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Cross-Training with Imperfect Training Schemes

Abstract

Cross-training workers is one of the most efficient ways of achieving flexibility in

manufacturing and service systems for increasing responsiveness to demand variability.

However, it is generally the case that cross-trained employees are not as productive

on a specific task as employees who were originally trained for that task. Also, the

productivity of the cross-trained workers depends on when they are cross-trained. In

this work, we consider a two-stage model to analyze the effects of variations in pro-

ductivity levels on cross-training policies. We define a new metric called achievable

capacity and show that it plays a key role in determining the structure of the problem.

If cross-training can be done in a consistent manner, the achievable capacity is not

affected by when the training is done which implies that the cross-training decisions

are independent of the opportunity cost of lost demand and are based on a trade-off

between cross-training costs at different times. When the productivities of workers

trained at different times differ, there is a three-way trade-off between cross-training

costs at different times and the opportunity cost of lost demand due to lost achievable

capacity. We analyze the effects of variability and show that if the productivity levels

of workers trained at different times are consistent, the decision maker is inclined to

defer the cross-training decisions as the variability of demand or productivity levels in-

creases. However, when the productivities of workers trained at different times differ,

an increase in the variability may make investing more in cross-training earlier more

preferable.

Keywords: cross-training, flexibility, newsvendor networks, productivity factors

History: Received: January 2013; Accepted: November 2015 by Michael Pinedo, after

2 revisions.

1 Introduction

Designing flexible systems is one of the key strategies to increase responsiveness to variability

in the market without sacrificing efficiency of the system. One way to achieve flexibility in
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a system is to cross-train workers on several processes. Cross-training has been proven to

be highly beneficial in many different business environments, including but not limited to

the semiconductor and automative industries, call centers and healthcare. For example, in

the semiconductor industry, machine operators are often cross-trained to run more than one

type of sophisticated equipment and technicians are often cross-trained to maintain more

than one type of machine. In addition to increasing efficiency, cross-training can help keep

budgets low, increase a company’s ability to pay more to the employees, reduce turnover

rate, and increase quality due to the workers’ ability to react to unexpected changes (see

e.g., Lyons (1992), McCune (1994), Iravani et al. (2007)).

Cross-trained workers can be shifted to work on new tasks when needed, which yields

a more efficient usage of the resources. However, it is generally the case that cross-trained

employees do not perform equally well on a specific task as employees who were originally

trained for that task, i.e., the training schemes may be imperfect. Moreover, the productivity

levels of the cross-trained workers may depend on when the cross-training is done. In this

paper, our main goal is to analyze how these imperfections in training schemes affect cross-

training decisions. To analyze the effect of imperfect schemes and timing of cross-training

decisions, we consider a two-stage model and study the problem in a newsvendor network

setting, introduced by Van Mieghem (1998) and Van Mieghem and Rudi (2002). Similar to

the prior work, the decision maker decides on the number of employees to cross-train, i.e.,

the level of flexibility, before realizing the demand, which we refer to as offline cross-training.

In the prior work, the first stage decisions are structural (design) decisions where the level

of flexibility is fixed and does not change in the future. In practice, the decision maker

may see that additional cross-training is beneficial after the demand is revealed and may

wish to cross-train workers online as the demand is observed. However, the productivities

of the employees who are cross-trained before and after the demand is observed may differ.

If the demand exceeds the capacity even after the online cross-training, the excess demand

is lost and an opportunity cost is incurred. Once the demand is revealed there is a capacity

requirement for each task to fulfill the demand. With a slight abuse of terminology we refer
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to the capacity requirement for each task as the demand for the task.

We first consider the case where online cross-training is not profitable either because

it is too expensive or the workers cannot be cross-trained online effectively. We provide

a newsvendor-type equation which states the necessary and sufficient conditions that the

optimal offline cross-training levels satisfy, and helps us to quantify when it is beneficial

to invest in cross-training. Then we consider what happens if we are able to increase the

effectiveness of training schemes. One possible argument is that as the training schemes

become more effective, it creates an incentive to invest more in offline cross-training to

exploit this positive change. On the other hand, one might also argue that with the increased

effectiveness, the same or even slightly decreased level of cross-trained workers may be enough

to hedge against possible excess demand. We show that both are reasonable outcomes of

increasing the effectiveness and provide a condition to decide which argument is applicable.

We also study how the optimal offline cross-training policies are affected by the demand

variability. If cross-training costs and opportunity cost of lost demand are comparable, we

show that offline cross-training gets less beneficial as variability increases, which is consistent

with the literature.

Our main focus is the analysis of the trade-off between offline and online cross-training

levels in the presence of imperfect training schemes. We define the metric achievable capacity

for a task as the expected maximum demand that can be satisfied from the workforce with

the skills available for this task and all the idle workers from the other task are cross-trained.

Our main conclusion is that achievable capacity plays a key role in determining the structure

of the cross-training problem. Our results can be summarized as follows:

(i) If the offline and online training schemes are consistent, i.e., their productivity factors

are equal, then the achievable capacity does not depend on when the training is done,

and the opportunity cost of lost demand becomes a fixed cost with respect to the cross-

training levels. Hence, the cross-training decisions are independent of the opportunity

cost of lost demand and the decision maker should only consider the trade off between

the online and offline cross-training costs to decide on the cross-training levels. How-
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ever, when the offline and online training schemes are not consistent, especially when

the online cross-training is less effective than offline, then some achievable capacity

is lost if cross-training is postponed. Then, the decision maker needs to consider a

three-way trade off between cross-training costs of offline and online training schemes

and the opportunity cost due to lost achievable capacity.

(ii) When only two tasks are under consideration, the cross-training problem is separable

and the decision maker can set the offline cross-training levels separately for each task.

This implies that the structure of the two task cross-training problem is very similar

to the problem of dual sourcing under random yields where the decision maker aims to

satisfy the demand from two different sources (offline and online cross-training) whose

productivities are random (see e.g. Wang et al. (2010)). The main feature differentiating

the two task cross-training problem is that the capacities of two sources are dependent

through a total capacity constraint.

(iii) When the training schemes are consistent over time, the decision maker postpones

cross-training, i.e., decreases the level of offline cross-training and the total cost in-

creases, as the variability of random parameters increases. This result is consistent

with the postponement literature (e.g. Feitzinger and Lee (1999)). However, when the

productivity factors for offline and online cross-training schemes differ, then this result

can be reversed. In this case, it may be beneficial to invest more in offline cross-training

to increase achievable capacity as demand variability increases, in order to avoid the

possibility of incurring high opportunity cost.

(iv) If the variability of the online productivity factor increases while making sure that

the online cross-training is always profitable, we show that the total cost also increases.

However, if the variability of the online productivity factor increases beyond a threshold

such that for some scenarios online cross-training is not profitable, then the total cost

might actually decrease as the variability of online productivity increases.

(v) We also study how any improvement on training schemes affects cross-training deci-
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sions. We show that if we can improve both training schemes in a way such that

the difference between productivity factors decreases or at least is kept constant, then

the decision maker postpones cross-training. However, if the offline training schemes

are improved more than the online schemes, investing more on offline cross-training is

better as it also increases the achievable capacity.

The opportunity to benefit from flexibility without too much investment has recently

accelerated research in designing efficient flexible systems and we see this work as a part of

this research stream. In their seminal paper, Jordan and Graves (1995) show that almost

all the benefits of a fully flexible system, where all resources can perform all tasks, can be

achieved by using a moderate level of flexibility. Their results demonstrate that using a

special flexibility configuration referred to as “chaining” and under certain assumptions on

demand, it is possible to obtain 98% of the throughput of a fully flexible system using re-

sources that can perform only two different tasks. Using tools from queueing theory, Jordan

et al. (2004) observe that cross-training can adversely affect performance if a poor control

policy is used and demonstrate that a complete chain is robust with respect to the control

policy and parameter uncertainty. In the literature, the ability of companies to achieve flexi-

bility and efficiency while at the same time meeting customer needs is sometimes also refered

as production agility (Gel et al. (2007); Hopp et al. (2004); Hopp and Van Oyen (2004)).

