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ABSTRACT 11 

Pachycephalosaurs, a group of ornithischian dinosaurs with distinctive cranial ornamentation and 12 

skull domes, underwent dramatic changes in cranial morphology during ontogeny. This has 13 

caused debate about whether some specimens belong to juveniles or adults, which impacts 14 

studies of pachycephalosaur phylogeny and evolution. One such debate concerns a small skull 15 

roof specimen from the Campanian (Upper Cretaceous) of New Mexico, NMMNH P-33898, 16 

which was originally described as an indeterminate juvenile but later regarded as a mature adult 17 

and erected as the holotype of a new small-bodied species, Stegoceras novomexicanum. We 18 

restudied NMMNH P-33898 using computed tomography scanning, morphometric and 19 

phylogenetic analyses, and comparisons to growth series of other pachycephalosaurs (Stegoceras 20 

validum, Pachycephalosaurus wyomingensis). We conclude that two purported paratype 21 

specimens of Stegoceras novomexicanum cannot be referred to the same taxon as the holotype, 22 

that the holotype and controversial paratypes all belong to immature specimens and not aberrant 23 

mailto:thomas.williamson@state.nm.us


2 

 

small-bodied adults, but that current evidence cannot clearly determine whether NMMNH P-24 

33898 is a juvenile belonging to its own diagnostic species (S. novomexicanum) or is a juvenile 25 

of Stegoceras validum, Sphaerotholus goodwini, or another known taxon. We review the 26 

pachycephalosaur record of New Mexico and demonstrate that pachycephalosaurs were 27 

important components of dinosaur faunas in the southern part of Western North America during 28 

the ~15 million years before the end-Cretaceous extinction, just as they were in roughly 29 

contemporaneous northern localities. 30 

 31 

KEYWORDS 32 

ontogeny, juvenile, frontoparietal, morphometric analysis, phylogeny, biogeography 33 

 34 

 35 
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1. Introduction 36 

Pachycephalosaurs are a highly distinctive group of bipedal ornithischian dinosaurs that 37 

flourished during the latest Cretaceous (Maryańska et al., 2004). They are immediately 38 

recognized by their thickened skull roofs, which in some taxa are ornamented with nodes and 39 

horns and greatly expanded to form a rounded dome, which may have been used for display and 40 

intraspecific combat (Goodwin & Horner, 2004; Peterson et al., 2013; Snively & Theodor, 2011). 41 

Genera and species of pachycephalosaurs are primarily distinguished by differences in skull roof 42 

morphology. However, this is problematic because it is now known that pachycephalosaurs 43 

underwent extreme changes in cranial morphology during ontogeny, particularly in regards to the 44 

size, shape, fusion, and ornamentation of the skull dome (Horner & Goodwin, 2009; Schott & 45 

Evans, 2012; Schott et al., 2011; Williamson & Carr, 2002b). This has, in some cases, caused 46 

considerable disagreement about whether particular specimens are juveniles or adults, and what 47 

features can confidently diagnose species that undergo such radical changes during growth. 48 

A prime example of such a disagreement concerns the interpretation and identification of 49 

a small pachycephalosaur specimen from the Campanian (Upper Cretaceous) of New Mexico. 50 

The specimen, NMMNH P-33898, consists of a portion of the skull roof, including the 51 

frontoparietal dome. When first described, the specimen was regarded as an immature individual 52 

of an indeterminate pachycephalosaur species, based on its small size and retention of classic 53 

juvenile pachycephalosaur features such as the relatively poor development of a dome, large size 54 

of the parietosquamosal shelf, and large size of the supratemporal fenestrae (Evans et al., 2011; 55 

Williamson & Carr, 2002a), traits that are plesiomorphic within Marginocephalia (Butler et al., 56 

2011). It was later reinterpreted as a juvenile individual of the well-known taxon Stegoceras 57 

valdium (Sullivan & Lucas, 2006). Most recently, Jasinski & Sullivan (2011) came to a radically 58 
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different interpretation, concluding that NMMNH P-33898 was a mature or near-mature 59 

individual. They established it as the holotype of a new small-bodied species, Stegoceras 60 

novomexicanum, to which they also referred two fragmentary paratype specimens from New 61 

Mexico (SMP VP-2555 and VP-2790). Resolving whether Stegoceras novomexicanum is valid or 62 

not is important, as this species has been included in phylogenetic analyses used to study 63 

pachycephalosaur evolution (e.g., Evans et al., 2013a; Watabe et al., 2011) and the number of 64 

pachycephalosaur taxa in latest Cretaceous North America has bearing on measures of taxonomic 65 

and morphological diversity used to study dinosaur diversification patterns during the run-up to 66 

their extinction at the end of the Cretaceous (e.g., Barrett et al., 2009; Brusatte et al., 2015; 67 

Brusatte et al., 2012; Campione & Evans, 2011; Upchurch et al., 2011). 68 

Here we re-evaluate the maturity, taxonomic validity, and identification of Stegoceras 69 

novomexicanum, based on a restudy of the holotype specimen (NMMNH P-33898). This re-70 

study includes a new high-resolution computed tomography (HRCT) scan, morphometric 71 

analyses of measurement data, a revised phylogenetic analysis, and comparison to recent work 72 

on the ontogeny of other pachycephalosaurs, including Stegoceras validum and 73 

Pachycephalosaurus wyomingensis (Horner & Goodwin, 2009; Schott et al., 2011). We come to 74 

the conclusion that the S. novomexicanum paratypes cannot be confidently referred to the same 75 

taxon as the holotype, that most or all purported specimens of S. novomexicanum belong to 76 

immature individuals, that the original diagnosis of S. novomexicanum is problematic, and that 77 

current evidence cannot conclusively determine whether the holotype belongs to its own valid 78 

species-level taxon (S. novomexicanum) or is a juvenile of Stegoceras validum, Sphaerotholus 79 

goodwini, or another known taxon. 80 

Anatomical abbreviations: aso, contact surface for anterior supraorbital; f, frontal; f-f, 81 
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frontal-frontal suture; f-p, frontoparietal suture; H:aso/pso, height of the sutural surface at the 82 

contact of the prefrontal and anterior supraorbital; H:n/n, height of the sutural surface at the 83 

contact of the nasals; H:prf/aso, height of the sutural surface at the contact of the prefrontal and 84 

anterior supraorbital; H:pso/po, height of the sutural surface at the contact of the posterior 85 

supraorbital and postorbital; L:aso, length of the anterior supraorbital suture; L:fp, length of the 86 

frontoparietal; n, contact surface for nasal; L:po, length of the postorbital suture; L:pso, length of 87 

the posterior supraorbital suture; p, parietal; pf, contact surface for prefrontal; pso, contact 88 

surface for posterior supraorbital; sq, contact surface for squamosal; T:fp, thickness of the 89 

frontoparietal; W:f/p, width of the frontoparietal dome at the contact between the frontal and 90 

parietal; W:prf/aso, width between the prefrontal and anterior supraorbital sutural contacts; 91 

W:aso/pso, width between anterior and posterior supraorbital sutural contacts; W:pso/po, width 92 

between the posterior supraorbital and postorbital sutural contacts; W:sq/sq, width between the 93 

squamosal suture just ventral to the node row; Z-1 to Z-3, histological Zones I to III. 94 

Institutional abbreviations: AMNH, American Museum of Natural History, New York; 95 

CMN, Canadian Museum of Nature, Ottawa; LACM, Los Angeles County Museum, Los 96 

Angeles; NMC, National Museum of Canada, Ottawa; NMMNH, New Mexico Museum of 97 

Natural History and Science, Albuquerque; ROM, Royal Ontario Museum, Toronto; SMP, State 98 

Museum of Pennsylvania, Harrisburg; TMP, Royal Tyrrell Museum of Paleontology, Drumheller; 99 

UALVP, University of Alberta Laboratory of Vertebrate Paleontology, Edmonton, Alberta; 100 

UCMZ, Museum of Zoology, University of Calgary, Calgary; UWBM, University of Washington 101 

Burke Museum, Seattle. 102 

 103 

2. Historical review of Stegoceras novomexicanum 104 
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 In a short note, Williamson & Carr (Williamson & Carr, 2002a) described a small 105 

specimen of a pachycephalosaur from the Fruitland Formation (Fossil Forest Member, upper 106 

Campanian, Upper Cretaceous) of New Mexico. The specimen, NMMNH P-33898, consists of a 107 

nearly complete frontoparietal dome, a portion of the skull roof (Fig. 1A-E; note that NMMNH 108 

 109 

Figure 1. Surface model constructed from high-resolution CT (HRCT) images using Avizo v. 8.1 110 
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visualization software and selected CT slices of the frontoparietal NMMNH P-33898, holotype of 111 

