

THE UNIVERSITY of EDINBURGH

Edinburgh Research Explorer

Pachycephalosaurs (Dinosauria: Ornithischia) from the Upper Cretaceous (upper Campanian) of New Mexico: A reassessment of Stegoceras novomexicanum Cretaceous Research

Citation for published version:

Williamson, TE & Brusatte, S 2016, 'Pachycephalosaurs (Dinosauria: Ornithischia) from the Upper Cretaceous (upper Campanian) of New Mexico: A reassessment of Stegoceras novomexicanum Cretaceous Research' Cretaceous Research. DOI: 10.1016/j.cretres.2016.01.012

Digital Object Identifier (DOI):

10.1016/j.cretres.2016.01.012

Link:

Link to publication record in Edinburgh Research Explorer

Document Version: Peer reviewed version

Published In: Cretaceous Research

Publisher Rights Statement: Copyright © 2016 Elsevier Ltd. All rights reserved.

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The University of Édinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

1	Pachycephalosaurs (Dinosauria: Ornithischia) from the Upper Cretaceous (upper
2	Campanian) of New Mexico: A reassessment of 'Stegoceras novomexicanum'
3	
4	Thomas E. Williamson ^{1,*} , Stephen L. Brusatte ² ,
5	¹ Corresponding author: New Mexico Museum of Natural History and Science, 1801 Mountain
6	Road, NW, Albuquerque, NM 87104, USA
7	e-mail: thomas.williamson@state.nm.us
8	² School of GeoSciences, University of Edinburgh, Grant Institute, James Hutton Road,
9	Edinburgh EH9 3FE, Scotland, UK; Stephen.Brusatte@ed.ac.uk
10	
11	ABSTRACT
12	Pachycephalosaurs, a group of ornithischian dinosaurs with distinctive cranial ornamentation and
13	skull domes, underwent dramatic changes in cranial morphology during ontogeny. This has
14	caused debate about whether some specimens belong to juveniles or adults, which impacts
15	studies of pachycephalosaur phylogeny and evolution. One such debate concerns a small skull
16	roof specimen from the Campanian (Upper Cretaceous) of New Mexico, NMMNH P-33898,
17	which was originally described as an indeterminate juvenile but later regarded as a mature adult
18	and erected as the holotype of a new small-bodied species, Stegoceras novomexicanum. We
19	restudied NMMNH P-33898 using computed tomography scanning, morphometric and
20	phylogenetic analyses, and comparisons to growth series of other pachycephalosaurs (Stegoceras
21	validum, Pachycephalosaurus wyomingensis). We conclude that two purported paratype
22	specimens of Stegoceras novomexicanum cannot be referred to the same taxon as the holotype,
23	that the holotype and controversial paratypes all belong to immature specimens and not aberrant

- 24 small-bodied adults, but that current evidence cannot clearly determine whether NMMNH P-
- 25 33898 is a juvenile belonging to its own diagnostic species (*S. novomexicanum*) or is a juvenile
- 26 of Stegoceras validum, Sphaerotholus goodwini, or another known taxon. We review the
- 27 pachycephalosaur record of New Mexico and demonstrate that pachycephalosaurs were
- 28 important components of dinosaur faunas in the southern part of Western North America during
- 29 the ~15 million years before the end-Cretaceous extinction, just as they were in roughly
- 30 contemporaneous northern localities.
- 31
- 32 KEYWORDS
- 33 ontogeny, juvenile, frontoparietal, morphometric analysis, phylogeny, biogeography
- 34
- 35

36 1. Introduction

37 Pachycephalosaurs are a highly distinctive group of bipedal ornithischian dinosaurs that 38 flourished during the latest Cretaceous (Maryańska et al., 2004). They are immediately 39 recognized by their thickened skull roofs, which in some taxa are ornamented with nodes and 40 horns and greatly expanded to form a rounded dome, which may have been used for display and 41 intraspecific combat (Goodwin & Horner, 2004; Peterson et al., 2013; Snively & Theodor, 2011). 42 Genera and species of pachycephalosaurs are primarily distinguished by differences in skull roof 43 morphology. However, this is problematic because it is now known that pachycephalosaurs 44 underwent extreme changes in cranial morphology during ontogeny, particularly in regards to the 45 size, shape, fusion, and ornamentation of the skull dome (Horner & Goodwin, 2009; Schott & 46 Evans, 2012; Schott et al., 2011; Williamson & Carr, 2002b). This has, in some cases, caused 47 considerable disagreement about whether particular specimens are juveniles or adults, and what 48 features can confidently diagnose species that undergo such radical changes during growth. 49 A prime example of such a disagreement concerns the interpretation and identification of 50 a small pachycephalosaur specimen from the Campanian (Upper Cretaceous) of New Mexico. 51 The specimen, NMMNH P-33898, consists of a portion of the skull roof, including the 52 frontoparietal dome. When first described, the specimen was regarded as an immature individual 53 of an indeterminate pachycephalosaur species, based on its small size and retention of classic 54 juvenile pachycephalosaur features such as the relatively poor development of a dome, large size 55 of the parietosquamosal shelf, and large size of the supratemporal fenestrae (Evans et al., 2011; Williamson & Carr, 2002a), traits that are plesiomorphic within Marginocephalia (Butler et al., 56 57 2011). It was later reinterpreted as a juvenile individual of the well-known taxon Stegoceras valdium (Sullivan & Lucas, 2006). Most recently, Jasinski & Sullivan (2011) came to a radically 58

59	different interpretation, concluding that NMMNH P-33898 was a mature or near-mature
60	individual. They established it as the holotype of a new small-bodied species, Stegoceras
61	novomexicanum, to which they also referred two fragmentary paratype specimens from New
62	Mexico (SMP VP-2555 and VP-2790). Resolving whether Stegoceras novomexicanum is valid or
63	not is important, as this species has been included in phylogenetic analyses used to study
64	pachycephalosaur evolution (e.g., Evans et al., 2013a; Watabe et al., 2011) and the number of
65	pachycephalosaur taxa in latest Cretaceous North America has bearing on measures of taxonomic
66	and morphological diversity used to study dinosaur diversification patterns during the run-up to
67	their extinction at the end of the Cretaceous (e.g., Barrett et al., 2009; Brusatte et al., 2015;
68	Brusatte et al., 2012; Campione & Evans, 2011; Upchurch et al., 2011).
69	Here we re-evaluate the maturity, taxonomic validity, and identification of Stegoceras
70	novomexicanum, based on a restudy of the holotype specimen (NMMNH P-33898). This re-
71	study includes a new high-resolution computed tomography (HRCT) scan, morphometric
72	analyses of measurement data, a revised phylogenetic analysis, and comparison to recent work
73	on the ontogeny of other pachycephalosaurs, including Stegoceras validum and
74	Pachycephalosaurus wyomingensis (Horner & Goodwin, 2009; Schott et al., 2011). We come to
75	the conclusion that the S. novomexicanum paratypes cannot be confidently referred to the same
76	taxon as the holotype, that most or all purported specimens of S. novomexicanum belong to
77	immature individuals, that the original diagnosis of S. novomexicanum is problematic, and that
78	current evidence cannot conclusively determine whether the holotype belongs to its own valid
79	species-level taxon (S. novomexicanum) or is a juvenile of Stegoceras validum, Sphaerotholus
80	goodwini, or another known taxon.

Anatomical abbreviations: aso, contact surface for anterior supraorbital; f, frontal; f-f,

82	frontal-frontal suture; f-p, frontoparietal suture; H:aso/pso, height of the sutural surface at the
83	contact of the prefrontal and anterior supraorbital; H:n/n, height of the sutural surface at the
84	contact of the nasals; H:prf/aso, height of the sutural surface at the contact of the prefrontal and
85	anterior supraorbital; H:pso/po, height of the sutural surface at the contact of the posterior
86	supraorbital and postorbital; L:aso, length of the anterior supraorbital suture; L:fp, length of the
87	frontoparietal; n, contact surface for nasal; L:po, length of the postorbital suture; L:pso, length of
88	the posterior supraorbital suture; p, parietal; pf, contact surface for prefrontal; pso, contact
89	surface for posterior supraorbital; sq, contact surface for squamosal; T:fp, thickness of the
90	frontoparietal; W:f/p, width of the frontoparietal dome at the contact between the frontal and
91	parietal; W:prf/aso, width between the prefrontal and anterior supraorbital sutural contacts;
92	W:aso/pso, width between anterior and posterior supraorbital sutural contacts; W:pso/po, width
93	between the posterior supraorbital and postorbital sutural contacts; W:sq/sq, width between the
94	squamosal suture just ventral to the node row; Z-1 to Z-3, histological Zones I to III.
95	Institutional abbreviations: AMNH, American Museum of Natural History, New York;
96	CMN, Canadian Museum of Nature, Ottawa; LACM, Los Angeles County Museum, Los
97	Angeles; NMC, National Museum of Canada, Ottawa; NMMNH, New Mexico Museum of
98	Natural History and Science, Albuquerque; ROM, Royal Ontario Museum, Toronto; SMP, State
99	Museum of Pennsylvania, Harrisburg; TMP, Royal Tyrrell Museum of Paleontology, Drumheller;
100	UALVP, University of Alberta Laboratory of Vertebrate Paleontology, Edmonton, Alberta;
101	UCMZ, Museum of Zoology, University of Calgary, Calgary; UWBM, University of Washington
102	Burke Museum, Seattle.
103	

104 2. Historical review of Stegoceras novomexicanum

110 Figure 1. Surface model constructed from high-resolution CT (HRCT) images using Avizo v. 8.1

111	visualization software and selected CT slices of the frontoparietal NMMNH P-33898, holotype of
112	Stegoceras novomexicanum. A, right lateral view (reversed); B, dorsal view; C, ventral view; D,
113	posterior view; E, anterior view; F, sagittal section right of midline (reversed); G, horizontal
114	section; H, coronal section at the contact of the posterior supraorbital and postorbital suture.

115 P-33898 has been erroneously listed under a variety of specimen numbers including NMMNH P-33983 [e.g., Lucas & Sullivan, 2006, Jasinski & Sullivan, 2011, Watabe et al., 2011] and 116 117 NMMNH P-33893 [Lucas & Sullivan, 2006]). Williamson & Carr (2002a) regarded it as an 118 immature pachycephalosaur based on its small size and retention of several characters that are 119 present in the early ontogenetic stages of derived pachycephalosaurs, including large and open 120 supratemporal fenestrae and a flattened posteromedial extension of the parietals, which indicates 121 a prominent parietosquamosal shelf. These features are present in juveniles of Stegoceras 122 validum and Pachycephalosaurus wyomingensis (Horner & Goodwin, 2009; Schott et al., 2011; 123 Williamson & Carr, 2002b), taxa that develop high-domed skulls with small or closed 124 supratemporal fenestrae and a reduced parietosquamosal shelf as adults. Because of its juvenile 125 status and its lack of other portions of the skull that are highly diagnostic in pachycephalosaurs (particularly the squamosals), Williamson & Carr (2002a) could not confidently identify the 126 127 specimen as belonging to a particular pachycephalosaur species. They tentatively suggested that 128 it may be a juvenile representative of a new taxon from the Kirtland Formation of New Mexico. 129 which they later named Sphaerotholus goodwini (Williamson & Carr 2002b), but they could not 130 be certain. Therefore, the specimen was regarded as Pachycephalosauridae indet. 131 The specimen was later reexamined by Sullivan & Lucas (2006), who came to a different

conclusion. They accepted that the specimen belonged to a juvenile, but concluded that it could

132

134	the parietals (a pronounced parietosquamosal shelf) between the large and open supratemporal
135	fenestrae, as is found in specimens interpreted to be subadult individuals of Stegoceras validum
136	(Goodwin et al., 1998; Schott et al., 2011; Sullivan, 2003). S. validum is one of the best known
137	pachycephalosaur taxa, as it is represented by numerous individuals (mostly from the Campanian
138	of Alberta, Canada) that have allowed reconstruction of a growth series (Schott & Evans, 2012;
139	Schott et al., 2011). However, it is now understood that the pronounced parietosquamosal shelf
140	and large supratemporal fenestrae are general features of pachycephalosaur juveniles, not
141	restricted to juveniles of S. validum (e.g., Horner & Goodwin, 2009; Schott & Evans, 2012;
142	Schott et al., 2011; Williamson & Carr, 2002b).
143	More recently, Jasinski & Sullivan (2011) came to a radically different interpretation of
144	NMMNH P-33898. Based in part on comparisons to two new fragmentary pacycephalosaur
145	specimens from New Mexico (SMP VP-2555 and VP-2790), they concluded that NMMNH P-
146	33898 was a "near fully-grown" individual (Jasinski & Sullivan, 2011:210). This determination
147	was not based on study of NMMNH P-33898 itself, but rather on the similarity of the specimen
148	to the two new fossils, which Jasinski & Sullivan (2011) argued were mature or near-mature
149	based on: 1) the smoothness of the frontoparietal dome (in SMP VP-2555); 2) the interpretation
150	of a 'capping histological layer' of bone on the top of the dome suggesting the specimens had
151	finished growing (in SMP VP-2555 and VP-2790); and 3) partial fusion of the frontals on the
152	midline and the frontals and parietals posteriorly (in SMP VP-2555). Because these specimens
153	were identified as adults, but were much smaller than other pachycephalosaur adults (e.g., those
154	of Stegoceras validum), Jasinski & Sullivan (2011) concluded that they must represent a new
155	species of small-bodied pachycephalosaur. They named this species Stegoceras novomexicanum,
156	and erected NMMNH P-33898 as the holotype and SMP VP-2555 and VP-2790 as paratypes.

