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Abstract 

Models of the land system are essential to our understanding of the magnitude and impacts of climate 

change. These models are required to represent a large number of processes in different sectors, but 

face particular challenges in describing the individual and social behaviours that underpin climate 

change mitigation and adaptation. We assess descriptions of these behaviours in existing models, their 

commonalities and differences, and the uses to which they have been put. We find that behavioural 

models have a distinct and important role to play in climate research, but that they currently suffer from 

being strongly sectoral in nature, with agricultural models being the most common and behaviourally 

rich. There are also clear convergences, with economic-based decision-making remaining dominant and 

behaviours such as diffusion, interaction, anticipation or learning remaining relatively neglected. Active 

climate change is also rarely modelled, with adaptation and mitigation generally represented as 

responses to economic drivers under static climatic conditions. Furthermore, dynamic behaviours, 

objectives or decision-making processes are almost entirely absent, despite their clear relevance to 

climate change responses. We conclude that models have been more successful in the identification of 

important processes than in their implementation and that, while some behavioural processes may 

remain impossible to model, behavioural models of adaptation and mitigation in land-based sectors 

have substantial unexplored potential. We suggest that greater attention be paid to the cumulative 

coverage of models in this field, and that improvements in the representation of certain key behaviours 

be prioritised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

Climate change poses various challenges to the ways in which society uses land1,2. It has impacts on land 

use that necessitate adaptation, but is also strongly affected by biogeochemical and biophysical 

interactions with the land surface3. Changes in land use are therefore at the forefront of climate change 

mitigation and adaptation, as well as mediating climatic impacts on other human and natural systems. 

The potential for mitigation and adaptation in different land-based sectors is the subject of intense 

scrutiny4–6, but is not purely technical in nature. At a fundamental level, this potential depends upon the 

ability and willingness of people to act, individually and collectively7–9.  

 

Models have transformed our understanding of climate system dynamics, and are similarly required to 

illuminate climate-land interactions10–12. To date, the majority of suitable models have treated the land 

system as economic, reflecting the advanced state of economic modelling, the dominance of economics 

in theoretical accounts of global human activity, and the marginalisation of other (e.g. environmental) 

factors in large-scale practical decision-making10,13. However, these models typically neglect important 

forms of individual and social behaviour, resulting in hidden uncertainties that interact and propagate 

through modelled systems3,10. This articles assesses the extent to which models have been and can be 

used to explore these uncertainties by incorporating more realistic forms of behaviour in land-based 

mitigation and adaptation decisions.   

 

A great deal of evidence now shows that the capacity to mitigate or adapt depends upon a wide range 

of social factors such as levels of education, literacy, cohesion and equality7,11,14–16, and upon political 

rights and structures17–19. Individual adaptations or mitigations further depend upon, for example, 

values, knowledge and perceived personal efficacy13,20–25. Indeed, subjective perceptions of change and 

responsive choices may not align well with concepts of mitigation and adaptation that appear obvious to 

an outside observer26,27, instead passing through “several layers of institutional, moral and symbolic 

meaning”(15p.76), each of which may be interpreted differently by the various actors involved28,29.  

 

Political, economic and other macro-scale drivers of land use are not immune from behavioural issues 

either. They can be affected by the values and norms of institutional actors’ internal and external 

milieus30, by spontaneous changes on the demand-side such as increasing ‘environmental 

rationality’13,31, or by broader changes in social structures32 - all effects that can be expected under 

climate change8,33,34. As these effects occur, the scope for mitigation and adaptation at lower levels will 

also be altered35–38. Perhaps the most significant implication of this interactive dynamism is that models 

that perform well in current behavioural, social, economic and other contexts do not necessarily have 

relevance in the contexts of the near future29,39. There is a consequent, general risk of over-fitting to 

current conditions and taking insufficient account of their potential for change.  

 

The complex social setting in which adaptation and mitigation occur means that models inhabited by 

populations of homo economicus can easily mislead. Models that take better account of individual and 

social behaviour do exist, and have developed rapidly in recent years (although their application to 

questions related to climate change has been more limited10,11,40). These include a range of agent-based, 



multi-agent, microsimulation and similar approaches that prioritise ‘bottom-up’ (or interactional upward 

and downward) process accuracy in describing land system development (such models are reviewed by, 

e.g.,41–43). However, the extent to which any model can provide accuracy in this context is debatable. 

Certainly, none can fully capture the culturally-mediated perceptions about what is “believable, 

desirable, feasible and acceptable”27, p.87 that determine real-world decision-making. Furthermore, the 

treatment of these perceptions as filters of an external reality that is objectively describable may be 

challenged27,29,44,45, with a full understanding perhaps requiring the immersive techniques of 

anthropology27. 

