

mucosa and the selective emigration of DCs, but not monocytes, highlights their likely role as 191 

the primary antigen presenting cell during RSV infection (23). Low numbers of blood pDCS 192 

have been associated with the development of RSV-bronchiolitis suggesting either increased 193 

emigration to the respiratory tract or an insufficient pDC response in severe RSV infection 194 

(24). 195 

 196 

cDCs and pDCs have also been found in the lower airways of infants ventilated due to severe 197 

RSV-bronchiolitis where cDCs exhibit an activated pro-inflammatory phenotype (20). 198 

Circulating cDCs express the activation marker CD83 and the co-stimulatory molecule 199 

CD40. Concentrations of innate immune pro-inflammatory cytokines (IL-6, TNF-α, IL-8) 200 

and T-cell derived cytokines (IFN-γ, IL-13, IL-10, IL-2) in BAL correlate with cDC counts. 201 

In subsets of infants with severe RSV-bronchiolitis (pre-term infants and infants aged four 202 

months or more) pulmonary pDC counts are low compared to term born and younger infants, 203 

suggesting an inadequate antiviral response as a factor in severe RSV disease (20).  204 

 205 

Macrophages and Monocytes 206 

 207 

Alveolar macrophages obtained from BAL from RSV-infected infants and adult transplant 208 

recipients co-express RSV surface glycoproteins, HLA-DR molecules, IL-1β and 209 

cytoplasmic TNF-α, suggesting a local immune-regulatory and antigen presenting role (25, 210 

26). The cells appear to be infected productively, as viral replication from the cells can be 211 

confirmed ex vivo (25).  212 
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 213 

CD69+ monocytes are present in lung tissue from fatal cases of RSV infection (11). In the 214 

peripheral blood, monocytes display reduced TLR8 expression and TNF-α production during 215 

acute RSV-infection, which subsequently normalises in convalescence (27). In contrast, 216 

circulating monocytes increase their expression of TLR4 in RSV infection (28). 217 

Eosinophils 218 

 219 

Eosinophils are activated during the acute phase of RSV-LRTI and may contribute to 220 

recovery. Expression of the myeloid activation marker CD11b on circulating eosinophils 221 

from infants with RSV-LRTI is increased, and inversely correlates with the required duration 222 

of supplemental oxygen (29). In comparison to children hospitalised due to influenza virus or 223 

adenovirus infection, those with RSV infection have higher systemic eosinophil counts 224 

during recovery but not at presentation (30). Despite a lack of data demonstrating significant 225 

eosinophil recruitment to the respiratory tract, there is evidence of eosinophil activity during 226 

bronchiolitis. Leukotriene C4, eosinophil-derived neurotoxin (EDN) and eosinophil cationic 227 

protein (ECP) are elevated in the respiratory tract in RSV-bronchiolitis, detectable in nasal 228 

fluid (leukotriene C4 and ECP) and lower airway secretions (EDN and ECP) (31-33), while 229 

one study did not find increased ECP levels (34). Nasopharyngeal ECP concentrations are 230 

also elevated in children with RSV-LRTI (not specifically bronchiolitis) and URTI (35-39). 231 

Nasal ECP concentrations correlate with nasal concentrations of the neutrophil 232 

chemoattractant CCL-3 (MIP-1α) and systemic neutrophil and eosinophil counts (37, 39). 233 

Concentrations of CCL-5 (RANTES), an eosinophil chemoattractant, ECP and eotaxin all 234 

increase during the progression from acute illness to recovery in RSV-LRTI and correlate 235 

with respiratory tract eosinophil counts suggesting this response may have a role in resolution 236 

(30, 38, 40, 41). In contrast to the apparent pro-resolution role of eosinophils themselves 237 
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during RSV infection it seems that a Th2-biased response, of which eosinophilia is a 238 

component, may be associated with more severe disease and this is discussed in detail in the 239 

section on Th2 responses below. 240 

 241 

T-lymphocytes 242 

 243 

An initial transient systemic T-cell lymphopenia occurs during RSV-LRTI. Counts of CD8+, 244 

CD4+, CD3+ and γδ-T-cells are all reduced, compared to convalescence and non-infected 245 

infants (2, 15, 16, 18, 19, 30, 42-44). There is no increased expression of CD11a (LFA-1α) in 246 

circulating T-cells suggesting that these cells are not activated, nor is there increased 247 

expression of CTLA-4, a marker of down-regulated T-cell activation (45, 46). Absolute T-248 

cell counts during RSV-infection are inversely associated with age, thus T-cell lymphopenia 249 

is more pronounced in younger patients (42). Children with more severe illness and those 250 

requiring ventilation have reduced circulating T-cell counts (all sub-sets) compared to those 251 

with less severe infection and in lung tissue from fatal cases CD4+ and CD8+ T-cells are 252 

sparse (3, 16, 43, 47, 48). During the course of disease, circulating CD8+ T-cell counts 253 

increase (16, 49). In mechanically ventilated infants with severe RSV-LRTI, systemic 254 

effector CD8+ T-cell counts are low during maximum symptoms and viral load and then 255 

peak during convalescence (after the systemic neutrophil response) (10, 49). At the time of 256 

ICU discharge, circulating CD8+ T-cell counts are temporarily elevated, whereas neutrophils 257 

are normal. 258 

 259 

Circulating FOXP3 mRNA and counts of FOXP3+ CD4+ regulatory T-cells (comprising 260 

suppressive resting Treg cells [CD45RA+ FOXP3lo] and suppressive activated Treg cells 261 

[CD45RA+ FOXP3hi]) are reduced in infants hospitalized with RSV-bronchiolitis and for at 262 
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least 3 weeks following acute infection (50, 51). Whether this represents apoptosis or 263 

recruitment to the lungs is unknown. Absolute counts of circulating regulatory T-cells do not 264 

correlate with disease severity (52).  265 

 266 

CD4+ and CD8+ T-cells are present in BAL obtained from infants with RSV-LRTI, with a 267 

predominance of CD4+ T-cells (4, 5). During the course of infection, the expansion of CD8+ 268 