Hopp and Van Oyen (2004) develop a framework for workforce cross-training, provide a com-

prehensive review of the recent literature and suggest some future research directions. Hopp

et al. (2004) and Gel et al. (2007) analyze flexibility decisions for manufacturing systems

operating under CONWIP or WIP-constrained policies and conclude that a cross-trained

worker should perform her original task before helping on other tasks. Pinker and Shumsky

(2000) perform numerical studies to analyze the trade off between efficiency and quality due

to cross-training. Netessine et al. (2002) show how cross-training policies are affected by

demand correlation. Davis et al. (2009) indicate that under high workload imbalances, an

extensive level of cross training is required to significantly improve the overall production

performance. In a service environment, Gnanlet and Wendell (2009) use a two-stage stochas-
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tic programming model to determine optimal resource levels and demonstrate the benefits

of cross-training activities in a health care setting. In their recent papers, Bassamboo et al.

(2012, 2010) define level-k resources to be the resources that are able to process k different

tasks. In Bassamboo et al. (2012), they prove that for symmetric queueing systems one only

need to use dedicated resources and level-2 resources. Similar to our analysis, Bassamboo

et al. (2010) use the newsvendor network framework to prove that in the optimal flexibility

configurations only two adjacent levels of flexibility are needed. Chou et al. (2010) discuss the

effect of production efficiency comparing full flexibility with a chaining structure. Another

paper which is closely related to our work is Chakravarthy and Agnihothri (2005), where they

study the optimum fraction of flexible servers for a two task problem with perfect training

schemes. They point to the fact that cross-trained workers may not be as efficient as dedi-

cated workers. However, they do not provide an analysis of the problem. There have been

several attempts to formulate the problem as a mathematical program (see e.g. Brusco and

Johns (1998), Walsh et al. (2000) and Tanrisever et al. (2012)). In this paper, our primary

focus is on getting managerial insights for aggregate planning of cross-training efforts.

2 A Two-Stage Model for Cross-Training

In this section, our goal is to provide a detailed analysis of the cross-training problem for

two tasks when the cross-training schemes are imperfect. We analyze the problem of cross-

training workers between two tasks, α and γ. We assume that the capacity is measured

in time units and initially there is x0
α and x0

γ units of capacity dedicated to process tasks

α and γ, respectively. The decision maker has to develop an aggregate workforce plan by

cross-training some of the available workers offline before observing the demand d̃α and d̃γ.

Before actual demand is realized, it costs c1
α to train one unit of dedicated capacity of γ to

work on task α. The cross-trained workers can still work on their original task γ with full

efficiency. However, they are not as efficient in their new skill α, and their capacity needs to

be adjusted by a productivity factor δ̃1
α, where 0 < δ̃1

α ≤ 1; i.e., if a cross-trained γ-worker

spends one hour working on task α, it is equivalant to δ̃1
α hours of an original α-worker.
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The productivity factor, δ̃1
α, can also be perceived as an indicator of the effectiveness of the

training program and is assumed to be random. The random parameters, offline and online

productivity factors and the capacity requirements for each task, are revealed after the offline

cross-training decisions are made. After the capacity requirements for tasks are revealed, we

first use the dedicated workers and workers cross-trained offline in the first stage to satisfy

the demand. If the available capacity for task α is not enough to satisfy the requirement

and there is excess capacity for task γ, additional cross-training can be performed online at

a unit cost of c2
α. The productivity factor for the workers cross-trained in the second stage

is δ̃2
α, where 0 < δ̃2

α ≤ 1. Unless otherwise stated we assume that δ̃2
α ≤ δ̃1

α with probability

one (w. p. 1). If the workforce at hand cannot satisfy the capacity requirements even after

the second stage cross-training, the demand is lost incurring a unit opportunity cost of hα.

A similar mechanism works to satisfy the demand for γ interchanging the subscripts.

Without loss of generality, we assume that hα ≤ hγ. When workers are cross-trained to

work on both tasks, a natural question is on which task they are allocated when they are

needed for both. In this paper, we assume the following:

Assumption 2.1. It is always preferable to use cross-trained workers on their original tasks

rather than their new tasks when they are needed for both, i.e., hα ≥ δ̃1
γhγ holds w. p. 1.

To simplify our analysis and notation, we also assume that random variables d̃α, d̃γ, δ̃
1 =

(δ̃1
α, δ̃

1
γ) and δ̃2 = (δ̃2

α, δ̃
2
γ) are continuous with joint density function f(d̃α, d̃γ, δ̃

1, δ̃2) and use

ξ̃ = (d̃α, d̃γ, δ̃
1, δ̃2), whenever we do not need to address specific random variables. Through-

out this work, a random variable x is denoted x̃, E[x̃] denotes the expected value of the

random variable. Similarly, we use E[x̃; Ω] =
∫

Ω
xdP(x) to denote the expectation over a

scenario region Ω. We present proofs of our propositions given below in Appendix A to

allow for a better readability.

We need to write out the objective function explicitly based on the mechanism described

above. The decision maker initially decides on x1
α and x1

γ, which are the amount of workforce

cross-trained offline to work on α and γ from the dedicated capacity of γ and α, respectively.

We can decompose the cost function g(x1
α, x

1
γ, ξ̃) into the first stage cost which is incurred
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Figure 1: Partitioning the support of the demand vector

due to offline cross-training and the second stage cost v(x1
α, x

1
γ, ξ̃) which is revealed after the

realization of random parameters as

min
x1α,x

1
γ

E[g(x1
α, x

1
γ, ξ̃)] = min

x1α,x
1
γ

c1
αx

1
α + c1

γx
1
γ + E[v(x1

α, x
1
γ, ξ̃)]. (1)

The second stage cost, v(x1
α, x

1
γ, ξ̃), depends on whether new cross-training is needed after the

demand is observed. Hence, v(x1
α, x

1
γ, ξ̃) takes different forms depending on the realization

of random parameters. To analyze this function further and calculate the expected value

for given x1
α, x

1
γ, we first use the tower property E[v(x1

α, x
1
γ, ξ̃)] = E[E[v(x1

α, x
1
γ, ξ̃)|δ̃1, δ̃2]]. To

calculate the conditional expectation E[v(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2], we first partition the support of

(δ̃1, δ̃2) into subsets, where in each subset the nature of the second stage decision is different.

Then, we partition the support of d̃α and d̃γ so that the function v(x1
α, x

1
γ, ξ̃) has a single

form within a partition. This partitioning scheme is explained below and the most general

graphical representation is given in Figure 1.

Under Assumption 2.1, task α demand will be lost only when the demand d̃α cannot be

supplied by using the initial capacity x0
α and cross-trained workers who are not allocated to

task γ. Since hα ≤ hγ, the same claim is always true for task γ. If we choose to cross-train

workers online in the second stage, we need to spend c2
α/δ̃

2
α to satisfy unit demand of task

α, or we lose the demand and incur a cost of hα. Hence, for task α, we choose to resort to
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online cross-training first if c2
α ≤ δ̃2

αhα and we never cross-train online in the second stage if

c2
α > δ̃2

αhα. Similar logic applies to task γ.

2.1 Case 1: Online cross-training is not profitable

We first consider the situation where losing the excess demand is preferable over online cross-

training in the second stage for both tasks, i.e., c2
α > δ̃2

αhα and c2
γ > δ̃2

γhγ w. p. 1. Under

this assumption we can use the following partitioning to explicitly state v(x1
α, x

1
γ, ξ̃) for any

given x0
α, x

0
γ and ξ̃.

1. Ωa
1 = {(d̃α, d̃γ) : d̃α ≤ x0

α, d̃γ ≤ x0
γ}. For the scenarios in Ωa

1, the initial workforce is

enough to satisfy the capacity requirements. Hence, v(x1
α, x

1
γ, ξ̃) = 0 on Ωa

1.

2. Ωb
1 = {(d̃α, d̃γ) : x0

α < d̃α ≤ min{x0
α + δ̃1

αx
1
α, x

0
α + δ̃1

α(x0
γ − d̃γ)}, d̃γ ≤ x0

γ}. On Ωb
1, the

initial workforce x0
α cannot satisfy d̃α. Task γ may need to use some workers who are

cross-trained offline to work on α, but the remaining cross-trained workforce is enough

to satisfy the excess demand for α. Hence, again v(x1
α, x

1
γ, ξ̃) = 0 on Ωb

1.