 

Notwithstanding the fact that limits to the ability of models to represent climate adaptation and 

mitigation clearly exist, behavioural modelling retains great importance for our understanding and 

management of these processes. While forswearing complete accuracy, it has a capacity for 

representation and projection that can provide unique insights that are complementary to those of the 

social sciences and biophysical models. Furthermore, Earth systems models make assumptions about 

human behaviour by definition, whether or not those assumptions are explicit or economic in nature, 

and the exploration of alternative assumptions is essential to understanding their effects.  

 

Here, we review models designed to represent human behaviour in mitigation and adaptation in land-

based sectors. We do so in order to assess the realised and potential value of such models.  We identify 

the applications that exist, their commonalities and differences, and their implications for the field as a 

whole. We use our findings to describe the coverage of current models and some obvious and important 

gaps that limit their contribution. This also highlights important processes that are absent from non-

behavioural models in the field, and implies certain biases in their results. We use these findings to 

briefly discuss the future role of behavioural modelling in climate research. 

 

 

METHODS 

 

We identified models designed or used to study behavioural processes in mitigation or adaptation in 

land-based sectors (we did not explicitly include the special case of urban development, which is the 

subject of a largely separate literature). These were primarily identified through ISI Web of Knowledge 

searches (initially in September 2015 and updated in July 2016) using the following groups of keywords: 

(‘land use’ or ‘land cover’ or ‘land based’ or ‘agriculture’ or ‘agricultural’ or ‘forest’ or ’restore’ or 

‘restoration’ or ‘conservation’ or ‘rewild’ or ‘ecosystem’) and ‘climate change’ and (‘behaviour’ or 

‘behavior’ or ‘behavioural’ or ‘behavioral’ or ‘agent’) and (‘model’ or ‘modelling’ or ‘modeling’). All 

phrases were included both with and without hyphenation, as appropriate, and all papers published 

since 2000 were included. These searches returned 1,806 papers. From these, we removed papers that 

did not include behavioural modelling or climate change (following separate examination of titles, 

abstracts and entire papers), and added cited papers that had not appeared in the original searches. This 

left a total of 45 papers (excluding discussion or review papers). For each of these papers, we recorded 

details about the modelling undertaken, the behavioural processes and actors included, forms of 



mitigation or adaptation permitted, modelled impacts of climate change, and methods of validation or 

uncertainty estimation. We did not formally assess model transparency or availability.  

 

REVIEW FINDINGS 

 

Adaptation or mitigation 

 

At a general level, a majority of behavioural models focus on processes of adaptation rather than 

mitigation (Table 1). Active mitigation in a changing climate (either in terms of lessening climate change 

or lessening the impacts of climate change) is rarely treated, even where models focus on relevant 

processes such as reforestation or the adoption of bioenergy crops (e.g.46–49). Instead, mitigation is 

represented as an economic process driven by taxes or subsidies designed to reduce greenhouse gas 

emissions48–55. In some cases, economically-driven mitigation is balanced against climatically-driven 

adaptation51,54,56. No models consider either risks or processes of maladaptation, despite these being 

obvious and important subjects for behavioural modelling40.  

 

Within models of adaptation, agricultural crop selection is a common focus, with both the nature and 

timing of arable agricultural activities being varied39,57, often in response to reductions in water 

availability58 (adaptation to flooding, primarily in urban areas, is a separate focus59,60). Adaptation in 

pastoral agriculture is less commonly treated (e.g.61), as is adaptation in commercial forestry (e.g.62,63). 

However, a number of models do consider the broader effects of adaptation on competing land uses or 

between human and natural processes in the land system51,64–67. More varied is the modelled nature of 

the adaptation process, with some placing greater emphasis on social, rather than individual, factors68–

71, or short-term risk minimisation rather than long-term planning71,72.  

 

 

Sectoral coverage 

 

Agriculture 

 

Of all land-based sectors, agriculture is the principal focus for behavioural models of adaptation (Table 1, 

Figure 1). These usually focus on arable agricultural management options49,57,58,67,71,73–75 and 

timings39,58,72, although some models include broader decisions related to intensification and 

extensification55,65,76, buying or selling of land77 or competition between arable and pastoral 

agriculture39,67. Though less common, a number of models consider competition between agriculture 

and other land uses such as forestry50,51,56,64 or urban development66. Most agricultural models allow 

decision-making on the basis of direct climatic impacts, but several (especially cross-sectoral models) 

simulate responses to taxes or subsidies designed to encourage adaptation or mitigation48,49,51–54,75,76. 

These decisions tend not to be subject to social pressures, except in studies of communal or marginal 

agriculture (e.g.68) or of water resource management36,58,78,79.  