T-cells is greater than that of CD4+ T-cells, and the CD8+ T-cells exhibit an effector 269 

phenotype (HLA-DR+, granzyme-B+, CD38+). Lower respiratory tract (tracheal aspirate and 270 

BAL) granzyme A and B levels are elevated in ventilated patients and granzyme B is 271 

expressed by CD8+ T-cells (21). In bronchiolitis specifically, peripheral blood RSV-specific 272 

cell-mediated cytotoxic immune responses are more frequent in infants with mild compared 273 

to severe infection (53). In experimental RSV infection of adults, the arrival of CD8+ T-cells 274 

to the lungs (in BAL) is associated with a reduction in pulmonary viral load (54). The 275 

frequency of pre-existing RSV-specific pulmonary CD8+ T-cells in BAL is inversely 276 

associated with pulmonary viral load and symptom severity. 277 

 278 

During acute infection, there is up-regulation of Fas and TRAIL receptor expression on 279 

circulating CD4+ and CD8+ T-cells compared to convalescence (42). Systemic 280 

concentrations of soluble Fas ligand and caspase-1 are elevated. An inverse correlation exists 281 

between CD4+ T-cell Fas expression and cell counts. Therefore, one mechanism underlying 282 

systemic lymphopenia may be the induction of T-cell apoptosis as a viral immune evasion 283 

strategy (Figure 1a). Furthermore, programmed cell death 1 (PD-1) protein expression is 284 

specifically up-regulated on pulmonary CD8+ T-cells during RSV-LRTI (55). PD-1 is a T-285 

cell co-inhibitory receptor that is inhibitory to activated T-cells, therefore PD-1 upregulation 286 

could be another immune evasion strategy to blunt the cytotoxic T-cell response (Figure 1b). 287 
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RSV infection may also impair differentiation of CD8+ T-cells into memory cells by 288 

inducing mammalian target of rapamycin (mTOR) activation (Figure 1c) (56). mTOR mRNA 289 

expression is increased in the lungs of infants with RSV-bronchiolitis compared to human 290 

metapneumovirus and rhinovirus infection (and healthy controls) and the RSV cases have a 291 

higher proportion of CD8+mTORser2448+ T cells, indicating activation of the mTOR 292 

pathway by phosphorylation on serine 2448 (56). Higher prolactin and lower leptin levels 293 

have been associated with lymphopenia in severe RSV infection suggesting a neuroendocrine 294 

component although these hormonal differences could also be explained by the systemic 295 

effects of critical illness (57). 296 

 297 

Defective T-cell responses 298 

 299 

Deficits in systemic CD4+ and CD8+ T-cell responses may contribute to RSV susceptibility 300 

in the elderly as these subjects have lower levels of RSV-specific CD4+ and CD8+ T-cells 301 

compared to younger adults (58, 59). Interestingly, there is no decrease in the level of 302 

influenza virus-specific CD8+ T-cells with increasing age (59). Furthermore, 303 

immunosuppressant drugs prescribed for solid organ transplant recipients (glucocorticoids, 304 

calcineurin inhibitors, azathioprine, mycophenolate mofetil, sirolimus) all have inhibitory 305 

activity against T-cells thus impairing the ability of these patients to clear opportunistic RSV 306 

infection, resulting in more severe RSV disease (60). Similarly, haematopoietic stem cell 307 

transplant recipients are also at increased risk of severe RSV disease and peripheral blood 308 

lymphopenia has been identified as a specific risk factor for RSV-LRTI (61) 309 

 310 

Cellular Response in Term and Pre-Term Infants 311 

 312 
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Total cellularity, neutrophil counts, macrophage counts and lymphocyte counts in BAL from 313 

infants ventilated due to RSV-bronchiolitis are all higher in term compared to pre-term 314 

infants, possibly related to immune system maturation (62). 315 

 316 

B-LYMPHOCYTE RESPONSES AND ANTIBODY PRODUCTION DURING RSV 317 

INFECTION 318 

 319 

Antibody Production and B-Lymphocyte Stimulation 320 

 321 

There is an increase in circulating B-cells, including mature (CD19+ CD5+) and precursor 322 

(CD19+ CD10+) cells, in infants with RSV-LRTI and CD20+ B-cells and IgM+, IgG+, and 323 

IgA+ plasma cells are prominent in post-mortem lung tissue from infants with fatal RSV-324 

bronchiolitis (43, 63, 64). Antibody responses target the F and G glycoproteins and increase 325 

between the acute and convalescent phases of natural primary infection of infants (65). 326 

Bronchiolitis may lead to a greater IgG response (66). Type I interferon (IFN) is implicated 327 

in early anti-viral B-cell responses and type I IFN-induced proteins (myxovirus resistance 328 

protein A, 2′,5′-oligoadenylate synthetase 1) are present in high concentrations in bronchiolar 329 

and alveolar epithelial cells from RSV-infected infants (63). The B-cell stimulating factors, a 330 

proliferation-inducing ligand (APRIL) and B-cell-activating factor (BAFF), are also present, 331 

co-localized to infected epithelial cells. APRIL and BAFF receptors are expressed on a subset 332 

of perialveolar plasma cells. In infants ventilated due to severe RSV-bronchiolitis, pulmonary 333 

BAFF levels are increased (67, 68). BAFF mRNA levels are elevated in bronchial brushings, 334 

further suggesting airway epithelial cells are the source (67). RSV-IgA, -IgG, and -IgM are 335 

present in the lungs of infants with RSV-LRTI together with higher quantities of BAFF and 336 