3. Ωc
1 is defined similar to Ωb

1 with α and γ interchanged, and v(x1
α, x

1
γ, ξ̃) = 0 on Ωc

1.

We define Ω1 = Ωa
1∪Ωb

1∪Ωc
1. When the demand falls in this region, no recourse action

is needed in the second stage and hence no cost is incurred.

4. Ω2 = {(d̃α, d̃γ) : x0
α + δ̃1

αx
1
α < d̃α, 0 ≤ d̃γ ≤ x0

γ − x1
α}(= Ωa

2 ∪ Ωb
2 in Figure 1). The

demand for γ is low so that all the cross-trained workers can be used to work on task α.

However, even this is not enough to satisfy d̃α and the excess demand is lost. Hence,

v(x1
α, x

1
γ, ξ̃) = hα(d̃α − x0

α − δ̃1
αx

1
α) on Ω2.

5. Ω3 = {(d̃α, d̃γ), x0
α + δ̃1

α(x0
γ − d̃γ) < d̃α, x

0
γ − x1

α < d̃γ ≤ x0
γ}. For scenarios in this subset

of the support, some but not all of the workers who are cross-trained to work on task

α can be shifted to α, and this is not enough to satisfy the capacity requirement. The

excess demand is lost and hence, v(x1
α, x

1
γ, ξ̃) = hα(d̃α − (x0

α + δ̃1
α(x0

γ − d̃γ))) on Ω3.
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6. Ω4 = {(d̃α, d̃γ), x0
α − x1

γ < d̃α ≤ x0
α, x

0
γ + δ̃1

γ(x
0
α − d̃α) < d̃γ}(= Ωa

4 ∪ Ωb
4 in Figure 1).

This region is defined in the same way as Ω3 with α and γ interchanged. The second

stage cost function is given by v(x1
α, x

1
γ, ξ̃) = hγ(d̃γ − (x0

γ + δ̃1
γ(x

0
α − d̃α))).

7. Ω5 = {(d̃α, d̃γ) : 0 ≤ d̃α ≤ x0
α− x1

γ, x
0
γ + δ̃1

γx
1
γ}(= Ωa

5 ∪Ωb
5 in Figure 1). Ω5 is the analog

of Ω2 with α and γ interchanged. Hence, v(x1
α, x

1
γ, ξ̃) = hγ(d̃γ − x0

γ − δ̃1
γx

1
γ) on Ω5.

8. Ω6 = {(d̃α, d̃γ) : x0
α < d̃α, x

0
γ < d̃γ}(= Ωa

6 ∪ Ωb
6 in Figure 1). In this case, the initial

capacity is not enough to satisfy the demand for either task. Hence, excess demand is

lost for both tasks. The second stage cost is v(x1
α, x

1
γ, ξ̃) = hα(d̃α − x0

α) + hγ(d̃γ − x0
γ).

After characterizing the cost function completely, we now focus on analyzing the optimal

offline cross-training levels. Our first result states a necessary and sufficient condition that

should be satisfied by the optimal cross-training levels. The sets, Ωis, depend on the cross-

training levels x1
α or x1

γ and to emphasize the dependency we adopt the notation Ωi(x
1
α) or

Ωi(x
1
γ) as appropriate in the equations below.

Proposition 2.1. Any x1
α
∗ ∈ [0, x0

γ] that satisfies the equation

E[δ̃1
α; Ω2(x1∗

α )] =
c1
α

hα
, (2)

is an optimal offline cross-training level for α. If there does not exist any x1
α
∗ ∈ [0, x0

γ] that

satisfies (2), then either E[δ̃1
α; Ω2(x0

γ)] ≥
c1
α

hα
or E[δ̃1

α; Ω2(0)] ≤ c1
α

hα
and the optimal offline

cross-training level for α is x1
α
∗

= x0
γ or x1

α
∗

= 0, respectively. The same result holds for x1
γ
∗

when α and γ are interchanged above.

Condition (2) states that under the optimal cross-training policy, the expectation of

the first-stage productivity factor over the scenarios where the cross-trained workers are

utilized for their new tasks should be equal to the ratio of the first-stage cross-training

and the opportunity costs. An important feature of Proposition 2.1 is that it indicates the

problem is separable, i.e., the optimal cross-training levels for tasks α and γ can be decided

separately. Hence, we only state results relating to task α below and similar results hold for
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γ by interchanging the subscripts. Also, even though Proposition 2.1 assumes continuous

distributions, the results can be extended to a discrete setting using a similar methodology

to the newsvendor problem. An immediate consequence of Proposition 2.1 is as follows.

Corollary 2.1. When the first-stage productivity factor δ̃1
α is deterministically equal to δ1

α,

then any x1
α
∗ ∈ [0, x0

γ] that satisfies the newsvendor-type equation

P(x0
α + δ1

αx
1
α ≤ d̃α, x

0
γ − x1

α ≥ d̃γ) =
c1
α

δ1
αhα

(3)

solves the cross-training problem. If there does not exist any x1
α
∗ ∈ [0, x0

γ] that satisfies (3),

then, either P(x0
α + δ1

αx
1
α ≤ d̃α, x

0
γ − x1

α ≥ d̃γ) ≥
c1
α

δ1
αhα

or P(x0
α + δ1

αx
1
α ≤ d̃α, x

0
γ − x1

α ≥ d̃γ) ≤

c1
α

δ1
αhα

and the optimal cross-training level for α is x1∗
α = x0

γ or x1∗
α = 0, respectively.

Proposition 2.1 also helps us understand when it is not profitable to cross-train. This

result is in accordance with the case with perfect cross-training schemes.

Corollary 2.2. It is not profitable to cross-train offline for task α if the assumption of

Proposition 2.1 holds and at least one of E[δ̃1
α], P(x0

α ≤ d̃α) or P(x0
γ ≤ d̃γ) is less than

c1
α

hα
.

Intuitively, one should not resort to cross-training if the effectiveness of training programs

is not good enough. The first part of Corollary 2.2 quantifies how “good enough” should be

interpreted. The second part says that before cross-training one should make sure that there

is a solid chance that extra capacity will be needed. Even when extra capacity is needed,

demand for the other task may make it impossible to utilize the cross-trained workers.

2.1.1 Independent Demands and Deterministic Productivity Factors

We now investigate the sensitivity of the offline cross-training levels to the changes in pro-

ductivity factors when the productivity factors are deterministic and demand for different

tasks are independent. If we are able to increase the effectiveness of our training policies, one

may argue that it is better to exploit this further by increasing our offline cross-training level.

On the other hand, another argument is that this increase in effectiveness may significantly

reduce the risk of incurring opportunity cost of lost demand and we may not need to invest
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as much in offline cross-training. Proposition 2.2 provides a condition to decide which of

these arguments is applicable.

Proposition 2.2. Suppose that the offline productivity factor δ̃1
α is deterministically equal

to δ1
α and the demand for α and γ, d̃α and d̃γ are independent. Then, the optimal offline

cross-training level x1
α
∗

for task α increases as productivity factor δ1
α increases if and only if

Hd̃α
(x0

α + δ1
αx

1∗
α ) =

fd̃α(x0
α + δ1

αx
1∗
α )

P(x0
α + δ1

αx
1∗
α ≤ d̃α)

≤ 1

δ1
αx

1∗
α

, (4)

where fd̃α(·) and Hd̃α
(·) are the marginal probability density and hazard rate functions of task

α demand, d̃α, respectively.

To decide whether it is better to cross-train more than x1∗
α , we need to concentrate

on the scenarios where the demand exceeds x0
α + δ1

αx
1∗
α . The definition of the hazard rate

function implies that P(d̃α ≤ x0
α + δ1

αx
1∗
α + ε|d̃α > x0

α + δ1
αx

1∗
α ) ≈ Hd̃α

(x0
α + δ1

αx
1∗
α )ε. Hence,

if Hd̃α
(x0

α + δ1
αx

1∗
α ) is high, even when the demand exceeds x0

α + δ1
αx

1∗
α , the probability that

it exceeds by a large margin is low, in which case a small increase in the productivity factor

is enough to satisfy the exceeding demand and additional cross-training is not beneficial.