 

Forestry 



 

Generally, models of the forestry sector are not as numerous as models of agriculture, and this 

imbalance is also present in models that consider climate change and, especially, human behaviour. In 

fact, changes in forestry are often modelled as a simple consequence of changes in agriculture, or as 

purely economic responses to taxes or subsidies20,46,51,56,65,80. This paucity of modelled forms of 

management and behaviour does not necessarily impede consideration of some kinds of mitigation or 

adaptation81, but it does mean that their full variety and complexity cannot be considered. A few models 

have put forestry in the context of cross-sectoral, large-scale adaptive decisions in land 

management50,51,54,56,63, but we found only two that focused on adaptation within forestry62,63, to 

maintain yields, economic benefits or, potentially, ecosystem characteristics63. This clear gap in model 

applications is curious given forestry’s socio-economic and environmental importance, and its strong 

interactions with the climate system manifest in forestry-based mitigation options.  

 

Nature Conservation 

 

A considerable literature has accumulated about the social contexts and implications of nature 

conservation, especially the ways in which environmental and socio-economic objectives can be allied 

(e.g.82–84). However, there have been very few attempts to consider the ways in which relevant social 

structures, attitudes or behaviours might vary under climate change, or what the effects of these 

variations might be. We found one model that represents decisions by conservation NGOs to buy land 

from farmers in a changing climatic and institutional context77, but in the other rare cases where 

environmental objectives are included, conservation is treated as secondary to decisions about 

agriculture or forestry50,65. 

 

Water management 

 

A substantial subset of models highlight or focus entirely on the water sector. A common theme is the 

complexity of this sector, with many different actors being involved at many different organisational 

levels59,85. In some cases this complexity is presented as a substantial barrier to modelling, better 

captured through scenario development than simulations58,85, although some attempts have been made 

to simulate limited interactions between actors86. One of the main foci of these models is the use of 

water for agriculture in specific settings, such as water rights frameworks in Chile36,87 or reservoir 

management in Brazil58. Others focus on the potential for adaptation in domestic water supply69,86, while 

a third group address flood control, especially in coastal areas where rivers and urban centres co-

exist59,60,88. Many of these models acknowledge inadequacies in their treatment of water management, 

and it is clear that interactions with other sectors have not been fully explored. 

 

Subsistence agricultural land uses 

 

Land use or management for subsistence can reasonably be considered as distinct from other sectors. 

Not only are different sets of economic, socio-cultural and personal drivers involved at different spatial 

scales but, because of an inherent lack of adaptive or mitigative capacity, responses to changes in 



climate will also differ21,72. This distinction is borne out in the modelling literature, with models tending 

either to focus exclusively on subsistence management or to neglect it entirely (but see 54), with the 

latter approach being more common. Where subsistence land uses are considered, they are usually 

treated as closely related to social structure, highlighting interactions between climate change, social 

change and land management decisions68,70,89. These interactions are complex and explorations of them 

have been limited, however, with some models of marginal agriculture dealing only with individual 

behaviour37,61,75. 

 

General land use change – cross or non-sectoral 

 

The great majority of models are applied to specific geographical and land-use contexts, but some are 

designed to include general, theoretical or cross-sectoral processes. These include wholly abstract 

changes in land management53,90, changes that span a range of specific sectors but include little detail 

within them64, or competition between sectors in specific contexts (see above). Despite these examples, 

substantial, cross-sectoral changes and their drivers are clearly under-represented, and there remains 

considerable uncertainty about how best to balance behavioural richness and generality, both 

theoretically and methodologically. 

 

Climate Change impacts & responses  

 

Most models include only one form of climate change impact, usually on water resources that affect 

agricultural crops36,50,57,58,61,66,68,71,77,88, flooding59,60 or other sectors such as tourism69. Less frequently 

included are other climatic effects on crop yields54,65,72,76 or on agricultural management activities39. In 

models of forestry, impacts are usually purely economic (in terms of timber prices and/or subsidies and 

taxes)51,53,62 but may extend to yields56 and even broader ecosystem characteristics63. Otherwise,  cross-

sectoral impacts are included only once in the models we considered, where they affect ecosystem 

functioning, resource harvests and, indirectly, community composition and adaptive capacity89.  

 

Some models do not include the direct impacts of climate change, and some do not include direct 

responses. In the latter class, several models focus on responses to policies (for mitigation48,49,51,52,55, or 

adaptation75). Generally, however, specific sectoral responses to specific sectoral impacts are included, 

especially in forestry62 and water management for flood control59,60. In agriculture, responses are usually 

expressed through crop choices and changes in the timings of activities58,68,71,72,75. Modelled responses 

are often notably cross-sectoral, however. In several cases, changes are permitted between arable and 

pastoral agriculture, between agriculture and other land uses (often forestry), or between use and 

abandonment of land37,39,50,51,53–56,61,64,66,77,91. Broader still are options for adaptation through general 

resource usage36,69,89, adoption of technology69, mitigation of poverty73, engagement with social or 

institutional responses89, or migration57,88,89,92. In sum, modelled responses to climate change are 

therefore substantially more diverse than the modelled impacts of climate change, suggesting a clear 

opportunity for further, cross-sectoral impacts to be considered. 