Stegoceras novomexicanum. A, right lateral view (reversed); B, dorsal view; C, ventral view; D, 112 

posterior view; E, anterior view; F, sagittal section right of midline (reversed); G, horizontal 113 

section; H, coronal section at the contact of the posterior supraorbital and postorbital suture. 114 

 

P-33898 has been erroneously listed under a variety of specimen numbers including NMMNH P-115 

33983 [e.g., Lucas & Sullivan, 2006, Jasinski & Sullivan, 2011, Watabe et al., 2011] and 116 

NMMNH P-33893 [Lucas & Sullivan, 2006]). Williamson & Carr (2002a) regarded it as an 117 

immature pachycephalosaur based on its small size and retention of several characters that are 118 

present in the early ontogenetic stages of derived pachycephalosaurs, including large and open 119 

supratemporal fenestrae and a flattened posteromedial extension of the parietals, which indicates 120 

a prominent parietosquamosal shelf. These features are present in juveniles of Stegoceras 121 

validum and Pachycephalosaurus wyomingensis (Horner & Goodwin, 2009; Schott et al., 2011; 122 

Williamson & Carr, 2002b), taxa that develop high-domed skulls with small or closed 123 

supratemporal fenestrae and a reduced parietosquamosal shelf as adults. Because of its juvenile 124 

status and its lack of other portions of the skull that are highly diagnostic in pachycephalosaurs 125 

(particularly the squamosals), Williamson & Carr (2002a) could not confidently identify the 126 

specimen as belonging to a particular pachycephalosaur species. They tentatively suggested that 127 

it may be a juvenile representative of a new taxon from the Kirtland Formation of New Mexico, 128 

which they later named Sphaerotholus goodwini (Williamson & Carr 2002b), but they could not 129 

be certain. Therefore, the specimen was regarded as Pachycephalosauridae indet. 130 

 The specimen was later reexamined by Sullivan & Lucas (2006), who came to a different 131 

conclusion. They accepted that the specimen belonged to a juvenile, but concluded that it could 132 

be referred to Stegoceras validum, because it possessed a flattened posteromedial extension of 133 
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the parietals (a pronounced parietosquamosal shelf) between the large and open supratemporal 134 

fenestrae, as is found in specimens interpreted to be subadult individuals of Stegoceras validum 135 

(Goodwin et al., 1998; Schott et al., 2011; Sullivan, 2003). S. validum is one of the best known 136 

pachycephalosaur taxa, as it is represented by numerous individuals (mostly from the Campanian 137 

of Alberta, Canada) that have allowed reconstruction of a growth series (Schott & Evans, 2012; 138 

Schott et al., 2011). However, it is now understood that the pronounced parietosquamosal shelf 139 

and large supratemporal fenestrae are general features of pachycephalosaur juveniles, not 140 

restricted to juveniles of S. validum (e.g., Horner & Goodwin, 2009; Schott & Evans, 2012; 141 

Schott et al., 2011; Williamson & Carr, 2002b). 142 

 More recently, Jasinski & Sullivan (2011) came to a radically different interpretation of 143 

NMMNH P-33898. Based in part on comparisons to two new fragmentary pacycephalosaur 144 

specimens from New Mexico (SMP VP-2555 and VP-2790), they concluded that NMMNH P-145 

33898 was a “near fully-grown” individual (Jasinski & Sullivan, 2011:210). This determination 146 

was not based on study of NMMNH P-33898 itself, but rather on the similarity of the specimen 147 

to the two new fossils, which Jasinski & Sullivan (2011) argued were mature or near-mature 148 

based on: 1) the smoothness of the frontoparietal dome (in SMP VP-2555); 2) the interpretation 149 

of a ‘capping histological layer’ of bone on the top of the dome suggesting the specimens had 150 

finished growing (in SMP VP-2555 and VP-2790); and 3) partial fusion of the frontals on the 151 

midline and the frontals and parietals posteriorly (in SMP VP-2555). Because these specimens 152 

were identified as adults, but were much smaller than other pachycephalosaur adults (e.g., those 153 

of Stegoceras validum), Jasinski & Sullivan (2011) concluded that they must represent a new 154 

species of small-bodied pachycephalosaur. They named this species Stegoceras novomexicanum, 155 

and erected NMMNH P-33898 as the holotype and SMP VP-2555 and VP-2790 as paratypes. 156 
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 In erecting Stegoceras novomexicanum as a new taxon, Jasinski & Sullivan (2011:202) 157 

provided a diagnosis that differentiated it only from Stegoceras validum. The following 158 

combination of features was held to distinguish Stegoceras novomexicanum from Stegoceras 159 

validum: “posteromedial extension of the parietal reduced and sub-rectangular; squamosal 160 

sutural surface contacts of the posteromedial extension of the parietal roughly parallel; 161 

supratemporal fenestrae more medial and enlarged; gracile and small adult size.” The rationale 162 

for referring the two paratype specimens (SMP VP-2555 and VP-2790) to the same new taxon as 163 

the holotype (NMMNH P-33898) was only briefly articulated, and was based on overall 164 

similarity instead of possession of explicit synapomorphies. 165 

 Jasinski & Sullivan’s (2011) arguments that Stegoceras novomexicanum is a valid taxon 166 

hinge on two things: 1) that the two referred specimens belong to the same diagnosable species 167 

as the holotype (NMMNH P-33898), as it was the referred specimens that were argued to belong 168 

to mature or near-mature adults; 2) that these specimens, particularly the holotype, are fully 169 

grown or nearly fully grown, and not juveniles. 170 

 171 

3. Methods 172 

 We provide three new lines of evidence that help to interpret the maturity and taxonomic 173 

identity of the holotype of Stegoceras novomexicanum (NMMNH P-33898).  174 

First, we subjected the holotype specimen of Stegoceras novomexicanum’, NMMNH P-175 

33898, to a high-resolution computerized tomographic (HRCT) scan at the University of Texas 176 

(Austin) High-Resolution X-ray Computed Tomography Facility. The following are the 177 

parameters of the scan: NSI scanner.  Feinfocus source, high power, 220 kV, 0.28 mA, one brass 178 

filter, Perkin Elmer detector, 0.5 pF gain, 1 fps (999.911 ms integration time), no binning, no flip, 179 
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source to object 128 mm, source to detector 1000 mm, continuous CT scan, no frames averaged, 180 

0 skip frames, 1800 projections, 8 gain calibrations, 5 mm calibration phantom, data range [-4, 181 

52] (rescaled from NSI default), beam-hardening correction = 0.15. Voxel size = 0.0405 mm. 182 

Total slices = 1847. The CT scan slices were then visualized and rendered into a 3D isosurface 183 

model in Avizo v. 8.1 data visualization software. 184 

Second, we added NMMNH P-33898 to two morphometric datasets: one presented by 185 

Evans et al. (2013a), which includes 15 other pachycephalosaur specimens scored for several 186 

morphometric measurements of the frontoparietal, and another presented by Mallon et al. (2015), 187 

which includes 39 other pachycephalosaur specimens scored for four standard measurements 188 

relating to the dimensions of the postorbital sutural surfaces. The New Mexico taxon 189 

Sphaerotholus goodwini was added to the Mallon et al. (2015) dataset, and its measurements 190 

were revised in the Evans et al. (2013a) dataset, based on restudy of the original specimen. We 191 

measured the holotype specimen and obtained nearly identical values as Evans et al. (2013a), 192 

with the exception of two measurements; we found a different value for the  H:n/n (height of the 193 

sutural contact at the contact of the nasals) 23.7 mm (estimated) versus 34.6 mm (Evans et al., 194 

2011). This surface is damaged near the dorsal surface of the frontals and is incomplete (as 195 

indicated by italics, Table 1). Evans et al. (2011) did not indicate that their value is an estimate 196 

and we find that the Evans et al. (2011) measurement of this contact is too high, possibly because 197 

they misidentified the base of the n/n contact. They may have included a portion of the 198 

mineralized olfactory turbinates preserved in this specimen (see Bourke et al., 2014) in their 199 

measurement. There is also a small discrepancy in the values of L:pso (length of the contact for 200 

the posterior supraorbital; 39.5 mm versus 34.8 mm, respectively; Table 1).  201 

 202 

Both datasets were log-transformed and three missing values in the Mallon et al. (2015) 203 

Commented [S1]: Just because ‘significant’ to me (and maybe 

other readers) signifies statistical significance. 
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dataset were replaced with the mean value for that column across all other specimens (Appendix 204 

1). The datasets were then individually subjected to Principal Components Analysis (PCA) in 205 

PAST v.2.17 (Hammer et al., 2001), using the correlation matrix for the Evans et al. (2013a) 206 

dataset and the variance-covariance matrix for the Mallon et al. (2015) dataset, following the 207 

original protocols of each analysis. For each dataset, PCA produces a multivariate morphospace. 208 

The position of NMMNH P-33898 in this morphospace can be used to test its systematic 209 

affinities, by determining whether it falls within the range of variation of another species 210 