157	In erecting Stegoceras novomexicanum as a new taxon, Jasinski & Sullivan (2011:202)
158	provided a diagnosis that differentiated it only from Stegoceras validum. The following
159	combination of features was held to distinguish Stegoceras novomexicanum from Stegoceras
160	validum: "posteromedial extension of the parietal reduced and sub-rectangular; squamosal
161	sutural surface contacts of the posteromedial extension of the parietal roughly parallel;
162	supratemporal fenestrae more medial and enlarged; gracile and small adult size." The rationale
163	for referring the two paratype specimens (SMP VP-2555 and VP-2790) to the same new taxon as
164	the holotype (NMMNH P-33898) was only briefly articulated, and was based on overall
165	similarity instead of possession of explicit synapomorphies.
166	Jasinski & Sullivan's (2011) arguments that Stegoceras novomexicanum is a valid taxon
167	hinge on two things: 1) that the two referred specimens belong to the same diagnosable species
168	as the holotype (NMMNH P-33898), as it was the referred specimens that were argued to belong
169	to mature or near-mature adults; 2) that these specimens, particularly the holotype, are fully
170	grown or nearly fully grown, and not juveniles.
171	
172	3. Methods
173	We provide three new lines of evidence that help to interpret the maturity and taxonomic
174	identity of the holotype of Stegoceras novomexicanum (NMMNH P-33898).
175	First, we subjected the holotype specimen of Stegoceras novomexicanum', NMMNH P-
176	33898, to a high-resolution computerized tomographic (HRCT) scan at the University of Texas
177	(Austin) High-Resolution X-ray Computed Tomography Facility. The following are the
178	parameters of the scan: NSI scanner. Feinfocus source, high power, 220 kV, 0.28 mA, one brass
179	filter, Perkin Elmer detector, 0.5 pF gain, 1 fps (999.911 ms integration time), no binning, no flip,

180	source to object 128 mm, source to detector 1000 mm, continuous CT scan, no frames averaged,	
181	0 skip frames, 1800 projections, 8 gain calibrations, 5 mm calibration phantom, data range [-4,	
182	52] (rescaled from NSI default), beam-hardening correction = 0.15 . Voxel size = 0.0405 mm.	
183	Total slices = 1847. The CT scan slices were then visualized and rendered into a 3D isosurface	
184	model in Avizo v. 8.1 data visualization software.	
185	Second, we added NMMNH P-33898 to two morphometric datasets: one presented by	
186	Evans et al. (2013a), which includes 15 other pachycephalosaur specimens scored for several	
187	morphometric measurements of the frontoparietal, and another presented by Mallon et al. (2015),	
188	which includes 39 other pachycephalosaur specimens scored for four standard measurements	
189	relating to the dimensions of the postorbital sutural surfaces. The New Mexico taxon	
190	Sphaerotholus goodwini was added to the Mallon et al. (2015) dataset, and its measurements	
191	were revised in the Evans et al. (2013a) dataset, based on restudy of the original specimen. We	
192	measured the holotype specimen and obtained nearly identical values as Evans et al. (2013a),	
193	with the exception of two measurements; we found a different value for the H:n/n (height of the	
194	sutural contact at the contact of the nasals) 23.7 mm (estimated) versus 34.6 mm (Evans et al.,	
195	2011). This surface is damaged near the dorsal surface of the frontals and is incomplete (as	
196	indicated by italics, Table 1). Evans et al. (2011) did not indicate that their value is an estimate	
197	and we find that the Evans et al. (2011) measurement of this contact is too high, possibly because	
198	they misidentified the base of the n/n contact. They may have included a portion of the	
199	mineralized olfactory turbinates preserved in this specimen (see Bourke et al., 2014) in their	
200	measurement. There is also a small discrepancy in the values of L:pso (length of the contact for	
201	the posterior supraorbital; 39.5 mm versus 34.8 mm, respectively; Table 1).	
202 203	Both datasets were log-transformed and three missing values in the Mallon et al. (2015)	

Commented [S1]: Just because 'significant' to me (and maybe other readers) signifies statistical significance.

204	dataset were replaced with the mean value for that column across all other specimens (Appendix
205	1). The datasets were then individually subjected to Principal Components Analysis (PCA) in
206	PAST v.2.17 (Hammer et al., 2001), using the correlation matrix for the Evans et al. (2013a)
207	dataset and the variance-covariance matrix for the Mallon et al. (2015) dataset, following the
208	original protocols of each analysis. For each dataset, PCA produces a multivariate morphospace.
209	The position of NMMNH P-33898 in this morphospace can be used to test its systematic
210	affinities, by determining whether it falls within the range of variation of another species
211	(evidence that it belongs to that species) or is an extreme outlier (evidence that it is a distinct
212	taxon).
213	Third, we updated the phylogenetic analysis of Evans et al. (2013a), which assessed the
214	phylogenetic relationships within Pachycephalosauria with an analysis of 16 ingroup taxa,
215	including Stegoceras novomexicanum, and 50 characters (see Evans et al., 2013a, supplementary
216	table S4). We rescored a number of taxa as follows: <i>Prenocephale prenes</i> is scored as and "2"
217	for character 29; ; Stegoceras validum is scored as polymorphic ("0/1") for character 28;
218	Pachycephalosaurus is scored as "1" for character 7, Alaskacephale is scored as "?" for
219	characters 18, 24, and 30; and Stegoceras novomexicanum is scored as "0" for character 42 (an
220	updated version of the data matrix is available as supporting information; Appendix 2). We
221	subjected the revised dataset to a parsimony analysis in TNT v. 1.1 (Goloboff et al., 2008) under
222	the 'New Technology search' option, using sectorial search, ratchet, tree drift, and tree fuse
223	options with default parameters. The minimum length tree was found in 10 replicates, with an
224	aim to sample as many tree islands as possible. The recovered trees were then analyzed under
225	traditional TBR branch swapping, a final step to more extensively explore each tree island.
226	

227 4. Are the paratypes of *Stegoceras novomexicanum* referrable to the same taxon as the

228 holotype?

229	Jasinski et al. (2011) referred two specimens to Stegoceras novomexicanum and
230	designated them as paratypes. One specimen consists only of a portion of the frontal (SMP VP-
231	2555 and the other (SMP VP-2790) consists of the anterior portion of a parietal, yet were
232	referred to the same taxon as the holotype, NMMNH P-33898. The rationale for referring the two
233	paratype specimens (SMP VP-2555 and VP-2790) to the same new taxon as the holotype
234	(NMMNH P-33898) was that the diagnostic combination of characters distinguishing NMMNH
235	P-33898 from Stegoceras validum were "either present or inferred to be present in the two
236	paratype specimens" (Jasinski & Sullivan, 2011:203) and that, at least in the case of SMP VP-
237	2555, it has "identical morphology of the ventral surfaces and similar size" to NMMNH P-38898
238	(Jasinski & Sullivan, 2011:207).
239	We find this rationale to be problematic. First, Jasinski & Sullivan (2011) did not list any
240	features of ventral surface of the frontal in their diagnosis for Stegoceras novomexicanum, so it is
241	unclear what exactly constitutes the "identical morphology" uniquely shared between SMP VP-
242	2555 and the holotype. Second, skull and dome size is highly variable in pachycephalosaurs and
243	clearly changes through ontogeny, so the similar size of SMP VP-2555 and the holotype is not a
244	strong sign of taxonomic equivalency. Third and most problematic, all the features, other than
245	size, explicitly listed in the diagnosis of Stegoceras novomexicanum concern the posterior part of
246	the parietals, which is not preserved in either paratype. Moreover, at least one of the paratype
247	specimens, SMP VP-2555, consists of a portion of the frontals that includes part of the articular
248	surfaces for the anterior supraorbital, prefrontal, and nasal. This specimen preserves a highly
249	transversely-convex frontal boss that is bordered laterally by a distinct groove, similar to what is

250	seen in S. validum and some other pachycephalosaur taxa (e.g., "Prenocephale" brevis,
251	Colepiocephale lambei, Hanssuesia sternbergi; Williamson and Carr, 2002b; Sullivan, 2003), but
252	unlike the holotype of Stegoceras novomexicanum (NMMNH P-33898). This difference between
253	SMP VP-2555 and NMMNH P-33898 may be evidence that these two specimens belong to
254	different taxa. However, it is likely that the differences are due to ontogeny because the
255	prominence of the frontonasal boss and the frontal grooves are variable within S. validum, and
256	are generally more poorly developed in specimens of early ontogenetic stages (e.g., AMNH
257	5450, and CMN 515) (Schott et al., 2011).
258	In summary, there is no explicit character evidence that supports the referral of the
259	paratypes SMP VP-2555 and VP-2790 to the same taxon as the Stegoceras novomexicanum
260	holotype, NMMNH P-33898. Therefore, any arguments about the maturity of Stegoceras
261	novomexicanum based on the paratype specimens are inconclusive.
262	
263	5. Are the putative specimens of Stegoceras novomexicanum mature or near-mature?
264	The crux of Jasinski & Sullivan's (2011) argument that Stegoceras novomexicanum is a
265	valid species is that all known material (the holotype and two controversial paratypes) belong to
266	mature or near-mature individuals. If this is the case, then the small size of these specimens
267	compared to other pachycephalosaur adults from the Late Cretaceous would indicate that the
268	New Mexico specimens belong to a distinct small-bodied species.
269	When discussing pachycephalosaur ontogeny and identifying the maturity stage of
270	individual specimens, there is a wealth of data to refer to. Understanding of pachycephalosaur
271	ontogeny comes from the study of relatively large samples of specimens that are thought to
272	represent a single taxon. These contain individuals that are from a variety of ontogenetic stages

273	and can be used to reconstruct a growth series. Such a growth series has been reconstructed for
274	Stegoceras validum based on large samples referred to that taxon from upper Campanian
275	deposits of the Dinosaur Park Formation (Schott & Evans, 2012; Schott et al., 2011) and has
276	been postulated for Pachycephalosaurus wyomingensis from the upper Maastrichtian of the
277	Lance and Hell Creek formations of the northern Rocky Mountain region (Horner & Goodwin,
278	2009). These provide compelling evidence that these pachycephalosaurs underwent relatively
279	extreme changes in cranial morphology during ontogeny.
280	Many authors, including Williamson & Carr (2002b), Goodwin & Horner (2004), Horner
281	& Goodwin (2009), Schott et al. (2011), and Schott & Evans (2012) used a suite of characters to
282	assess relative maturity in Stegoceras validum and/or Pachycephalosaurus wyomingensis.
283	Changes that the pachycephalosaur skull underwent through ontogeny include an increase in the
284	degree of sutural fusion between the paired frontals and between the frontals and parietal from
285	widely open sutures in juvenile specimens to total fusion between these bones in adults; an
286	increase in the overall size of the frontoparietal; an increase in the size and a change in shape of
287	the frontoparietal dome as it expanded vertically and horizontally, resulting in reduction of the
288	relative size of the parietosquamosal shelf and reduction or complete closure of the
289	supratemporal fenestra; changes in surface texture of the dome from small, rounded tubercles, to
290	larger, flat-topped platforms separated by sulci or depressions that develop as the underlying
291	dome expanded; a change in the external cortical dome surface from one that presented exposed
292	Sharpey's fibers to a blunt-shaped erosional or degraded surface; and a change in the internal
293	bone texture of the skull roof from one that is highly vascularized with vascular spaces oriented
294	primarily in a radial patter to one that is dense with a highly reduced vascularization.
295	With this information to draw from, along with new data from our HRCT analysis of

