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Learning Fast Sparsifying Transforms
Cristian Rusu and John Thompson

Abstract—Given a dataset, the task of learning a transform
that allows sparse representations of the data bears the name
of dictionary learning. In many applications, these learned
dictionaries represent the data much better than the static
well-known transforms (Fourier, Hadamard etc.). The main
downside of learned transforms is that they lack structure and
therefore they are not computationally efficient, unlike their
classical counterparts. These posse several difficulties especially
when using power limited hardware such as mobile devices,
therefore discouraging the application of sparsity techniques in
such scenarios. In this paper we construct orthogonal and non-
orthogonal dictionaries that are factorized as a product of a few
basic transformations. In the orthogonal case, we solve exactly
the dictionary update problem for one basic transformation,
which can be viewed as a generalized Givens rotation, and then
propose to construct orthogonal dictionaries that are a product
of these transformations, guaranteeing their fast manipulation.
We also propose a method to construct fast square but non-
orthogonal dictionaries that are factorized as a product of few
transforms that can be viewed as a further generalization of
Givens rotations to the non-orthogonal setting. We show how the
proposed transforms can balance very well data representation
performance and computational complexity. We also compare
with classical fast and learned general and orthogonal transforms.

I. INTRODUCTION

Dictionary learning methods [1] represent a well-known
class of algorithms that have seen many applications in signal
processing [2], image processing [3], wireless communications
[4] and machine learning [5]. The key idea of this approach
is not to use an off-the-shelf transform like the Fourier,
Hadamard or wavelet but to learn a new transform, often called
an overcomplete dictionary, for a particular task (like coding
and classification) from the data itself. While the dictionary
learning problem is NP-hard [6] in general, it has been exten-
sively studied and several good algorithms to tackle it exist.
Alternating minimization methods like the method of optimal
directions (MOD) [7], K–SVD [8], [9] and direct optimization
[10] have been shown to work well in practice and also enjoy
some theoretical performance guarantees. While learning a
dictionary we need to construct two objects: the dictionary
and the representation of the data in the dictionary.

One problem that arises in general when using learned
dictionaries is the fact that they lack any structure. This is
to be compared with the previously mentioned off-the-shelf
transforms that have a rich structure. This is reflected in
their low computational complexity, i.e., they can be applied
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directly using O(n log n) computations for example [11]. Our
goal in this paper is to provide a solution to the problem
of constructing fast transforms, based upon the structure of
Givens rotations, learned from training data.

We first choose to study orthogonal structures since sparse
reconstruction is computationally cheaper in such a dictionary:
we project the data onto the column space of the dictionary
and keep the largest s coefficients in magnitude to obtain the
provable best s-term approximation. Working in an n dimen-
sional feature space, this operation has complexity O(n2). In
a general non-orthogonal (and even overcomplete) dictionary,
special non-linear reconstruction methods such as `1 mini-
mization [12], greedy approaches like orthogonal matching
pursuit (OMP) [13] or variational Bayesian algorithms like
approximate message passing (AMP) [14] need to be applied.
Aside from the fact that in general these methods cannot
guarantee to produce best s-term approximations they are also
computationally expensive. For example, the classical OMP
has complexity O(sn2) [15] and, assuming that we are looking
for sparse approximations with s� n, it is in general compu-
tationally cheaper than `1 optimization. Therefore, considering
a square orthogonal dictionary is a first step in the direction
of constructing a fast transform. For the analysis dictionary,
recent work based on transform learning [16], [17] has been
proposed. Still, notice that computing sparse representations
in such a dictionary has complexity O(n2) and therefore, our
goal of constructing a fast transform cannot be reached with
just a general orthogonal dictionary. We make the case that our
fundamental goal is to actually build a structured orthogonal
dictionary such that matrix-vector multiplications with this
dictionary can be achieved with less than O(n2) operations,
preferably O(n log n). This connects our paper to previous
work on approximating orthogonal (and symmetric) matrices
[18] such that matrix-vector multiplications are computation-
ally efficient.

When we talk about “learning fast sparsifying transforms”
we do not refer to the efficient learning procedures (although
the proposed learning methods have polynomial complexity)
but we refer to the transforms themselves, i.e., once we have
the transform, the computational complexity of using it is low,
preferably O(n log n) to perform matrix-vector multiplication.

Previous work [19], [20], [21], [22], [23], [24], [25] in the
literature has already proposed various structured dictionaries
to cope with the high computational complexity of learned
transforms. Previous work also dealt with the construction of
structured orthogonal dictionaries. Specifically, [26] proposed
to build an orthogonal dictionary composed of a product of a
few Householder reflectors. In this fashion, the computational
complexity of the dictionary is controlled and a trade-off
between representation performance and computational com-
plexity is shown.
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Learned dictionaries with low computational complexity
can bridge the gap between the classical transforms that
are preferred especially in power limited hardware (or bat-
tery operated devices) and the overcomplete, computationally
cumbersome, learned dictionaries that provide state-of-the-art
performance in many machine learning tasks. The contribution
of this paper is two fold.

First, we consider the problem of constructing an orthogonal
dictionary as a product of a given number of generalized
Givens rotations. We start by showing the optimum solution
to the dictionary learning problem when the dictionary is a
single generalized Givens rotation and then move to expand
on this result and propose an algorithm that sequentially builds
a product of generalized Givens rotations to act as a dictionary
for sparse representations. Each step of the algorithm solves
exactly the proposed optimization problem and therefore we
can guarantee that it monotonically converges to a local
minimum. We show numerically that the fast dictionaries
proposed in this paper outperform those based on Householder
reflectors [26] in terms of representation error, for the same
computational complexity.

Second, based on a structure similar to the generalized
Givens rotation we then propose a learning method that
constructs square, non-orthogonal, computationally efficient
dictionaries. In order to construct the dictionary we again
solve exactly a series of optimization problems. Unfortunately
we cannot prove the monotonic convergence of the algorithm
since the sparse reconstruction step, based in this paper on
OMP, cannot guarantee in general a monotonic reduction in
our objective function. Still, we are able to show that these
fast non-orthogonal transforms perform very well, better than
their orthogonal counterparts.

In the results section we compare the proposed methods
among each other and to previously proposed dictionary
learning methods in the literature. We show that the methods
proposed in this paper provide a clear trade-off between
representation performance and computational complexity. In-
terestingly, we are able to provide numerical examples where
the proposed fast orthogonal dictionaries have higher computa-
tional efficiency and provide better representation performance
than the well-known discrete cosine transform (DCT), the
transform at the heart of the jpeg compression standard [27].