However, if Hd̃α
(x0

α + δ1
αx

1∗
α ) is low, when the demand exceeds x0

α + δ1
αx

1∗
α most probably

it exceeds by a large margin and an increase in the productivity factor makes additional

cross-training more attractive.

Under some mild conditions, we can use Proposition 2.1 to infer how the variability of

the demand for different tasks affects the cross-training decisions.

Proposition 2.3. Suppose d̃1 and d̃2 are symmetric random variables around zero, i.e.,

P(d̃i < −x) = P(d̃i > x) for all values of x and i = 1, 2. If δ̃1
α is deterministically equal to

δ1
α, 2c1

α ≥ δα1 hα, the demands for different tasks, d̃α and d̃γ, are independent, continuous and

can be written as d̃α = md̃1 +µ1 and d̃γ = nd̃2 +µ2, then the optimal cross-training level x1∗
α

is non-increasing in both m and n.

Proposition 2.3 essentially states that if demands for tasks are independent and follow

symmetric distributions, e.g. a normal or uniform distributon, and if the costs and pro-

ductivity factors satisfy the conditions above, the optimal cross-training level for task α is
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decreasing with the variances of demands. Unfortunately, when δ̃1
α is not deterministic, the

monotonicity result may not hold. Some counterexamples are presented in Section 3.

2.2 Case 2: Profitable online cross-training in the second stage

Now, we consider the situation where it is profitable to cross-train online in the second stage,

i.e., c2
α < δ̃2

αhα and c2
γ < δ̃2

γhγ w. p. 1. The demand is lost only when the available workforce

is not able to satisfy the demand even after all the idle workers are cross-trained online in the

second stage. Hence, for scenarios in Ω1,Ω3,Ω4 and Ω6 the cost function is as in Section 2.1

and we only need to consider Ω2 and Ω5 further.

1. Ωa
2 = {(d̃α, d̃γ) : x0

α + δ̃1
αx

1
α < d̃α ≤ x0

α + δ̃1
αx

1
α + δ̃2

α(x0
γ − x1

α − d̃γ), d̃γ < x0
γ − x1

α}. If

(d̃α, d̃γ) ∈ Ωa
2, both the initial workforce and the cross-trained workforce are used in

performing task α. If (d̃α − x0
α − δ̃1

αx
1
α)/δ̃2

α units of the workforce are cross-trained to

work on α, the remaining demand can be satisfied. Hence, the second stage cross-

training cost is

v(x1
α, x

1
γ, ξ̃) = c2

α

d̃α − x0
α − δ̃1

αx
1
α

δ̃2
α

.

2. Ωb
2 = {(d̃α, d̃γ) : x0

α + δ̃1
αx

1
α + δ̃2

α(x0
γ − x1

α − d̃γ) < d̃α, d̃γ < x0
γ − x1

α}. For the scenarios

in Ωb
2, it is not possible to satisfy the demand for α even after all the cross-trained

workforce work on task α. The decision maker cross-trains the idle workforce of γ and

then excess demand is lost. Hence, over Ωb
2

v(x1
α, x

1
γ, ξ̃) = c2

α(x0
γ − x1

α − d̃γ) + hα(d̃α − x0
α − δ̃1

αx
1
α − δ̃2

α(x0
γ − x1

α − d̃γ)).

Ωa
5 and Ωb

5 are defined similarly interchanging the subscripts.

Now we formally define achievable capacity of a task which plays a major role in deter-

mining the structure of the cross-training problem. For simplicity, we state the definition

specifically for task α.

Definition 2.1. The achievable capacity of task α under first-stage cross-training level x1
α,

Cα(x1
α), is the expected value of the maximum demand for task α that can be satisfied after

13



the randomness is realized and all idle workers for task γ are cross-trained, i.e., defining

notation x+ = max{x, 0}, Cα(x1
α) = x0

α + E[δ̃1
α min{x1

α, (x
0
γ − d̃γ)+}+ δ̃2

α(x0
γ − x1

α − dγ)+].

When δ̃1
α = δ̃2

α = δ̃ w. p. 1, we get Cα(x1
α) = x0

α + E[δ̃(x0
γ − dγ)

+] and the achievable

capacity is independent of the first-stage cross-training level. However, when P(δ̃1
α > δ̃2

α) > 0,

the demand that can be satisfied without incuring opportunity cost increases as the first-

stage cross-training increases.

Similar to Proposition 2.1, we now state a necessary and sufficient condition that should

be satisfied by the optimal offline cross-training level. This condition suggests a three-way

trade off between the offline and online cross-training costs and the opportunity cost of lost

demand due to achievable capacity lost by delaying the training.

Proposition 2.4. Any solution x1
α
∗ ∈ [0, x0

γ] that satisfies the equation

E[
c2
αδ̃

1
α

δ̃2
α

; Ωa
2(x1∗

α )] + E[c2
α + hα(δ̃1

α − δ̃2
α); Ωb

2(x1∗
α )] = c1

α (5)

is an optimal cross-training level for α. If there does not exist any x1
α
∗ ∈ [0, x0

γ] that satisfies

(5), then, either E[ c
2
αδ̃

1
α

δ̃2α
; Ωa

2(x0
γ)] +E[c2

α +hα(δ̃1
α− δ̃2

α); Ωb
2(x0

γ)] ≥ c1
α or E[ c

2
αδ̃

1
α

δ̃2α
; Ωa

2(0)] +E[c2
α +

hα(δ̃1
α − δ̃2

α); Ωb
2(0)] ≤ c1

α and the optimal cross-training level for α is x1∗
α = x0

γ or x1∗
α = 0,

respectively. The same result holds for task γ with α and γ interchanged above.

The opportunity cost plays a role only for the scenarios in Ωb
2, i.e., for the scenarios where

the online cross-training is needed. To understand this further, suppose we defer training

one unit of workforce to the second stage. For the scenarios where this additional workforce

is not needed for task α or is needed for task γ, we cannot use this additional workforce

on task α, then the opportunity cost does not depend on whether this workforce is cross-

trained or not offline. If this workforce is not needed for task γ and is needed for task α, we

lose δ̃1
α − δ̃2

α units of achievable capacity by postponing cross-training from offline to online.

This indicates that the marginal decrease in achievable capacity by cross-training one unit of

workforce online instead of offline is E[(δ̃1
α− δ̃2

α); Ωb
2(x1∗

α )]. Proposition 2.4 suggests that only

the opportunity cost for this lost capacity affects our decisions. If the training effectiveness
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in both stages is the same, then essentially we do not lose any achievable capacity and hence

the opportunity cost does not play any role in our decisions. Corollary 2.3 below summarizes

these observations.

Corollary 2.3. If the training effectiveness for programs before and after demand is realized

are the same, i.e., δ̃1
α = δ̃2

α w. p. 1, then optimal cross-training decisions do not depend

on the opportunity cost hα and any solution x1
α
∗ ∈ [0, x0

γ] that satisfies the newsvendor-type

equation

P(d̃α ≥ x0
α + δ̃1

αx
1
α
∗
, d̃γ ≤ x0

γ − x1
α
∗
) =

c1
α

c2
α

(6)

is an optimal cross-training level for α. If there does not exist any x1
α
∗ ∈ [0, x0

γ] that satisfies

(6), then, either P(d̃α ≥ x0
α + δ̃1

αx
0
γ, d̃γ = 0) ≥ c1

α

c2
α

or P(d̃α ≥ x0
α, d̃γ ≤ x0

γ) ≤
c1
α

c2
α

and the

optimal cross-training level for α is x1∗
α = x0

γ or x1∗
α = 0, respectively. The same result holds

for task γ with α and γ interchanged above.

2.2.1 Independent Demands and Deterministic Productivity Factors

Another important question is how the offline cross-training depends on the variability in

demand. One might expect that as the variance of demand increases, it should become more

profitable to delay the cross-training. Proposition 2.5 proves that when δ̃1
α = δ̃2

α w. p. 1, and

under mild conditions on training costs and demand distributions, this is indeed true. The

proof of Proposition 2.5 follows the same lines as in Proposition 2.3 and is omitted here.