 

Actors & Processes  



 

Behavioural entities and processes are at the core of the models we reviewed, and treatments of them 

can be very detailed as a result. Unsurprisingly, the most commonly-modelled actors in behavioural 

models are individual land managers. These are usually represented using agent-based approaches, with 

greater or lesser degrees of interaction between the agents (Table 1). Other commonly modelled 

entities include households (either representing cohabiting individuals or a unit of land) or institutions 

such as government agencies. There are substantial methodological challenges in the parameterisation 

of such agents, especially over large geographical extents, and attempts to address these challenges are 

ongoing (e.g.93). The majority of models we consider do not attempt to advance methodology in this 

respect (excepting, recently, the increased use of role-playing games for model calibration or 

validation54,76), but use established forms of model architecture and parameterisation in novel contexts. 

Nevertheless, the design and emphases placed on different behavioural processes vary widely (Figure 1), 

suggesting a lack of agreement about which processes are important under climate change, and how 

they should be modelled. Below, we consider the main behavioural factors included in the models we 

review and the extent of convergence in their implementation. 

 

Diffusion 

 

Diffusion of knowledge, attitudes or practices between neighbouring or socially-connected individuals is 

recognised as a fundamental process in all human systems. Many models of land-based sectors include 

it, and the ability to represent it explicitly is seen as a major advantage of bottom-up modelling 

approaches87,94,95. It can therefore be expected to play a substantial role in models of the kind we 

consider, given the importance of information and innovation in adaptation or mitigation in land-based 

sectors. Many of the models we reviewed do include diffusion of agricultural practices or 

technology37,47,49,51,66,69,76,79, but fewer include diffusion of information or attitudes, or diffusion in other 

sectors50,53,60,71 (forestry models were particularly lacking in this respect, including only indirect spatial 

influences between agents). These latter models are of particular interest where they allow behaviour to 

change with social (and, potentially, climatic) context, rather than modelling static behaviour within a 

dynamic environment. This is a key element of adaptation in particular, and is included in terms of 

socially-mediated attitudes to climate change70, levels of trust in weather forecasts71, or choices 

between economic and social objectives53. While the absence of socially-driven behavioural change may 

be a shortcoming of some behavioural models, studies that include diffusion suggest a more basic 

problem in non-behavioural models. This stems from the fact that diffusion takes time to occur, slowing 

the speed of adoption of new practices and technologies. Depending on the timescales involved, this 

could have very significant consequences for the timing and success of adaptation or mitigation actions. 

The exploration of these consequences therefore appears to be a key contribution of the behavioural 

models reviewed here. 

 

Institutions 

Institutions (which we use here to mean informal social structures as well as formal organisations or 

actors) play a decisive, but highly complex and sometimes opaque role in land management decisions 

and responses to climate change. This is regularly acknowledged in modelling papers, but is also used to 



excuse a subsequent neglect of institutional actors and effects. In some cases it is explicitly argued that 

scenarios of institutional interventions are more transparent and appropriate than attempts to model 

institutional behaviour (e.g.85), and this certainly seems a logical minimum requirement for models 

intended to evaluate policy options49,50,52,54–56,75,76,96. 

 

Most papers are not explicit about the choices involved in selecting and designing institutional agents, 

but a limited number of such agents is often included. In the simplest cases, these represent particular 

actors that can monitor and intervene in land use change in some way, for example government 

bodies37,60,66, banks60 or businesses69. Alternatively, households and communities have been represented 

as institutions with their own adaptive strategies 57,89 or capacities70. Others have proposed far more 

extensive institutional representations, with individuals, communities, companies, regulating authorities 

and governmental bodies all playing different, but interactive roles59,86,88. However, the most commonly 

modelled institution is a market for goods, land or water36,73,77,79.  

 

Although there are few synergies in the representations of institutional actors, there are some strong 

commonalities. Considerable attention is paid to governmental taxation, subsidisation, regulation and 

information dissemination37,49,54,55,60,66,75,76, and these are often included as exogenous factors even in 

the absence of modelled institutional agents. The role of social structures in the diffusion of technology, 

information, practices and behaviour is emphasised40,53,69 (see above), and some attribute more 

importance to the effects of such structures than to individual decision-making (especially in studies of 

the water sector59,69,85,97 or in marginal or subsistence settings11,36,40,64,68,86,89). Nevertheless, 

representations of institutional actors are usually (and avowedly) simplistic. While a wide range of 

institutions have been modelled in total, little has been done to explore alternative – or more complete 

– representations of the institutional landscape, or to investigate potential changes in institutional 

objectives or relationships through time (but see57,98). 