II. A BRIEF DESCRIPTION OF DICTIONARY LEARNING
OPTIMIZATION PROBLEMS

Given a real dataset Y ∈ Rn×N and sparsity level s,
the general dictionary learning problem is to produce the
factorization Y ≈ DX given by the optimization problem:

minimize
D, X

‖Y −DX‖2F

subject to ‖xi‖0 ≤ s, 1 ≤ i ≤ N
‖dj‖2 = 1, 1 ≤ j ≤ n,

(1)

where the objective function describes the Frobenius norm rep-
resentation error achieved by the square dictionary D ∈ Rn×n

with the sparse representations X ∈ Rn×N whose columns
are subject to the `0 pseudo-norm ‖xi‖0 (the number of non-
zero elements of columns xi). To avoid trivial solutions, the

dimensions obey s � n � N . Several algorithms that work
very well in practice exist [7] [8] [15] to solve this factorization
problem. Their approach, and the one we also adopt in this
paper, is to keep the dictionary fixed and update the represen-
tations and then reverse the roles by updating the dictionary
with the representations fixed. This alternating minimization
approach proves to work very well experimentally [7], [8] and
allows some theoretical insights [28].

In this paper we also consider the dictionary learning
problem (1) with an orthogonal dictionary Q ∈ Rn×n [29]
[30] [31] [32]. The orthogonal dictionary learning problem
(which we call in this paper Q–DLA) [33] is formulated as:

minimize
Q, X; QQT=QTQ=I

‖Y −QX‖2F

subject to ‖xi‖0 ≤ s, 1 ≤ i ≤ N.
(2)

Since the dictionary Q is orthogonal, the construction of X
no longer involves `1 [12], OMP [13] or AMP [14] approaches
as in (1), but reduces to X = Ts(QTY), where Ts() is an
operator that given an input vector zeros all entries except
the largest s in magnitude and given an input matrix applies
the same operation on each column in turn. To solve (2)
for variable Q and fixed X, a problem also known as the
orthogonal Procrustes problem [34], a closed form solution
Q = UVT is given by the singular value decomposition of
YXT = UΣVT .

III. A BUILDING BLOCK FOR FAST TRANSFORMS

For indices (i, j), j > i and variables p, q, r, t ∈ R let us
define the basic transform, which we call an R-transform:

Rij =


Ii−1

p r
Ij−i−1

q t
In−j

 ∈ Rn×n, (3)

where we have denoted Ii as the identity matrix of size i. For
simplicity, we denote the non-zero part of Rij as

R̃ij =

[
p r
q t

]
∈ R2×2. (4)

A right side multiplication between a R-transform and a matrix
X ∈ Rn×N operates only rows i and j as

RijX = [x1 . . . pxi + rxj . . .

. . . qxi + txj . . . xn]T ,
(5)

where xT
i is the ith row of X. The number of operations needed

for this task is only 6N . Left and right multiplications with
a R-transform (or its transpose) are therefore computationally
efficient. We use this matrix structure as a basic building block
for the transforms learned in this paper.
Remark 1. Every matrix D ∈ Rn×n can be written as a
product of at most dn2− n

2 e R-transforms. Therefore, we can
consider the R-transforms as fundamental building blocks for
all square transforms D.
Proof. Consider the singular value decomposition D =
UΣVT . Each U and V can be factored as a product of(
n
2

)
Givens rotations [35] which are all in fact constrained
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R-transforms (with p = t = c and r = −q = d for some
given c and d such that c2 + d2 = 1) and a diagonal matrix
containing only {±1} entries. While the diagonal Σ can be
factored as a product of dn2 e diagonal R-transforms. �

In this paper we will be interested to use Rij in least squares
problems with the objective function as:

‖Y −RijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)−∥∥∥∥[yT
i

yT
j

]∥∥∥∥2
F

−
∥∥∥∥[xT

i

xT
j

]∥∥∥∥2
F

+2tr(Z{i,j})+

∥∥∥∥[yT
i

yT
j

]
−R̃ij

[
xT
i

xT
j

]∥∥∥∥2
F

.

(6)
For simplicity of exposition we have defined

Z = YXT ,Z{i,j} =

[
Zii Zij

Zji Zjj

]
∈ R2×2, Zij = yT

i xj , (7)

where yT
i and xT

i are the ith rows of Y and X, respectively.
We now introduce learning methods to create computation-

ally efficient orthogonal and non-orthogonal dictionaries.

IV. A METHOD FOR DESIGNING FAST ORTHOGONAL
TRANSFORMS: Gm–DLA

In this section we propose a method called Gm–DLA to
learn orthogonal dictionaries that are factorized as a product
of m G-transforms (constrained R-transforms).

A. An overview of G-transforms

We call Gij a G-transform, an orthogonal constrained R-
transform (3) parameterized only by c, d ∈ R with c2+d2 = 1,
and the indices (i, j), i 6= j such that the non-zero part of Gij ,
corresponding to (4), is given by

G̃ij ∈
{[

c d
−d c

]
,

[
c d
d −c

]}
. (8)

Classically, a Givens rotation is a matrix as in (3) with

G̃ij =

[
c d
−d c

]
such that det(Gij) = 1, i.e., proper rotation

matrices are orthogonal matrices with determinant one. These
rotations are important since any orthogonal dictionary of size
n× n can be factorized in a product of

(
n
2

)
Givens rotations

[35]. In this paper, since we are interested in the computational
complexity of these structures, we allow both options in (8)
that fully characterize all 2×2 real orthogonal matrices – these
structures are discussed in [36, Chapter 2.1]. With G̃ij =[
c d
d −c

]
the G-transform in (3) is in fact a Householder

reflector Gij = I − 2gijg
T
ij where gij ∈ Rn, ‖gij‖2 = 1,

has all entries equal to zero except for the ith and jth entries
that are

√
0.5(1− c) and −sign(d)

√
0.5(1 + c), respectively

– one might call this a “Givens reflector” to highlight its
distinguishing sparse structure. Givens rotations have been
previously used in matrix factorization applications [37], [38].