APRIL, but lower levels of T-cell-dependent cytokines (IL-2, IL-4 and IL-10) (63, 69). 337 
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APRIL concentrations correlate positively with RSV-IgA and IgM levels and inversely with 338 

hypoxia. Thus, the pulmonary antibody response to RSV seems to be predominantly driven 339 

by T-cell-independent antibody production via B-cell stimulating factors (APRIL and BAFF), 340 

likely derived from infected pulmonary epithelial cells. In adults with RSV infection, a longer 341 

duration of virus shedding is associated with prolonged presence of circulating RSV-specific 342 

plasma cells, suggesting that persistent antigenic stimulation in the lung drives B-cell 343 

stimulation (70). Similarly, in elderly adults with nosocomial RSV infection, the highest IgG 344 

and IgA responses post-infection are seen in patients with more severe illness, perhaps 345 

correlating with viral load (71). 346 

 347 

In comparison to healthy controls and rotavirus-infected infants, there is a high prevalence of 348 

anti HEp-2 (antinuclear) antibodies in infants with RSV-LRTI (72). Decay of these auto-349 

antibodies was not studied (nor their presence pre-infection) but further investigation of 350 

subsequent development of autoimmune disease seems warranted. 351 

 352 

Protective Effects of RSV-IgG and RSV-IgA 353 

 354 

In experimental infection of healthy adults, higher pre-inoculation nasal RSV-IgA and serum 355 

anti-RSV neutralizing antibody titres are associated with protection from infection and 356 

reduced viral replication (73-77). RSV-specific nasal IgA, serum IgG and serum neutralizing 357 

titres in adults are also all associated with protection against natural RSV re-infection (78, 358 

79). In experimental infections, nasal RSV-IgA appears to confer more protection than serum 359 

neutralizing antibody and the response may be more durable (74, 80). Similarly, in infants 360 

and children with natural infection it is the development of the IgA response that appears to 361 

correlate with recovery (81). During convalescence, circulating RSV-IgG but not -IgA 362 
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producing memory B-cells are present in contrast to natural influenza virus infection, where 363 

influenza-IgA producing memory B-cells are detectable (74). Overall, a possible deficit in 364 

IgA memory especially in children, when IgA appears to offer important protective 365 

immunity, may contribute to recurrent infections (74, 81). In contrast, in elderly patients it is 366 

a deficit in circulating serum neutralizing antibodies that appears to predispose to RSV 367 

disease (79). 368 

 369 

In symptomatic RSV-infected and non-infected children, circulating RSV-IgG is present at 370 

the highest level in those <1 month old, likely derived from trans-placental maternal antibody 371 

transfer (82). IgG levels decrease after three months until two years, when levels increase 372 

again. The avidity of IgG is significantly lower amongst symptomatic RSV infected infants 373 

aged 1-3 months than in age-matched controls. Similarly, in children aged ≥24 months, total 374 

IgG affinity was lower for children with RSV-LRTI compared to milder URTI. Serum RSV-375 

IgG and nasal RSV-IgA neutralizing activity is quantitatively higher in children aged 9-21 376 

months compared to those aged 4-8 months (the age group with a higher incidence of RSV 377 

infection) (83). In infants there is a reverse correlation between pre-existing serum IgG and 378 

the development of nasal IgA following infection, suggesting maternally derived IgG may 379 

suppress the IgA response (84). These observations suggest that good IgG and IgA avidity for 380 

RSV contributes to protection against both the development of symptomatic infection and 381 

against more serious lung involvement. Following natural re-infection in adulthood, there is 382 

an eightfold increase in serum neutralization titre but this is short-lived, with a fourfold drop 383 

by one year in the majority of cases (85). 384 

 385 
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The serum neutralizing antibody response and nasal IgA and IgG response to the G 386 

glycoprotein are RSV-group specific (86, 87). In contrast, antibodies to the F glycoprotein 387 

are cross-reactive between RSV groups (88). 388 

 389 

Other Mechanisms of RSV-specific Antibody Activity 390 

 391 

Maximal cell-bound C3 is present during the convalescent phase and is associated with cell-392 

bound IgG and IgM (89). RSV antigen containing immune complexes are detectable in the 393 

upper airways of infected infants from three days after the onset of illness, and detectable up 394 

to 36 days after (90). The appearance of such immune complexes coincides with the failure to 395 

detect RSV antigen in airway epithelial cells, possibly due to antibody-dependent cell-396 

mediated cytotoxicity (ADCC), which occurs in infants with primary RSV infection (91). 397 

ADCC activity correlates with the titre of RSV-IgG in the upper airways and is greater during 398 

re-infection than primary infection. 399 

 400 

Immunoglobulin E 401 

 402 

An IgE response is mounted against the RSV F and G glycoproteins and may play a 403 

deleterious role (92). In infants with RSV-bronchiolitis there is a higher proportion of 404 

circulating CD23+ B-cells (CD23 is the low-affinity IgE receptor on mature and activated B-405 

cells) than in non-RSV-bronchiolitis and non-infected infants (93). Nasopharyngeal RSV-406 

IgE, histamine and leukotriene C4 levels are inter-related and associated with bronchiolitis 407 

(where peak levels correlate with hypoxia), compared to other manifestations of infection 408 

(URTI or pneumonia) (36, 94). In children with RSV-bronchiolitis or pneumonia, higher 409 
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serum IgE at admission has been associated with prolonged fever and worse symptoms and 410 

IgE titres and eosinophil counts with the development of wheeze during RSV-LRTI (95-97). 411 

 412 

Th1 AND Th2 RESPONSES TO RSV INFECTION 413 

 414 

Th1 Responses 415 

 416 

Th1 responses are characterised by production of IFN-γ, IL-1, IL-2, IL-12, IL-18, TNF-α. IL-417 