 

Learning & anticipation 

 

The ability to learn from past experience is an important component of adaptive capacity. Nevertheless, 

a surprisingly large number of behavioural models do not include any form of learning. Of those that do, 

roughly half allow agents to learn from their own experiences, to a greater or lesser extent37,47,60,68,86, 

and half supplement individual learning with social learning on the basis of neighbours’ experiences, 

perceptions or beliefs51,53,59,70,71,87. One model was used to study optimal timescales of learning for 

reactive adaptation72, but none included further temporal change in learning processes. Most strikingly, 

no models implemented any form of second-order learning, in which experiences could alter agents’ 

decision-making rules or objectives (with the exception of social influences on priorities53).   

 

Anticipation of future economic or climatic conditions is also rarely addressed, but a small number of 

models include it on the basis of forecasts68,71, existing knowledge and experience50,56–58,62,63,86,99 or 

uncertain perceptions of risk59,60. In one case, expectations were weighted by length of tenure56, but 

other temporal variations again remain unconsidered. This is a significant omission given the known 

importance of anticipation in motivating mitigation or adaptation13,21,22. 



 

Type of decision-making 

 

Social and behavioural factors of the kinds discussed above have generally acknowledged importance in 

climate change adaptation and mitigation, and this is reflected by the inclusion of at least one of these 

factors in the majority of relevant models. However, while these factors often inform the decisions 

made by model agents, their exact roles and importance varies widely and often without detailed 

justification, except where determined by data availability (e.g.55,75,76). Furthermore, despite the 

explicitly behavioural focus of models included in this review, the majority assume some form of 

economic rationality as the basis for land management decisions. This varies from rigid optimisation or 

equilibrium51,52,56,62,72,78 to heterogeneous, partial or time-dependent satisfaction of economic 

objectives39,48,49,55,57,60,65–68,75–77,100,101. A (substantial) minority of models prioritise social or environmental 

factors, sometimes on the basis of empirical evidence37,50,51,53,64,69. As a result, the potential of many 

models to capture behavioural effects on adaptive capacity appears to be largely unrealised. Almost 

none are presently able to consider linked changes in social and climatic conditions, and their 

implications for future decision-making, despite this being technically feasible89. 

 

Validation & Uncertainty 

  

Validation of behavioural models of land-based sectors is not a simple task. Theoretically, validation may 

be technically impossible in complex human (and natural) systems because unique causality is not 

necessarily present or provable102,103. Practically, a general lack of suitable or sufficiently extensive data 

limits validation options104. There is some agreement that replication of observed outcomes risks over-

fitting and that validation should therefore focus on process accuracy as far as possible29,39,71,102. These 

issues are especially pertinent to behavioural models of climate change because, on the one hand, 

neither climatic (and hence environmental) nor behavioural conditions can be assumed to stay constant, 

while on the other hand the complexity of these conditions can generate an effectively endless array of 

spurious results if inadequately constrained.     

 

Despite the importance of validation, it is not always carried out or even discussed (and a lack of 

transparency often makes subsequent validation impossible)1,105. Where validation does occur, it often 

takes the form of tuning or ‘calibration’ of models to consistently replicate observed outcomes. Rigorous 

discussion or application of validation procedures is not uncommon36,56,87,99,106, but has not led to 

consistency of practice or development of methodology. In the models we reviewed, five main 

approaches to model validation or evaluation were apparent: checking modelled behaviour against 

actors’ stated or revealed behaviour36,50,56,68,71,76,87,107 (comparisons of the two25 were not used); 

extensive sensitivity analyses36,39; comparison (or tuning to ensure agreement) of some modelled and 

measured outcomes37,39,57,58,60,66,78,87,89,107; comparison to the results of other models73; and reliance on 

previous validation of the same or a similar model51,53,58,65,69 (Figure 2). Justification of the (usually single) 

selected approach is rare, as is discussion of implications for model usage and interpretation.  

 



A closely related issue is uncertainty in model results. Some see this as a key consideration in 

behavioural modelling, because systematic exploration of uncertainties is necessary for models to 

inform robust policies or management strategies39,59,86,99,108. At the other extreme, uncertainty may be 

entirely neglected57,61,62, although explicit justifications for this, such as potential detraction from the 

force of general findings (e.g.109), or irrelevance to the task of improved understanding (e.g.54) is very 

rare. Between these extremes, a range of approaches are adopted, including discussion of potential 

uncertainties54,63, the use of a number of social and environmental scenarios65,69, analyses that build on 

unstructured collections of runs51,64,70, structured (e.g. Monte Carlo) approaches36,37,56,71,89, and 

mathematically rigorous explorations of parameter space39. Once again, the diversity of approaches 

limits the scope for general conclusions or cross-model comparisons to be established110. This problem is 

exacerbated by a tendency for the least behaviourally rich models to make the most confident 

predictions, overlooking the uncertainties (or even inaccuracies) inherent in their basic assumptions111. 