B. One G-transform as a dictionary

Consider now the dictionary learning problem in (2). Let us
keep the sparse representations X fixed and consider a single
G-transform as a dictionary. We reach the following

minimize
(i,j), G̃ij

‖Y −GijX‖2F . (9)

When indices (i, j) are fixed, the problem reduces to
constructing G̃ij , a constrained two dimensional optimization
problem. To select the indices (i, j), among the

(
n
2

)
possi-

bilities, an appropriate strategy needs to be defined. We detail
next how to deal with these two problems to provide an overall
solution for (9).
To solve (9) for the fixed coordinates (i, j) we reach the
optimization problem

minimize
G̃ij ; G̃T

ijG̃ij=G̃ijG̃T
ij=I

∥∥∥∥[yT
i

yT
j

]
− G̃ij

[
xT
i

xT
j

]∥∥∥∥2
F

. (10)

This is a two dimensional Procrustes problem [34] whose
optimum solution is G̃ij = UVT where Z{i,j} = UΣVT .
It has been shown in [26] that the reduction in the objective
function of (10) when considering an orthogonal dictionary
Gij given by the Procrustes solution is∥∥∥∥[yT

i

yT
j

]
− G̃ij

[
xT
i

xT
j

]∥∥∥∥2
F

=

∥∥∥∥[yT
i

yT
j

]∥∥∥∥2
F

+

∥∥∥∥[xT
i

xT
j

]∥∥∥∥2
F

−2tr

(
GT

ij

[
yT
i

yT
j

] [
xT
i

xT
j

]T)

=

∥∥∥∥[yT
i

yT
j

]∥∥∥∥2
F

+

∥∥∥∥[xT
i

xT
j

]∥∥∥∥2
F

− 2‖Z{i,j}‖∗,

(11)

where ‖Z{i,j}‖∗ is the nuclear norm of Z{i,j}, i.e., the sum
of its singular values.
Choosing (i, j) in (9) requires a closer look at its objective
function (6) for R̃ij = G̃ij , the constrained G-transform
structure. Using (11) we can state a result in the special case of
a G-transform. We need both because for any indices (i, j) the
reduction in the objective function invokes the nuclear norm,
while for the other indices the reduction invokes the trace.
We can analyze the two objective function values separately
because the Frobenius norm is elementwise and as such also
blockwise. Therefore, the objective of (9) is

‖Y −GijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)− 2Cij ,

where Cij = ‖Z{i,j}‖∗ − tr(Z{i,j}).
(12)

Since we want to minimize this quantity, the choice of indices
needs to be made as follows

(i?, j?) = arg max
(i,j), j>i

Cij , (13)

and then solve a Procrustes problem [34] to construct G̃i?j? .
These (i?, j?) values are the optimum indices that lead to

the maximal reduction in the objective function of (9). The
expression in (13) is computationally cheap given that Z{i,j}
is a 2×2 real matrix. Its trace is trivial to compute tr(Z{i,j}) =
Zii + Zjj (one addition operation) while the singular values
of Z{i,j} can be explicitly computed as

σ1,2=

√
1

2

(
‖Z{i,j}‖2F±

√
‖Z{i,j}‖4F−4 det(Z{i,j})2

)
. (14)

Therefore, the full singular value decomposition can be
avoided and the sum of the singular values from (14) can be
computed in only 23 operations (three of which are taking
square roots). The cost of computing Cij for all indices
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(i, j), j > i, is 25n(n−1)
2 operations. The computational

burden is still dominated by constructing Z = YXT which
takes 2snN operations.
Remark 2. Notice that Cij ≥ 0 always. In general, this
is because the sum of the singular values of any matrix
Z of size n × n is always greater than the sum of its
eigenvalues. To see this, use the singular value decomposition
of Z = UΣVT ,Σ = diag(σ), and develop:

tr(Z) = tr(ΣVTU) =

n∑
k=1

σk∆kk ≤
n∑

k=1

σk = ‖Z‖∗, (15)

where we have use the circular property of the trace and
∆ = VTU where ∆kk are its diagonal entries which obey
|∆kk| ≤ 1 since both U and V are orthogonal and their entries
are sub-unitary in magnitude. Therefore, in our particular case,
we have that Cij = 0 when Z{i,j} is symmetric and positive
semidefinite (we have that ∆ = I in (15) and therefore
tr(Z{i,j}) = ‖Z{i,j}‖∗). If we have that Cij = 0 for all i
and j then no G-transform can reduce the objective function
in (9) and therefore the solution is Gij = I. �
Remark 3. We can extend the G-transform to multiple indices.
For example, if we consider three coordinates then Gijk ∈
Rn×n has the non-zero orthogonal block G̃ijk ∈ R3×3. For
a transform over q indices there are

(
n
q

)
such blocks and its

matrix-vector multiplication takes (2q − 1)q operations. �
Remark 4. There are some connections between the House-
holder [26] and the G-transform approaches. As previously

explained, when G̃ij =

[
c d
d −c

]
the G-transform can also

be viewed as a Householder reflector, i.e., Gij = I− 2gijg
T
ij

where gij ∈ Rn is a 2-sparse vector. Following results from
[26] we can also write

‖Y −GijX‖2F =‖Y‖2F + ‖X‖2F − 2tr(YXT )

+ 2gT
ij(YXT + XYT )gij ,

(16)

which, together with (12), leads to gT
ij(YXT + XYT )gij =

−Cij . This means that choosing to maximize Cij in (12) is
equivalent to computing an eigenvector of YXT + XYT of
sparsity two associated with a negative eigenvalue.

There are also some differences between the two ap-
proaches. For example, matrix-vector multiplication with a G-
transform Gijx takes 6 operations but when using the House-
holder structure Gijx = (I−2gijg

T
ij)x = x−2(gT

ijx)gij takes
8 operations (4 operations to compute the constant C = 2gT

ijx,
2 operations to compute the 2-sparse vector z = Cgij and
2 operations to compute the final result x − z). Therefore,
the G-transform structure is computationally preferable to the
Householder structure. Each Householder reflector has n − 1
(because of the orthogonality constraint) degrees of freedom
while each G-transform has only 1 (the angle θ ∈ [0, 2π] for
which c = cos θ and d = sin θ) plus 1 bit (the choice of the
rotation or reflector in (8)). �

This concludes our discussion for the single G-transform
case. Notice that the solution outlined in this section solves
(9) exactly, i.e., it finds the optimum G-transform.

C. A method for designing fast orthogonal transforms: Gm–
DLA

In this paper we propose to construct an orthogonal trans-
form U ∈ Rn×n with the following structure:

U = Gimjm . . .Gi2j2Gi1j1 . (17)

The value of m is a choice of the user. For example, if
we choose m to be O(n log n) the transform U can be
computed in O(n log n) computational complexity – similar
to the classical fast transforms. The goal of this section is to
propose a learning method that constructs such a transform.