296	NMMNH P-38898, we comment on the maturity of the New Mexico specimens referred to
297	Stegoceras novomexicanum. We individually discuss the features that Jasinski & Sullivan (2011)
298	held to be indicators of maturity (or near maturity) in the New Mexico specimens. Importantly,
299	we provide a clear assessment of the ontogenetic stage of the holotype (NMMNH P-38898),
300	which Jasinski & Sullivan (2011) only briefly discussed. Instead, their ontogenetic argument was
301	based on the referred paratypes, which is problematic because the holotype is the name-bearer of
302	Stegoceras novomexicanum and because the paratypes cannot be reliably referred to the same
303	taxon as the holotype (see Section 4 above).
304	
305	5.1 Texture of the dorsal surface of the frontoparietal dome
306	
307	Jasinski & Sullivan (2011:203) argued that the "smoothness of the frontoparietal dome"
308	in the paratype specimen SMP VP-2555 supported its mature or near-mature status. However, the
309	smoothness of the dome surface does not offer an effective way to clearly gauge relative maturity
310	in pachycephalosaurs because it is related to the relative inflation of the underlying skull roof.
311	Nodal ornamentation changes ontogenetically in pachycephalosaurs, coinciding with
312	inflation of the dome. In S. validum, the tubercular ornamentation on the domes typically exhibit
313	low relief compared to those on the skull roof perimeter, a difference that is related to the local
314	degree of dome inflation. This inflation is hypothesized to laterally expand surface tubercles that
315	overly the dome, resulting in an increase in the diameter of individual tubercles, and a reduction
316	in their vertical relief (Williamson & Carr, 2002b). Relatively unexpanded portions of the skull
317	roof, usually found near the perimeter of the skull roof, typically retain relatively small and high
318	tubercles. Indeed, the frontal fragment, SMP VP-2555 retains relatively small, high, and distinct

319	tubercles lateral to the high and inflated nasal boss (Jasinski & Sullivan, 2011, fig. 4c).
320	The dorsal surface of NMMNH P-33898 does exhibit tuberculate ornamentation that is
321	lower than typically observed in many immature specimens of S. validum. In particular, the
322	tubercular ornamentation of NMMNH P-33898 is distinctly subdued transversely across the apex
323	of the dome, over the approximate location of the frontoparietal sutures. However, it is unclear if
324	this indicates a greater relative maturity than these S. validum specimens, for two reasons. First,
325	the relative smoothness of the dome and subdued morphology of the tubercles may be due to
326	postmortem abrasion of the specimen. Second, even if this morphology is genuine, domes in
327	pachycephalosaurs typically show reduced tubercular ornamentation even in specimens that
328	represent early ontogenetic stages (Schott et al., 2011; Williamson & Carr, 2002b) and so
329	presence of a smooth surface over the domed portion of a frontoparietal does not necessarily
330	indicate that maturity has been reached.
331	
332	5.2 Histology of the frontoparietal dome
333	
334	Jasinski & Sullivan (2011) argued that the histology of the frontoparietal dome of SMP
335	VP-2555 and SMP VP-2790 indicated that the specimens belonged to mature adults that had
336	stopped growing. Histological examination was based on gross observation of bone texture as
337	revealed through a natural break in the specimen (Jasinski & Sullivan, 2011:fig. 6), not
338	examination of thin sections or CT data. Jasinski & Sullivan (2011) regarded the more complete
339	SMP VP-2555 as exhibiting four distinct histological regions ("histomorphs" in their
340	terminology) that they interpreted to represent episodes of accelerated growth in the dome
341	interrupted by episodes of slower growth, akin to lines of arrested growth (LAGs). In addition,

342	they argued that the presence of "capping layer" composed of dense, avascular bone, near the
343	dorsal surface of SMP VP-2555 and VP-2790 indicated that both specimens had essentially
344	stopped growing.
345	There is a wealth of data on how frontoparietal histology changes during
346	pachycephalosaur growth, based on examination of large samples of Stegoceras and
347	Pachycephalosaurus (e.g., Goodwin & Horner, 2004; Schott et al., 2011). Goodwin & Horner
348	(2004) recognized histological zones termed Zones I, II, and III within the frontoparietal domes
349	of Stegoceras validum and Pachycephalosaurus wyomingensis. Zone I is a basal zone of
350	"typical" bone of endochondral origin that remains constant through ontogeny. Zone II is a zone
351	of vascular bone that decreases during ontogeny. Zone III is a zone of dense, sparsely
352	vascularized bone below the periosteal surface of the dome. Jasinski & Sullivan (2011) regarded
353	the dense outer h4 zone of SMP VP-2555 and VP-2790 to be equivalent to Zone III of Goodwin
354	& Horner (2004), and we agree. We also interpret the histological zones 1 (h1) and 3 (h3) of
355	Jasinski & Sullivan (2011) to represent histological Zones I and II, respectively, of Goodwin &
356	Horner (2004), as their histological structure is nearly identical. We are not completely certain of
357	the identification of the narrow zone of more cancellous bone that Jasinski & Sullivan (2011)
358	identified as zone 2 (h2), which surrounds the tissue of zone 1. A similar zone has yet to be
359	reported in other pachycephalosaurs that have been studied.
360	Jasinski & Sullivan (2011) used the histological structure of SMP VP-2555 and VP-2790
361	to make an argument about maturity, but this conclusion is at odds with the conclusions reached
362	by other workers based on study of Stegoceras and Pachycephalosaurus (e.g., Goodwin &
363	Horner, 2004; Horner & Goodwin, 2009; Schott, 2011). Jasinski & Sullivan (2011) argued that
364	the presence of the dense, poorly vascularized outer layer of the dome (equivalent to Zone III of

365	Horner & Goodwin [2004]) indicates that the specimens had stopped growing. However, in
366	Pachycephalosaurus and Stegoceras, Zone III appears early in ontogeny and its thickness
367	increases as an individual grows. It is present as a thin layer even in very early ontogenetic stages
368	of S. validum (UCMP 130049; Schott et al., 2011, fig. 5a). Therefore, the presence of this layer is
369	not an indicator of maturity, contra Jasinski & Sullivan (2011).
370	The entirety of Jasinski & Sullivan's (2011) histology argument is based on the two
371	referred specimens. Our restudy of the Stegoceras novomexicanum holotype (NMMNH P-
372	33898) provides histological evidence that the specimen is immature. HRCT slices through the
373	frontoparietal reveal details of the bone histology (Fig. 1F-H). In this specimen, many of the
374	vascular spaces are filled with a relatively x-ray opaque mineral and these show up as white in
375	the scans. The scans clearly reveal a distinct separation between a relatively thick and highly
376	vascularized layer with approximately vertically-aligned bony struts separated by vascular spaces
377	(Zone II, sensu Goodwin & Horner, 2004) sandwiched between an amorphous, but vascular,
378	basal zone (Zone I) and dense dorsal zone (Zone III) below the surface of the skull roof (Fig. 1F-
379	Н).
380	Schott et al. (2011) assessed relative maturity of specimens of Stegoceras validum based
381	upon the relative amount of void space within the frontoparietal. In their study, they calculated
382	the percentage of void space from thresholded coronal CT slices of the skull roof at the
383	postorbital-squamosal contact. Void space is found primarily within Zone II and is reduced
384	through ontogeny as Zones I and III increase in relative thickness at the expense of Zone II (see
385	Schott et al., 2011, fig. 10). Unfortunately, the presence of relatively opaque minerals within the
386	void spaces of NMMNH P-33898 prevents us from obtaining a useful thresholded image of the
387	specimen. Nevertheless, the relative thickness of Zone II compared to Zones I and III can be

388	readily compared in CT slices (Fig. 1) and reveal a highly vascularized Zone II that is
389	significantly thicker than either Zone I or Zone III. The relative amount of void space within the
390	dome and relative thickness of Zone II is strongly similar to that in immature specimens of
391	Stegoceras validum, and is much thicker than in adult or near-mature specimens (see Schott et
392	al., 2011) and is a clear indication that NMMNH P-33898 represents a juvenile specimen.
393	

- 394 5.3 Suture closure on the dorsal surface of the frontoparietal dome
- 395

Jasinski & Sullivan (2011:203) held that the "partial fusion" of the left and right frontals and the frontals and parietals in SMP VP-2555 was a sign of maturity. Their concept of "partial fusion" was the lack of visible sutural contacts between the frontals and the frontals and parietals on the external surface of the specimen.

400 Stegoceras and Pachycephalosaurus close sutural contacts between the paired frontals 401 and between the frontals and parietals, as well as between other skull roof bones, during 402 ontogeny. In specimens that represent early ontogenetic stages, the frontoparietals remain 403 completely unfused, with sutures that are visible on the external surface of the specimens. 404 However as ontogeny ensues, the sutures between the frontals and parietals often become 405 indistinguishable on the dorsal surface even in subadult specimens, while remaining open 406 internally (Horner & Goodwin, 2009; Schott et al., 2011). 407 Jasinski & Sullivan (2011) focused most of their attention on the sutural morphology of 408 SMP VP-2555 and did not discuss the condition in NMMNH P-33898 in much detail. In this 409 specimen, the frontal-frontal and frontoparietal sutures are not visible near the midline of the

410 external (dorsal) surface of the dome but remain distinct on the ventral surface. Moreover, the

411	frontal-parietal sutures are clearly visible on the lateral surfaces of the specimen and on the
412	dorsolateral surfaces of the dome. HRCT scans of NMMNH P-33898 (Fig. 1F-H) show frontal-
413	frontal and frontoparietal sutures as dark lines with little, or no, mineralization. These indicate
414	that the sutures between the frontals and between the frontals and parietals were open through
415	most of the skull height, closing only very close to the dorsal surface near the midline of the
416	skull. This is a strong indication that the specimen represents an immature individual, because
417	early in pachycephalosaur ontogeny the suture trace disappears from the external surface while
418	remaining open internally (Horner & Goodwin, 2009; Schott et al., 2011).
419	
420	5.4 Additional features of the anatomy
421	
422	In addition to the three explicit features that they used to argue for the maturity or near-
423	maturity of Stegoceras novomexicanum specimens, Jasinski & Sullivan (2011) also mentioned
424	some other characters that purportedly supported their assessment. They argued that NMMNH P-
425	33898 exhibits a degree of development of the dome, frontoparietal shelf, and supratemporal
426	fenestrae similar to the condition in specimens of Stegoceras validum that they held to be mature
427	or nearly mature, particularly CMN 515, the holotype of S. validum, and CMN 138, another
428	specimen that they regarded as approximately the same ontogenetic stage (although they
429	acknowledged that some features suggested it was not fully mature). These CMN specimens
430	possess a partially expanded dome with an extensive frontoparietal shelf and large, open
431	supratemporal fenestrae. In this regard, we agree that they are similar to NMMNH P-33898.
432	However, we note that Schott et al.'s (2011) comprehensive study of S. validum growth came to a
433	much different conclusion on the ontogenetic maturity of CMN 515 and 138. Unlike Jasinski &