This adds considerably to the recognised difficulties of describing uncertainties in climate projections 

because it obscures the form and potentially the existence of uncertainties in land system contributions 

to climatic change112. 

 

 

Discussion & Conclusion  

 

Climate adaptation and mitigation decisions are shaped by their social as well as environmental, 

economic and political contexts7,13,16,27. However, models of the linked development of the climate and 

land systems have tended to prioritise descriptions based on economic rationality, with relatively little 

work done to explore the inaccuracies resulting from this approach. In principle, established forms of 

behavioural models are well-suited to this task because they are designed to represent many of the 

processes known to be key to adaptation and mitigation. However, it is less clear whether existing 

models achieve the potential of this approach. In reviewing published behavioural models of climate 

change adaptation or mitigation in land-based sectors, we are able to identify a number of areas that 

have received considerable modelling attention, and a number that have received very little. In fact, the 

latter group is particularly large and significant, containing many types of behaviour that are known to 

have strong and pertinent effects. This may suggest some theoretical, as well as practical, limits to the 

scope for modelling the effects of climate change in human systems, but appears to leave substantial 

unexplored potential.  

 

At a very general level, it is clearly both necessary and possible to move beyond excessively or 

indiscriminately economic approaches  (which have been described as “implausible caricatures…as 

prescribed by the rationality theory, with a touch of psychological realism in the best possible case” 113, 

p.4). That is not to say that economic processes are unimportant, or even adequately represented in all 

cases, but they are at least widely included using clear, interpretable assumptions (if not justifications). 

The same is not true of behavioural processes, and there remains considerable scope for exploring the 

effects of known9,38,71 or theorised forms of behaviour13,113. Many of these behaviours are social in 

nature, particularly where land uses are part of either very complex or very constrained social systems 

(e.g. where many actors are present or where poverty and deprivation are particularly 



intense11,59,69,85,97). Equally important are dynamic behaviours and social structures that allow for 

realistic interactions between actors and their environments. In order for models to account for true 

adaptation - including in the nature, objectives and forms of individual and social behaviours – they 

need to prioritise generative cognitive processes over more tractable optimisation functions113,114.   

 

Of course, it is not necessarily the case that ever-greater behavioural accuracy is either desirable or 

possible. Not all forms of individual and social behaviours are amenable to modelling, but the 

identification of limits is a complex problem involving philosophical and practical considerations26,27,29,115. 

For example, it may not be possible to usefully simulate the decisions of any particular individual but 

perfectly possible to explore the effects of particular forms of decision-making, and while culture may 

not be reducible to model algorithms, specific differences in perceptions can be. This reflects the value 

of behavioural models in providing controlled experimental settings for improving understanding; a role 

based on interpretability and exploration rather than attempted descriptive or predictive accuracy29,116. 

Certainly, the use of behavioural models to understand effects beyond the scope of economic models is 

well-supported and relatively common across land system science3,10,93,117,118. This often involves simple 

models that can illuminate areas of uncertainty or potential developments that were previously 

unrecognised11,22,81,86,119. Obvious and achievable contributions here include assessments of the role of 

diffusion in attitudes, knowledge or uptake of novel practices47,95, the potential for particular aspects of 

local knowledge to alter the impacts of global drivers of change54,70,120,121, and the effects of changes in 

ecosystem service provision on societal and individual decision-making70,89,119.  

 

More comprehensive analyses face the challenge of incorporating social and ecological systems 

dynamics more fully7,63,72. While this challenge is not insurmountable, it may require methodological 

advances alongside complementary approaches such as participatory modelling54,76,122,123 and socio-

ecological systems modelling63,122,124. Such developments could allow valuable advances in exploring the 

implications of socially-constructed beliefs, perceptions and resilience, particularly for adaptation 

options that might wrongly appear feasible or rational to an outside observer, or for an increased 

likelihood of maladaptation to objective climate impacts26,115,125. Broader techniques are required to 

move beyond highly specific single applications and represent entire, integrated socio-economic, 

climatic and environmental systems12,63,86,90,126 (largely beyond the scale of current applications; Figure 

3). Defining and describing these systems is, inevitably, extremely difficult127, but there are a number of 

clear steps that can be taken towards this end. The first is to adopt consistent approaches across land-

based sectors, so that cross-sectoral models properly represent the interactive processes involved. This 

requires, for example, models of forestry and pastoral agriculture that approach the richness of models 

of arable agriculture, including both mitigation and adaptation, dynamic rather than static climatic 

conditions, and a broader range of behavioural processes63,80,128. The simulated impacts of climate 

change must be broader too, so that diverse responses to a realistic range of different impacts can occur 

together. A clear priority here is the treatment of water resources, which are currently the subject of a 

specialised and largely separate modelling literature (and one that emphasises the importance of 

institutional actors). 