We fix the representations X and all G-transforms in (17)
except for the kth, denoted as Gikjk . To optimize the dictionary
U only for this transform we reach the objective function

‖Y −UX‖2F = ‖Y −Gimjm . . .Gi1j1X‖2F
=‖GT

ik+1jk+1
. . .GT

imjmY −Gikjk . . .Gi1j1X‖2F
=‖Yk −GikjkXk‖2F ,

(18)

where we have used the fact that multiplication by any orthog-
onal transform preserves the Frobenius norm. For simplicity
we have denoted Yk and Xk the known quantities in (18) and
therefore Zk = YkXT

k .
Notice that we have reduced the problem to the formulation

in (9) whose full solution is outlined in the previous section.
We can apply this procedure for all G-transforms in the
product of U and therefore a full update procedure presents
itself: we will sequentially update each transform and then the
sparse representations until convergence. The full procedure
we propose, called Gm–DLA, is detailed in Algorithm 1.
The initialization of Gm–DLA uses a known construction. It
has been shown experimentally in the past [39], that a good
initial orthogonal dictionary is to choose U from the singular
value decomposition of the dataset Y = UΣVT . We can also
provide a theoretical argument for this choice. Consider that

X = Ts(UTY) = Ts(UTUΣVT ) = Ts(ΣVT ). (19)

A sub-optimal choice is to assume that the operator Ts keeps
only the first s rows of ΣVT , i.e., X = ΣsV

T where Σs

is the Σ matrix where we keep only the leading principal
submatrix of size s × s and set to zero everything else.
This is a good choice since the positive diagonal elements
of Σ are sorted in decreasing order of their values and
therefore we expect X to keep entries with large magnitude.
In fact, ‖X‖2F =

∑s
k=1 σ

2
k, where the σk’s are the diagonal

elements of Σ, due to the fact that the rows of VT have
unit magnitude. Furthermore, with the same X = ΣsV

T we
have ‖Y −UX‖2F = ‖U(Σ−Σs)V

T ‖2F =
∑n

k=s+1 σ
2
k. We

expect this error term to be relatively small since we sum
over the smallest squared singular values of Y. Therefore,
with this choice of U and the optimal X = Ts(UTY) we
have that ‖Y−UX‖2F ≤

∑n
k=s+1 σ

2
k, i.e., the representation

error is always smaller than the error given by the best s-rank
approximation of Y.

In Gm–DLA, with the sparse representations X =
Ts(UTY) we proceed to iteratively construct each G-
transform. At step k, the problem to be solved is similar to (18)
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Algorithm 1 – Gm–DLA.
Fast Orthonormal Transform Learning.
Input: The dataset Y ∈ Rn×N , the number of G-transforms
m, the target sparsity s and the number of iterations K.
Output: The sparsifying square orthogonal transform U =
Gimjm . . .Gi2j2Gi1j1 and sparse representations X such that
‖Y −UX‖2F is reduced.

Initialization:
1) Perform the economy size singular value decompo-

sition of the dataset Y = UΣVT .
2) Compute sparse representations X = Ts(UTY).
3) For k = 1, . . . ,m: with X and all previous k − 1

G-transforms fixed and Gitjt = I, t = k + 1, . . . ,m,
construct the new Gikjk where indices (ik, jk) are given
by (13) and G̃ikjk = UVT by the singular value decom-
position Jk{ik,jk} = UΣVT such that we minimize

‖Y−GikjkGik−1jk−1
. . .Gi1j1X‖2F = ‖Y−GikjkXk‖2F ,

as in (18) for Yk = Y and Jk = YXT
k .

Iterations 1, . . . ,K:
1) For k = 1, . . . ,m: two-step update of Gikjk , with

X and all other transforms Gitjt , t 6= k fixed, such that
(18) is minimized:

a) Update best indices (ik, jk) by (13).
b) With new indices, update the transform

G̃ikjk = UVT by the singular value decomposition
Zk{ik,jk} = UΣVT , where Zk = YkXT

k as in (18).
2) Compute sparse representations X = Ts(UTY),

where U is given by (17).

but all transforms indexed above k are currently the identity
(not initialized) and will be computed in the following steps.

Notice that Z = YXT , necessary to compute all the values
Cij , is computed fully only once before the iterative process.
At each iteration of the algorithms only two columns of Z need
to be recomputed. Therefore, the update of Z is trivial since
it involves the linear combinations of two columns according
to a G-transform multiplication (5).
The iterations of Gm–DLA update each G-transform sequen-
tially, keeping all other constant, in order to minimize the
current error term.

The algorithm is fast since the matrices involved in all com-
putations can be updated from previous iterations. For exam-
ple, at step k+1, notice from (18) that Yk+1 = Gik+1jk+1

Yk

and Xk+1 = GikjkXk. The same observation holds for
Zk+1 = Gik+1jk+1

YkXT
k GT

ikjk
= Gik+1jk+1

ZkGT
ikjk

. Of
course, Y1 = GT

i2j2
. . .GT

imjm
Y and X1 = X. We always

need to construct Z1 from scratch since X has been fully
updated in the sparse reconstruction step.

After all transforms are computed, the dictionary U is never
explicitly constructed. We always remember its factorization
(17) and apply it (directly or inversely) by sequentially ap-
plying the G-transforms in its composition. The total compu-
tational complexity of applying this dictionary for UTY is
O(mN) which is O(n log(n)N) for sufficiently large m (of
order n log n). This is to be compared with the O(n2N) of a

general orthogonal dictionary. Additionally, when consecutive
G-transforms operate on different indices they can be applied
in parallel, reducing the running time of Gm–DLA and that
of manipulating the resulting dictionary.

The number of transforms m could be decided during the
runtime of Gm–DLA based on the magnitude of the largest
value Cij . Since this magnitude decides the reduction in
the objective function of our problem, a threshold can be
introduced to decide on the fly if a new transform is worth
adding to the factorization.

These observations are important from a computational
perspective since the number of transforms is relatively high,
O(n log n), and therefore their manipulation should be per-
formed efficiently when learning the dictionary to keep the
running time of Gm–DLA low.

Since each G-transform computed in our method maximally
reduces the objective function and because the sparse recon-
struction step is exact when using an orthogonal dictionary,
we can guarantee that the proposed method monotonically
converges to a local optimum point.
Remark 5. At each iteration of the proposed algorithm we
update a single G-transform according to the maximum value
Cij . We have in fact the opportunity to update a maximum
of bn/2c transforms simultaneously. We could for example
partition the set {1, 2, . . . , n} in pairs of two and construct the
corresponding G-transforms such that the sum of their Cij is
maximized. With such a strategy fewer iterations are necessary
but the problem of partitioning the indices such that the error
is maximally reduced can be computationally demanding (all
possible unique combinations of indices associations need to
be generated). We expect Gm–DLA, as it is, to produce better
results (lower representation error) due to the one-by-one
transform update mechanism. Compared to the Householder
approach [26] we again expect Gm–DLA to performs better
since the optimization is made over two coordinates at a time.