(evidence that it belongs to that species) or is an extreme outlier (evidence that it is a distinct 211 

taxon). 212 

Third, we updated the phylogenetic analysis of Evans et al. (2013a), which assessed the 213 

phylogenetic relationships within Pachycephalosauria with an analysis of 16 ingroup taxa, 214 

including Stegoceras novomexicanum, and 50 characters (see Evans et al., 2013a, supplementary 215 

table S4). We rescored a number of taxa as follows: Prenocephale prenes is scored as  and “2” 216 

for character 29; ; Stegoceras validum is scored as polymorphic (“0/1”) for character 28; 217 

Pachycephalosaurus is scored as “1” for character 7,  Alaskacephale is scored as “?” for 218 

characters 18,  24, and 30;  and Stegoceras novomexicanum is scored as  “0” for character 42 (an 219 

updated version of the data matrix is available as supporting information; Appendix 2). We 220 

subjected the revised dataset to a parsimony analysis in TNT v. 1.1 (Goloboff et al., 2008) under 221 

the ‘New Technology search’ option, using sectorial search, ratchet, tree drift, and tree fuse 222 

options with default parameters. The minimum length tree was found in 10 replicates, with an 223 

aim to sample as many tree islands as possible. The recovered trees were then analyzed under 224 

traditional TBR branch swapping, a final step to more extensively explore each tree island. 225 

 226 
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4. Are the paratypes of Stegoceras novomexicanum referrable to the same taxon as the 227 

holotype? 228 

Jasinski et al. (2011) referred two specimens to Stegoceras novomexicanum and 229 

designated them as paratypes. One specimen consists  only of a portion of the frontal (SMP VP-230 

2555 and the other (SMP VP-2790) consists of the anterior portion of a parietal, yet were 231 

referred to the same taxon as the holotype, NMMNH P-33898. The rationale for referring the two 232 

paratype specimens (SMP VP-2555 and VP-2790) to the same new taxon as the holotype 233 

(NMMNH P-33898) was that the diagnostic combination of characters distinguishing NMMNH 234 

P-33898 from Stegoceras validum were “either present or inferred to be present in the two 235 

paratype specimens” (Jasinski & Sullivan, 2011:203) and that, at least in the case of SMP VP-236 

2555, it has “identical morphology of the ventral surfaces and similar size” to NMMNH P-38898 237 

(Jasinski & Sullivan, 2011:207). 238 

We find this rationale to be problematic. First, Jasinski & Sullivan (2011) did not list any 239 

features of ventral surface of the frontal in their diagnosis for Stegoceras novomexicanum, so it is 240 

unclear what exactly constitutes the “identical morphology” uniquely shared between SMP VP-241 

2555 and the holotype. Second, skull and dome size is highly variable in pachycephalosaurs and 242 

clearly changes through ontogeny, so the similar size of SMP VP-2555 and the holotype is not a 243 

strong sign of taxonomic equivalency. Third and most problematic, all the features, other than 244 

size, explicitly listed in the diagnosis of Stegoceras novomexicanum concern the posterior part of 245 

the parietals, which is not preserved in either paratype. Moreover, at least one of the paratype 246 

specimens, SMP VP-2555, consists of a portion of the frontals that includes part of the articular 247 

surfaces for the anterior supraorbital, prefrontal, and nasal. This specimen preserves a highly 248 

transversely-convex frontal boss that is bordered laterally by a distinct groove, similar to what is 249 
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seen in S. validum and some other pachycephalosaur taxa (e.g., “Prenocephale” brevis, 250 

Colepiocephale lambei, Hanssuesia sternbergi; Williamson and Carr, 2002b; Sullivan, 2003), but 251 

unlike the holotype of Stegoceras novomexicanum (NMMNH P-33898). This difference between 252 

SMP VP-2555 and NMMNH P-33898 may be evidence that these two specimens belong to 253 

different taxa. However, it is likely that the differences are due to ontogeny because the 254 

prominence of the frontonasal boss and the frontal grooves are variable within S. validum, and 255 

are generally more poorly developed in specimens of early ontogenetic stages (e.g., AMNH 256 

5450, and CMN 515) (Schott et al., 2011).  257 

In summary, there is no explicit character evidence that supports the referral of the 258 

paratypes SMP VP-2555 and VP-2790 to the same taxon as the Stegoceras novomexicanum 259 

holotype, NMMNH P-33898. Therefore, any arguments about the maturity of Stegoceras 260 

novomexicanum based on the paratype specimens are inconclusive. 261 

 262 

5. Are the putative specimens of Stegoceras novomexicanum mature or near-mature? 263 

 The crux of Jasinski & Sullivan’s (2011) argument that Stegoceras novomexicanum is a 264 

valid species is that all known material (the holotype and two controversial paratypes) belong to 265 

mature or near-mature individuals. If this is the case, then the small size of these specimens 266 

compared to other pachycephalosaur adults from the Late Cretaceous would indicate that the 267 

New Mexico specimens belong to a distinct small-bodied species. 268 

When discussing pachycephalosaur ontogeny and identifying the maturity stage of 269 

individual specimens, there is a wealth of data to refer to. Understanding of pachycephalosaur 270 

ontogeny comes from the study of relatively large samples of specimens that are thought to 271 

represent a single taxon. These contain individuals that are from a variety of ontogenetic stages 272 
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and can be used to reconstruct a growth series. Such a growth series has been reconstructed for 273 

Stegoceras validum based on large samples referred to that taxon from upper Campanian 274 

deposits of the Dinosaur Park Formation (Schott & Evans, 2012; Schott et al., 2011) and has 275 

been postulated for Pachycephalosaurus wyomingensis from the upper Maastrichtian of the 276 

Lance and Hell Creek formations of the northern Rocky Mountain region (Horner & Goodwin, 277 

2009). These provide compelling evidence that these pachycephalosaurs underwent relatively 278 

extreme changes in cranial morphology during ontogeny. 279 

Many authors, including Williamson & Carr (2002b), Goodwin & Horner (2004), Horner 280 

& Goodwin (2009), Schott et al. (2011), and Schott & Evans (2012) used a suite of characters to 281 

assess relative maturity in Stegoceras validum and/or Pachycephalosaurus wyomingensis. 282 

Changes that the pachycephalosaur skull underwent through ontogeny include an increase in the 283 

degree of sutural fusion between the paired frontals and between the frontals and parietal from 284 

widely open sutures in juvenile specimens to total fusion between these bones in adults; an 285 

increase in the overall size of the frontoparietal; an increase in the size and a change in shape of 286 

the frontoparietal dome as it expanded vertically and horizontally, resulting in reduction of the 287 

relative size of the parietosquamosal shelf and reduction or complete closure of the 288 

supratemporal fenestra; changes in surface texture of the dome from small, rounded tubercles, to 289 

larger, flat-topped platforms separated by sulci or depressions that develop as the underlying 290 

dome expanded; a change in the external cortical dome surface from one that presented exposed 291 

Sharpey’s fibers to a blunt-shaped erosional or degraded surface; and a change in the internal 292 

bone texture of the skull roof from one that is highly vascularized with vascular spaces oriented 293 

primarily in a radial patter to one that is dense with a highly reduced vascularization. 294 

With this information to draw from, along with new data from our HRCT analysis of 295 
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NMMNH P-38898, we comment on the maturity of the New Mexico specimens referred to 296 

Stegoceras novomexicanum. We individually discuss the features that Jasinski & Sullivan (2011) 297 

held to be indicators of maturity (or near maturity) in the New Mexico specimens. Importantly, 298 

we provide a clear assessment of the ontogenetic stage of the holotype (NMMNH P-38898), 299 

which Jasinski & Sullivan (2011) only briefly discussed. Instead, their ontogenetic argument was 300 

based on the referred paratypes, which is problematic because the holotype is the name-bearer of 301 

Stegoceras novomexicanum and because the paratypes cannot be reliably referred to the same 302 

taxon as the holotype (see Section 4 above). 303 

 304 

5.1 Texture of the dorsal surface of the frontoparietal dome 305 

 306 

 Jasinski & Sullivan (2011:203) argued that the “smoothness of the frontoparietal dome” 307 

in the paratype specimen SMP VP-2555 supported its mature or near-mature status. However, the 308 

smoothness of the dome surface does not offer an effective way to clearly gauge relative maturity 309 

in pachycephalosaurs because it is related to the relative inflation of the underlying skull roof. 310 

Nodal ornamentation changes ontogenetically in pachycephalosaurs, coinciding with 311 

inflation of the dome. In S. validum, the tubercular ornamentation on the domes typically exhibit 312 

low relief compared to those on the skull roof perimeter, a difference that is related to the local 313 

degree of dome inflation. This inflation is hypothesized to laterally expand surface tubercles that 314 

overly the dome, resulting in an increase in the diameter of individual tubercles, and a reduction 315 

in their vertical relief (Williamson & Carr, 2002b). Relatively unexpanded portions of the skull 316 

roof, usually found near the perimeter of the skull roof, typically retain relatively small and high 317 

tubercles. Indeed, the frontal fragment, SMP VP-2555 retains relatively small, high, and distinct 318 
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tubercles lateral to the high and inflated nasal boss (Jasinski & Sullivan, 2011, fig. 4c). 319 