12 induces IFN-γ production and favours Th1 cell differentiation. The Th1 response is pro-418 

inflammatory and important in the generation of cell-mediated immunity required for the 419 

control of intracellular pathogens. Therefore, it is an inherently appropriate response to viral 420 

infection.  421 

 422 

Systemic 423 

 424 

Markers of the Th1 response (IFN-γ, soluble tumor necrosis factor receptor II, soluble 425 

interleukin-2 receptor [sCD25]) are elevated in the circulation during RSV-LRTI and 426 

systemic IFN-γ exerts a protective effect (97-100). Children ≤6 months with RSV-427 

bronchiolitis have a reduced IFN-γ response, possibly contributing to the increased incidence 428 

of RSV disease in the younger age group (101). In infants with RSV-LRTI, systemic IFN-γ 429 

concentrations are lower in those with severe disease (48, 98). Infants with RSV-bronchiolitis 430 

requiring ventilation have lower IFN-γ concentrations compared to those with milder disease 431 

and undetectable circulating IFN-γ positively correlates with the need for ventilation (102). 432 

Low IFN-γ:IL-10 ratios are associated with hypoxia and wheeze (99). During the acute phase 433 

of RSV-LRTI, peripheral blood mononuclear cell IFN-γ mRNA expression is lower in 434 
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hypoxic patients(47). Furthermore, circulating IL-12 levels are lower in severe RSV-LRTI 435 

compared to mild infections or controls (48, 98). 436 

 437 

Respiratory tract 438 

 439 

IFN-γ levels are also elevated in the nasal mucosa (37, 103-106) and in the lung (20, 106). 440 

The respiratory tract IFN-γ response exerts a protective effect, with lower IFN-γ production 441 

associated with increased severity scores, hypoxia and need for ventilation (106-110). In 442 

RSV-LRTI, the nasopharyngeal IFN-γ:IL-10 ratio increases from presentation to discharge, 443 

in parallel with clinical recovery, strengthening the association of IFN-γ with protection (41). 444 

 445 

Other Th1-associated cytokines are also elevated in the nasal mucosa (IL-1, IL-2, IL-12, IL-446 

18, TNF-α) (37, 111, 112) and in the lungs (IL-1, IL-2, TNF-α) (20, 113). TNF-α levels are 447 

highest during the acute phase of infection then decline during recovery (37, 105, 113-115). 448 

Raised IL-6 mRNA and protein have been observed in BAL and nasopharyngeal fluid from 449 

infants with severe RSV infection and a high ratio of IL-6:TNF-α is associated with reduced 450 

disease severity (113, 116). In children with only URTI there is reduced nasal production of 451 

anti-inflammatory IL-10 and this is inversely related to TNF-α production (117). It has been 452 

suggested that a reduction in IL-10 production facilitates a robust TNF-α response, limiting 453 

the infection to the upper airway.  454 

 455 

Increased nasal concentrations of IL-1α are associated with the need for ventilation in 456 

children with RSV-LRTI (118, 119). There is also an increase in nasal IL-18 concentrations 457 

and the number of IL-18 positive cells in children with RSV-bronchiolitis compared to URTI 458 
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(117). In bronchiolitis, nasal IL-18 production is associated with non-hypoxic infection, 459 

consistent with its role in stimulating IFN-γ production (117, 120). 460 

 461 

Th2 Responses 462 

 463 

The Th2 response, characterised by IL-4, IL-5, IL-6, IL-9, IL-10, and IL-13 production, is 464 

involved in the generation of antibody (in particular IgE) and eosinophil responses. This 465 

response is associated with atopy and also protection against parasitic infections, and may 466 

counteract and limit Th1-mediated inflammation.  467 

 468 

Systemic 469 

 470 

Systemic IL-4, IL-6, IL-10 and IL-13 levels are elevated in children with RSV-LRTI (37, 97, 471 

101, 121-123). Systemic IL-6 and IL-10 levels correlate with disease severity in RSV-LRTI 472 

including the requirement of supplemental oxygen (99, 122, 124, 125). In comparison to 473 

influenza A virus infection, the systemic concentrations of IL-4, IL-5 and CCL-5 are higher 474 

during RSV-LRTI (126). 475 

 476 

Respiratory tract 477 

 478 

Elevated concentrations of IL-4, IL-6, IL-9, IL-10 and IL-13 have been found in nasal washes 479 

(37, 109, 127-130) and in the lung (20, 131-133) in children with RSV-LRTI. Respiratory 480 

tract IL-10 production appears to exert a protective effect in RSV-LRTI, with concentrations 481 

inversely correlating with the duration of required supplemental oxygen and symptom 482 

severity (108, 128, 132). In very young infants (<3 months) this effect appears to be reversed, 483 
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with IL-10 concentrations correlating with severity (125), and nasal IL-10:CCL-5 ratios are 484 

only inversely correlated with duration of mechanical ventilation when infants older than 5 485 

months are considered (134). 486 

 487 

IL-6 levels are strongly elevated in BAL from infants ventilated due to severe RSV-488 

bronchiolitis (20, 113) and are elevated to a lesser extent in the respiratory tract in infants 489 

with milder infection (37, 117, 132). There are inconsistent data associating the nasal IL-6 490 

response with severity. In infants with RSV-bronchiolitis, nasal IL-6 concentrations are 491 

higher in those requiring ventilation and correlate with the degree of hypoxia (111, 118, 135, 492 

136). Similarly, adults hospitalised due to RSV infection have higher nasal IL-6 493 

concentrations than those not requiring hospitalisation (137). In experimentally infected 494 

adults, nasal IL-6 concentration is positively correlated with viral load and symptom severity 495 

(138). In contrast, in a cohort of children with RSV-bronchiolitis, higher nasal IL-6 496 

concentrations are associated with a shorter requirement for supplemental oxygen (108).  497 

 498 

Th1/Th2 Balance 499 

 500 

A high nasal and systemic IL-4:IFN-γ ratio, a marker of Th2-bias, is associated with severe 501 

(hypoxic) RSV-bronchiolitis (103, 123, 139). Independent of the ratio, IFN-γ concentrations 502 

are lower and IL-4 concentrations higher in infants with severe bronchiolitis. Also in severe 503 