Even so, there are several options regarding the ordering.
We can process the G-transforms in the order of their indices
or in a random order for example in an effort to try to avoid
local minimum points. �
Remark 6. After indices (i, j) are selected we have that
Cij = 0 and therefore this pair cannot be selected again
until either index i or j participates in the construction
of a future G-transform. This is because after constructing
Gij to minimize (10) we have that Z{i,j} is updated to
Z{i,j}G̃

T
ij = UΣVTVUT = UΣUT which is symmetric

and positive definite due to the solution G̃ij = UVT . �
Remark 7. As previously discussed, the Procrustes solution Q
is the best orthogonal minimizer of (11). It has been shown in
[26] that with this Q we have that T = YXTQT = UΣUT

is symmetric positive semidefinite. Since Q is the global
minimizer, there cannot be a G-transform Gij such that
GijQ further reduces the error. This means that all symmetric

2 × 2 sub-matrices T{i,j} =

[
Tii Tij
Tij Tjj

]
of T are positive

semidefinite, i.e., Tii + Tjj ≥ 0 and TiiTjj ≥ T 2
ij for all

pairs (i, j). This observation needs to hold for any symmetric
positive definite matrix T. Unfortunately, the converse is not
true in general.
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This means that even with an appropriately large m ∼
O(n2), Gm–DLA might not always be able to match the
performance of Q–DLA. This is not a major concern since in
this paper we explore fast transforms and therefore m� n2.�

This concludes the presentation of the proposed Gm–DLA
method. Based on similar principles next we provide a learning
method for fast square but non-orthogonal dictionaries.

V. A METHOD FOR DESIGNING FAST, GENERAL,
NON-ORTHOGONAL TRANSFORMS: Rm–DLA

In the case of orthogonal dictionaries, the fundamental
building blocks like Householder reflectors and Givens rota-
tions are readily available. This is not the case for general
dictionaries. In this section we propose a building block for
non-orthogonal structures in subsection A and then show how
this can be used in a similar fashion to the G-transform to learn
computationally efficient square non-orthogonal dictionaries
by deriving the Rm–DLA method in subsection B.

A. A building block for fast non-orthogonal transforms

We assume no constraints on the variables p, q, r, t (these
are four degrees of freedom) and therefore Rij from (3) is
no longer orthogonal in general. We propose to solve the
following optimization problem

minimize
(i,j), R̃ij

‖Y −RijX‖2F . (20)

As in the G-transform case, we proceed with analyzing how
indices (i, j) are selected and then how to solve the optimiza-
tion problem (20), with the indices fixed. We define

Z = YXT , W = XXT , (21)

with entries Zij and Wij respectively.
Solving (20) for fixed (i, j) leads to a least squares optimiza-
tion problem as

minimize
R̃ij

∥∥∥∥[yT
i

yT
j

]
− R̃ij

[
xT
i

xT
j

]∥∥∥∥2
F

, (22)

where yT
i ,x

T
i are ith rows of Y and X respectively and whose

solution is R̃ij =

[
Zii Zij

Zji Zjj

] [
Wii Wij

Wji Wjj

]−1
.

Choosing (i, j) in (20) depends on the objective function
value in (22) given by the least squares solution from above:∥∥∥∥[yT

i

yT
j

]
− R̃ij

[
xT
i

xT
j

]∥∥∥∥2
F

=

∥∥∥∥[yT
i

yT
j

]∥∥∥∥2
F

− tr

([
Zii Zij

Zji Zjj

]T [
Zii Zij

Zji Zjj

] [
Wii Wij

Wji Wjj

]−1)
.

(23)

This, together with the development in (6), leads to

‖Y −RijX‖2F = ‖Y‖2F + ‖X‖2F − 2tr(Z)− Cij ,

with Cij =

∥∥∥∥[xT
i

xT
j

]∥∥∥∥2
F

− 2tr
([

Zii Zij

Zji Zjj

])
+ tr

([
Zii Zij

Zji Zjj

]T [
Zii Zij

Zji Zjj

] [
Wii Wij

Wji Wjj

]−1)
.

(24)

Since the matrices involved in the computation of Cij are 2×2
we can use the trace formula and the inversion of a 2×2 matrix
formula to explicitly calculate

Cij = Wii +Wjj − 2(Zii + Zjj)

+
Wii(Z

2
ij + Z2

jj) +Wjj(Z
2
ii + Z2

ji)

WiiWjj −WijWji

− (ZiiZij + ZjiZjj)(Wij +Wji)

WiiWjj −WijWji
.

(25)

Finally, to solve (20) we select the indices as

(i?, j?) = arg max
j>i

Cij , (26)

and then solve a least square problem to construct R̃i?j? .
The Cij are computed only when WiiWjj − WijWji 6= 0,
otherwise Cij = −∞. To compute each Cij in (25) we need 24
operations and there are n(n−1)

2 such Cij . The computational
burden is dominated by constructing Z = YXT ,W = XXT

which take 2snN and snN operations, respectively.
Remark 8. A necessary condition for a dictionary D ∈ Rn×n

to be a local minimum point for the dictionary learning prob-
lem is that all Cij = 0 for Z = YXTDT ,W = DXXTDT .�

This concludes our discussion for one transform Rij . Notice
that just like in the case of one G-transform, the solution given
here finds the optimum Rij to minimize (20).

B. A method for designing fast general transforms: Rm–DLA

Similarly to Gm–DLA, we now propose to construct a
general dictionary D ∈ Rn×n with the following structure:

D = Rimjm . . .Ri2j2Ri1j1∆. (27)

The value of m is a choice of the user. For example, if we
choose m to be O(n log n) the dictionary D can be applied in
O(n log n) computational complexity – similar to the classical
fast transforms. The goal of this section is to propose a
learning method that constructs such a general dictionary.
As the transformations Rij are general, the diagonal matrix
∆ ∈ Rn×n is there to ensure that all columns dj of D
are normalized ‖dj‖2 = 1 (as in the formulation (1)). This
normalization does not affect the performance of the method
since DX is equivalent to (D∆)(∆−1X).

We fix the representations X and all transforms in (27)
except for the kth transform Rikjk . Moreover, all transforms
Rik+1jk+1

, . . . ,Rimjm are set to I. Because the transforms
Rij are not orthogonal we cannot access directly any trans-
form Rikjk in (27), but only the left most one Rimjm . In
this case, to optimize the dictionary D only for this Rikjk

transform we reach the objective

‖Y −Rikjk . . .Ri2j2Ri1j1X‖2F = ‖Y −RikjkXk‖2F . (28)

Therefore, our goal is to solve

minimize
Rikjk

‖Y −RikjkXk‖2F . (29)

Notice that we have reduced the problem to the formulation
in (20) whose full solution is outlined in the previous section.
We can apply this procedure for all G-transforms in the
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Algorithm 2 – Rm–DLA.
Fast Non-orthogonal Transform Learning.
Input: The dataset Y ∈ Rn×N , the number of Rij transforms
m, the target sparsity s and the number of iterations K.
Output: The sparsifying square non-orthogonal transform
D = Rimjm . . .Ri2j2Ri1j1∆ and sparse representations X
such that ‖Y −DX‖2F is reduced.