434	Sullivan (2011), who considered these specimens to be mature, Schott et al. (2011) found both to	
435	be in the middle portion of the S. validum growth series, approximately midway between the	
436	earliest ontogenetic stage and the latest (see Schott et al., 2011, fig. 4). If Schott et al. (2011) are	
437	correct, then the similarity between NMMNH P-33898 and the two CMN species would be	
438	evidence that NMMNH P-33898 is also an immature individual far from being fully grown or	
439	osteologically mature.	
440		
441	5.5 Summary	
442		
443	The suite of morphological features that are typically used to assess ontogeny in	
444	Stegoceras validum and other pachycephalosaurs indicate that NMMNH P-33898 represents a	
445	relatively early ontogenetic stage rather than a mature or nearly mature individual. Furthermore,	
446	none of the features that Jasinski & Sullivan (2011) considered as supporting the maturity of	
447	NMMNH P-33898 and the two controversial paratypes hold up to scrutiny. Therefore, all	
448	evidence indicates that the specimens of Stegoceras novomexicanum are immature, and there are	
449	no grounds to consider this pachycephalosaur to be an unusual small-bodied taxon.	
450		
451	6. Is <i>Stegoceras novomexicanum</i> a valid taxon?	
452		
453	The holotype and controversial paratype specimens of Stegoceras novomexicanum	
454	belong to immature individuals, but of which species? It is possible that Stegoceras	
455	novomexicanum may still be a valid taxon, albeit represented only by juvenile material.	
456	Alternatively, there may be evidence that the Stegoceras novomexicanum specimens belong to	

457	another pachycephalosaurid taxon, such as Stegoceras validum (as hypothesized by Sullivan &	
458	Lucas 2006) or Sphaerotholus goodwini (which was raised as a possibility by Williamson & Carr	
459	2002a), which is found in strata of similar age in the San Juan Basin of New Mexico. We review	
460	several lines of evidence bearing on this issue.	
461		
462	6.1 Original diagnosis	
463		
464	The starting point for this discussion is the original diagnosis of Stegoceras	
465	novomexicanum from Jasinski & Sullivan (2011:202). They regarded the following characters as	
466	diagnostic for Stegoceras novomexicanum relative to only one other taxon, S. validum: a reduced	
467	posteromedial extension of the parietal that is sub-rectangular in shape, squamosal sutural	
468	surfaces on the parietal that is roughly parallel (a result of the sub-rectangular shape of the	
469	posteromedial extension of the parietal), supratemporal fenestrae that are large and medially	
470	positioned, and small adult size.	
471	We have issues with all of these characters. We discounted the latter two characters	
472	(above), demonstrating that the enlarge fenestrae and small body size are juvenile features. The	
473	other features considered diagnostic by Jasinski & Sullivan (2011) deserve further comment.	
474	Jasinski & Sullivan (2011:210) made a distinction between the reduced and sub-	
475	rectangular posteromedial parietal extension of Stegoceras novomexicanum with the relatively	
476	wider, "more robust and trapezoidal" posterior process of the parietal in S. validum, which results	
477	in more laterally positioned supratemporal fenestrae and "splayed" sutural surfaces for the	
478	squamosal. Based in part on this description, the shape of the posteromedial (intrasquamosal)	
479	process of the parietal has been incorporated into phylogenetic analyses, with two states, 'non-	

480	rectangular' and 'rectangular' (Watabe et al., 2011: ch. 47). However, we feel that the distinction
481	between these two conditions is not clear-cut, particularly as it has not been quantified in any
482	way. We argue that the posteromedial projection of the Stegoceras novomexicanum holotype
483	(NMMNH P-33898) is more trapezoidal than rectangular in shape when seen in dorsal view, as it
484	is wider transversely at the posterior margin of the supratemporal fenestra than at the anterior
485	sutural surface for the squamosal. In addition, the contact surfaces for the squamosals are not
486	parallel, but they converge posteriorly. These sutural surfaces are separated on the midline by the
487	subcutaneous surface of the parietal, which forms a narrow dorsoventrally aligned and ventrally-
488	widening groove on the posterior surface of the parietal (Fig. 1D). The parietosquamosal contact
489	surfaces, therefore, resemble those of S. validum, with the minor different that in NMMNH P-
490	33898 they faces dorsolaterally and posteriorly rather than posterolaterally as in S. validum (see,
491	for example, Schott et al., 2011, fig. 7). Therefore, we see no clear, easy-to-define distinction
492	between Stegoceras novomexicanum and S. validum in these features.
493	
494	6.2 Other discrete characters
495	
496	Based on our restudy of NMMNH P-33898, we have identified some additional
497	characters that may have bearing on the taxonomic status of the specimen. One feature that may
498	set NMMNH P-33898 apart from Stegoceras validum, and a number of other pachycephalosuar
499	taxa (e.g., Colepiocephale, Hanssuesia, "Prenocephale" brevis) is the relatively low and more
500	shallowly transversely convex shape of the frontals between the contacts with the nasals,

- 501 prefrontals, and anterior supraorbitals (Fig. 1A-E). This frontal boss is much more strongly
- 502 transversely convex on specimens of Stegoceras validum that probably represent a similar

503	ontogenetic stage (see below; e.g., CMN 138, 8816, TMP 84.5.1; see Sullivan, 2003: fig. 2).
504	Moreover, in NMMNH P-33898, the dome flattens laterally from the frontal portion of the dome
505	as it nears the contact for the anterior supraorbitals. There is no indication of an abrupt break in
506	slope or grooving that is typically found in Stegoceras validum, and several other taxa (e.g.,
507	Colepiocephale, Hanssuesia, "Prenocephale" brevis) which have strongly vaulted doming of the
508	frontal dome between the prefrontals and a separate inflation of the dome laterally adjacent to the
509	anterior supraorbitals (the "lateral frontal lobes" of some workers). The frontal boss of CMN
510	128, and TMP 84.5.1, specimens that have approximately the same degree of dome development
511	as NMMN P-33898, have a more inflated frontal boss with distinct sulci, or break in slope,
512	separating the frontal boss from the laterally adjacent parts of the frontoparietal which have
513	undergone some inflation. In addition, the contact for the prefrontal in NMMNH P-33898 is
514	anteroposteriorly elongate between the anterior supraorbital and nasals, and more gently tapers
515	anteriorly toward the nasal contacts, than in S. validum, Hanssuesia, and "Prenocephale" brevis.
516	The frontals are elongate, but nearly parallel-sided between the prefrontals in Colepiocephale.
517	Schott et al. (2011) revised the diagnosis of S. validum, one one of the most likely taxa
518	that NMMNH P-33898 may belong to. Schott et al. (2011) noted that a number of features that
519	Sullivan (2003) considered to be diagnostic for S. validum, such as the extent of doming of the
520	skull roof, degree of closure of the supratemporal fenestrae, and degree of development of the
521	parietosquamosal shelf, were highly ontogenetically variable. In their emended diagnosis, Schott
522	et al. (2011:8) distinguished S. validum from all other pacycephalosaurs by the distinct
523	ornamentation of the parietosquamosal shelf (S. validum differs from all other pachycephalosaurs
524	in the presence of minute tubercles on the lateral and posterior sides of the squamosals, and in
525	having a single prominent row of five-to-eight dorsally projecting nodes on each side of the

526	parietosquamosal bar and a row of small, keel-shaped nodes on the dorsolateral margins of the
527	squamosal); by the less developed incorporation of peripheral elements, particularly the
528	supraorbitals, into the dome than in Prenocephale, Sphaerotholus, and Pachycephalsoaurus; the
529	absence of nasal ornamentation; a greatly reduced diastema in the upper tooth row; and a pubic
530	peduncle that is mediolaterally compressed and plate-like.
531	Unfortunately, NMMNH P-33898 does not preserve many of the features listed in this
532	diagnosis. NMMNH P-33898 lacks the squamosals and is a juvenile, and so it does not preserve
533	features of the parietosquamosal bar or other cranial ornamentation considered diagnostic for S.
534	validum. Because it is a juvenile, it retains a prominent parietosquamosal shelf and did not
535	incorporate peripheral skull elements into the dome, as presumably did the juveniles of all
536	domed taxa that have poorly developed peripheral elements into the dome as adults. Other bones
537	relevant to the diagnosis of Schott et al. (2011), such as the nasals, premaxillae and maxillae, and
538	ilium, are unknown in NMMNH P-33898. Therefore, it is currently difficult to assess whether
539	NMMNH P-33898 could belong to S. validum using the diagnosis of Schott et al. (2011).
540	
541	
542	6.3 Principal component analyses
543	
544	The PCA of the updated Evans et al. (2013) dataset (Tables 1 and 2; Appendix 1) returned
545	14 principal components, the first three of which account for 91% of the total variance. PC1,
546	which accounts for 72.6% of total variance, is strongly correlated with frontoparietal length, a
547	proxy for body size ($r^2=0.86$). PCs 2 and 3 are very weakly correlated with frontoparietal length
548	(r ² <0.026 in both cases), and therefore reflect variation that may be more phylogenetically

549 informative than that the mostly size-related variation encapsulated on PC1. The plot of PC1

550 versus PC2 (Fig. 2A) shows that the Stegoceras

Figure 2. Selected results of morphometric analysis of pachycephalosaur frontoparietal domes
(based on measurements from Evans et al. 2013, supplementary table s1) and postorbitals (based
on measurements from Mallon et al., 2015, appendix a) including measurements of NMMNH P33898 (holotype of Stegoceras novomexicanum) and revised measurements of NMMNH P-27403
(holotype of Sphaerotholus goodwini). Plots of PC1 versus PC2 (A) and PC2 versus PC3 (B)
from frontoparietal measurements and PC1 versus PC2 (C) and PC2 versus PC3 (D) from

558 postorbital measurements showing the placement of Stegoceras novomexicanum in morphospace

559 relative to other pachycephalosaur taxa.

560	novomexicanum holotype (NMMNH P-33898) is something of an outlier, as it does not fall
561	within the convex hulls of the three other taxa represented by multiple specimens in the analysis,
562	Stegoceras validum, Sphaerotholus buchholztae, and 'Prenocephale' brevis. However, NMMNH
563	P-33898 does plot within the 95% confidence ellipses of both S. validum and S. buchholtzae. A
564	similar pattern is seen in the plot of PC2 versus PC3 (Fig. 2B), as NMMNH P-33898 is not
565	placed within the convex hulls of the three other pachycephalosaurs, but does fall within the
566	confidence interval of S. validum, but in this case not S. buchholtzae.
567	The PCA of the updated Mallon et al. (2015) dataset returned four principal components,
568	the first three of which account for 98% of the total variance. PC1 accounts for 60.9% of the
569	overall variance, while PC2 accounts for 30.1% and PC3 7.4%. The plot of PC1 versus PC2 (Fig.
570	2C) shows that the Stegoceras novomexicanum holotype (NMMNH P-33898) is something of an
571	outlier, although it is immediately adjacent in morphospace to UCMZ (VP) 2008.001, a very
572	young individual of Stegoceras validum. Because of the close proximity of these two specimens,
573	NMMNH P-33898 falls within the convex hull of S. validum. Furthermore, it is within the 95%
574	confidence envelopes of S. validum, Sphaerotholus buchholztae, and Hanssuesia sternbergi. On
575	the plot of PC2 versus PC3 (Fig. 2D), NMMNH P-33898 is positioned within a dense cloud of
576	specimens, and is plotted particularly close to specimen of S. validum (CMN 1108A) and
577	'Prenocephale' brevis (TMP 1987.050.0029). It falls within the convex hull of Sphaerotholus
578	buchholtzae and immediately outside the convex hulls of S. validum and 'P.' brevis, and is
579	within the 95% confidence intervals of all taxa known from more than one specimen.
580	The large taxon sample in the Mallon et al. (2015) dataset allows us to conduct a
581	discriminant analysis in PAST v3.0 (Hammer et al. 2001). This analysis uses pre-determined

582	groups (in this case, pachycephalosaur species) to create a morphospace in which these groups
583	are maximally separated. Specimens whose identities are uncertain, such as NMMNH P-33898,
584	can then be classified according to which group they are most similar to in this discriminant
585	morphospace. In total, 70% of other pachycephalosaurs are classified correctly when they are
586	treated as having uncertain affinities and their measurements are used to classify them in
587	discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies
588	NMMNH P-33898 as Stegoceras validum, and places it within the 95% confidence envelopes of
589	both S. validum and Hanssuesia.