RSV-bronchiolitis, circulating CXCR3+ T-cell (Th1) counts are significantly reduced during 504 

acute infection compared to convalescence, but CCR4+ T-cells (Th2) are not (140). An 505 

excessive Th2 or deficient Th1 response may be associated with the development of 506 

bronchiolitis compared to milder URTI with RSV: the nasal IL-4:IFN-γ and IL-10:IL-12 ratio 507 

is higher in infants with bronchiolitis (141). In a cohort of children with hypoxic RSV-LRTI, 508 
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comparison of systemic and respiratory tract cytokines showed a predominance of Th2 509 

cytokines in nasopharyngeal fluid (higher pulmonary:systemic ratios of IL-4:IL-12, IL-10:IL-510 

2, IL-10:IFN-γ, IL-6:IFN-γ, IL-6:IL-2) (37). Overall, these data suggest a Th2-biased 511 

response may be associated with more severe manifestations of RSV infection, consistent 512 

with it being either an inappropriate response to acute viral infection or one that is required to 513 

limit a potentially detrimental Th-1 response in severe RSV infection. 514 

 515 

However, such findings are not entirely consistent throughout the literature and there are 516 

reports of elevated IFN-γ:IL-4 ratios in children with more severe manifestations of RSV 517 

infection (bronchiolitis, pneumonia, any LRTI) compared to controls albeit not stratified by 518 

severity of infection within the groups (98, 142, 143). A heterogeneous polarization of 519 

pulmonary Th responses in infants with severe RSV-bronchiolitis has also been described, 520 

with 25% of infants only expressing IFN- γ and 50% only expressing IL-4; although again 521 

overall supporting a Th2-bias in severe disease (144). In comparison to infection with human 522 

metapneumovirus (hMPV), infants with RSV infection have similar nasopharyngeal IFN-γ 523 

levels but higher IL-4 consistent with a Th2-biased response that is distinct from the response 524 

to hMPV (34).  525 

 526 

There are lower counts of in vivo RSV-specific T-cells in the elderly and in in vitro 527 

experiments both isolated T-cells and peripheral blood mononuclear cells from healthy 528 

elderly patients produce less IFN-γ when stimulated with RSV F protein or RSV respectively 529 

(58, 59, 145). Although this finding has not been confirmed by in vivo experiments, it does 530 

hint at a defective Th1 response in the elderly which may contribute to the higher incidence 531 

of severe RSV disease in this population. 532 

 533 
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CHEMOKINES, CYTOKINES AND OTHER IMMUNE MOLECULES EXPRESSED 534 

DURING RSV INFECTION 535 

 536 

Overview 537 

 538 

A comprehensive list of immune and lung structural proteins involved in the response to RSV 539 

infection is presented in Table 1. Key molecules are discussed here. 540 

 541 

Interleukin-8 542 

 543 

Systemic and respiratory tract production of IL-8, a neutrophil chemoattractant, is increased 544 

during RSV-LRTI and circulating concentrations normalise during convalescence (37, 102, 545 

105, 111, 121, 122, 133, 146-149). Higher circulating and respiratory tract IL-8 levels are 546 

associated with hypoxia and need for ventilation in infants (18, 37, 102, 135, 136, 147). IL-8 547 

production in the nasal mucosa is also higher during LRTI in children caused by RSV 548 

compared to rhinovirus (150). When comparing term and pre-term infants with RSV-LRTI of 549 

similar severity, nasal IL-8 and leucocyte counts are higher in the term infants suggesting a 550 

more vigorous inflammatory response (151). 551 

 552 

Interleukin-17A 553 

 554 

Compared to non-RSV-LRTI, circulating Th17 cell counts and IL-17 levels are higher in 555 

infants with RSV-bronchiolitis (51). In these infants, nasal concentrations of pro-556 

inflammatory IL-17A are higher in patients requiring ventilation (118). When ventilated, 557 

tracheal IL-17A concentrations positively correlate with neutrophil counts (152). In infants 558 
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with mild bronchiolitis, although nasal IL-17A levels are lower initially, they increase during 559 

the convalescent phase, hinting at a dual role for IL-17A: deleterious in the acute phase, 560 

possibly related to neutrophil recruitment, but potentially involved in the resolution of milder 561 

infections (118). 562 

 563 

CC Chemokines 564 

 565 

CCL-5 (RANTES), eotaxin and CCL-3 (MIP-1α) production in the nasal mucosa and lung 566 

(in BAL) is increased during RSV-LRTI and bronchiolitis (32, 37, 38, 129, 132, 133, 143, 567 

149, 153-155). However, nasal and systemic CCL-5 concentrations are lower in patients 568 

requiring ventilation (18, 132) inversely correlating with the duration of ventilation and 569 

required supplemental oxygen. In RSV-LRTI, the duration of required supplemental oxygen 570 

is positively associated with nasal CCL-3 and inversely with CCL-4 (MIP-1β) (107, 108). 571 

CCL-3 and eotaxin concentrations in the nasal mucosa are higher in hypoxic bronchiolitis 572 

compared to URTI or non-hypoxic bronchiolitis (103, 155, 156). Nasal CCL-3 concentrations 573 

are higher in RSV-infected adults who require hospitalisation, compared to those who do not, 574 

and are associated with symptom severity in experimentally infected adults (137, 138). 575 

However, one study of RSV-LRTI found that increased nasal CCL-2 (MCP-1), CCL-3 and 576 

CCL-4 are all positively associated with severity (119).  577 

 578 

Pattern Recognition Receptors (PRR) 579 

 580 

PRRs are involved in innate immune recognition of viral pathogens in order to stimulate 581 

interferon and cytokine responses. In comparison to healthy controls or infants with 582 

rhinovirus or bocavirus infection, in infants with RSV-bronchiolitis there is increased 583 
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pulmonary expression of TLR-7, TLR-8, RIG-1 and MDA-5 (157). RIG-1 mRNA in the 584 

lungs correlated with RSV viral load (157). Furthermore, an individual’s TLR4 genotype 585 

influences the severity of RSV-bronchiolitis and this is significantly influenced by 586 

environmental lipopolysaccharide exposure (139). 587 

 588 

Innate Interferons 589 

 590 

IFN- α is produced systemically and in the respiratory tract in response to RSV infection 591 