The dorsal surface of NMMNH P-33898 does exhibit tuberculate ornamentation that is 320 

lower than typically observed in many immature specimens of S. validum. In particular, the 321 

tubercular ornamentation of NMMNH P-33898 is distinctly subdued transversely across the apex 322 

of the dome, over the approximate location of the frontoparietal sutures. However, it is unclear if 323 

this indicates a greater relative maturity than these S. validum specimens, for two reasons. First, 324 

the relative smoothness of the dome and subdued morphology of the tubercles may be due to 325 

postmortem abrasion of the specimen. Second, even if this morphology is genuine, domes in 326 

pachycephalosaurs typically show reduced tubercular ornamentation even in specimens that 327 

represent early ontogenetic stages (Schott et al., 2011; Williamson & Carr, 2002b) and so 328 

presence of a smooth surface over the domed portion of a frontoparietal does not necessarily 329 

indicate that maturity has been reached.  330 

 331 

5.2 Histology of the frontoparietal dome 332 

 333 

Jasinski & Sullivan (2011) argued that the histology of the frontoparietal dome of SMP 334 

VP-2555 and SMP VP-2790 indicated that the specimens belonged to mature adults that had 335 

stopped growing. Histological examination was based on gross observation of bone texture as 336 

revealed through a natural break in the specimen (Jasinski & Sullivan, 2011:fig. 6), not 337 

examination of thin sections or CT data. Jasinski & Sullivan (2011) regarded the more complete 338 

SMP VP-2555 as exhibiting four distinct histological regions (“histomorphs” in their 339 

terminology) that they interpreted to represent episodes of accelerated growth in the dome 340 

interrupted by episodes of slower growth, akin to lines of arrested growth (LAGs). In addition, 341 
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they argued that the presence of “capping layer” composed of dense, avascular bone, near the 342 

dorsal surface of SMP VP-2555 and VP-2790 indicated that both specimens had essentially 343 

stopped growing. 344 

There is a wealth of data on how frontoparietal histology changes during 345 

pachycephalosaur growth, based on examination of large samples of Stegoceras and 346 

Pachycephalosaurus (e.g., Goodwin & Horner, 2004; Schott et al., 2011). Goodwin & Horner 347 

(2004) recognized histological zones termed Zones I, II, and III within the frontoparietal domes 348 

of Stegoceras validum and Pachycephalosaurus wyomingensis. Zone I is a basal zone of 349 

“typical” bone of endochondral origin that remains constant through ontogeny. Zone II is a zone 350 

of vascular bone that decreases during ontogeny. Zone III is a zone of dense, sparsely 351 

vascularized bone below the periosteal surface of the dome. Jasinski & Sullivan (2011) regarded 352 

the dense outer h4 zone of SMP VP-2555 and VP-2790 to be equivalent to Zone III of Goodwin 353 

& Horner (2004), and we agree. We also interpret the histological zones 1 (h1) and 3 (h3) of 354 

Jasinski & Sullivan (2011) to represent histological Zones I and II, respectively, of Goodwin & 355 

Horner (2004), as their histological structure is nearly identical. We are not completely certain of 356 

the identification of the narrow zone of more cancellous bone that Jasinski & Sullivan (2011) 357 

identified as zone 2 (h2), which surrounds the tissue of zone 1. A similar zone has yet to be 358 

reported in other pachycephalosaurs that have been studied. 359 

Jasinski & Sullivan (2011) used the histological structure of SMP VP-2555 and VP-2790 360 

to make an argument about maturity, but this conclusion is at odds with the conclusions reached 361 

by other workers based on study of Stegoceras and Pachycephalosaurus (e.g., Goodwin & 362 

Horner, 2004; Horner & Goodwin, 2009; Schott, 2011). Jasinski & Sullivan (2011) argued that 363 

the presence of the dense, poorly vascularized outer layer of the dome (equivalent to Zone III of 364 
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Horner & Goodwin [2004]) indicates that the specimens had stopped growing. However, in 365 

Pachycephalosaurus and Stegoceras, Zone III appears early in ontogeny and its thickness 366 

increases as an individual grows. It is present as a thin layer even in very early ontogenetic stages 367 

of S. validum (UCMP 130049; Schott et al., 2011, fig. 5a). Therefore, the presence of this layer is 368 

not an indicator of maturity, contra Jasinski & Sullivan (2011). 369 

 The entirety of Jasinski & Sullivan’s (2011) histology argument is based on the two 370 

referred specimens. Our restudy of the Stegoceras novomexicanum holotype (NMMNH P-371 

33898) provides histological evidence that the specimen is immature. HRCT slices through the 372 

frontoparietal reveal details of the bone histology (Fig. 1F-H). In this specimen, many of the 373 

vascular spaces are filled with a relatively x-ray opaque mineral and these show up as white in 374 

the scans. The scans clearly reveal a distinct separation between a relatively thick and highly 375 

vascularized layer with approximately vertically-aligned bony struts separated by vascular spaces 376 

(Zone II, sensu Goodwin & Horner, 2004) sandwiched between an amorphous, but vascular, 377 

basal zone (Zone I) and dense dorsal zone (Zone III) below the surface of the skull roof (Fig. 1F-378 

H).  379 

Schott et al. (2011) assessed relative maturity of specimens of Stegoceras validum based 380 

upon the relative amount of void space within the frontoparietal. In their study, they calculated 381 

the percentage of void space from thresholded coronal CT slices of the skull roof at the 382 

postorbital-squamosal contact. Void space is found primarily within Zone II and is reduced 383 

through ontogeny as Zones I and III increase in relative thickness at the expense of Zone II (see 384 

Schott et al., 2011, fig. 10). Unfortunately, the presence of relatively opaque minerals within the 385 

void spaces of NMMNH P-33898 prevents us from obtaining a useful thresholded image of the 386 

specimen. Nevertheless, the relative thickness of Zone II compared to Zones I and III can be 387 
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readily compared in CT slices (Fig. 1) and reveal a highly vascularized Zone II that is 388 

significantly thicker than either Zone I or Zone III. The relative amount of void space within the 389 

dome and relative thickness of Zone II is strongly similar to that in immature specimens of 390 

Stegoceras validum, and is much thicker than in adult or near-mature specimens (see Schott et 391 

al., 2011) and is a clear indication that NMMNH P-33898 represents a juvenile specimen. 392 

 393 

5.3 Suture closure on the dorsal surface of the frontoparietal dome 394 

 395 

 Jasinski & Sullivan (2011:203) held that the “partial fusion” of the left and right frontals 396 

and the frontals and parietals in SMP VP-2555 was a sign of maturity. Their concept of “partial 397 

fusion” was the lack of visible sutural contacts between the frontals and the frontals and parietals 398 

on the external surface of the specimen. 399 

Stegoceras and Pachycephalosaurus close sutural contacts between the paired frontals 400 

and between the frontals and parietals, as well as between other skull roof bones, during 401 

ontogeny. In specimens that represent early ontogenetic stages, the frontoparietals remain 402 

completely unfused, with sutures that are visible on the external surface of the specimens. 403 

However as ontogeny ensues, the sutures between the frontals and parietals often become 404 

indistinguishable on the dorsal surface even in subadult specimens, while remaining open 405 

internally (Horner & Goodwin, 2009; Schott et al., 2011). 406 

 Jasinski & Sullivan (2011) focused most of their attention on the sutural morphology of 407 

SMP VP-2555 and did not discuss the condition in NMMNH P-33898 in much detail. In this 408 

specimen, the frontal-frontal and frontoparietal sutures are not visible near the midline of the 409 

external (dorsal) surface of the dome but remain distinct on the ventral surface. Moreover, the 410 
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frontal-parietal sutures are clearly visible on the lateral surfaces of the specimen and on the 411 

dorsolateral surfaces of the dome. HRCT scans of NMMNH P-33898 (Fig. 1F-H) show frontal-412 

frontal and frontoparietal sutures as dark lines with little, or no, mineralization. These indicate 413 

that the sutures between the frontals and between the frontals and parietals were open through 414 

most of the skull height, closing only very close to the dorsal surface near the midline of the 415 

skull. This is a strong indication that the specimen represents an immature individual, because 416 

early in pachycephalosaur ontogeny the suture trace disappears from the external surface while 417 

remaining open internally (Horner & Goodwin, 2009; Schott et al., 2011). 418 

  419 

5.4 Additional features of the anatomy 420 

 421 

In addition to the three explicit features that they used to argue for the maturity or near-422 

maturity of Stegoceras novomexicanum specimens, Jasinski & Sullivan (2011) also mentioned 423 

some other characters that purportedly supported their assessment. They argued that NMMNH P-424 