Initialization:
1) Perform the economy size singular value decompo-

sition of the dataset Y = UΣVT .
2) Compute sparse representations X = Ts(UTY).

Iterations 1, . . . ,K:
1) For k = 1, . . . ,m: with X and all previous k − 1

R-transforms fixed and Ritjt = I, t = k + 1, . . . ,m,
construct the new Rikjk where indices (ik, jk) are given
by (26) and R̃ikjk is given by the least squares solution
that minimizes (28).

2) Compute ∆ in (27) such that ‖dj‖2 = 1.
3) Compute sparse representations X=OMP(D,Y, s)

where D is given in (27).
Iterations 1, . . . ,K:

1) For k = 1, . . . ,m: with X, indices (ik, jk) and all
transforms except the kth fixed, update only the non-zero
part of Rikjk , denoted R̃ikjk , such that (30) is minimized.

2) Compute ∆ in (27) such that ‖dj‖2 = 1.
3) Compute sparse representations X=OMP(D,Y, s)

where D is given in (27).

product of D and therefore a full update procedure presents
itself: we will sequentially update each transform in (27), from
the right to the left, and then the sparse representations until
convergence or for a total number of iterations K.

Once these iterations terminate we can refine the result. As
previously mentioned, we cannot arbitrarily update a transform
R̃ikjk because this transform is not orthogonal. But we can
update its non-zero part R̃ikjk . Consider the development:

‖Y−Rimjm . . .Rik+1jk+1
RikjkRik−1jk−1

. . .Ri1j1X‖2F
=‖Y −BkRikjkXk‖2F
=‖vec(Y)− (XT

k ⊗Bk)vec(Rikjk)‖2F

=

∥∥∥∥∥∥vec(Y)−
∑

t∈{1,...,n}\{ik,jk}

((XT
k )t ⊗ (Bk)t)−Cx

∥∥∥∥∥∥
2

F

=‖w −Cx‖2F ,
(30)

where x = vec(R̃ikjk) ∈ R4 and C = [(XT
k )ik ⊗

(Bk)ik (XT
k )ik ⊗ (Bk)jk (XT

k )jk ⊗ (Bk)ik (XT
k )jk ⊗

(Bk)jk ] ∈ RnN×4. We have denoted by (Bk)ik the ithk column
of Bk and ⊗ is the Kronecker product. To develop (30) we
have used the fact that the Frobenius norm is an elementwise
operator, the structure of Rikjk and the fact that

vec(BkRikjkXk) = (XT
k ⊗Bk)vec(Rikjk). (31)

The x that minimizes (30) is given by the least squares solution
x = (CTC)−1CTw. Therefore, once the product of the m

transforms is constructed we can update the non-zero part of
any transform to further reduce the objective function. What
we cannot do is update the indices (ik, jk) on which the
calculation takes place, these stay the same.

Therefore, we propose a learning procedure that has two
sets of iterations: the first constructs the transforms Rikjk in a
rigid manner, ordered from right to left most, and the second
only updates the non-zero parts R̃ikjk of all the transforms
without changing the coordinates (ik, jk). The full procedure
we propose, called Rm–DLA, is detailed in Algorithm 2. This
algorithm has two main parts which we will now describe.
The initialization of Rm–DLA has the goal to construct the
sparse representation matrix X ∈ Rn×N . We have several
options in this step. We can construct X in the same way as
for Gm–DLA from the singular value decomposition of the
dataset or by running another dictionary learning algorithm
(like the K–SVD [8] for example) and use the X it constructs.
The iterations of Rm–DLA are divided into two sets. The
goal of the first set of iterations is to decide upon all the indices
(ik, jk) while the second set of iterations optimizes over the
non-zero components of all the transforms in the factorization
with the fixed indices previously decided.

The proposed Rm–DLA is can be itself efficiently imple-
mented. When iteratively solving problems as (28) we have
that Xk+1 = RikjkXk with X1 = X while when iteratively
solving problems as (30) we have that Xk+1 = RikjkXk and
Bk+1 = BkR−1ikjk

with X1 = X and B1 = Rimjm . . .Ri2j2 .
The explicit inverse R−1ikjk

is not computed, instead the equiv-
alent linear system for 2 variables can be efficiently solved.

The updates of all the transforms Rikjk monotonically
decrease our objective function since we solve exactly the
optimization problems in these variables. Unfortunately, nor-
malizing to unit `2 norm the columns of the transform and
constructing the sparse approximations via OMP, which is
not an exact optimization step, may cause increases in the
objective function. For these reasons, monotonic convergence
of Rm–DLA to a local minimum point cannot be guaranteed.
For this reason, at all times we keep track of the best solution
pair (D,X) and return it at the end of each iterative process.

This concludes our discussion of Rm–DLA. We now move
to discuss the computational complexity of the transforms
created by the proposed methods and to show experimentally
their representation capabilities.

VI. THE COMPUTATIONAL COMPLEXITY OF USING
LEARNED TRANSFORMS

In this section we look at the computational complexity of
using the learned dictionaries to create the sparse representa-
tions on a dataset Y of size n×N . We are in a computational
regime where we assume dimensions obey

s� n� N. (32)

The computational complexity of using a general non-
orthogonal dictionary A of size n × n in sparse recovery
problems with Batch–OMP [15] is

NA ≈ (2n2 + s2n+ 3sn+ s3)N + n3. (33)
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The cost of n3 is associated with the construction of the
Gram matrix of the dictionary and it does not depend on
the number of samples N in the data. The total number of
operations is dominated by constructing the projections in
the dictionary column space which takes 2n2 operations per
sample. The other operations dependent on the sparsity s and
express the cost of iteratively finding the support of the sparse
approximation.

The computational complexity of using an orthogonal dic-
tionary Q designed via Q–DLA is

NQ ≈ (2n2 + ns)N. (34)

As in the general case, the cost is dominated by constructing
the projections QTY which takes 2n2 operations for each of
the N columns in Y. The cost of ns expresses the approximate
work done to identify the largest s entries in magnitude in the
representation of each data sample. This can be performed in
an efficient manner by keeping the s largest components in
magnitude while the projections are computed for each data
sample. Compared with (33), the iterative steps of constructing
the support of the OMP solution for each sample and the
construction of the Gram matrix (which is the identity matrix
in this case) is no longer needed.