590 PCA and discriminant analysis are tools that can help determine the most likely affinities 591 of specimens, but they require some interpretation. Our interpretation of the above results is that 592 Stegoceras novomexicanum may potentially be a distinctive taxon, given the outlier position of 593 its holotype in the morphospace generated from the Evans et al. (2013) dataset. A similar 594 rationale was used by Evans et al. (2013) as one line of evidence to support the taxonomic 595 distinctiveness of Acrotholus, a new species of pacycephalosaur they were describing. However, 596 the Stegoceras novomexicanum holotype does plot within the 95% confidence intervals of other 597 taxa in the Evans et al. (2013) morphospace, and within both the convex hulls and 95% 598 confidence intervals of other taxa in the Mallon et al. (2015) morphospace. In total, the strongest 599 and most consistent similarities are between NMMNH P-33898 and S. validum. The Stegoceras 600 novomexicanum holotype falls within the 95% confidence intervals of S. validum in plots of PC1 601 versus PC2 and PC2 versus PC3 of both datasets (Fig. 2). Furthermore, in the plot of PC1 versus 602 PC2 of the Mallon et al. (2015) dataset (Fig. 2A), NMMNH P-33898 nearly overlaps with a 603 specimen of juvenile S. validum. In total, these findings suggest that if Stegoceras 604 novomexicanum can be referred to another known taxon of pachycephalosaur, that species is

605	most likely S. validum. Additionally, the close correspondence in morphospace between
606	NMMNH P-33898 and the juvenile S. validum specimen is further evidence that the Stegoceras
607	novomexicanum holotype is immature.
608	However, there is a caveat. Because NMMNH P-33898 is a juvenile specimen, it may be
609	expected to plot in morphospace with a taxon that is relatively plesiomorphic, and/or one that is
610	represented by some juvenile specimens in the dataset. S. validum fulfils both of these criteria It
611	is a relatively plesiomorphic taxon, closer to the root of pachycephalosaur phylogeny than other
612	potential candidates that NMMNH P-33898 could be referred to, such as 'Prenocephale' brevis,
613	Sphaerotholus buchholtzae, and Sphaerotholus goodwini. Additionally, some of the S. validum
614	specimens in the datasets are juveniles. Other taxa based on, or probably based on, juvenile
615	specimens, such as Wannanosaurus and Homalocephale (Evans et al., 2011), are not included in
616	either dataset. For these reasons, we are hesitant to interpret the PCA and discriminant analysis
617	results as explicitly supporting the referral of NMMNH P-33898 to Stegoceras validum.
618	
619	6.4 Phylogenetic analysis
620	
621	A phylogenetic analysis of the revised Evans et al. (2013) dataset (Appendix 2) recovered
622	12 most parsimonious trees of 77 steps (Fig. 3; consistency index = 0.753, retention index =
623	0.796).

- 625 Figure 3. Phylogeny of Pachycephalosauria. (A), Strict consensus of 12 most parsimonious trees
- 626 with a shortest length of 77 steps resulting from a phylogenetic analysis consisting of 18
- 627 pachycephalosaur taxa and two successive outgroups; Yinlong and Psittacosaurus and 50
- 628 characters, after Evans et al. (2013). Analysis was run in TNT v. 1.1 (Goloboff et al., 2008);
- 629 consistency index = 0.753, retention index = 0.796). (B), Temporally-calibrated phylgeny of
- 630 Pachycephalosauria including NMMNH P-33898 (Stegoceras novomexicanum) showing
- 631 approximate ranges of each taxon. Time scale is after Huang (2012) and ranges of
- 632 pachycephalosaur taxa follow Evans et al. (2013).

633	Wannanosaurus was found to be the basal-most pachycephalosaur, followed by a polytomy
634	consisting of Stegoceras novomexicanum, Stegoceras validum, Colepiocephale, Hanssuesia, and
635	the lineage leading to all of the remaining pachycephalosaurs. This lineage collapses into another
636	large polytomy, the only resolution being the sister-taxon pairs of Acrotholus and Prenocephale
637	prenes, Sphaerotholus goodwini and Sphaerotholus buccholtzae, and Alaskacephale and
638	Pachycephalosaurus. These results are more poorly resolved than those of Evans et al. (2013,
639	supplementary fig. s8). Evans et al. (2013) placed Stegoceras novomexicanum, Stegoceras
640	validum, Colepiocephale, and Hanssuesia in their own clade of basal pachycephalosaurs, and
641	then recovered complete resolution among the more derived taxa.
642	The most important result of our re-analysis is that there is no longer a restricted subclade
643	that includes both Stegoceras novomexicanum and S. validum on the strict consensus tree (Fig.
644	3). This on its own does not say much about the taxonomic affinities of Stegoceras
645	novomexicanum, as the analysis can only speak to the relationships between OTUs and not the
646	diagnosability of the OTUs themselves. However, since Stegoceras novomexicanum and S.
647	validum no longer occupy a restricted subgroup on the phylogeny and our dataset returns less
648	resolution than previous analyses, we interpret this as a decrease in support for the hypothesis
649	that Stegoceras novomexicanum can be referred to S. validum.
650	
651	6.5 Summary
652	
653	The taxonomic affinities of NMMNH P-33898 are still unclear on the generic and
654	specific level. The original features that Jasinski & Sullivan (2011) used to diagnose the

655 specimen as a distinct taxon, *Stegoceras novomexicanum*, are problematic, but we have

656	identified additional features that could potentially support its taxonomic distinctiveness. The
657	PCAs and discriminant analysis suggest that, if NMMNH P-33898 belongs to a known taxon,
658	that taxon is most likely Stegoceras validum, but there are caveats regarding the data sampling of
659	these analyses that make this uncertain. The phylogenetic analysis also provides decreased
660	support for a close relationship between NMMNH P-33898 and S. validum. In sum, based on our
661	current state of knowledge, we are not certain whether Stegoceras novomexicanum is a valid
662	taxon or not, and if not, whether it is a juvenile of S. validum or perhaps another taxon like
663	Sphaerotholus goodwini. The only way to resolve this conundrum is with a larger comparative
664	sample of specimens of the same approximate ontogenetic stage as NMMNH P-33898. In
665	particular, unequivocal immature specimens of Sphaerotholus goodwini may be the critical
666	missing piece of the puzzle.
667	
668	7. Discussion
669	
670	7.1 The New Mexico pachycephalosaur record

- All pachycephalosaur specimens recovered from the Campanian of New Mexico come
- 673 from the Fruitland and Kirtland formations of the San Juan Basin. The Fruitland and Kirtland
- 674 formations (exclusive of Naashoibito Member; Fig. 4) span only about two million years (from

Figure 4. Generalized stratigraphic

676 section for upper Campanian, Upper Cretaceous strata of the Bisti/De-na-zin Wilderness area,

- 677 San Juan Basin, New Mexico modified after Fasset and Steiner (1997) and Fassett (2009)
- 678 showing the approximate stratigraphic position of all Fruitland and Kirtland Formation
- 679 pachycephalosaur specimens. Absolute dates are based on 40Ar/39AR dates from volcanic ashes

680 (Fasset and Steiner, 1997) as recalibrated by Roberts et al. (2013). Magnetic polarity and

681 reversal boundaries are placed after Fassett (2009).

All pachycephalosaur specimens recovered from the Campanian of New Mexico come from the Fruitland and Kirtland formations of the San Juan Basin. *The Fruitland and Kirtland formations span about 75 Ma to 73.0 Ma; Fassett and Steiner, 1997; Roberts et al., 2013). Nearly all pachycephalosaur specimens from these units are from two local faunas: the Hunter Wash (Clemens, 1973) and Willow Wash (Williamson & Sullivan, 1998) local faunas, comprised of localities in the Fossil Forest Member of the upper Fruitland Formation and the Hunter Wash Member of the Kirtland Formation, and from the De-na-zin Member of Kirtland Formation, respectively (Fig. 4).*

682 There are at least two pachycephalosaur taxa in the Hunter Wash and Willow Wash local 683 faunas, including an undescribed specimen that may represent a new taxon (NMMNH P-50900; 684 Hunter Wash local fauna) and Sphaerotholus goodwini (Carr & Williamson, 2002b; Willow 685 Wash local fauna). The specimen NMMNH P-50900 is currently under study by Williamson and 686 co-authors and will be described elsewhere, but it resembles S. validum, and several other 687 pachycephalosaur taxa, in having a high and laterally convex frontal boss. 688 Does 'Stegoceras novomexicanum' represent a subadult of either of these taxa, or is it a 689 third distinct species? There is the possibility that NMMNH P-33898 represents an early 690 ontogenetic stage of Sphaerotholus goodwini, a prospect entertained by Williamson & Carr 691 (2002a), but dismissed by Sullivan & Lucas (2006) because NMMNH P-33898 possesses a 692 prominent parietosquamosal shelf, which is not present in known specimens of Sphaerotholus 693 goodwini. However, as discussed above, the strength of the parietosquamosal shelf is 694 ontogenetically variable and retention of a prominent shelf may be expected in domed

Commented [S2]: Not sure what's going on here. Some of this is body text and some is caption?

695	pachycephalosaurs of an early ontogenetic stage (e.g., Evans et al., 2011). Unfortunately, early	
696	ontogenetic stages are not known for Sphaerotholus, or for a number of other pachycephalosaur	
697	taxa for that matter. NMMNH P-33898 also lacks a high and laterally convex nasal boss found in	
698	NMMNH P-50900 and specimens of Stegoceras validum that are of a similar ontogenetic stage.	
699	A similar problem concerns the identities of the Asian flat-headed pachycephalosaurs	
700	Goyocephale latttimorei and Homalocephale calathocercos, as the known specimens may	
701	represent juvenile stages of domed taxa (Evans et al., 2011; Longrich et al., 2010) or adults that	
702	possibly exhibit pedomorphosis in dome development (Bakker et al., 2006; Sullivan, 2007).	
703	Homalocephale is found in the Nemegt Formation of Mongolia, in strata that have also yielded	
704	the highly-domed Prenocephale prenes, and it has been suggested that it may be a subadult or	
705	sexual dimorph of that taxon (Butler & Sullivan, 2009; Longrich et al., 2010). Evans et al. (2011)	
706	considered that question and concluded that although Homalocephale likely was based on an	
707	immature specimen, it is taxonomically distinct from Prenocephale based on its large size and	
708	unique pattern of parietosquamosal ornamentation, features that appear not to change	
709	significantly through ontogeny in Stegoceras validum (Evans et al., 2011; Schott and Evans,	
710	2012; Schott et al., 2011). Homalocephale also differs from Prenocephale in other features such	
711	as the pattern of tooth wear, shape of the maxillary tooth row, and tooth morphology (Evans et	
712	al., 2011; Maryańska and Osmólska, 1974). If Evans et al. (2011) are correct; this is an example	
713	of how a juvenile specimen may still be diagnostic and taxonomically distinct from a co-existing	
714	taxon based on adult material.	
715	Another pertinent case involves Dracorex hogwartia and Stigymoloch spinifer, which	Commer
716	wereregarded as a juveniles of Pachycephalosaurus wyomingensis by Horner and Goodwin	

C0.5

717

mmented [S3]: New paragraph, to break up this long section.