Proposition 2.5. Suppose d̃1 and d̃2 are symmetric random variables around zero, i.e.,

P(d̃i < −x) = P(d̃i > x) for all values of x and i = 1, 2. If δ̃1
α = δ̃2

α = δα is deterministically,

2c1
α ≥ c2

α, the demand for different tasks, d̃α and d̃γ, are independent, continuous and can

be written as d̃α = md̃1 + µ1 and d̃γ = nd̃2 + µ2, then the optimal cross-training level x1∗
α is

non-increasing in both m and n.

Obviously, Proposition 2.5 also covers the case with perfect training schemes where δ̃1
α =

δ̃2
α = 1 w. p. 1. However, the situation is quite different when δ̃1

α 6= δ̃2
α. To demonstrate what

may go wrong consider the following counter-example. Suppose that d̃γ = 1 deterministically,
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and P(d̃α = 9) = P(d̃α = 11) = 0.1 and P(d̃α = 10) = 0.8. Also assume that x0
α =

10, x0
γ = 3, c1

α = 3, c2
α = 4 and the unit opportunity cost of lost demand is extremely high as

hα = 10000. The given parameters satisfy the conditions of Proposition 2.5 except suppose

we have δ̃1
α = 1 6= δ̃2

α = 0.5 w. p. 1. Since there is a small probability that the cross-trained

workers will be needed and it is possible to cross-train necessary workers in the second stage,

it is optimal not to cross-train any workers offline in the first stage, i.e., x1∗
α = 0, and if

necessary cross-train two task γ workers online to work on α. Now consider the case where

d̃α follows the distribution with probability mass function P(d̃α = 8) = P(d̃α = 12) = 0.1 and

P(d̃α = 10) = 0.8. If the scenario d̃α = 12 reveals, one γ worker will be working to satisfy γ

demand and even if the remaining two γ workers are cross-trained online their productivity

will be equivalent to one original α worker. Hence, it is not possible to satisfy the demand by

only online cross-training in the second stage . In order not to risk a high opportunity cost

of lost demand, we need to cross-train two workers (x1∗
α = 2). In this example, the fact that

the productivity factors for offline and online cross-training are not equal plays the major

role and forces us to invest more in offline cross-training as the variance increases in order

not to lose achievable capacity.

When online cross-training is not profitable, Proposition 2.2 states a necessary and suf-

ficient condition for offline cross-training levels to be increasing as we improve the training

policies for offline cross-training. When online cross-training is profitable, any improve-

ment we make on our training policies increases both offline and online productivity factors.

Proposition 2.6 shows that if the training schemes are improved in such a way that the

difference between offline and online productivity factors stays the same or decreases, then

offline cross-training will be less attractive.

Proposition 2.6. Consider two systems with deterministic productivity factors, (δ̄1
α, δ̄

2
α) and

(δ̂1
α, δ̂

2
α) such that δ̄iα ≤ δ̂iα for i = 1, 2 and δ̄1

α − δ̄2
α ≥ δ̂1

α − δ̂2
α, and suppose that x̄1∗

α and x̂1∗
α

are the optimal offline cross-training levels respectively. Then, x̄1∗
α ≥ x̂1∗

α .

The case when δ̄1
α − δ̄2

α > δ̂1
α − δ̂2

α implies that if the second stage productivity factor

increases more than the first stage productivity factor, then it is better to postpone the
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cross-training to the second stage by reducing the offline cross-training. Proposition 2.6

concludes that even when both offline and online productivity factors are improved at the

same level, it is better to reduce the offline cross-training. Because in this case, it is possible

to cover more demand by cross-training less and the marginal savings in the opportunity

cost by increasing the offline cross-training is always better when the productivity factors are

low for any given scenario. However, when δ̄1
α− δ̄2

α < δ̂1
α− δ̂2

α, one can exploit the increase in

the differences to reduce opportunity cost substantially by increasing offline cross-training.

2.2.2 The Effect of Variability in the Productivity Factors on Optimal Cross-

Training Levels

Now, we investigate how the variability of the productivity factors affects the total cost.

Propositions 2.7 and 2.8 state that the total cost of cross-training policies which is the sum

of costs of offline cross-training, online cross-training and the opportunity cost of lost de-

mand increases as the variability of the first and second stage productivity factor increase,

respectively. Even though we are explicitly assuming that the second stage cross-training

is profitable in this section, an equivalent of Propositon 2.7 can be proved under the as-

sumptions of Section 2.1. However, as there is no second stage cross-training under the

assumptions of Section 2.1, there is no equivalent version of Proposition 2.8.

Proposition 2.7. Suppose hα ≥ δ̃1
γhγ w. p. 1, the second stage productivity factor is deter-

ministically equal to δ2
α, the first stage productivity factor δ̃1

α is independent of other param-

eters and can be expressed as δ̃1
α = δ1

α + n∆̃, where ∆̃ is a random variable with mean 0 and

n is chosen such that P(δ̃1
α ≤ 1) = 1. Then, the total cost is an increasing function of n.

Now, we analyze how the variability of the second stage productivity factor affects the

total cost of cross-training policies. Proposition 2.8 proves that the total cost is increasing

with respect to the variance of δ̃2
α if we make sure that online cross-training is profitable

for all realizations of the productivity factors. The proof follows the same lines as that of

Propositon 2.7.
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Proposition 2.8. Suppose the first stage productivity factor is deterministically equal to δ1
α

and hα ≥ δ1
γhγ. The second stage productivity factor δ̃2

α is independent of other parameters

and can be expressed as δ̃2
α = δ2

α + n∆̃, where ∆̃ is a random variable with mean 0 and n is

chosen such that P(δ̃2
α ∈ [c2

α/hα, 1]) = 1. Then, the total cost is an increasing function of n.

As the second stage productivity factor only appears in the equations when the on-

line cross-training is profitable, one may be inclined to think that the requirement P(δ̃2
α ∈

[c2
α/hα, 1]) = 1 does not play much of a role. However, if we cannot ensure that the online

cross-training will be profitable after realizing the parameters, then the total cost might

actually decrease as the variability of the second stage productivity factor increases. To un-

derstand why this is possible consider the following example. To concentrate on the effects

of online cross-training parameters assume that offline cross-training is too expensive and

c1
α = 10, c2

α = 2, hα = 5, x0
α = 50 and x0

γ = 80. Also suppose that d̃α = 106, d̃γ = 0 and δ̃1
α = 1

w. p. 1. The second stage productivity factor is random and P(δ̃2
α = 0.3) = P(δ̃2

α = 0.7) = 0.5.

If the second stage productivity factor is high, δ̃2
α = 0.7, then the entire γ workforce is trained

online to work on α. If δ̃2
α = 0.3, then online cross-training is not profitable and all the excess

demand is lost. The expected total cost is 220. However, if P(δ̃2
α = 0.2) = P(δ̃2

α = 0.8) = 0.5,

then the expected total cost is 210. We see that increasing the variance can be perceived

as increasing the productivity factors above the mean and decreasing the values below the

mean. Pushing the lower values of productivity factors down does not change the achievable

capacity as incuring opportunity cost is preferable in any case. However, pushing the higher

values of productivity factors up increases the achievable capacity and significantly reduces

the second stage cost. Hence, the total cost decreases. Section 3 presents a counterexam-

ple where the offline cross-training is suffficiently cheap and the total cost decreases as the

variability of the second stage productivity factor increases.

3 Numerical Experiments

In this section, we numerically analyze how varying different parameters affects cross-training

policies. The problems for each experiment are designed to highlight the caveats for the
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(a) Cross-training and opportunity costs (b) Total cost

Figure 2: Costs with respect to the variability of demand for α when productivity factor is

random

theory in the previous sections. In the examples, we only concentrate on cross-training costs

for task α and due to separability we do not need to specify cost parameters related to task

γ.