(158). Nasopharyngeal IFN-α titres peak on day 1 of illness and remain elevated for ~6 days, 592 

then decrease in parallel with nasopharyngeal RSV antigen levels (158). In peripheral blood, 593 

IFN-α levels peak by day 2. Infants aged less than 3 months produce the lowest levels of 594 

IFN-α in both the nasopharynx and peripheral blood (158). RSV may be a comparatively 595 

weak inducer of type I IFN since nasopharyngeal IFN-α levels are higher in infants with 596 

influenza virus, adenovirus and parainfluenza virus infection (158). 597 

 598 

Type III interferons (IFN-λ) are produced in response to viral infection and have type I IFN-599 

like activities. Their receptor complex is primarily expressed on epithelial cells and IFN-λ 600 

responsiveness is greatest in organs with high epithelial content such as the lungs. There is a 601 

IFN-λ response to RSV-bronchiolitis, with higher nasal levels of IFN-λ 1-3 seen compared to 602 

rhinovirus infection (159, 160). IFN-λ mRNA levels correlate with IFN-stimulated gene 603 

expression (MxA and ISG56) (159). Despite their association with antiviral gene expression, 604 

higher nasal IFN-λ-1 levels are associated with increased disease severity (159).  605 

 606 

Immunostimulatory defective viral genomes (iDVGs) have been detected in the nasal fluid of 607 

around half of RSV-infected children in one study (161). These RSV genomes have large 608 
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deletions rendering them unable to replicate without the presence of helper virus. The 609 

presence of iDVGs correlates with mRNA levels of IFNA4 and the ISGs IFIT1 and RSAD2, 610 

suggesting they are sufficient to stimulate an innate interferon response (161). 611 

 612 

microRNA 613 

 614 

Viral infection (especially with RNA viruses) can subvert cellular microRNA expression 615 

potentially to the benefit of the virus. A distinct microRNA expression profile is detectable in 616 

the nasal mucosa of RSV-infected infants compared to non-infected controls (downregulation 617 

of miR-34b, miR-34c, miR-125b, miR-29c, mir125a, miR-429 and miR-27b; upregulation of 618 

miR-155, miR-31, miR-203a, miR-16 and let-7d) (162). miR-125a and miR-429 are 619 

downregulated in mild but not severe infection; the former has roles in NF-kappa B signaling 620 

and macrophage function (162). miR-26b (thought to target TLR4 based on miRNA target 621 

prediction software) has been studied in PBMCs from children with RSV-bronchiolitis where 622 

it is up-regulated, negatively correlating with TLR4 expression (163). 623 

 624 

GLOBAL HOST TRANSCRIPTIONAL RESPONSE TO RSV INFECTION 625 

 626 

Genes and pathways associated with neutrophil function, interferon signalling (including 627 

STAT1, STAT2, IFITM1, OAS2, MX1, IFI27, IFI35 and IFIT3), interferon-inducible proteins 628 

(including IFI44, EIF2AK2, IFI44L, IFI6, OAS3 and G1P2), dendritic cell maturation and 629 

inflammation are up-regulated in the circulation of children with RSV infection (164-166). 630 

Genes and pathways associated with NK cell, B-cell and T-cell responses, cytotoxic 631 

lymphocyte-mediated apoptosis of target cells, HLA class I and II and antigen presentation 632 

are under-expressed (164-166). Under-expression is greater in infants <6 months compared to 633 
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those aged 6-24 months (164) and may reflect either low gene expression or migration of 634 

peripheral blood immune cells to the infected tissues. In severe disease there is greater up-635 

regulation of neutrophil and inflammatory gene expression and greater suppression of T-cell, 636 

NK cell and plasma cell associated-genes (164). In comparison, this dysregulation of genes 637 

relating to neutrophil, B-cell and T-cell function is not seen in children with rhinovirus or 638 

influenza virus infection (164). 639 

 640 

A different transcriptional response is seen in the upper airways of RSV-infected children. In 641 

infants requiring supplemental oxygen or mechanical ventilation, ubiquitin D, tetraspanin 642 

8, mucin 13 and β-microseminoprotein are up-regulated and chemokine ligand 7 is down-643 

regulated compared to milder RSV infection (167). 644 

 645 

RELATIONSHIP BETWEEN MOLECULAR AND CELLULAR IMMUNE 646 

RESPONSES TO RSV AND PATHOPHYSIOLOGY 647 

 648 

Molecular and cellular events during RSV infection are reflected in changes in host 649 

physiology observed during the course of disease (Figure 1). The initial development of 650 

cough, wheezing and tachypnoea, usually peaking on days 4-5, develops in parallel to the 651 

maximal neutrophil response and viral load (10). This is followed by a convalescent period 652 

with a CD8+ T-cell predominant response involved in viral clearance which coincides with 653 

the reduction in the above respiratory symptoms over a period of 2-3 weeks. 654 

 655 

Many of the different cytokines, chemokines and other immune molecules that are involved 656 

in the immune response to RSV infection have been associated with protective or deleterious 657 

effects, as listed in Table 1, depending on the perceived severity of disease in the studied 658 
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patients. This is usually based on the need for ICU admission, endotracheal intubation and 659 

mechanical ventilation, but also on composite scores of clinical parameters including 660 

respiratory rate, oxygen saturations, the need for supplemental oxygen or the need for 661 

hospitalisation. 662 

 663 

We know that pre-existing differences in immune status may modulate molecular and cellular 664 

responses during RSV infection. Younger infants have more pronounced lymphopenia and 665 

reduced IFN- γ responses possibly reflecting the immunological immaturity of early life (42, 666 