35

(2009), a conclusion tentatively accepted here. Dracorex has a flat skull roof and large

718	supratemporal fenestrae as in juvenile stages of other domed taxa. Stygimoloch has a relatively	
719	small and narrow dome and the supratemporal fenestrae are closed, but it retains a distinct	
720	parietosquamosal shelf and is posited to represent an ontogenetic stage intermediate between that	
721	of Dracorex and the large-domed Pachycephalosaurus (Horner & Goodwin, 2009). All three	
722	taxa are relatively large with relatively elongate skulls, possess similar distinctive nodal	
723	ornamentation (e.g., clusters of nodes on the posterolateral corners of the squamosals and	
724	pyramidal nodes over the rostrum) supporting their recognition as a single, ontogenetically	
725	highly variable taxon. However, if this is correct, then the squamosal nodes are hypothesized to	
726	first increase in size to form medium to large pointed horns (e.g., from the Dracorex to the	
727	Stygimoloch stages of ontogeny), before shrinking through bone erosion to relatively shorter and	
728	blunted structures in more mature stages (Horner & Goodwin, 2009), a somewhat extreme	Comr above.
729	change in cranial ornamentation not observed in other pachycephalosaur taxa.	
730		
731	7.2 Discussion of a problematic specimen from New Mexico	
732		
733	One New Mexican pachycephalosaur specimen, a partial dentary associated with some	
734	skull fragments (NMMNH P-30068), was discovered from the Farmington Member near the	
735	head of Pinabete Arroyo at NMMNH locality L-3097, which is approximately contemporaneous	
736	with the Hunter Wash or Willow Wash local faunas (Fig. 4). There has been some inaccurate	
737	information in the literature regarding this specimen and the Upper Cretaceous stratigraphy of	
738	the San Juan Basin, which we wish to correct.	
739	First, Jasinski & Sullivan (2011, fig. 1) misplotted the location of L-3097. Precise locality	
740	information is available to qualified researchers from the NMMNH. It is located between	

mented [S4]: Just because you use 'relatively' a few times

741	Brimhall Wash and Pinabete Arroyo ("Pina Veta China Arroyo" of literature prior to 1966).
742	Second, to correct any misconceptions, the skull fragments and partial dentary of
743	NMMNH P-30068 were collected from NMMNH locality L-3097 along with NMMNH P-
744	25049, a specimen that was referred by Carr & Williamson (2010) to the tyrannosauroid
745	theropod Bistahieversor sealeyi. These specimens were indeed collected illegally, as stated by
746	Jasinski & Sullivan (2011), but we want to be clear that the illegal collection was not by
747	Williamson. Contra Jasinski & Sullivan (2011), the pachycephalosaur specimens were not found
748	with the holotype of <i>B. sealeyi</i> (NMMNH P-27469), which is from the Hunter Wash Member of
749	the Kirtland Formation within the Bisti/De-na-zin Wilderness Area.
750	Third, Jasinski & Sullivan (2011) stated (p. 207) that the pachycephalosaur specimen,
751	NMMNH P-30068, is "almost certainly from the Hunter Wash Member" and (p. 210) that
752	"exposures of the Farmington Membercrop out only in the eastern parts of the Bisti/De-na-zin
753	Wilderness area". However, this is incorrect. Bauer (1916) gave the name 'Farmington
754	Sandstone Member' to a series of sandstone lenses that form a prominent bluff, "455 feet thick"
755	(about 140 m), on the San Juan River (Bauer, 1916, fig. 27; Plate LXVIIIA). Bauer (1916, Plate
756	LXV) shows in a series of stratigraphic sections along the Chaco Valley that the Farmington
757	Member thins, from over 400 feet in its type area, to a thickness of 87 feet in the area of the
758	Bisti/De-na-zin Wilderness. Jasinski & Sullivan (2011) argued that the area from where
759	NMMNH P-30068 was collected was mapped by Brown (1983) as Hunter Wash Member,
760	Kirtland Formation. However, L-3097 does not fall within the area covered by Brown's geologic
761	map. NMMNH locality L-3097 is located about 10 km from the northwest corner of Brown's
762	map and is close to the type section of the Farmington Sandstone Member. Therefore, this
763	specimen clearly comes from the Farmington Member, not the Hunter Wash Member (Fig. 4).

765 7.3 The New Mexico pachycephalosaur record in a regional context

767	Western North America contains some of the richest terrestrial Upper Cretaceous deposits
768	in the world. A number of remarkably fossiliferous units were deposited along the western
769	margin of the Cretaceous Western Interior Seaway within a narrow interval of time between
770	about 80 and 73 Ma. The Dinosaur Park, Two Medicine, and Judith River formations to the north
771	and the Kaiparowits, Kirtland, Fruitland, and Aguja formations to the South all fall, at least
772	partially, within this interval and provide an exceptional window into late Campanian terrestrial
773	ecosystems (Gates et al., 2010; Roberts et al., 2013). They have provided a wealth of data for
774	analyzing large-scale biogeographic patterns of late Cretaceous dinosaur faunas of the western
775	interior (e.g., Gates et al., 2012; Gates et al., 2010; Loewen et al., 2013), and also give insight
776	into how dinosaurs were evolving during the run-up to the end-Cretaceous mass extinction (e.g.,
777	Demonstra et al. 2016)
///	Brusalle et al. 2015).
778	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded
778 779	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the
778 779 780	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North
778 779 780 781	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North America which is undoubtedly due to preservational biases that favor the fossilization of the
 778 779 780 781 782 	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North America which is undoubtedly due to preservational biases that favor the fossilization of the thick and durable skull roof (Evans et al., 2013a). At least three pachycephalosaur taxa
 778 779 780 781 782 783 	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North America which is undoubtedly due to preservational biases that favor the fossilization of the thick and durable skull roof (Evans et al., 2013a). At least three pachycephalosaur taxa (<i>Stegoceras validum</i> , " <i>Prenocephale</i> " <i>brevis</i> , and <i>Hanssuesia sternbergi</i>) are recognized in the
 778 779 780 781 782 783 784 	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North America which is undoubtedly due to preservational biases that favor the fossilization of the thick and durable skull roof (Evans et al., 2013a). At least three pachycephalosaur taxa (<i>Stegoceras validum</i> , " <i>Prenocephale</i> " <i>brevis</i> , and <i>Hanssuesia sternbergi</i>) are recognized in the upper Campanian Dinosaur Park Formation (Evans et al., 2013a; Ryan & Evans, 2005) and three
 778 779 780 781 782 783 784 785 	Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North America which is undoubtedly due to preservational biases that favor the fossilization of the thick and durable skull roof (Evans et al., 2013a). At least three pachycephalosaur taxa (<i>Stegoceras validum</i> , " <i>Prenocephale</i> " <i>brevis</i> , and <i>Hanssuesia sternbergi</i>) are recognized in the upper Campanian Dinosaur Park Formation (Evans et al., 2013a; Ryan & Evans, 2005) and three or more taxa (e.g., <i>Stegoceras validum</i> , <i>Colepiocephale lambei</i> , and " <i>Prenocephale</i> " <i>brevis</i>) are

787	Southern late Campanian faunas have not yet yielded anywhere as many specimens as the
788	northern units, but growing discoveries hint at a considerable diversity of pachycephalosaurs. At
789	least one taxon is known from the Aguja Formation of west Texas, (Lehman, 2010; Longrich et
790	al., 2010). A new pachycephalosaur taxon, Texacephale langstoni was named based on a
791	frontoparietal from the Aguja Formation (Longrich et al., 2010), although Jasinski & Sullivan
792	(2011) concluded that it is a nomen dubium, a decision that we agree with and is followed here.
793	Pachycephalosaurs are known from the upper Campanian Kaiparowits Formation of southcentral
794	Utah, but described specimens are too incomplete for generic identification (Evans et al., 2013b).
795	The Campanian faunas of the Fruitland and Kirtland formations of the San Juan Basin are
796	slightly younger than faunas from the northern Rocky Mountain area (Roberts et al., 2013), but
797	provide the only generically diagnostic pachycephalosaur specimens from the upper Campanian
798	of the southern part of the western interior. Specimens recovered from these units reveal the
799	presence of at least two pachycephalosaur taxa (see 7.1 above). All four pachycephaosuar
800	specimens from the De-na-zin Member of the Kirtland Formation of the San Juan Basin (Fig. 4;
801	Sullivan, 2000; Williamson and Carr, 2002b; Williamson and Carr, 2005) are probably referable
802	to Sphaerotholus goodwini, and no certainly referable specimens of Sphaerotholus have been
803	recovered from stratigraphically lower strata of the San Juan Basin (i.e., Fruitland Formation and
804	Hunter Wash and Farmington members, Kirtland Formation). Therefore it is possible that
805	Sphaerotholus is the sole pachycephalosaur present in the De-na-zin Member, Willow Wash local
806	fauna (Fig. 4).
807	Sphaerotholus is elsewhere found in the lower Maastrichtian Horseshoe Canyon
808	Formation of southern Alberta (S. edmontonense), a taxon that is tentatively considered valid

809 following Mallon et al. (2015), and the upper Maastrichtian Hell Creek and Frenchman

810	formations (S. buchholtzae) of Montana and Saskatchewan, respectively (Mallon et al., 2015;
811	Williamson & Carr, 2002b). The stratigraphic distribution of Sphaerotholus may indicate that it
812	arrived relatively late in the upper Campanian of the Western Interior compared to other
813	pachycephalosaur taxa such as Stegoceras, Hannsuesia, and "Prenocephale" brevis. However,
814	we urge caution in accepting this interpretation considering the small number of
815	pachycephalosaur specimens represented in many areas. Indeed, Evans et al. (2013a) suggested
816	that ghost lineages inferred from their phylogeny of pachycephalosaurs shows that the diversity
817	of pachycephalosaurs is seriously underestimated even in well sampled intervals of the middle
818	and upper Campanian of North America.
819	Our reassessment of NMMNH P-33898 as a juvenile that may be referable to one of a
820	number of existing taxa, as well as our reassessment of other taxa, allows us to conclude that late
821	Campanian pachycephalosaurs from the San Juan Basin of New Mexico are morphologically
822	similar, in terms of body size and skull roof shape, to those reported from approximately coeval
823	faunas throughout the Western Interior. Clearly, pachycephalosaurs were an important
824	component of the diverse terrestrial faunas in western North America during the penultimate
825	stage of dinosaur evolution, before the non-avian species disappeared at the end of the
826	Cretaceous.
827	
828	
829	Conclusion
830	
831	Our reassessment of the described specimens of 'Stegoceras novomexicanum' leads to the
832	following conclusions: 1) the two fragmentary paratype specimens (SMP VP-2555 and VP-2790)

833	cannot be referred to the holotype (NMMNH P-33898) based on explicit synapomorphies or
834	other detailed character similarities; 2) the holotype and controversial paratypes belong to
835	juvenile individuals, not mature or near-mature adults as argued by Jasinski & Sullivan (2011);
836	3) there is therefore no evidence that 'Stegoceras novomexicanum' was a peculiar small-bodied
837	pachycephalosaur species; 4) the original diagnosis of 'Stegoceras novomexicanum' by Jasinski
838	& Sullivan (2011) is problematic, but it is currently unclear whether the holotype specimen does
839	belong to its own valid species-level taxon (Stegoceras novomexicanum) or is a juvenile of
840	Stegoceras validum, Sphaerotholus goodwini, or another taxon; 5) at least two valid diagnostic
841	pachycephalosaur species are known from the Campanian of New Mexico, indicating that
842	pachycephalosaurs were an integral component of latest Cretaceous dinosaur faunas in the
843	southern part of Western North America just as they were in roughly contemporaneous northern
844	localities.
845	

846 Acknowledgements

847 We thank M. Colbert and J. Maisano at the University of Texas High-Resolution X-ray 848 Computed Tomography Facility (UTCT) for scanning NMMNH P-33898. NSF provided grants 849 to TEW (EAR 0207750) and to TEW and SLB (EAR 1326644), and SLB is supported by a 850 Marie Curie Career Integration Grant (EC 630652) and the University of Edinburgh. We thank P. 851 Hester and the US Bureau of Land Management for providing permits to allow the collection of 852 NMMNH P-33898 and other vertebrate fossils in the Bisti/De-na-zin Wilderness area. We thank 853 Thomas Carr and David Evans for discussions on pachycephalosaurs and David Evans and an 854 anonymous reviewer for helpful and constructive comments.