33898 exhibits a degree of development of the dome, frontoparietal shelf, and supratemporal 425 

fenestrae similar to the condition in specimens of Stegoceras validum that they held to be mature 426 

or nearly mature, particularly CMN 515, the holotype of S. validum, and CMN 138, another 427 

specimen that they regarded as approximately the same ontogenetic stage (although they 428 

acknowledged that some features suggested it was not fully mature). These CMN specimens 429 

possess a partially expanded dome with an extensive frontoparietal shelf and large, open 430 

supratemporal fenestrae. In this regard, we agree that they are similar to NMMNH P-33898. 431 

However, we note that Schott et al.’s (2011) comprehensive study of S. validum growth came to a 432 

much different conclusion on the ontogenetic maturity of CMN 515 and 138. Unlike Jasinski & 433 
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Sullivan (2011), who considered these specimens to be mature, Schott et al. (2011) found both to 434 

be in the middle portion of the S. validum growth series, approximately midway between the 435 

earliest ontogenetic stage and the latest (see Schott et al., 2011, fig. 4). If Schott et al. (2011) are 436 

correct, then the similarity between NMMNH P-33898 and the two CMN species would be 437 

evidence that NMMNH P-33898 is also an immature individual far from being fully grown or 438 

osteologically mature. 439 

 440 

5.5 Summary 441 

 442 

The suite of morphological features that are typically used to assess ontogeny in 443 

Stegoceras validum and other pachycephalosaurs indicate that NMMNH P-33898 represents a 444 

relatively early ontogenetic stage rather than a mature or nearly mature individual. Furthermore, 445 

none of the features that Jasinski & Sullivan (2011) considered as supporting the maturity of 446 

NMMNH P-33898 and the two controversial paratypes hold up to scrutiny. Therefore, all 447 

evidence indicates that the specimens of Stegoceras novomexicanum are immature, and there are 448 

no grounds to consider this pachycephalosaur to be an unusual small-bodied taxon. 449 

 450 

6. Is Stegoceras novomexicanum a valid taxon? 451 

 452 

The holotype and controversial paratype specimens of Stegoceras novomexicanum 453 

belong to immature individuals, but of which species? It is possible that Stegoceras 454 

novomexicanum may still be a valid taxon, albeit represented only by juvenile material. 455 

Alternatively, there may be evidence that the Stegoceras novomexicanum specimens belong to 456 
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another pachycephalosaurid taxon, such as Stegoceras validum (as hypothesized by Sullivan & 457 

Lucas 2006) or Sphaerotholus goodwini (which was raised as a possibility by Williamson & Carr 458 

2002a), which is found in strata of similar age in the San Juan Basin of New Mexico. We review 459 

several lines of evidence bearing on this issue. 460 

 461 

6.1 Original diagnosis 462 

 463 

The starting point for this discussion is the original diagnosis of Stegoceras 464 

novomexicanum from Jasinski & Sullivan (2011:202). They regarded the following characters as 465 

diagnostic for Stegoceras novomexicanum relative to only one other taxon, S. validum: a reduced 466 

posteromedial extension of the parietal that is sub-rectangular in shape, squamosal sutural 467 

surfaces on the parietal that is roughly parallel (a result of the sub-rectangular shape of the 468 

posteromedial extension of the parietal), supratemporal fenestrae that are large and medially 469 

positioned, and small adult size.  470 

We have issues with all of these characters. We discounted the latter two characters 471 

(above), demonstrating that the enlarge fenestrae and small body size are juvenile features. The 472 

other features considered diagnostic by Jasinski & Sullivan (2011) deserve further comment. 473 

Jasinski & Sullivan (2011:210) made a distinction between the reduced and sub-474 

rectangular posteromedial parietal extension of Stegoceras novomexicanum with the relatively 475 

wider, “more robust and trapezoidal” posterior process of the parietal in S. validum, which results 476 

in more laterally positioned supratemporal fenestrae and “splayed” sutural surfaces for the 477 

squamosal. Based in part on this description, the shape of the posteromedial (intrasquamosal)  478 

process of the parietal has been incorporated into phylogenetic analyses, with two states, ‘non-479 
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rectangular’ and ‘rectangular’ (Watabe et al., 2011: ch. 47). However, we feel that the distinction 480 

between these two conditions is not clear-cut, particularly as it has not been quantified in any 481 

way. We argue that the posteromedial projection of the Stegoceras novomexicanum holotype 482 

(NMMNH P-33898) is more trapezoidal than rectangular in shape when seen in dorsal view, as it 483 

is wider transversely at the posterior margin of the supratemporal fenestra than at the anterior 484 

sutural surface for the squamosal. In addition, the contact surfaces for the squamosals are not 485 

parallel, but they converge posteriorly. These sutural surfaces are separated on the midline by the 486 

subcutaneous surface of the parietal, which forms a narrow dorsoventrally aligned and ventrally-487 

widening groove on the posterior surface of the parietal (Fig. 1D). The parietosquamosal contact 488 

surfaces, therefore, resemble those of S. validum, with the minor different that in NMMNH P-489 

33898 they faces dorsolaterally and posteriorly rather than posterolaterally as in S. validum (see, 490 

for example, Schott et al., 2011, fig. 7). Therefore, we see no clear, easy-to-define distinction 491 

between Stegoceras novomexicanum and S. validum in these features. 492 

 493 

6.2 Other discrete characters 494 

 495 

Based on our restudy of NMMNH P-33898, we have identified some additional 496 

characters that may have bearing on the taxonomic status of the specimen. One feature that may 497 

set NMMNH P-33898 apart from Stegoceras validum, and a number of other pachycephalosuar 498 

taxa (e.g., Colepiocephale, Hanssuesia, “Prenocephale” brevis) is the relatively low and more 499 

shallowly transversely convex shape of the frontals between the contacts with the nasals, 500 

prefrontals, and anterior supraorbitals (Fig. 1A-E). This frontal boss is much more strongly 501 

transversely convex on specimens of Stegoceras validum that probably represent a similar 502 
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ontogenetic stage (see below; e.g., CMN 138, 8816, TMP 84.5.1; see Sullivan, 2003: fig. 2). 503 

Moreover, in NMMNH P-33898, the dome flattens laterally from the frontal portion of the dome 504 

as it nears the contact for the anterior supraorbitals. There is no indication of an abrupt break in 505 

slope or grooving that is typically found in Stegoceras validum, and several other taxa (e.g., 506 

Colepiocephale, Hanssuesia, “Prenocephale” brevis) which have strongly vaulted doming of the 507 

frontal dome between the prefrontals and a separate inflation of the dome laterally adjacent to the 508 

anterior supraorbitals (the “lateral frontal lobes” of some workers). The frontal boss of CMN 509 

128, and TMP 84.5.1, specimens that have approximately the same degree of dome development 510 

as NMMN P-33898, have a more inflated frontal boss with distinct sulci, or break in slope, 511 

separating the frontal boss from the laterally adjacent parts of the frontoparietal which have 512 

undergone some inflation. In addition, the contact for the prefrontal in NMMNH P-33898 is 513 

anteroposteriorly elongate between the anterior supraorbital and nasals, and more gently tapers 514 

anteriorly toward the nasal contacts, than in S. validum, Hanssuesia, and “Prenocephale” brevis. 515 

The frontals are elongate, but nearly parallel-sided between the prefrontals in Colepiocephale. 516 

Schott et al. (2011) revised the diagnosis of S. validum, one  one of the most likely taxa 517 

that NMMNH P-33898 may belong to. Schott et al. (2011) noted that a number of features that 518 

Sullivan (2003) considered to be diagnostic for S. validum, such as the extent of doming of the 519 

skull roof, degree of closure of the supratemporal fenestrae, and degree of development of the 520 

parietosquamosal shelf, were highly ontogenetically variable. In their emended diagnosis, Schott 521 

et al. (2011:8) distinguished S. validum from all other pacycephalosaurs by the distinct 522 

ornamentation of the parietosquamosal shelf (S. validum differs from all other pachycephalosaurs 523 

in the presence of minute tubercles on the lateral and posterior sides of the squamosals, and in 524 

having a single prominent row of five-to-eight dorsally projecting nodes on each side of the 525 
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parietosquamosal bar and a row of small, keel-shaped nodes on the dorsolateral margins of the 526 

squamosal); by the less developed incorporation of peripheral elements, particularly the 527 

supraorbitals, into the dome than in Prenocephale, Sphaerotholus, and Pachycephalsoaurus; the 528 

absence of nasal ornamentation; a greatly reduced diastema in the upper tooth row; and a pubic 529 

peduncle that is mediolaterally compressed and plate-like.  530 

Unfortunately, NMMNH P-33898 does not preserve many of the features listed in this 531 

diagnosis. NMMNH P-33898 lacks the squamosals and is a juvenile, and so it does not preserve 532 

features of the parietosquamosal bar or other cranial ornamentation considered diagnostic for S. 533 

validum. Because it is a juvenile, it retains a prominent parietosquamosal shelf and did not 534 

incorporate peripheral skull elements into the dome, as presumably did the juveniles of all 535 

domed taxa that have poorly developed peripheral elements into the dome as adults. Other bones 536 

relevant to the diagnosis of Schott et al. (2011), such as the nasals, premaxillae and maxillae, and 537 

ilium, are unknown in NMMNH P-33898. Therefore, it is currently difficult to assess whether 538 