The same operation with a dictionary U as (17) computed
via Gm1–DLA takes

NU ≈ (6m1 + ns)N. (35)

The result is similar to (34) but now the cost of constructing
the projections UTY takes now only 6m1 operations per data
sample. Here is where the G-transform factorization is used
explicitly to reduce the computational complexity.

Finally, with a dictionary D as (27) computed via Rm2–
DLA the sparse approximation step via Batch–OMP [15] takes

ND ≈ (6m2 + n+ s2n+ 3sn+ s3)N + 6m2n. (36)

In this case, the cost of building the projections DTY takes
6m2 operations to apply each Rij transform and then n oper-
ations to apply the scaling of the diagonal ∆. Simplifications
occur also for the construction of the symmetric Gram matrix
DTD which now takes 6m2n operations, instead of the regular
n3 operations. This later simplification might not be significant
since it is not dependent on the size of the dataset N .

A dictionary U designed via Gm1
–DLA has approximately

the same computationally complexity as a general orthogonal
dictionary Q designed via Q–DLA when

m1 =

⌊
n2

3

⌋
. (37)

Because any orthogonal matrix can be factorized as a product
of n(n−1)

2 G-transforms and because of the upper limit im-
posed in (37) it is clear that we cannot express any orthogonal
dictionary as an efficient transform for sparse representations.
In some cases, the full orthogonal dictionary Q might be more
efficient than its factorization with G-transforms. In general,
the representation error achieved by general orthogonal dic-
tionaries designed via Q–DLA is a performance limit for G-
transform based dictionaries.

A similar comparison can be made between the compu-
tational complexity of a general dictionary A and that of
a dictionary D composed of m2 transformations Rij . Their
complexities approximately match when

m2 =

⌊
(2n2 + s2n+ 3sn+ s3)N + n3

6(N + n)

⌋
N→∞
≈
⌊
n2

3

⌋
. (38)

This shows that for both Gm–DLA and Rm–DLA the
computationally efficient regimes are when m ∼ O(n) or in
general m� n2.

A last comment regards the comparison between dictionar-
ies created with Gm1

–DLA and Rm2
–DLA. When m1 = m2

we expect Rm2
–DLA to perform better but at a higher com-

putational cost. Assuming large datasets N → ∞ and low
sparsity s � n, computational complexities approximately
match when

m1 ≈
⌊
m2 +

(s2 + 3s+ 1)n

6

⌋
. (39)

Due to the use of the OMP procedure for non-orthogonal
dictionaries to create the sparse approximations, dictionaries
designed via Rm–DLA are much more computationally com-
plex than the orthogonal dictionaries designed via Gm–DLA.
Otherwise, as depicted in (39), for the same representation
performance the orthogonal dictionaries may contain many
more G-transforms in their factorization than Rij transforms
contained in the factorization of a non-orthogonal dictionary.
As a consequence, it may be that orthogonal dictionaries are
always more computationally efficient than general dictio-
naries for approximately equal representation capabilities. A
definite advantage of Rm–DLA is that it has the potential to
create dictionaries that go below representation errors given by
orthogonal dictionaries designed via Q–DLA, the performance
limit of Gm–DLA.

Using these approximate complexities, we discuss in the re-
sults section the representation performance versus the compu-
tational complexity trade-off that the dictionaries constructed
via the proposed methods display.

VII. EXPERIMENTAL RESULTS

In this section we provide experimental results that show
how transforms designed via the proposed methods Gm–DLA
and Rm–DLA behave on image data.

The input data that we consider are taken from popular test
images from the image processing literature (pirate, peppers,
boat etc.). The test dataset Y ∈ Rn×N consists of 8× 8 non-
overlapping patches with their means removed and normalized
Y ← Y/255. We choose to compare the proposed methods
on image data since in this setting fast transforms that perform
very well, like the Discrete Cosine Transform (DCT) [41] for
example, are available. Our goal is to provide dictionaries
based on factorizations like (17) and (27) that perform well
in terms of representation error with a small number m of
basic transforms in their composition. All algorithms run for
K = 150 iterations and there are N = 12288 image patches
in the dataset Y each of size n = 64.
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Fig. 1. For the proposed G256–DLA we show the relative representation error
(40) in the initialization steps for the dataset Y created from the patches of the
images couple, peppers and boat with sparsity s ∈ {4, 8, 12}. Notice that in
general the representation error can surpass 100%, for example, for orthogonal
dictionaries, the maximum value ε = 4 is achieved when X = −Y and
D = I in (40).
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Fig. 2. For the same experimental setup as in Figure 1, we show the
representation error for the K = 150 regular iterations of G256–DLA.

To measure the quality of a dictionary D we choose to
evaluate the relative representation error

ε = ‖Y −DX‖2F ‖Y‖−2F (%). (40)

Figures 1 and 2 show the evolution of G256–DLA for
K = 150 iterations (including the initialization procedure,
i.e., the first 256 steps of the algorithm). The figures show
how effective the initialization is in reducing the representation
error for any sparsity level. Notice that the initialization
procedure provides similar results regardless of the sparsity
level s. The K = 150 iterations of G256–DLA further lower
the representation error providing better results with larger
sparsity level. As previously discussed, each step of the
algorithm monotonically decreases the objective function of
the dictionary learning problem until convergence.

Figure 3 shows how Gm–DLA evolves with the number
of transforms m and the sparsity s. As expected, increasing
the number of transforms Gij and Rij in the factorization
always lowers the representation error but with diminishing
returns as m increases. This figure helps choose the number
of transforms m while balancing between the computational
complexity and representation performance. Large decreases
in the representation error are seen up to m = 96 or
m = 128 while thereafter increasing m brings smaller benefits.
Also, with higher sparsity levels the number of transforms
m becomes less relevant. We notice that with s = 12 the
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Fig. 3. Performance of Gm–DLA and Rm–DLA in terms of the relative
representation error (40) for different sparsity levels s ∈ {4, 8, 12}.
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Fig. 4. Comparisons, in terms of relative representation errors (40), of Gm–
DLA against the DCT, Q–DLA [33], SK–SVD [40] and Householder based
orthogonal dictionaries [26] denoted here Hp–DLA where p is the number of
reflectors in the factorization of the dictionary. The number of transforms m
is chosen so that computational complexity comparisons against Hp–DLA is
possible. Computational complexity approximately match between: H1–DLA
and G42–DLA, H2–DLA and G85–DLA, H3–DLA and G128–DLA, H4–
DLA and G170–DLA, H6–DLA and G256–DLA, H8–DLA and G341–DLA,
H16–DLA and G682–DLA. The sparsity level is set to s = 4 for all methods.
We use the SK–SVD to build a square, non-orthogonal, dictionary.

representation performance hits a plateau after m ≥ 128
transforms.