101). Term infants seem to have a stronger inflammatory response with higher leucocyte 667 

counts and IL-8 levels compared to preterm infants (151). On the other hand, preterm babies 668 

may have an inadequate antiviral response with reduced pulmonary pDC counts (20). These 669 

observations may provide an explanation for the increased frequency of severe RSV disease 670 

in preterm and younger term born infants. 671 

 672 

Furthermore, early life microbiome changes in the gut and respiratory tract may influence the 673 

host immune responses during RSV disease (168), similar to the distinct patterns of 674 

nasopharyngeal microbiota development that have been reported in young infants with cystic 675 

fibrosis (169). Certainly, associations between the respiratory and gut microbiome, host 676 

transcriptional immune responses, RSV load and clinical status are now evident and require 677 

further detailed investigation (170). 678 

 679 

RSV INFECTION AND SUBSEQUENT RESPIRATORY HEALTH 680 

 681 
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RSV-bronchiolitis during early life has been associated with an increase in susceptibility to 682 

subsequent episodic wheeze, physician diagnosed asthma and decreased FEV1 and FVC 683 

measurements on pulmonary function testing (171). Evidence for a causal relationship comes 684 

from an intervention trial in premature infants (gestational age 33-35 weeks) who received 685 

either palivizumab, a humanized monoclonal anti-RSV IgG used in the prevention of severe 686 

RSV disease, or placebo during RSV season (172). Palivizumab treatment almost halved (-687 

46.4%) the proportion of infants with subsequent recurrent wheeze compared to placebo. 688 

Possible molecular and cellular explanations for such a relationship have been described. 689 

There is little human data on potential immune mechanisms for the long term effects of RSV-690 

bronchiolitis, but levels of the cytokines IL-3 and IL-12p40 during RSV disease have been 691 

found to correlate with subsequent development of recurrent wheeze (133). Furthermore, 692 

elevation of VEGF, G-CSF, and IL-10 persists after the RSV episode, all mediators that have  693 

been related to asthma and post-virus induced wheeze (173). Higher proportions of nasal 694 

pDCs may reflect a heightened antiviral response in the respiratory tract, potentially due to 695 

higher viral load, leading to the development of recurrent wheeze and asthma (174). IL-33, 696 

although not reported to be associated with severity of disease, has also been implicated in a 697 

Th2-biased response to RSV and may relate to RSV-mediated asthma in later life (130). 698 

 699 

KEY DIFFERENCES IN THE IMMUNE RESPONSE TO RSV BETWEEN ANIMAL 700 

MODELS AND HUMANS 701 

 702 

Contemporary data from animal models of RSV infection have been comprehensively 703 

reviewed by Borchers and colleagues recently (175). Although similarities are evident the 704 

critical fact remains that human RSV has no animal reservoir and has evolved to infect 705 

humans as its natural host, not the commonly used rodent models, which require infection 706 
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doses far in excess of those needed for human RSV infection. Neutrophilic inflammation 707 

contributes significantly to pathogenesis in humans (where neutrophils can constitute up to 708 

85% of BAL cell counts) but appears to have a less dominant role in mice (15-20% of cells) 709 

(67). In humans the contribution of Th1 and Th2 immune responses is variable and related to 710 

pathogenesis, whereas in mice there is generally a robust and reliable Th1 (IFN-γ) response 711 

(175). The evidence for an important contribution of eosinophils in humans has been 712 

reviewed earlier, but there is no evidence that these cells have a major role in the 713 

pathogenesis of disease in mice (175, 176). 714 

 715 

CONCLUSION 716 

 717 

By synthesizing the results of a systematic literature review of data exclusively from infected 718 

humans, we propose the following model to describe our current understanding of the 719 

immune response to RSV infection in humans (Figure 2). 720 

 721 

Large quantities of pro-inflammatory cytokines are produced in the respiratory tract, with an 722 

initial strong activated pulmonary and systemic neutrophil response which correlates with 723 

disease severity and is mediated by the neutrophil chemoattractant IL-8. Eosinophil 724 

degranulation occurs in the lungs during RSV-bronchiolitis and there may also be a role for 725 

CCL-5-mediated eosinophil recruitment to the lungs during recovery from RSV-LRTI. 726 

Dendritic cells migrate into the lungs where they are the primary antigen presenting cell. 727 

Circulating cDCs exhibit an activated phenotype, and pulmonary cDC counts correlate with 728 

pro-inflammatory and T-cell derived cytokine concentrations suggesting they contribute to 729 

the inflammatory response in a potentially deleterious manner. Alveolar macrophages have 730 

an immune-regulatory and antigen presenting role. 731 
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 732 

Initially, there is a systemic CD4+ and CD8+ T-cell lymphopenia, without evidence for 733 

pulmonary sequestration of T-cells. There is active T-cell apoptosis, upregulation of the T-734 

cell co-inhibitory molecule PD-1 and mTOR-mediated suppression of memory CD8+ T-cell 735 

differentiation, suggesting T-cell interference is a key viral immune evasion strategy (Figure 736 

1). Following the initial neutrophilic response there is a pulmonary CD8+ T-cell response 737 

coinciding with clearance of RSV from the lungs. CD8+ T-cells are protective, likely 738 

mediating viral clearance and therefore enabling resolution of infection. Humoral immunity 739 

to RSV re-infection is incomplete but RSV-specific circulating IgG and secretory IgA are 740 

protective against infection and possibly modify the severity of infection. T-cell-independent 741 

B-cell antibody production via B-cell stimulating factors (BAFF and APRIL) derived from 742 

airway epithelium seems to play a major role in protective antibody generation. On the other 743 

hand, RSV-IgE production is associated with bronchiolitis, where it may have a deleterious 744 

effect. There is strong evidence that IFN-γ (and related to this, IL-12 and IL-18 which 745 

promote IFN-γ production/Th1 differentiation) has a protective role in RSV infection. In 746 

contrast, a Th2-biased response may be associated with more severe disease manifestations. 747 