NMMNH P-33898 could belong to S. validum using the diagnosis of Schott et al. (2011). 539 

 540 

 541 

6.3 Principal component analyses 542 

 543 

The PCA of the updated Evans et al. (2013) dataset (Tables 1 and 2; Appendix 1) returned 544 

14 principal components, the first three of which account for 91% of the total variance. PC1, 545 

which accounts for 72.6% of total variance, is strongly correlated with frontoparietal length, a 546 

proxy for body size (r2=0.86). PCs 2 and 3 are very weakly correlated with frontoparietal length 547 

(r2<0.026 in both cases), and therefore reflect variation that may be more phylogenetically 548 
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informative than that the mostly size-related variation encapsulated on PC1. The plot of PC1 549 

versus PC2 (Fig. 2A) shows that the Stegoceras 550 

 551 

Figure 2. Selected results of morphometric analysis of pachycephalosaur frontoparietal domes 552 

(based on measurements from Evans et al. 2013, supplementary table s1) and postorbitals (based 553 

on measurements from Mallon et al., 2015, appendix a) including measurements of NMMNH P-554 

33898 (holotype of Stegoceras novomexicanum) and revised measurements of NMMNH P-27403 555 

(holotype of Sphaerotholus goodwini). Plots of PC1 versus PC2 (A) and PC2 versus PC3 (B) 556 

from frontoparietal measurements and PC1 versus PC2 (C) and PC2 versus PC3 (D) from 557 

postorbital measurements showing the placement of Stegoceras novomexicanum in morphospace 558 
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relative to other pachycephalosaur taxa.  559 

 

 novomexicanum holotype (NMMNH P-33898) is something of an outlier, as it does not fall 560 

within the convex hulls of the three other taxa represented by multiple specimens in the analysis, 561 

Stegoceras validum, Sphaerotholus buchholztae, and ‘Prenocephale’ brevis. However, NMMNH 562 

P-33898 does plot within the 95% confidence ellipses of both S. validum and S. buchholtzae. A 563 

similar pattern is seen in the plot of PC2 versus PC3 (Fig. 2B), as NMMNH P-33898 is not 564 

placed within the convex hulls of the three other pachycephalosaurs, but does fall within the 565 

confidence interval of S. validum, but in this case not S. buchholtzae. 566 

The PCA of the updated Mallon et al. (2015) dataset returned four principal components, 567 

the first three of which account for 98% of the total variance. PC1 accounts for 60.9% of the 568 

overall variance, while PC2 accounts for 30.1% and PC3 7.4%. The plot of PC1 versus PC2 (Fig. 569 

2C) shows that the Stegoceras novomexicanum holotype (NMMNH P-33898) is something of an 570 

outlier, although it is immediately adjacent in morphospace to UCMZ (VP) 2008.001, a very 571 

young individual of Stegoceras validum. Because of the close proximity of these two specimens, 572 

NMMNH P-33898 falls within the convex hull of S. validum. Furthermore, it is within the 95% 573 

confidence envelopes of S. validum, Sphaerotholus buchholztae, and Hanssuesia sternbergi. On 574 

the plot of PC2 versus PC3 (Fig. 2D), NMMNH P-33898 is positioned within a dense cloud of 575 

specimens, and is plotted particularly close to specimen of S. validum (CMN 1108A) and 576 

‘Prenocephale’ brevis (TMP 1987.050.0029). It falls within the convex hull of Sphaerotholus 577 

buchholtzae and immediately outside the convex hulls of S. validum and ‘P.’ brevis, and is 578 

within the 95% confidence intervals of all taxa known from more than one specimen. 579 

The large taxon sample in the Mallon et al. (2015) dataset allows us to conduct a 580 

discriminant analysis in PAST v3.0 (Hammer et al. 2001). This analysis uses pre-determined 581 
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groups (in this case, pachycephalosaur species) to create a morphospace in which these groups 582 

are maximally separated. Specimens whose identities are uncertain, such as NMMNH P-33898, 583 

can then be classified according to which group they are most similar to in this discriminant 584 

morphospace. In total, 70% of other pachycephalosaurs are classified correctly when they are 585 

treated as having uncertain affinities and their measurements are used to classify them in 586 

discriminant space, indicating that this exercise returns reasonable results. Our analysis classifies 587 

NMMNH P-33898 as Stegoceras validum, and places it within the 95% confidence envelopes of 588 

both S. validum and Hanssuesia. 589 

PCA and discriminant analysis are tools that can help determine the most likely affinities 590 

of specimens, but they require some interpretation. Our interpretation of the above results is that 591 

Stegoceras novomexicanum may potentially be a distinctive taxon, given the outlier position of 592 

its holotype in the morphospace generated from the Evans et al. (2013) dataset. A similar 593 

rationale was used by Evans et al. (2013) as one line of evidence to support the taxonomic 594 

distinctiveness of Acrotholus, a new species of pacycephalosaur they were describing. However, 595 

the Stegoceras novomexicanum holotype does plot within the 95% confidence intervals of other 596 

taxa in the Evans et al. (2013) morphospace, and within both the convex hulls and 95% 597 

confidence intervals of other taxa in the Mallon et al. (2015) morphospace. In total, the strongest 598 

and most consistent similarities are between NMMNH P-33898 and S. validum. The Stegoceras 599 

novomexicanum holotype falls within the 95% confidence intervals of S. validum in plots of PC1 600 

versus PC2 and PC2 versus PC3 of both datasets (Fig. 2). Furthermore, in the plot of PC1 versus 601 

PC2 of the Mallon et al. (2015) dataset (Fig. 2A), NMMNH P-33898 nearly overlaps with a 602 

specimen of juvenile S. validum. In total, these findings suggest that if Stegoceras 603 

novomexicanum can be referred to another known taxon of pachycephalosaur, that species is 604 
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most likely S. validum. Additionally, the close correspondence in morphospace between 605 

NMMNH P-33898 and the juvenile S. validum specimen is further evidence that the Stegoceras 606 

novomexicanum holotype is immature. 607 

However, there is a caveat. Because NMMNH P-33898 is a juvenile specimen, it may be 608 

expected to plot in morphospace with a taxon that is relatively plesiomorphic, and/or one that is 609 

represented by some juvenile specimens in the dataset. S. validum fulfils both of these criteria It 610 

is a relatively plesiomorphic taxon, closer to the root of pachycephalosaur phylogeny than other 611 

potential candidates that NMMNH P-33898 could be referred to, such as ‘Prenocephale’ brevis, 612 

Sphaerotholus buchholtzae, and Sphaerotholus goodwini. Additionally, some of the S. validum 613 

specimens in the datasets are juveniles. Other taxa based on, or probably based on, juvenile 614 

specimens, such as Wannanosaurus and Homalocephale (Evans et al., 2011), are not included in 615 

either dataset. For these reasons, we are hesitant to interpret the PCA and discriminant analysis 616 

results as explicitly supporting the referral of NMMNH P-33898 to Stegoceras validum. 617 

 618 

6.4 Phylogenetic analysis 619 

 620 

A phylogenetic analysis of the revised Evans et al. (2013) dataset (Appendix 2) recovered 621 

12 most parsimonious trees of 77 steps (Fig. 3; consistency index = 0.753, retention index = 622 

0.796).  623 
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 624 

Figure 3. Phylogeny of Pachycephalosauria. (A), Strict consensus of 12 most parsimonious trees 625 

with a shortest length of 77 steps resulting from a phylogenetic analysis consisting of 18 626 

pachycephalosaur taxa and two successive outgroups; Yinlong and Psittacosaurus and 50 627 

characters, after Evans et al. (2013).  Analysis was run in TNT v. 1.1 (Goloboff et al., 2008); 628 

consistency index = 0.753, retention index = 0.796). (B), Temporally-calibrated phylgeny of 629 

Pachycephalosauria including NMMNH P-33898 (Stegoceras novomexicanum) showing 630 

approximate ranges of each taxon. Time scale is after Huang (2012) and ranges of 631 

pachycephalosaur taxa follow Evans et al. (2013). 632 
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Wannanosaurus was found to be the basal-most pachycephalosaur, followed by a polytomy 633 

consisting of Stegoceras novomexicanum, Stegoceras validum, Colepiocephale, Hanssuesia, and 634 

the lineage leading to all of the remaining pachycephalosaurs. This lineage collapses into another 635 

large polytomy, the only resolution being the sister-taxon pairs of Acrotholus and Prenocephale 636 

prenes, Sphaerotholus goodwini and Sphaerotholus buccholtzae, and Alaskacephale and 637 