3.1 Effects of Demand Variability on Cross-Training Levels When

Productivity Factors are Random

Proposition 2.3 states that the offline cross-training decreases as the variability in demand

increases when the second stage cross-training is not profitable, the first stage productivity

factors are deterministic and costs satisfy some mild conditions. This is in agreement with

the postponement literature. In this section, we provide an example to show the crucial

role played by the deterministic nature of productivity factors. In this example, we have

(x0
α, x

0
γ) = (10, 100), c1

α = 55, hα = 100, P(δ̃1
α = 1) = 0.1 and P(δ̃1

α = 0.6) = 0.9 and

P(δ̃2
α = 0) = 1. Using the notation in Proposition 2.3, we have the expected value of d̃α

µ1 = 25, d̃1 ∼Uniform(−1, 1), i.e., for any given n > 0, d̃α ∼Uniform(25 − n, 25 + n). To

concentrate on the effects of variability of demand α, we assume d̃γ = 0 w. p. 1.

Figure 2(a) shows that when the first stage productivity factor is random, the optimal

offline cross-training first increases as the variability of demand increases up to a certain

threshold and then decreases. The trend in the optimal opportunity cost is the opposite
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(a) δ = 0.6 (b) δ = 0.8

Figure 3: The effect of productivity factor variability on the optimal cross-training levels

and it increases (decreases) as the optimal offline cross-training level decreases (increases).

However, the variability of demand always has an adverse affect on the total cost, and

regardless of the trend in the other costs, the total cost increases as the variability increases.

For 0 < n < 4, P(x0
α + δ̃1

αx
1∗
α < d̃α|δ̃1

α = 0.6) = 1 and P(x0
α + δ̃1

αx
1∗
α < d̃α|δ̃1

α = 1) < 0.5.

Hence, as n increases in this interval the first probability is not affected, but the second

probability increases and one should increase the optimal cross-training level to recover

Equation (2). This behavior is due to not having P(x0
α + δ̃1

αx
1∗
α < d̃α|δ̃1

α = δ) > 0.5 for all

values of δ.

3.2 The Effect of the Variability of the First Stage Productivity

Factors when Second Stage Cross-Training is Profitable

We now investigate how the variability of the first stage productivity factor affects the offline

cross-training levels. In this example, we take x0
α = 0, x0

γ = 100, c1
α = 50, c2

α = 120,hα = 400,

d̃α ∼Uniform(0,100) and d̃γ = 0 w. p. 1. We assume that the first stage productivity factor

for task α is random and P(δ̃1
α = δ − 0.01n) = p and P(δ̃1

α = δ + 0.01n) = 1− p. The second

stage productivity factor is deterministically equal to 0.6. In our experiments, we vary δ, n

and p and obtain the optimal offline cross-training levels.

Figure 3 shows that when the mean of the first stage productivity factor is equal to the

second stage productivity factor, the offline cross-training levels tend to decrease as the vari-
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ability of the first stage productivity factor increases. However, when the mean of the offline

productivity factor is strictly greater than the second stage productivity factor, the optimal

offline cross-training level may increase as the variability of the first stage productivity factor

increases.

3.3 The Change in Cross-Training Costs as Productivity Improves

Proposition 2.6 shows that if the productivity factors are improved while keeping the differ-

ence between the first and the second stage factors constant, one tends to invest less in offline

cross-training. Now, we perform experiments to understand how the optimal second stage

opportunity and total costs respond to the changes in productivity factors. In this example,

we take x0
α = 0, x0

γ = 100, c1
α = 50, c2

α = 70, h = 200, d̃α ∼Uniform(0,100) and d̃γ = 0 w. p.

1. We also assume that the productivity factors are deterministic and satisfy δ2
α = δ1

α −∆,

and perform experiments by changing δ1
α and ∆.

Figure 4(a) confirms the result of Proposition 2.6 and Figures 4(c) and 4(d) are in accor-

dance with our expectations as both opportunity and total costs decrease as the productivity

factors improve. Figure 4(b) is interesting and shows that if the difference between produc-

tivity factors is relatively small, the second stage cross-training cost first increases and then

decreases. However, when the difference between the productivity factors is relatively large,

the second stage cost increases as the productivity factors are improved.

3.4 Capacity Constraints on Online Cross-Training

Our model assumes that all the capacity can be cross-trained if needed. In many real

world situations, the resources are limited and it is very difficult to cross-train workers after

the demand is revealed and when the workers are already trying to satisfy the observed

demand. This might impose a capacity on the number of workers that can be cross-trained

online. In this section, we investigate how such a capacity constraint affects the optimal

cross-training levels and related costs. We take x0
α = 0, x0

γ = 100, c1
α = 50, c2

α = 70, h =

200, d̃α ∼Uniform(0,100) and d̃γ = 0, δ̃1
α = 0.9, δ̃2

γ = 0.7 w. p. 1. We denote the online

cross-training capacity as Kα.
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(a) First stage cost (b) Second stage cost

(c) Opportunity cost (d) Total cost

Figure 4: The sensitivity of various costs to changes in productivity factors
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(a) First stage cost (b) Second stage cost

(c) Opportunity cost (d) Total cost

Figure 5: The sensitivity of various costs to online cross-training capacity
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Figure 6: The sum of optimal cross-training and online cross-training capacity vs. online

cross-training capacity.

Figure 5 shows that the optimal offline cross-training cost first decreases slowly up to a

certain point and then decreases rapidly and after a certain threshold it stays constant. The

behavior of the expected online cross-training cost is exactly the opposite. More interestingly,

we see that the opportunity cost decreases as the offline cross-training cost decreases slowly

and then increases as the offline cross-training cost decreases rapidly. We also see that the

total cost is a convex function of the online cross-training capacity.

To understand this behavior, we plot the sum of optimal offline cross-training and online

cross-training capacity versus the online cross-training capacity in Figure 6. We see that the

offline cross-training cost decreases slowly when the sum is less than, x0
γ, the total number

of workers that can be cross-trained. When this is the case, increasing the capacity yields a

reduction in the opportunity cost. As the online cross-training capacity is increased we reach

a situation where the sum under consideration is equal to x0
γ and the optimal offline cross-

training level is still greater than the optimal level without the capacity constraint. When

this is the case, an increase in the online cross-training capacity constraint will be exactly

equal to the decrease in the optimal offline cross-training level, which implies a decrease

in the achievable capacity and hence, the opportunity cost increases. When the optimal

offline cross-training level hits the optimal level without capacity constraints, the capacity

constraint does not have any effect on costs as all the remaining workers can be cross-trained

online as needed.
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4 Concluding Remarks

In this work, we have studied the effects of imperfect training schemes on the cross-training

policies. We have considered a two-stage model, where the workers can be cross-trained

offline in the first stage, before the demand is realized, and online in the second stage as the

demand is revealed. The cross-trained workers are assumed to be less productive than the

workers who are originally trained to do a specific task and the productivity of the cross-

trained workers may depend on when they are cross-trained (offline or online). We have

defined the achievable capacity as the maximum demand that can be satisfied from a task

after all random parameters are realized and all the idle workers from the other task are

cross-trained. We have shown that when the first stage and second stage training schemes

are equally effective, the achievable capacity does not depend on when the training is done

and the cross-training decisions are independent of the opportunity cost of lost demand.

However when the offline and online training policies differ in their effectiveness, deferring

cross-training implies a significant decrease in the achievable capacity and hence, the decision

maker needs to consider a three-way trade off between cross-training costs of offline and online

schemes and opportunity cost of lost demand.

We have also analyzed how the variability of demand and productivity factors affect

our cross-training decisions. We have shown under some mild conditions that when the

productivity levels of workers trained at different times are consistent, we tend to postopone

cross-training as the demand or productivity factors become more variable. However, when

the workers cross-trained online are less productive, we show via counter-examples that we

may wish to increase increase offline cross-training as variability increases to avoid losing

precious achievable capacity.

The insights provided in this paper can be used to devise effective solution methods to

address the case with more than three tasks. When there are three or more tasks, the cross-

training problem is no longer separable and the analysis and solution methodology need to

be modified. We have also developed a two-stage stochastic integer program to aid decision

makers to design cross-training policies in the presence of multiple tasks. We do not present
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this model in this paper to keep the focus on managerial insights. The integer programming

model is available from the authors upon request.
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A Proofs of Propositions in Section 2

A.1 Proof of Proposion 2.1

Proof. We derive the first order optimality conditions by setting the derivatives equal to 0.