An interesting point of comparison is between the dictio-
naries constructed via Gm–DLA and Hp–DLA [26]. Figure 4
provides a detailed comparison between the two. A matrix-
vector multiplication takes 4n operations for a reflector and
only 6 operations for a G-transform. If we compare the com-
putational complexities of the dictionaries constructed by the
two methods we find approximate equality between Hp–DLA
and Gb 2

3npc–DLA. Notice from this figure that for a low m the
G-transform approach provides better results than the House-
holder approach while also enjoying lower computational
complexity. As the complexity of the dictionaries increases
(larger number of G-transforms or reflectors) the gap between
the two approaches decreases. The most complex dictionaries
are designed via H16–DLA and G682–DLA and they closely
match the performance of the general orthogonal dictionary
learning approach Q–DLA while still keeping a computational
advantage. In this case, the Householder approach keeps a
slight edge in representation performance. Since the proposed
approach updates the G-transforms sequentially the probability
of getting stuck in local minimum points is more likely with
large m. The difficulties that Gm–DLA encounters for large
m are also discussed in Remark 6.
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Fig. 5. For the same experimental setup as in Figure 4 we compare Gm–DLA
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Fig. 6. The evolution of Rm–DLA for m large enough to outperform any
orthogonal dictionary.

It is also interesting to see that the representation perfor-
mance of the DCT is matched by H3–DLA and G85–DLA. The
computational complexity of H3–DLA approximately matches
that of the DCT [41] (based on the FFT) while G85–DLA is
actually computationally simpler than the DCT. In fact, any
dictionary constructed by Gm–DLA for 85 ≤ m ≤ 128 is
faster and provides better representations than the DCT.

Figure 5 compares the Gm–DLA against the Rm–DLA
for the same number of transforms m in their factorizations.
Rm–DLA always outperforms Gm–DLA since the Gij is a
constrained version of Rij . Unfortunately, the non-orthogonal
transforms also have much higher computational complexity
than their orthogonal counterparts in the sparse approximation
step. For example, the computational complexity is approxi-
mately equivalent between dictionaries designed via R42–DLA
and G351–DLA. The main benefit of non-orthogonal trans-
forms is that ultimately, for large enough m, their performance
surpasses that of general (computationally inefficient) orthog-
onal transforms designed via Q–DLA. In our case this happens
for m ≥ 256. The performance of the DCT is approximately
matched by R50–DLA. Surprisingly, less than n factors in the
product of the transform suffice to match the performance
of the classical DCT transform for sparse recovery. This
highlights the way dictionaries designed via Rm–DLA balance
the computationally efficiency and representation performance
trade-off, i.e., one R-transform gives 4 degrees of freedom for
the cost of 6 operations.

Figure 6 shows the performance of Rm–DLA in a regime
close to the results of the SK–SVD dictionary learning method
[40]. We use the SK–SVD to construct a square dictionary, i.e.,
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Fig. 7. Pareto curves for Rm–DLA and the Sparse K–SVD approach [42].
We consider the representation error in (40) and the number of operations
necessary to perform DT y given a target vector y ∈ Rn. We train five square
dictionaries D = ΦS with the Sparse K–SVD approach, each with a different
sparsity parameter p ∈ {2, 3, 4, 6, 8} in the matrix S. For a transform
created with Rm–DLA matrix-vector multiplication takes 6m operations. The
experimental setup for training the transforms is the same as in Figure 4.

a dictionary with n atoms. The complexity of the dictionary
designed via R1364–DLA matches that of the dictionary de-
signed via SK–SVD while there is a small performance gap
between the two. We notice experimentally that the iterative
procedure of Rm–DLA improves performance always when
increasing m but the probability of getting stuck in local
minimum points increases. Therefore, just as Gm–DLA has
some trouble matching the performance of Q–DLA, Rm–DLA
has trouble exactly matching the performance of SK–SVD.

In the last experimental setup we compare our Rm–DLA
with the previously proposed Sparse K–SVD approach [42].
We use the Sparse K–SVD to build a square dictionary
D = ΦS ∈ Rn×n where Φ is a well-known classic transform
(in our case the DCT) and S ∈ Rn×n is matrix with only
p non-zero entries per column. In this fashion, matrix-vector
multiplication like DTy = STΦTy takes 2pn+C operations,
where C is the cost of applying the DCT (in our case, this
is the same as using a transform designed via G128–DLA or
R128–DLA). Rm–DLA performs consistently better than the
Sparse K–SVD for very fast transforms while the performance
gap closes for very low representation errors. The Sparse K–
SVD suffers from the fact that the fast transform Φ is fixed and
therefore the optimization takes place over only pn degreed of
freedom. We restrict ourselves to square transforms and avoid
the comparison with overcomplete dictionaries designed via
the K–SVD or the Sparse K–SVD. Experimental insights into
how the representation performance scales with the number of
atoms in the dictionary are given in [40], [43].

When designing a very fast orthogonal transform (whose
complexity let us say is order n or n log n) then Gm–DLA
provides very good results while achieving the lowest compu-
tational complexity. For improved performance, more complex
orthogonal transforms perform better when designed via Hp–
DLA. If representation capabilities is the only performance
metric then the non-orthogonal transforms designed by Rm–
DLA are the weapon of choice. For large m both Gm–
DLA and Rm–DLA can suffer from long running times. For
example, G128–DLA takes several minutes to terminate while
R128–DLA’s running time is close to ten minutes on a modern
Intel i7 computer system. We note that the algorithms are
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implemented in Matlab R©. A careful implementation in a lower
level compiled programming language will drive these running
times much lower and reduce the memory footprint.

VIII. CONCLUSIONS

In this paper we present practical procedures to learn
square orthogonal and non-orthogonal dictionaries already
factored into a fixed number of computationally efficient
blocks. We show how effective the dictionaries constructed via
the proposed methods are on image data where we compare
against the fast cosine transform on one side and general non-
orthogonal and orthogonal dictionaries on the other. We also
show comparisons with a recently proposed method that con-
structs Householder based orthogonal dictionaries. We show
empirically that the proposed methods construct transforms
that provide an improved trade-off between computational
complexity and representation performance among the meth-
ods we consider. We are able to construct transforms that ex-
hibit lower computational efficiency and lower representation
error than the fast cosine transform for image data. We expect
the current work to extend the use of learned transforms in
time critical scenarios and to devices where, due to power
limitations, only low complexity algorithms can be deployed.
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