 



Finally, some general issues of modelling practice, apparent in the models we reviewed (though 

certainly not unique to them), also prevent models from achieving their full potential. The first concerns 

transparency, with models often being poorly described and unavailable for further analysis – a 

particular problem where prototype models are presented, but not subsequently implemented. This has 

distinct implications for behavioural models to the extent that written descriptions of behaviour 

sometimes diverge quite significantly from programmed descriptions, making it hard to determine what 

exactly has been simulated. Secondly, uncertainty in model results is rarely analysed or described in 

detail, despite the considerable uncertainty inherent in behavioural model design and calibration. More 

robust handling of uncertainty is essential, especially where models are intended to support real-world 

decision-making105,129. Thirdly, there remains a disconnect between the identification and modelling of 

factors important to climate change mitigation and adaptation. Models are rarely founded on a clear 

conceptualisation of these processes, and frequently fail to account for the ways in which they differ 

from ‘ordinary’ land use change. 

 

It is important to recognise that many of these criticisms relate to behavioural modelling of climate 

change mitigation and adaptation in sum, rather than to individual instances that are necessarily limited 

in scope. Furthermore, many apply equally to non-behavioural models that make unrealistic 

assumptions about human behaviour. The neglect of non-economic and social behaviours such as 

diffusion, anticipation and learning in any model suggests an unexplored bias towards artificially rapid 

responses to economic stimuli and a lack of responses to social or environmental stimuli. Projections of 

linked changes in climate and land use are therefore likely to be excessively homogeneous, temporally 

discrete and amenable to simple political interventions. However, it is obvious that some boundaries 

need to be set if models are to be practicable, and these boundaries will inevitably be artificial in a 

system as complex as that of the Earth System, its inhabitants and its climate. The greatest gains may 

therefore be made simply through better recognition of behavioural modelling as a necessary, coherent 

and distinct area of climate change research, fostering communication between practitioners and 

systematic methodological developments on clear philosophical foundations.  
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Figure captions 

 

Figure 1: Modelled behaviour by sector. The number of models that include each form of behaviour is 

shown, so that one model may be included several times across the categories; this also means that 

cross-sectoral models contribute to more than one sector. Economic and individual behaviour does not 

include non-economic factors or social processes. Other categories may or may not be based on 

economic factors, but include distinct decision-making mechanisms.  

 

Figure 2: Forms of validation or evaluation adopted by reviewed models 

 

Figure 3: Geographical extent of models reviewed  

 

 

 



Tables 

First author & 
reference 

Adaptation/ 
mitigation 

Sector Modelled 
behaviour 

Decision-making Perception of 
climate change 

Model type 

Alexander47 Adaptation Agriculture Diffusion, 
learning 

Crop choice and investment in biomass 
power plant 

Indirect (ES) 
impacts ABM 

Angus88 Adaptation Agriculture, urban  migration, food consumption Via market ABM 

Antle130 Adaptation Agriculture   Adoption of different agricultural practice    IBM 

Arnold36 Adaptation Agriculture   Crop choice, investments, labour, 
saving/financing Via institutions ABM 

Badmos75 Adaptation Agriculture  Choice of crop system Via institutions Microsimulation 

Bakker107   Agriculture   Buying & selling rural land   ABM 

Barthel86 Adaptation Cross-sectoral Diffusion, 
social network, 
learning 

Choices about water usage 
Via market & 
institutions ABM 

Belem92   Agriculture   Crop choice, inputs (fertiliser), migration Direct impacts Microsimulation 

Bell50  Mitigation Agriculture, 
Forestry 

Social network Land use (e.g. de/re-forestation) and 
buying/selling of land 

Indirect (ES) 
impacts ABM 

Berger87 Adaptation Agriculture Diffusion, 
social network 

Investment, irrigation, crop type and 
technology, innovation adoption, 
persistence/abandonment   Microsimulation 

Berger99   Agriculture Diffusion, 
social network, 
learning 

Crop selection, investments. 