Since the bounds on productivity factors δ̃1 and δ̃2 do not depend on the decision variables,

using Leibniz rule

∂E[E[g(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2]]

∂x1
α

= E

[
∂E[g(x1

α, x
1
γ, ξ̃)|δ̃1, δ̃2]

∂x1
α

]
= c1

α+E

[
6∑
i=1

∂E[v(x1
α, x

1
γ, ξ̃); Ωi|δ̃1, δ̃2]

∂x1
α

]
.

The second stage cost function v(x1
α, x

1
γ, ξ̃) is constant with respect to x1

α on Ω4,Ω5 and Ω6

and the bounds of these regions do not depend on x1
α. Also on Ω1, the second stage cost is

uniformly equal to 0. Hence, the derivatives of expectation over these regions are all equal

to 0. To simplify the notation, we use f(d̃α, d̃γ) to denote the density function of demand

vector when productivity factors are given. The derivative of expectation over Ω2 is

∂E[v(x1
α, x

1
γ, ξ̃); Ω2|δ̃1, δ̃2]

∂x1
α

= −hαδ̃1
α

∫ ∞
x0α+δ̃1αx

1
α

∫ x0γ−x1α

0

f(dα, dγ)ddγddα

−
∫ ∞
x0α+δ̃1αx

1
α

hα(dα − x0
α − δ̃1

αx
1
α)f(dα, x

0
γ − x1

α)ddα

Similarly, we can calculate the derivative of expectation over Ω3

∂E[v(x1
α, x

1
γ, ξ̃); Ω3|δ̃1, δ̃2]

∂x1
α

=

∫ ∞
x0α+δ̃1αx

1
α

hα(dα − x0
α − δ̃1

αx
1
α)f(dα, x

0
γ − x1

α)ddα

Canceling the boundary terms, we get

∂E[E[g(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2]]

∂x1
α

= c1
α − hαE[δ̃1

α;x0
α + δ̃1

αx
1
α ≤ dα, x

0
γ − x1

α > dγ]. (7)
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The partial derivative with respect to x1
γ can be found similarly. Setting these terms to

equal 0, we get equation (2). Now, we need to show that the (x1
α, x

1
γ) pairs that solve these

equations, actually minimizes the expected cost by showing that expected cost function is

convex in decision variables. Equation (7) suggests that the cross-partials are 0 and the

Hessian matrix is positive semidefinite if the second partial derivatives with respect to x1
α

and x1
γ are both nonnegative.

∂2E[E[g(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2]]

(∂x1
α)2

= −hα
∂E[δ̃1

α

∫ ∞
x0α+δ̃1αx

1
α

∫ x0γ−x1α

0

f(dα, dγ)ddγddα]

∂x1
α

.

Observe that if x1
α < x̄1

α, then

{(d̃α, d̃γ) : x0
α+ δ̃1

αx̄
1
α < d̃α, 0 ≤ d̃γ ≤ x0

γ−x̄1
α} ⊆ {(d̃α, d̃γ) : x0

α+ δ̃1
αx

1
α < d̃α, 0 ≤ d̃γ ≤ x0

γ−x1
α}.

Using this relation and the fact that the density function and the productivity factor δ̃1
α are

always positive, we get

lim
∆→0

E[δ̃0
α(
∫∞
x0α+δ̃1α(x1α+∆)

∫ x0γ−(x1α+∆)

0
f(dα, dγ)ddγddα −

∫∞
x0α+δ̃1αx

1
α

∫ x0γ−x1α
0

f(dα, dγ)ddγddα)]

∆
≤ 0.

Plugging this back into the second derivative and repeating the same procedure for x1
γ, we

conclude that the Hessian is positive semidefinite and the expected cost function is convex.

This also implies that if there is no solution satisfying 2 in [0, x0
γ] the optimal solution is

either 0 or x0
γ as suggested in cases 2 and 3.

Since the distribution is assumed to be continuous, the derivative in (7) is continuous

in x1
α. If the expectation takes both negative and positive values over x1

α ∈ [0, x0
γ], then

intermediate value theorem ensures us that (2) will be satisfied for some x1∗
α . Hence, the

three cases stated in the proposition cover all possible situations.

A.2 Proof of Corollary 2.2

Proof. Using the fact that δ̃1
α ≥ 0 w. p. 1, we get

E[δ̃1
α;x0

α + δ̃1
αx

1
α
∗ ≤ d̃α, x

0
γ − x1

α
∗
> d̃γ] ≤ E[δ̃1

α] ≤ c1
α

hα
.
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Using the third part of Proposition 2.1 the result follows. To prove the second and third

parts of the corollary, we use the same methodology realizing δ̃1
α ≤ 1 w. p. 1.

A.3 Proof of Proposition 2.2

Proof. The optimal offline cross-training level x1∗
α is a function of δ1

α. Taking the implicit

derivative of (2) with respect to δ1
α, we get

0 = P(x0
α + δ1

αx
1∗
α ≤ d̃α)P(x0

γ − x1∗
α > d̃γ) + δ1

α

∂P(x0
γ − x1∗

α > d̃γ)

∂δ1
α

P(x0
γ − x1∗

α > d̃γ)

+δ1
αP(x0

α + δ1
αx

1∗
α ≤ d̃α)

∂P(x0
γ − x1∗

α > d̃γ)

∂δ1
α

= P(x0
γ − x1∗

α > d̃γ)
(
P(x0

α + δ1
αx

1∗
α ≤ d̃α)− δ1

αfd̃α(x0
α + δ1

αx
1∗
α )x1∗

α

)
−δ1

α

∂x1∗
α

∂δ1
α

(
P(x0

γ − x1∗
α > d̃γ)δ

1
αfd̃α(x0

α + δ1
αx

1∗
α ) + P(x0

α + δ1
αx

1∗
α ≤ d̃α)fd̃γ (x0

γ − x1∗
α )
)
,

which implies that ∂x1∗α
∂δ1α
≥ 0 if and only if P(x0

α + δ1
αx

1∗
α ≤ d̃α) ≥ δ1

αfd̃α(x0
α + δ1

αx
1∗
α )x1∗

α .

A.4 Proof of Proposition 2.3

Proof. Using equation (3) and independence, we get

P
(
x0
α + δ1

αx
1
α
∗ − µ1

m
≤ d̃1

)
P

(
x0
γ − x1

α
∗ − µ2

n
> d̃2

)
=

c1
α

δα1 hα
≥ 1

2
.

Now, we can infer that the probabilities on the left-hand side of the inequality should be

greater than 0.5. Then, using the fact that d̃1 and d̃2 are symmetric random variables

x0
α + δ1

αx
1
α
∗ − µ1

m
≤ 0 and

x0
γ − x1

α
∗ − µ2

n
≥ 0. (8)

The left-hand side of equation (3) decreases as m increases. Hence, if statement 1 of Corol-

lary 2.1 is true, we need to decrease x1∗
α to recover the equality. If statement 2 is true, we

may either wish to stay at x0
γ or we may wish to decrease x1

α. For the third statement, we

do not need to take any action. Hence, this proves that the optimal cross-training level is

non-increasing in m. Similar arguments show that x1∗
α is non-increasing in n.
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A.5 Proof of Proposition 2.4

Proof. Similar to the proof of Proposition 2.1 we need to derive the first and second or-

der optimality conditions. On regions Ω1,Ω3,Ω4 and Ω6, the structure is the same as in

Proposition 2.1 and the problem is separable in cross-training levels x1
α and x1

γ.