856 References

857 858 859	Bakker, R.T., Sullivan, R.M., Porter, V., Larson, P., Saulsbury, S.J., 2006. Dracorex hogwartsia,
860	n. gen., n. sp., a spiked, flat-headed pachycephalosaurid dinosaur from the Upper
861	Cretaceous Hell Creek Formation of South Dakota. New Mexico Museum of Natural
862	Hisory and Science Bulletin 35, 331-345.
863	Barrett, P.M., McGowan, A.J., Page, V., 2009. Dinosaur diversity and the rock record.
864	Proceedings of the Royal Society B: Biological Sciences 276, 2667-2674.
865	Bauer, C.M., 1916. Contributions to the geology and paleontology of San Juan County, New
866	Mexico; I. Stratigraphy of a part of the Chaco River Valley. U. S. Geological Survey, pp.
867	271-278.
868	Bourke, J.M., Ruger Porter, W.M., Ridgely, R.C., Lyson, T.R., Schachner, E.R., Bell, P.R.,
869	Witmer, L.M., 2014. Breathing Life Into Dinosaurs: Tackling Challenges of Soft-Tissue
870	Restoration and Nasal Airflow in Extinct Species. The Anatomical Record 297, 2148-
871	2186.
872	Brown, J., 1983. Geologic and isopach maps of the Bisti, De-na-zin and Ahshe-sle-pah [sic]
873	Wilderness Study areas, New Mexico Map MF-1508-A,. Department of the Interior,
874	United States Geological Survey, Reston.
875	Brusatte, S.L., Butler, R.J., Barrett, P.M., Carrano, M.T., Evans, D.C., Lloyd, G.T., Mannion,
876	P.D., Norell, M.A., Peppe, D.J., Upchurch, P., Williamson, T.E., 2015. The extinction of
877	the dinosaurs. Biological Reviews 90, 628-642.
878	Brusatte, S.L., Butler, R.J., Prieto-Marquez, A., Norell, M.A., 2012. Dinosaur morphological
879	diversity and the end-Cretaceous extinction. Nat Commun 3, 804.

880	Butler, J.P., Liyong, J., Jun, C., Godefroit, P., 2011. The postcranial osteology and phylogenetic
881	position of the small ornithischian dinosaur Changchunsaurus parvus from the Quantou
882	Formation (Cretaceous: Aptian-Cenomanian) of Jilin Province, north-eastern China.
883	Palaeontology 54, 667-683.
884	Butler, R.J., Sullivan, R.M., 2009. The phylogenetic position of the ornithischian dinosaur
885	Stenopelix valdensis from the Lower Cretaceous of Germany and the early fossil record
886	of Pachycephalosauria. Acta Palaeontologica Polonica 54, 21-34.
887	Campione, N.E., Evans, D.C., 2011. Cranial Growth and Variation in Edmontosaurs (Dinosauria:
888	Hadrosauridae): Implications for Latest Cretaceous Megaherbivore Diversity in North
889	America. PLoS ONE 6, e25186.
890	Carr, T.D., Williamson, T.E., 2010. Bistahieversor sealeyi gen. et sp. Nov., a new tyrannosaur
891	from New Mexico and the origin of deep snouts in Tyrannosauroidea. Journal of
892	Vertebrate Paleontology 30, 1-16.
893	Clemens, W.A., 1973. The roles of fossil vertebrates in interpretation of Late Cretaceous
894	stratigraphy of the San Juan Basin, New Mexico, in: Fassett, J.E. (Ed.), Cretaceous and
895	Tertiary rocks of the southern Colorado plateau. Four Corners Geological Society,
896	Durango, pp. 154-167.
897	Evans, D.C., Brown, C.M., Ryan, M.J., Tsogtbaatar, K., 2011. Cranial ornamentation and
898	ontogenetic status of Homalocephale calathocercos (Ornithischia: Pachycephalosauria)
899	from the Nemegt Formation, Mongolia. Journal of Vertebrate Paleontology 31, 84-92.
900	Evans, D.C., Schott, R.K., Larson, D.W., Brown, C.M., Ryan, M.J., 2013a. The oldest North
901	American pachycephalosaurid and the hidden diversity of small-bodied ornithischian
902	dinosaurs. Nat Commun 4, 1828.

903	Evans, D.C., Williamson, T.E., Loewen, M.A., Kirkland, J.I., 2013b. A review of	
904	pachycephalosaurid dinosaurs from Grand Staircase-Escalante National Monument,	
905	southern Utah, in: Titus, A.L., Loewen, M.A. (Eds.), At the Top of the Grand Staircase:	
906	The Late Cretaceous of Southern Utah (Life of the Past). Indiana University Press,	
907	Bloomington, pp. 482-487.	
908	Fassett, J.E., Steiner, M.B., 1997. Precise age of C33N-C32R magnetic-polarity reversal, San	
909	Juan Basin, New Mexico and Colorado. New Mexico Geological Society Guidebook 48,	
910	239-247.	
911	Gates, T.A., Prieto-Márquez, A., Zanno, L.E., 2012. Mountain Building Triggered Late	
912	Cretaceous North American Megaherbivore Dinosaur Radiation. PLoS ONE 7, e42135.	
913	Gates, T.A., Sampson, S.D., Zanno, L.E., Roberts, E.M., Eaton, J.G., Nydam, R.L., Hutchison,	
914	J.H., Smith, J.A., Loewen, M.A., Jr., Getty, M.A., 2010. Biogeography of terrestrial and	
915	freshwater vertebrates from the Late Cretaceous (Campanian) Western Interior of North	
916	America. Palaeogeography, Palaeoclimatology, Palaeoecology 291, 371-387.	
917	Goloboff, P.A., Farris, J.S., Nixon, K.C., 2008. TNT, a free program for phylogenetic analysis.	
918	Cladistics 24, 774-786.	
919	Goodwin, M.B., 1990. Morphometric landmarks of pachycephalosaurid cranial material from the	
920	Judith River Formation of northcentral Montana, in: Carpenter, K., Currie, P.J. (Eds.),	
921	Dinosaur Systematics-Approaches and Perspectives. Cambridge University Press,	
922	Cambridge, pp. 189-201.	
923	Goodwin, M.B., Buchholtz, E.A., Johnson, R.E., 1998. Cranial anatomy and diagnosis of	
924	Stygimoloch spinifer (Ornithischia: Pachycephalosauria) with comments on cranial	

925 display structures in agonistic behavior. Journal of Vertebrate Paleontology 18, 363-375.

- 926 Goodwin, M.B., Horner, J.R., 2004. Cranial histology of pachycephalosaurs (Ornithischia:
- Marginocephalia) reveals transitory structures inconsistent with head-butting behavior.
 Paleobiology 30, 253-267.
- Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software
 package for education and data analysis. Palaeontologia Electronica 4, 9.
- Horner, J.R., Goodwin, M.B., 2009. Extreme Cranial Ontogeny in the Upper Cretaceous
 Dinosaur *Pachycephalosaurus*. PLoS ONE 4, e7626.
- Huang, C., 2012. Cretaceous, in: Gradstein, F.M., Ogg, J.G., Schmitz, M.D., Ogg, G. (Eds.), The
 Geologic Time Scale. Elsevier B. V., pp. 793-853.
- 935 Jasinski, S.E., Sullivan, R.M., 2011. Re-evaluation of pachycephalosaurids from the Fruitland-
- 936 Kirtland transition (Kirtlandian, late Campanian), San Juan Basin, New Mexico, with a
- 937 description of a new species of *Stegoceras* and a reassessment of *Texacephale langstoni*.
- 938 New Mexico Museum of Natural History and Science Bulletin 53, 202-215.
- 939 Lehman, T.M., 2010. Pachycephalosauridae from the San Carlos and Aguja Formations (Upper
- 940 Cretaceous) of West Texas, and observations of the frontoparietal dome. Journal of
 941 Vertebrate Paleontology 30, 786 798.
- 942 Loewen, M.A., Irmis, R.B., Sertich, J.J.W., Currie, P.J., Sampson, S.D., 2013. Tyrant Dinosaur
- 943 Evolution Tracks the Rise and Fall of Late Cretaceous Oceans. PLoS ONE 8, e79420.
- 944 Longrich, N.R., Sankey, J., Tanke, D., 2010. Texacephale langstoni, a new genus of
- 945 pachycephalosaurid (Dinosauria: Ornithischia) from the upper Campanian Aguja
- 946Formation, southern Texas, USA. Cretaceous Research 31, 274-284.
- 947 Mallon, J.C., Evans, D.A., Tokaryk, T.T., Currie, M.L., 2015. First pachycephalosaurid
- 948 (Dinosauria: Ornithischia) from the Frenchman Formation (Upper Maastrichtian) of

949 Saskatchewan, Canada. Cretaceous Research.

Maryańska, T., Chapman, R.E., Weishampel, D.B., 2004. Pachycephalosauria, in: Weishampel,
D.B., Dodson, P., Osmólska, H. (Eds.), The Dinosauria. University of California Press,

952 Berkeley, pp. 464-477.

- 953 Owen, R., 1842. Reports of the British Association for the Advancement of Science 11, 60.
- 954 Peterson, J.E., Dischler, C., Longrich, N.R., 2013. Distributions of Cranial Pathologies Provide
- 955 Evidence for Head-Butting in Dome-Headed Dinosaurs (Pachycephalosauridae). PLoS
 956 ONE 8, e68620.
- 957 Roberts, E.M., Sampson, S.D., Deino, A.L., Bowring, S.A., Buchwaldt, R., 2013. The
- 958 Kaiparowits Formation: A remarkable record of Late Cretaceous terrestrial environments,
- 959 ecosystems, and evolutin in western North America, in: Titus, A.L., Loewen, M.A. (Eds.),

960 At the Top of the Grand Staircase. The Late Cretaceous of Southern Utah. Indiana

961 University Press, Bloomington, pp. 85-106.

- 962 Ryan, M.J., Evans, D.C., 2005. Ornithischian dinosaurs, in: Currie, P.J., Koppelhus, E.B. (Eds.),
- 963 Dinosaur Provincial Park: A Spectacular Ancient Ecosystem Revealed. Indiana
- 964 University Press, Bloomington, pp. 313-348.
- 965 Schott, R.K., 2011. Ontogeny, diversity, and systematics of pachycephalosaur dinosaurs from the
- 966 Belly River Group of Alberta. University of Toronto, Toronto, p. 173.
- 967 Schott, R.K., Evans, D.A., 2012. Squamosal ontogeny and variation in the pachycephalosaurian

dinosaur *Stegoceras validum* Lambe, 1902, from the Dinosaur Park Formation, Alberta.
Journal of Vertebrate Paleontology 32, 903-913.

- 970 Schott, R.K., Evans, D.C., Goodwin, M.B., Horner, J.R., Brown, C.M., Longrich, N.R., 2011.
- 971 Cranial Ontogeny in Stegoceras validum (Dinosauria: Pachycephalosauria): A

972 Quantitative Model of Pachycephalosaur Dome Growth and Variation. PLoS ONE	Ξ6
--	----

- 973 e21092.
- 974 Schott, R.K., Evans, D.C., Williamson, T.E., Carr, T.D., Goodwin, M.B., 2009. The anatomy and
- 975 systematics of *Colepiocephale lambei* (Dinosauria: Pachycephalosauridae). Journal of
 976 Vertebrate Paleontology 29, 771-786.
- 977 Snively, E., Theodor, J.M., 2011. Common Functional Correlates of Head-Strike Behavior in the
- Pachycephalosaur *Stegoceras validum* (Ornithischia, Dinosauria) and Combative
 Artiodactyls. PLoS ONE 6, e21422.
- 980 Sullivan, R.M., 2003. Revision of the dinosaur *Stegoceras* Lambe (Ornithischia,
- 981 Pachycephalosauridae). Journal of Vertebrate Paleontology 23, 181-207.
- 982 Sullivan, R.M., 2007. Doming, heterochrony, and paedomorphosis in the Pachycephalosauridae

983 (Ornithischia: Dinosauria): taxonomic and phylogenetic implications. Journal of

984 Vertebrate Paleontology 27, 154-155A.

- 985 Sullivan, R.M., Lucas, S.G., 2006. A new specimen of the pachycephalosaur dinosaur Stegoceras
- *validum* from the Upper Fruitland Formation, San Juan Basin, New Mexico. New Mexico
 Museum of Natural History and Science Bulletin 35, 329-330.
- 988 Upchurch, G.R., Jr., Mannion, P.D., Benson, R.B.J., Butler, P.M., Carrano, M.T., 2011.
- 989 Geological and anthropogenic controls on the sampling of the terrestrial fossil record: a
- case study from the Dinosauria. Geological Society of London Special Publication 358,209-240.
- 992 Watabe, M., Tsogtbaatar, K., Sullivan, R.M., 2011. A new pachycephalosaurid from the
- 993 Baynshire Formation (Cenomanian-late Santonian), Gobi Desert, Mongolia. New Mexico
- 994 Museum of Natural History and Science Bulletin 53, 489-497.