Pachycephalosaurus. These results are more poorly resolved than those of Evans et al. (2013, 638 

supplementary fig. s8). Evans et al. (2013) placed Stegoceras novomexicanum, Stegoceras 639 

validum, Colepiocephale, and Hanssuesia in their own clade of basal pachycephalosaurs, and 640 

then recovered complete resolution among the more derived taxa.  641 

The most important result of our re-analysis is that there is no longer a restricted subclade 642 

that includes both Stegoceras novomexicanum and S. validum on the strict consensus tree (Fig. 643 

3). This on its own does not say much about the taxonomic affinities of Stegoceras 644 

novomexicanum, as the analysis can only speak to the relationships between OTUs and not the 645 

diagnosability of the OTUs themselves. However, since Stegoceras novomexicanum and S. 646 

validum no longer occupy a restricted subgroup on the phylogeny and our dataset returns less 647 

resolution than previous analyses, we interpret this as a decrease in support for the hypothesis 648 

that Stegoceras novomexicanum can be referred to S. validum. 649 

 650 

6.5 Summary 651 

 652 

 The taxonomic affinities of NMMNH P-33898 are still unclear on the generic and 653 

specific level. The original features that Jasinski & Sullivan (2011) used to diagnose the 654 

specimen as a distinct taxon, Stegoceras novomexicanum, are problematic, but we have 655 
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identified additional features that could potentially support its taxonomic distinctiveness. The 656 

PCAs and discriminant analysis suggest that, if NMMNH P-33898 belongs to a known taxon, 657 

that taxon is most likely Stegoceras validum, but there are caveats regarding the data sampling of 658 

these analyses that make this uncertain. The phylogenetic analysis also provides decreased 659 

support for a close relationship between NMMNH P-33898 and S. validum. In sum, based on our 660 

current state of knowledge, we are not certain whether Stegoceras novomexicanum is a valid 661 

taxon or not, and if not, whether it is a juvenile of S. validum or perhaps another taxon like 662 

Sphaerotholus goodwini. The only way to resolve this conundrum is with a larger comparative 663 

sample of specimens of the same approximate ontogenetic stage as NMMNH P-33898. In 664 

particular, unequivocal immature specimens of Sphaerotholus goodwini may be the critical 665 

missing piece of the puzzle. 666 

 667 

7. Discussion 668 

 669 

7.1 The New Mexico pachycephalosaur record 670 

 671 
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All pachycephalosaur specimens recovered from the Campanian of New Mexico come 672 

from the Fruitland and Kirtland formations of the San Juan Basin. The Fruitland and Kirtland 673 

formations (exclusive of Naashoibito Member; Fig. 4) span only about two million years (from 674 

 Figure 4. Generalized stratigraphic 675 

section for upper Campanian, Upper Cretaceous strata of the Bisti/De-na-zin Wilderness area, 676 

San Juan Basin, New Mexico modified after Fasset amd Steiner (1997) and Fassett (2009) 677 

showing the approximate stratigraphic position of all Fruitland and Kirtland Formation 678 

pachycephalosaur specimens. Absolute dates are based on 40Ar/39AR dates from volcanic ashes 679 
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(Fasset and Steiner, 1997) as recalibrated by Roberts et al. (2013). Magnetic polarity and 680 

reversal boundaries are placed after Fassett (2009).  681 

All pachycephalosaur specimens recovered from the Campanian of New Mexico come 

from the Fruitland and Kirtland formations of the San Juan Basin. The Fruitland and Kirtland 

formations span about 75 Ma to 73.0 Ma; Fassett and Steiner, 1997; Roberts et al., 2013). 

Nearly all pachycephalosaur specimens from these units are from two local faunas: the Hunter 

Wash (Clemens, 1973) and Willow Wash (Williamson & Sullivan, 1998) local faunas, comprised 

of localities in the Fossil Forest Member of the upper Fruitland Formation and the Hunter Wash 

Member of the Kirtland Formation, and from the De-na-zin Member of Kirtland Formation, 

respectively (Fig. 4).  

There are at least two pachycephalosaur taxa in the Hunter Wash and Willow Wash local 682 

faunas, including an undescribed specimen that may represent a new taxon (NMMNH P-50900; 683 

Hunter Wash local fauna) and Sphaerotholus goodwini (Carr & Williamson, 2002b; Willow 684 

Wash local fauna). The specimen NMMNH P-50900 is currently under study by Williamson and 685 

co-authors and will be described elsewhere, but it resembles S. validum, and several other 686 

pachycephalosaur taxa, in having a high and laterally convex frontal boss.  687 

Does ‘Stegoceras novomexicanum’ represent a subadult of either of these taxa, or is it a 688 

third distinct species? There is the possibility that NMMNH P-33898 represents an early 689 

ontogenetic stage of Sphaerotholus goodwini, a prospect entertained by Williamson & Carr 690 

(2002a), but dismissed by Sullivan & Lucas (2006) because NMMNH P-33898 possesses a 691 

prominent parietosquamosal shelf, which is not present in known specimens of Sphaerotholus 692 

goodwini. However, as discussed above, the strength of the parietosquamosal shelf is 693 

ontogenetically variable and retention of a prominent shelf may be expected in domed 694 
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pachycephalosaurs of an early ontogenetic stage (e.g., Evans et al., 2011). Unfortunately, early 695 

ontogenetic stages are not known for Sphaerotholus, or for a number of other pachycephalosaur 696 

taxa for that matter. NMMNH P-33898 also lacks a high and laterally convex nasal boss found in 697 

NMMNH P-50900 and specimens of Stegoceras validum that are of a similar ontogenetic stage.  698 

A similar problem concerns the identities of the Asian flat-headed pachycephalosaurs 699 

Goyocephale latttimorei and Homalocephale calathocercos, as the known specimens may 700 

represent juvenile stages of domed taxa (Evans et al., 2011; Longrich et al., 2010) or adults that 701 

possibly exhibit pedomorphosis in dome development (Bakker et al., 2006; Sullivan, 2007). 702 

Homalocephale is found in the Nemegt Formation of Mongolia, in strata that have also yielded 703 

the highly-domed Prenocephale prenes, and it has been suggested that it may be a subadult or 704 

sexual dimorph of that taxon (Butler & Sullivan, 2009; Longrich et al., 2010). Evans et al. (2011) 705 

considered that question and concluded that although Homalocephale likely was based on an 706 

immature specimen, it is taxonomically distinct from Prenocephale based on its large size and 707 

unique pattern of parietosquamosal ornamentation, features that appear not to change 708 

significantly through ontogeny in Stegoceras validum (Evans et al., 2011; Schott and Evans, 709 

2012; Schott et al., 2011). Homalocephale also differs from Prenocephale in other features such 710 

as the pattern of tooth wear, shape of the maxillary tooth row, and tooth morphology (Evans et 711 

al., 2011; Maryańska and Osmólska, 1974). If Evans et al. (2011) are correct; this is an example 712 

of how a juvenile specimen may still be diagnostic and taxonomically distinct from a co-existing 713 

taxon based on adult material.  714 

Another pertinent case involves Dracorex hogwartia and Stigymoloch spinifer, which 715 

wereregarded as a juveniles of Pachycephalosaurus wyomingensis by Horner and Goodwin 716 

(2009), a conclusion tentatively accepted here. Dracorex has a flat skull roof and large 717 
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supratemporal fenestrae as in juvenile stages of other domed taxa. Stygimoloch has a relatively 718 

small and narrow dome and the supratemporal fenestrae are closed, but it retains a distinct 719 

parietosquamosal shelf and is posited to represent an ontogenetic stage intermediate between that 720 

of Dracorex and the large-domed Pachycephalosaurus (Horner & Goodwin, 2009). All three 721 

taxa are relatively large with relatively elongate skulls, possess similar distinctive nodal 722 

ornamentation (e.g., clusters of nodes on the posterolateral corners of the squamosals and 723 

pyramidal nodes over the rostrum) supporting their recognition as a single, ontogenetically 724 

highly variable taxon. However, if this is correct, then the squamosal nodes are hypothesized to 725 

first increase in size to form medium to large pointed horns (e.g., from the Dracorex to the 726 