The derivative of the second-stage cost function over Ωa
2 and Ωb

2can be calculated as:

∂E[v(x1
α, x

1
γ, ξ̃); Ωa

2|δ̃1, δ̃2]

∂x1
α

= −
∫ x0γ−x1α

0

∫ x0α+δ̃1αx
1
α+δ̃2α(x0γ−x1α−d̃γ)

x0α+δ̃1αx
1
α

c2
αδ̃

1
α

δ̃2
α

f(d̃α, d̃γ)dd̃αdd̃γ

+

∫ x0γ−x1α

0

(δ̃1
α − δ̃2

α)c2
α(x0

γ − x1
α − d̃γ)f(x0

α + δ̃1
αx

1
α + δ̃2

α(x0
γ − x1

α − d̃γ), d̃γ)dd̃γ,

∂E[v(x1
α, x

1
γ, ξ̃); Ωb

2|δ̃1, δ̃2]

∂x1
α

= −
∫ x0γ−x1α

0

∫ ∞
x0α+δ̃1αx

1
α+δ̃2α(x0γ−x1α−d̃γ)

(c2
α + hα(δ̃1

α − δ̃2
α))f(d̃α, d̃γ)dd̃αdd̃γ

−
∫ x0γ−x1α

0

(δ̃1
α − δ̃2

α)c2
α(x0

γ − x1
α − d̃γ)f(x0

α + δ̃1
αx

1
α + δ̃2

α(x0
γ − x1

α − d̃γ), d̃γ)dd̃γ

−
∫ ∞
x0α+δ̃1αx

1
α

hα(d̃α − (x0
α + δ̃1

αx
1
α))f(d̃α, x

0
γ − x1

α)dd̃α.

Aggregating all the results and cancelling the boundary terms as appropriate, we obtain

∂E[g(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2]

∂x1
α

= c1
α −

∫ x0γ−x1α

0

∫ x0α+δ̃1αx
1
α+δ̃2α(x0γ−x1α−d̃γ)

x0α+δ̃1αx
1
α

c2
αδ̃

1
α

δ̃2
α

f(d̃α, d̃γ)dd̃αdd̃γ

−
∫ x0γ−x1α

0

∫ ∞
x0α+δ̃1αx

1
α+δ̃2α(x0γ−x1α−d̃γ)

(c2
α + hα(δ̃1

α − δ̃2
α))f(d̃α, d̃γ)dd̃αdd̃γ.

(9)

Setting these terms to equal 0, we get equation (5). Now, we need to show that the

(x1
α, x

1
γ) pairs that solve these equations are optimal by checking the Hessian matrix. We

do not need to consider the cross-partials and the Hessian matrix is positive semidefinite if

the second partial derivatives with respect to x1
α and x1

γ are both nonnegative. We take the

second derivative with respect to x1
α and get

∂2E[g(x1
α, x

1
γ, ξ̃)|δ̃1, δ̃2]

(∂x1
α)2

=
c2
α(δ̃1

α)2

δ̃2
α

∫ x0γ−x1α

0

f(x0
α + δ̃1

αx
1
α, d̃γ)dd̃γ

−(δ̃1
α − δ̃2

α)

(
c2
αδ̃

1
α

δ̃2
α

− c2
α − hα(δ̃1

α − δ̃2
α)

)∫ x0γ−x1α

0

f(x0
α − δ̃1

αx
1
α + δ̃2

α(x0
γ − x1

α − d̃γ), d̃γ)dd̃γ

+
(
c2
α + hα(δ̃1

α − δ̃2
α)
) ∫∞

x0α+δ̃1x1α
f(d̃α, x

0
γ − x1

α)dd̃α.

On the right-hand side, the first term is positive and the assumption δ̃1
α > δ̃2

α ensures that the

third term is positive w. p. 1. The positivity of the second term follows from both δ̃1
α > δ̃2

α
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and c2
α < δ̃2

αhα. Hence the objective function is convex and the solution which satisfies (9)

minimizes the total cost.

When the expectation satisfies the inequality for the second case, the derivative of the

cost function is negative for any value in [0, x0
γ]. Hence, to minimize the cost, we need to set

x1∗
α to the maximum possible value. The third case can be proven similarly.

A.6 Proof of Propositon 2.6

Proof. First to simplify the notation we define

P̄1(y) = P(x0
α + δ̄1

αy ≤ d̃α ≤ x0
α + δ̄1

αy + δ̄2
α(x0

γ − y − d̃γ), d̃γ ≤ x0
γ − y),

P̄2(y) = P(d̃α > x0
α + δ̄1

αy + δ̄2
α(x0

γ − y − d̃γ), d̃γ ≤ x0
γ − y)

P̄ (y) = P̄1(y) + P̄2(y) = P(x0
α + δ̄1

αy ≤ d̃α, d̃γ ≤ x0
γ − y),

C̄(y) =
c2
αδ̄

1
α

δ̄2
α

P̄1(y) + (c2
α + hα(δ̄1

α − δ̄2
α))P̄2(y).

Similarly, define P̂1(y), P̂2(y), P̂ (y) and Ĉ(y) by interchanging δ̄ with δ̂. First we prove that

C̄(y) and Ĉ(y) are non-increasing functions of y. Let y1 < y2 and define ∆1 = P(Ωa
2(y1) \

Ωa
2(y2)) and ∆2 = P(Ωa

2(y2) \ Ωa
2(y1)) where “\” is the set difference operator. Then,

C̄(y2)− C̄(y1) =
c2
αδ̄

1
α

δ̄2
α

(∆2 −∆1)− (c2
α + hα(δ̄1

α − δ̄2
α))∆2 ≤

(
(c2
α − hαδ̄2

α)(δ̄1
α − δ̄2

α)

δ̄2
α

)
∆2 ≤ 0,

where the last inequality follows from the assumption that online cross-training is preferable

over incurring opportunity cost.

The condition δ̄1
α − δ̄2

α ≥ δ̂1
α − δ̂2

α implies that δ̄1
α/δ̄

2
α ≥ δ̂1

α/δ̂
2
α, and c2

α < δ̄2hα implies that

c2
αδ̄

1
α/δ̄

2
α < c2

α + hα(δ̄1
α − δ̄2

α). Then, Equation (9) indicates

Ĉ(x̄1∗
α )− c1

α = Ĉ(x̄1∗
α )− C̄(x̄1∗

α )

≤ c2
αδ̄

1
α

δ̄2
α

(P̂1(x̄1∗
α )− P̄1(x̄1∗

α )) + (c2
α + hα(δ̄1

α − δ̄2
α))(P̂2(x̄1∗

α ))− P̄2(x̄1∗
α )))

≤ (c2
α + hα(δ̄1

α − δ̄2
α))(P̂ (x̄1∗

α )− P̄ (x̄1∗
α )) ≤ 0

Then, x̂1∗
α ≤ x̄1∗

α follows as Ĉ(y) is non-increasing.
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A.7 Proof of Proposition 2.7

Proof. As the problem is separable, the cost related to the demand for task γ is a constant

with respect to δ̃1
α and for ease of notation we denote it as C. If online cross-training is not

profitable , c2
α > hαδ

2
α, we can write the second stage cost function as follows:

v(x1, ξ) = hα max{0, d̃α − x0
α − δ̃1

αx
1
α, d̃

1
α − x0

α − δ̃1
α(x0

γ − d̃γ)}+ C.

Similarly, if online cross-training is profitable, c2
α ≤ hαδ

2
α,

v(x1, ξ) = max

{
0, c2

α

dα − x0
α − δ1

αx
1
α

δ2
α

,

c2
α(x0

γ − x1
α − dγ) + hα(dα − xα − δ1

αx
1
α − δ2

α(x0
γ − x1

α − dγ))
}

+ C.

Both functions are convex with respect to δ1
α. Then, the function v(x1, n) = E(v(x1, d, δ1

α +

n∆, δ2
α)) is convex with respect to n. Then, using Jensen’s inequality for any n > 0 v(x1, n) ≥

v(x1, 0). If 0 < n1 < n2, then using convexity

v(x1, n1) ≤ n2 − n1

n2

v(x1, 0) +
n1

n2

v(x1, n2) ≤ n2 − n1

n2

v(x1, n1) +
n1

n2

v(x1, n2).

Manipulating, these equations we conclude that v(x1, n2) ≥ v(x1, n1) for any x1. Let x1∗ and

x1∗∗ be the optimal offline cross-training levels for n1 and n2 respectively. Then,

v(x1∗, n1) ≤ v(x1∗∗, n1) ≤ v(x1∗∗, n2)

which concludes the proof.
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