  ABM 

Berman89 Adaptation     Form households, harvest and hunt, share 
resources, look for jobs, migration 

 Indirect (ES) 
impacts, via 
institutions ABM 

Bharwani68 Adaptation Agriculture  Learning   Indirect (ES) 
impacts, via market ABM 

Bone70     Diffusion, 
learning 

Decisions are scenario-dependent.  Direct impacts, via 
institutions ABM 

Brown49 Mitigation Agriculture Diffusion Adoption of bioenergy crops (forgoing 
profit) Via institutions ABM 

Cheng78 Adaptation  Agriculture   Optimisation of water resource usage   ABM 

Deng90 Mitigation, 
adaptation 

General   Generic land use decision, based on 
decisions of similar 'households' 

Direct impacts, via 
market ABM  

Dyer46  Mitigation  Forestry   Primarily whether to engage in subsidised 
reforestation scheme. 

Via market & 
institutions ABM 

Ferreira55 Mitigation, 
adaptation 

Agriculture, 
forestry 

 Land use/cover transitions 
Via institutions Microsimulation 

Gimona65 Adaptation Agriculture, 
forestry, 
conservation 

  Intensification/extensification 
based on climate suitability and policy 
interventions 

Indirect (ES) 
impacts ABM 



Hannah62 Adaptation  Forestry   Harvesting & replanting  Indirect (ES) 
impacts, via market   

Jiang52  Mitigation Agriculture   Decisions affecting cost and value of 
production     

Joffre76 Adaptation Agriculture, 
forestry, coastal 
(mangroves) 

Diffusion Intensity of production 
Direct, via 
institutions ABM 

Kerr56 Mitigation, 
adaptation 

Agriculture, 
Forestry 

Diffusion Land use (land clearance, crop choice).  Direct impacts, via 
market & 
institutions Microsimulation 

Liu61 Adaptation Agriculture   Technical options to maintain grazing 
suitability.   ABM 

Malanson57 Adaptation Agriculture   Crop selection Indirect (ES) 
impacts ABM 

Matthews53  Mitigation Agriculture Social network, 
learning 

Decisions about abstract land uses, made 
on basis of neighbours' land uses and 
strategies.   ABM 

Mazzega85 Adaptation Agriculture   crop allocation, irrigation, reservoir & 
water resource management. 

Direct impacts, via 
institutions 

Multi-agent 
system 

Meza72  Adaptation Agriculture  Learning Adjustments in management (timing etc.) 
for specific crops 

Indirect (ES) 
impacts Microsimulation 

Morgan51  Mitigation Agriculture, 
forestry 

Social network, 
learning 

Selection of land based activity 
Via market ABM 

Murray-Rust64 Adaptation Agriculture, 
forestry 

  Whether to change/abandon land use 
  ABM 

O'Connell59 Adaptation Agriculture - 
flooding 

  Proposed model 
  ABM 

Putra60 Adaptation Urban, coastal Diffusion House purchase, modification and sale Direct impacts, via 
market & 
institutions ABM 

Rammer63 Adaptation Forestry Diffusion Forest management strategy and 
practices 

Direct & indirect 
(ES) impacts ABM 

Salvini54 Mitigation, 
adaptation 

Agriculture, 
forestry 

 Choice of agricultural management, 
deforestation 

Direct impacts, via 
institutions ABM 

Scheffran48 Mitigation  Agriculture, 
forestry 

  Crop selection 
  ABM 

Seo67 Adaptation Agriculture  Choice of agricultural systems Via institutions Microsimulation 

Soboll69 Adaptation  Urban Diffusion Water usage; quantities, adoption of new 
technologies 

Direct & indirect 
impacts, via market 
& institutions Microsimulation 

Soman101 Adaptation Agriculture   Agents adapt strategies based on context   ABM 

Troost39 Adaptation Agriculture   Crop selection and management Indirect (ES) 
impacts ABM 



van Oel58 Adaptation Agriculture   Crop irrigation decisions Indirect (ES) 
impacts ABM 

Yan66 Adaptation Agriculture, urban  Learning Changes in land cover, primary focus on 
urban expansion   ABM 

Yousefpour81 Adaptation  Forestry  Learning Forest management practice   Microsimulation 

Zhang37 Adaptation Agriculture, 
forestry, 
conservation 

Diffusion, 
learning 

Land use, whether to sell or buy land 
parcels 

Direct impacts, via 
market & 
institutions ABM 

Ziervogel71 Adaptation Agriculture Diffusion, 
learning 

Timing and nature of crop activities Direct impacts, via 
institutions ABM 

Table 1: Overview of models reviewed. Entries are made in a column only where the relevant issue is modelled (e.g. rather than used to motivate the model). Behaviours refer 

to those discussed in the text, and do not include economic rationality. Model type is based on that given in publication, not independent assessment, and ABM refers to agent-

based model. Only papers that present models of land-based sectors are included (several relevant discussion/review papers are not included).  