995 Williamson, T.E., Carr, T.D., 2002a. A juvenile pachycephalosaur (Dinosauria: 996 Pachycephalosauridae) from the Fruitland Formation, New Mexico. New mexico 997 Geology 24, 67-68. 998 Williamson, T.E., Carr, T.D., 2002b. A New Genus of Derived Pachycephalosaurian from 999 Western North America. Journal of Vertebrate Paleontology 22, 779-801. 1000 Williamson, T.E., Sullivan, R.M., 1998. A new local fauna, the Willow Wash local fauna, from 1001 the Upper Cretaceous (Campanian) Kirtland Formation, New Mexico. Journal of 1002 Vertebrate Paleontology 18, 86A. 1003 1004 Figures 1005 Figure 1. Surface model constructed from high-resolution CT (HRCT) images using Avizo v. 8.1 1006 visualization software and selected CT slices of the frontoparietal NMMNH P-33898, holotype 1007 of Stegoceras novomexicanum. A, right lateral view (reversed); B, dorsal view; C, ventral view; 1008 D, posterior view; E, anterior view; F, sagittal section right of midline (reversed); G, horizontal 1009 section; H, coronal section at the contact of the posterior supraorbital and postorbital suture. 1010 1011 Figure 2. Selected results of morphometric analysis of pachycephalosaur frontoparietal domes 1012 (A-B; based on measurements from Evans et al. 2013, supplementary table s1) and postorbitals (1013 C-D; based on measurements from Mallon et al., 2015, appendix a) including measurements of 1014 NMMNH P-33898 (holotype of Stegoceras novomexicanum), revised measurements of 1015 NMMNH P-27403 (holotype of Sphaerotholus goodwini), and 50900. Plots of PC1 versus PC2 1016 (A) and PC2 versus PC3 (B) from frontoparietal measurements and PC1 versus PC2 (C) and PC2 1017 versus PC3 (D) from postorbital measurements showing the placement of Stegoceras 1018 novomexicanum in morphospace relative to other pachycephalosaur taxa.

1020	Figure 3. Phylogeny of Pachycephalosauria. (A), Strict consensus of 12 most parsimonious trees
1021	with a shortest length of 77 steps resulting from a phylogenetic analysis consisting of 18
1022	pachycephalosaur taxa and two successive outgroups; Yinlong and Psittacosaurus and 50
1023	characters, after Evans et al. (2013)(Appendix 2). Analysis was run in TNT v. 1.1 (Goloboff et
1024	al., 2008); consistency index = 0.753, retention index = 0.796). (B), Temporally-calibrated
1025	phylgeny of Pachycephalosauria including NMMNH P-33898 (Stegoceras novomexicanum)
1026	showing approximate ranges of each taxon. Time scale is after Huang (2012) and ranges of
1027	pachycephalosaur taxa follow Evans et al. (2013).
1028	
1029	Figure 4. Generalized stratigraphic section for upper Campanian, Upper Cretaceous strata of the
1030	Bisti/De-na-zin Wilderness area, San Juan Basin, New Mexico modified after Fasset amd Steiner
1031	(1997) and Fassett (2009) showing the approximate stratigraphic position of all Fruitland and
1032	Kirtland Formation pachycephalosaur specimens. The names Sphaerotholus goodwini and
1033	Stegoceras novomexicanum are placed in parentheses below the holotype specimens. Specimens
1034	referred to S. novomexicanum are followed by an asterisk. Absolute dates are based on
1035	40Ar/39AR dates from volcanic ashes (Fasset and Steiner, 1997) as recalibrated by Roberts et al.
1036	(2013). Magnetic polarity and reversal boundaries are placed after Fassett (2009).
1037	
1038	Tables
1039	Table 1. Measurements of pachycephalosaur frontoparietals from Evans et al. (2013) with
1040	measurements of NMMNH P-33898, revised measurements of NMMNH P-27403 and including

1041 measurements of NMMNH P-50900. All measurements are in mm.

Table 1

Taxon	Specimen	H:n/n	H:pfr/aso	H:aso/pso	H:pso/po	W:n/pfr	W:pfr/aso	W:aso/pso	W:pso/po
Stegoceras validum	CMN 515	16.5	15.4	10.2	14.7	26.5	41.9	51.8	58.5
Stegoceras validum	AMNH 5450	9.9	11.7	11.4	14.3	18.4	30.7	43.8	45.4
Stegoceras validum	CMN 138	15.2	11.2	8.9	14.3	25.8	39.4	55.1	56.6
Stegoceras validum	TMP 1984.005.0001	13.6	11.7	7.8	12.6	21.2	36.3	48.6	56.3
Prenocephale brevis	TMP 1987.050.0029	22.5	22.4	16.9	27.8	26.5	42.8	69.9	82.4
Prenocephale brevis	TMP 1991.036.0265	2.1	4.8	4.8	11	15.8	30.7	37.7	38.5
Prenocephale brevis	TMP 1985.036.0292	6.8	8.5	7.4	17.2	16.9	27.6	47.7	50.4
Prenocephale brevis	TMP 1999.055.0122	4.3	6	5.5	12.8	15.4	26.3	39.7	45.2
Prenocephale brevis	UALVP 8508	7.7	10.6	8.2	17.4	17.5	28.7	48.7	55.3
Sphaerotholus buchholtzae	CMN 8830	10.9	11.3	10.4	18.7	19.5	38.7	53.7	64
Sphaerotholus buchholtzae	TMP 1987.113.0003	19.8	15.7	12.1	28.9	22.2	50.6	60.3	77.6
Sphaerotholus buchholtzae	UCMP 186026	10	10.5	8	15	18	37.2	43.8	48.4
Sphaerotholus buchholztae	LACM 64000	15.5	14.9	13	20.1	23.7	52	57	61.5
Sphaerotholus goodwini	NMMNH P-27403	23.7	27.3	23.3	41.4	35.6	56.2	79.5	101.25
Acrotholus audeti	TMP 2008.045.0001	28.2	28	25.6	37	28.5	63.2	70	76.3
Stegoceras novomexicanum	NMMNH P-33898	7.7	7.1	9.7	8.2	13.3	30	40	43.2
Х	NMMNH P-50900	29.7	28.6	26.3	31.4	27.9	52	75.4	78
Taxon	Specimen	W:f/p	W:Sq/Sq	L:aso	L:pso	L:po	L:fp	T:f/p	
Stegoceras validum	CMN 515	57.5	8.4	9.4	20.2	35.8	93.5	35	-
Stegoceras validum	AMNH 5450	39.2	4.3	10.1	15.5	24.5	82.3	20	
Stegoceras validum	CMN 138	53.1	6.2	12.1	16	33.9	84.2	34	
Stegoceras validum	TMP 1984.005.0001	52.7	7.3	11.8	14.9	29.2	85.7	25	
Prenocephale brevis	TMP 1987.050.0029	84.1	20.5	17.6	33.7	28.3	95.1	53	
Prenocephale brevis	TMP 1991.036.0265	39.4	12.8	8.9	17.6	17.3	57.1	27	
Prenocephale brevis	TMP 1985.036.0292	49.3	13.9	12.8	22.7	18.3	66.8	26	
Prenocephale brevis	TMP 1999.055.0122	44	10.7	10.5	18	16.2	61.1	24	
Prenocephale brevis	UALVP 8508	56.4	14	12.3	22.8	20.3	70.3	31.6	
Sphaerotholus buchholtzae	CMN 8830	66	16.4	11.6	18.2	40.4	93	41	
Sphaerotholus buchholtzae	TMP 1987.113.0003	83.5	23.4	9.7	25.4	33.8	106.7	49	
Sphaerotholus buchholtzae	UCMP 186026	52.7	11.3	6.2	14.8	28	73.2	30.7	
Sphaerotholus buchholtzae	LACM 64000	62.7	17.5	4.6	17	41.1	84.4	40.9	

7.4

7.4

16

8.6

39.5

25.1

62.4

44.2

133.4

104.7

75

59

101

70.1

NMMNH P-27403

TMP 2008.045.0001

Sphaerotholus goodwini

Acrotholus audeti

	Stegoceras novomexicanum	NMMNH P-33898	26.8	3	10.6	14.1	22.1	70.7	21.4
1043 1044	Х	NMMNH P-50900	81.8	15.7	27.1	23.4	25.5	111.8	63.2

- 1045
- Table 2. Measurements of pachycephalosaur postorbitals from Mallon et al. (2015, appendix a) 1046

- 1047 with those of NMMNH P-27403 (holotype of Sphaerotholus goodwini), 33898 (holotype of
- 1048 Stegoceras novomexicanum), and 50900. All measurements are in mm.
- 1049

1050 Table 2

Taxon	Specimen	length dorsal	length ventral	anterior height	posterior height
Hanssuesia	CMN 9148	47	27	25	10
Hanssuesia	CMN 8817	46	39	22	25
Hanssuesia	CMN 8945	55	48	27	18
Hanssuesia	CMN 38079	46	46	25	10
Prenocephale' brevis	CMN 121	21	17	14	14
Prenocephale' brevis	CMN 8819	22	16	14	17
Prenocephale' brevis	TMP 1985.036.292	20	23	15.8	11.4
Prenocephale' brevis	ROM 31616	19.6	21	19.3	18
Prenocephale' brevis	TMP 2000.12.0001	21	23	16	14.7
Prenocephale' brevis	TMP 1987.050.0029	29.1	32	29.8	25.2
Stegoceras	CMN 515	34	34	13	7
Stegoceras	CMN 2369	30	32	NA	NA
Stegoceras	CMN 138	34	37	15	7
Stegoceras	CMN 38428	41	37	19	9
Stegoceras	CMN 1074	32	34	18	11
Stegoceras	ROM 803	35	38	15	5
Stegoceras	CMN 8816	28	33	NA	6
Stegoceras	ROM 64183 (cast)	29.8	26	15	5.2
Stegoceras	UCMZ (VP) 2008.001	21.3	24	6.7	4
Stegoceras	CMN 1108A	27	25	12	7
Sphaerotholus buchholzae	UWBM 89701	30.8	32	18.3	7
Sphaerotholus buchholzae	LACM 64000	36.5	34.8	19.9	13.1
Sphaerotholus buchholzae	UCMP 186026	28.1	24.6	14.4	10.8
Sphaerotholus buchholzae	ROM 53667	38.8	37.4	24.7	19.2
Sphaerotholus buchholzae	ROM 53584	38.7	39.7	28.2	18.8

Sphaerotholus buchholzae	TMP 87.113.03	33	36	28	16
Sphaerotholus buchholzae	ROM 65563 (cast)	28.7	32.6	31.3	21.9
Colepiocephale	CMN 8818	33	34	17	6
Colepiocephale	TMP 1992.088.001	30.3	32.8	15.4	7
Colepiocephale	TMP 1986.146.0001	40.4	48.3	17.9	11.6
Colepiocephale	ROM Colepiocephale	35.3	40.3	13.9	8.7
Colepiocephale	ROM 59044 (TMP cast)	29.8	31.7	16.2	9
Colepiocephale	TMP 1987.046.0001	42.8	45.5	20.3	9.6
Colepiocephale	TMP 2009.37.0001	39.1	41.4	13.8	7.9
Dracorex	ROM Dracorex	57.9	74	9.5	12
Stygimoloch	ROM 61045	64	74	14	8
Sphaerotholus edmontonensis	CMN 8830	36	33	10	8
Sphaerotholus buchholzae	CMN 56510	27	25	22	13
Acrotholus	TMP 2008.045.0001	44.9	39.2	34.4	15.6
Sphaerotholus goodwini	NMMNH P-27403	62.4	46.3	38.1	23.1
Stegoceras novomexicanum	NMMNH P-33898	22.1	23.2	8.2	4.0
	NMMNH P-50900	25.5	25.9	31.5	34.3

1053 Appendices

1054 Appendix 1. Dataset used in PCA analyses and results of PCA analyses. Estimated measurements

1055 are in italics.

1056 Appendix 2. Nexus file of taxon-character matrix used in the phylogenetic analysis.