Global host transcriptional profiling reveals up-regulation of innate inflammatory (e.g. 748 

neutrophil related) genes and suppression of genes associated with the adaptive immune 749 

response. This is exaggerated in severe disease and is specific to RSV infection. Other 750 

cytokines (particularly IL-17A), chemokines (particularly CCL-5 and CCL-3) and local 751 

innate immune factors (cathelicidins, IFN-λ, G-CSF, sICAM-1) have also been associated 752 

with the course of disease. Elderly patients are at increased risk of severe RSV disease and 753 

this susceptibility may relate to defects in circulating neutralizing antibody titres and RSV-754 

specific CD4+ and CD8+ T-cells. 755 

 756 
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Overall, neutrophilic pulmonary inflammation is incriminated as a damaging process and 757 

protective effects of CD8+ T-cells and IFN-γ production are consistently reported. While 758 

these processes may be important therapeutic targets to modulate the immunopathogenesis of 759 

RSV infection, less well characterised immune processes, especially occurring in the lower 760 

airways and lung, require further investigation. 761 
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Figure 1: Mechanisms of RSV T-cell interference as a potential immune evasion 1453 

strategy 1454 
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RSV infection is associated with an initial systemic T-cell lymphopenia that is quantitatively 1455 

associated with disease severity. RSV may interfere with T-cell responses by (A) inducing 1456 

apoptosis (CD4+ and CD8+ T-cells), (B) inducing increased expression of the programmed 1457 

cell death 1 (PD-1) protein which is inhibitory to activated T-cells (CD8+ T-cells) and (C) 1458 

promoting activation of the mammalian target of rapamycin (mTOR) pathway, thus 1459 

preventing memory CD8+ T-cell formation. 1460 

 1461 

Figure 2: Summary of the human immune response to RSV and potential novel 1462 

therapeutic targets 1463 

The role of major cell types (neutrophils, dendritic cells, macrophages, CD8+ T-cells and B-1464 

cells) is summarised, in addition to key antibody, cytokine, chemokine and other immune 1465 

molecule responses. Major transcriptional changes (in peripheral blood) of immune-related 1466 

pathways are shown. The deleterious role of neutrophilic inflammation and protective role of 1467 

CD8+ T-cell mediated viral clearance is emphasised. Finally, we highlight areas where novel 1468 

therapeutic interventions could potentially modulate the immune response in favour of the 1469 

host. 1470 

↑ indicates immune cell recruitment to the respiratory tract 1471 

*associated with increased disease severity 1472 

 1473 

 1474 
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Table 1: Chemokines, cytokines and other immune molecules involved in the human immune response to RSV 
infection 

Immune 
molecule 

Respiratory tracta 
Systemic Additional comments Refb Nasal 

mucosa Lung 

Th1 cytokines      
IFN-γ + + + Protective  
IL-12 + + + Protective  
IL-1α & IL-1β +  + Deleterious  
IL-2 + + + No association reported with severity  

TNF-α + + + Deleterious  
IL-18 +   Protective  
sCD25   + Deleterious  
      
Th2 cytokines      
IL-4 + + + Deleterious   
IL-6 + + + Variable association with severity: see text  
IL-9 + +  No association reported with severity  
IL-10 + + + Variable association with severity: see text  
IL-13 + + + No association reported with severity  
      
Other 
cytokines      

IL-8 + + + Deleterious: neutrophil chemoattractant  
IL-17A + +  Variable association with severity: see text  
IL-33 +   No association reported with severity 130 
      
Chemokines      

CCL-2 (MCP-1) + +  Deleterious  
CCL-3 (MIP-1α) + +  Deleterious  
CCL-4 (MIP-1β) +   Variable association with severity: see text  
CCL-5 
(RANTES) + +  Protective  

CXCL-10 (IP-
10) +  + Deleterious  

Eotaxin + +  Deleterious  
      
Other      

IFN-λ +   Deleterious despite stimulating ISG expression 159, 
160 

IFN-α +  + No association reported with severity 158 

G-CSF +  + Circulating G-CSF levels are higher in infants with RSV-
LRTI requiring ventilation 

18, 105 

Soluble ICAM-1 +  + sICAM-1 levels in nasal fluid positively correlate with 
severity 

40, 
124, 
126 

Substance P + +  Lower concentrations associated with increased severity 106 
MBL   − No association reported with severity 44 

Cathelicidin LL-
37 +   

Protective: in human experimental infection, higher 
constitutive nasal cathelicidin LL-37 is associated with 
reduced development of infection 

177 

Olfactomedin 4   + Greater PBMC Olfactomedin 4 gene expression was 
associated with need for ventilation in RSV-LRTI 

19 

Surfactant A, B, 
D  − + The pulmonary level of surfactant A and measurable 

surfactant activity increases during recovery. 
178-
181 

MMP-9, MMP -
3, PGP  +  Elevated pulmonary levels in ventilated infants are 

associated with hypoxia and acute lung injury  
182-
184 

KL-6   + Circulating KL-6 is greater in infants with RSV-LRTI 
requiring ventilation 

185 

sTRAIL  +  No association reported with severity 186 
Key. +: increased production; −: reduced production 



a‘Nasal mucosa’ refers to measurements made in nasal fluid or nasopharyngeal aspirate; ‘Lung’ refers to measurements 
made in bronchoalveolar lavage or tracheal aspirate. 
bReferences are provided for molecules not discussed in detail in the main text. 
Abbreviations used in table. CCL: C-C motif chemokine ligand; CXCL: C-X-C motif chemokine ligand; G-CSF: 
granulocyte colony stimulating factor; ICAM: intercellular adhesion molecule; IFN: interferon; IL: interleukin; IP-10: IFN-γ 
inducible protein-10; ISG: interferon stimulated gene; MBL: mannose binding lectin; MCP-1: monocyte chemoattractant 
protein-1; MIP: macrophage inflammatory protein; MMP: matrix metalloproteinase; PGP: proline-glycine-proline (the 
product of MMP hydrolysis of collagen); RANTES: regulated on activation, normal T expressed and secreted; sTRAIL: 
soluble TNF-related apoptosis-inducing ligand; TIMP: tissue inhibitor of metalloproteinase; TNF: tumour necrosis factor. 
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