Stygimoloch stages of ontogeny), before shrinking through bone erosion to relatively shorter and 727 

blunted structures in more mature stages (Horner & Goodwin, 2009), a somewhat extreme 728 

change in cranial ornamentation not observed in other pachycephalosaur taxa. 729 

 730 

7.2 Discussion of a problematic specimen from New Mexico 731 

 732 

One New Mexican pachycephalosaur specimen, a partial dentary associated with some 733 

skull fragments (NMMNH P-30068), was discovered from the Farmington Member near the 734 

head of Pinabete Arroyo at NMMNH locality L-3097, which is approximately contemporaneous 735 

with the Hunter Wash or Willow Wash local faunas (Fig. 4). There has been some inaccurate 736 

information in the literature regarding this specimen and the Upper Cretaceous stratigraphy of 737 

the San Juan Basin, which we wish to correct. 738 

First, Jasinski & Sullivan (2011, fig. 1) misplotted the location of L-3097. Precise locality 739 

information is available to qualified researchers from the NMMNH. It is located between 740 
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Brimhall Wash and Pinabete Arroyo (“Pina Veta China Arroyo” of literature prior to 1966).  741 

Second, to correct any misconceptions, the skull fragments and partial dentary of 742 

NMMNH P-30068 were collected from NMMNH locality L-3097 along with NMMNH P-743 

25049, a specimen that was referred by Carr & Williamson (2010) to the tyrannosauroid 744 

theropod Bistahieversor sealeyi. These specimens were indeed collected illegally, as stated by 745 

Jasinski & Sullivan (2011), but we want to be clear that the illegal collection was not by 746 

Williamson. Contra Jasinski & Sullivan (2011), the pachycephalosaur specimens were not found 747 

with the holotype of B. sealeyi (NMMNH P-27469), which is from the Hunter Wash Member of 748 

the Kirtland Formation within the Bisti/De-na-zin Wilderness Area.  749 

Third, Jasinski & Sullivan (2011) stated (p. 207) that the pachycephalosaur specimen, 750 

NMMNH P-30068, is “almost certainly from the Hunter Wash Member” and (p. 210) that 751 

“exposures of the Farmington Member…crop out only in the eastern parts of the Bisti/De-na-zin 752 

Wilderness area”. However, this is incorrect. Bauer  (1916) gave the name ‘Farmington 753 

Sandstone Member’ to a series of sandstone lenses that form a prominent bluff, “455 feet thick” 754 

(about 140 m), on the San Juan River (Bauer, 1916, fig. 27; Plate LXVIIIA). Bauer (1916, Plate 755 

LXV) shows in a series of stratigraphic sections along the Chaco Valley that the Farmington 756 

Member thins, from over 400 feet in its type area, to a thickness of 87 feet in the area of the 757 

Bisti/De-na-zin Wilderness. Jasinski & Sullivan (2011) argued that the area from where 758 

NMMNH P-30068 was collected was mapped by Brown (1983) as Hunter Wash Member, 759 

Kirtland Formation. However, L-3097 does not fall within the area covered by Brown’s geologic 760 

map. NMMNH locality L-3097 is located about 10 km from the northwest corner of Brown’s 761 

map and is close to the type section of the Farmington Sandstone Member. Therefore, this 762 

specimen clearly comes from the Farmington Member, not the Hunter Wash Member (Fig. 4). 763 
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 764 

7.3 The New Mexico pachycephalosaur record in a regional context 765 

 766 

Western North America contains some of the richest terrestrial Upper Cretaceous deposits 767 

in the world. A number of remarkably fossiliferous units were deposited along the western 768 

margin of the Cretaceous Western Interior Seaway within a narrow interval of time between 769 

about 80 and 73 Ma. The Dinosaur Park, Two Medicine, and Judith River formations to the north 770 

and the Kaiparowits, Kirtland, Fruitland, and Aguja formations to the South all fall, at least 771 

partially, within this interval and provide an exceptional window into late Campanian terrestrial 772 

ecosystems (Gates et al., 2010; Roberts et al., 2013). They have provided a wealth of data for 773 

analyzing large-scale biogeographic patterns of late Cretaceous dinosaur faunas of the western 774 

interior (e.g., Gates et al., 2012; Gates et al., 2010; Loewen et al., 2013), and also give insight 775 

into how dinosaurs were evolving during the run-up to the end-Cretaceous mass extinction (e.g., 776 

Brusatte et al. 2015).  777 

Northern upper Campanian units, particularly the Dinosaur Park Formation, have yielded 778 

a large number of late Campanian pachycephalosaur specimens. These constitute, by far, the 779 

most abundant small-bodied ornithischian dinosaur fossils from Campanian faunas of North 780 

America which is undoubtedly due to preservational biases that favor the fossilization of the 781 

thick and durable skull roof (Evans et al., 2013a). At least three pachycephalosaur taxa 782 

(Stegoceras validum, “Prenocephale” brevis, and Hanssuesia sternbergi) are recognized in the 783 

upper Campanian Dinosaur Park Formation (Evans et al., 2013a; Ryan & Evans, 2005) and three 784 

or more taxa (e.g., Stegoceras validum, Colepiocephale lambei, and “Prenocephale” brevis) are 785 

known from the Judith River Formation of Montana (Goodwin, 1990; Schott et al., 2009).  786 
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Southern late Campanian faunas have not yet yielded anywhere as many specimens as the 787 

northern units, but growing discoveries hint at a considerable diversity of pachycephalosaurs. At 788 

least one taxon is known from the Aguja Formation of west Texas, (Lehman, 2010; Longrich et 789 

al., 2010). A new pachycephalosaur taxon, Texacephale langstoni was named based on a 790 

frontoparietal from the Aguja Formation (Longrich et al., 2010), although Jasinski & Sullivan 791 

(2011) concluded that it is a nomen dubium, a decision that we agree with and is followed here. 792 

Pachycephalosaurs are known from the upper Campanian Kaiparowits Formation of southcentral 793 

Utah, but described specimens are too incomplete for generic identification (Evans et al., 2013b). 794 

The Campanian faunas of the Fruitland and Kirtland formations of the San Juan Basin are 795 

slightly younger than faunas from the northern Rocky Mountain area (Roberts et al., 2013), but 796 

provide the only generically diagnostic pachycephalosaur specimens from the upper Campanian 797 

of the southern part of the western interior. Specimens recovered from these units reveal the 798 

presence of at least two pachycephalosaur taxa (see 7.1 above). All four pachycephaosuar 799 

specimens from the De-na-zin Member of the Kirtland Formation of the San Juan Basin (Fig. 4; 800 

Sullivan, 2000; Williamson and Carr, 2002b; Williamson and Carr, 2005) are probably referable 801 

to Sphaerotholus goodwini, and no certainly referable specimens of Sphaerotholus have been 802 

recovered from stratigraphically lower strata of the San Juan Basin (i.e., Fruitland Formation and 803 

Hunter Wash and Farmington members, Kirtland Formation). Therefore it is possible that 804 

Sphaerotholus is the sole pachycephalosaur present in the De-na-zin Member, Willow Wash local 805 

fauna (Fig. 4). 806 

Sphaerotholus is elsewhere found in the lower Maastrichtian Horseshoe Canyon 807 

Formation of southern Alberta (S. edmontonense), a taxon that is tentatively considered valid 808 

following Mallon et al. (2015), and the upper Maastrichtian Hell Creek and Frenchman 809 
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formations (S. buchholtzae) of Montana and Saskatchewan, respectively (Mallon et al., 2015; 810 

Williamson & Carr, 2002b). The stratigraphic distribution of Sphaerotholus may indicate that it 811 

arrived relatively late in the upper Campanian of the Western Interior compared to other 812 

pachycephalosaur taxa such as Stegoceras, Hannsuesia, and “Prenocephale” brevis. However, 813 

we urge caution in accepting this interpretation considering the small number of 814 

pachycephalosaur specimens represented in many areas. Indeed, Evans et al. (2013a) suggested 815 

that ghost lineages inferred from their phylogeny of pachycephalosaurs shows that the diversity 816 

of pachycephalosaurs is seriously underestimated even in well sampled intervals of the middle 817 

and upper Campanian of North America. 818 

Our reassessment of NMMNH P-33898 as a juvenile that may be referable to one of a 819 

number of existing taxa, as well as our reassessment of other taxa, allows us to conclude that late 820 

Campanian pachycephalosaurs from the San Juan Basin of New Mexico are morphologically 821 

similar, in terms of body size and skull roof shape, to those reported from approximately coeval 822 

faunas throughout the Western Interior. Clearly, pachycephalosaurs were an important 823 

component of the diverse terrestrial faunas in western North America during the penultimate 824 

stage of dinosaur evolution, before the non-avian species disappeared at the end of the 825 

Cretaceous. 826 

 827 

 828 

Conclusion 829 

 830 

Our reassessment of the described specimens of ‘Stegoceras novomexicanum’ leads to the 831 

following conclusions: 1) the two fragmentary paratype specimens (SMP VP-2555 and VP-2790) 832 
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cannot be referred to the holotype (NMMNH P-33898) based on explicit synapomorphies or 833 

other detailed character similarities; 2) the holotype and controversial paratypes belong to 834 

juvenile individuals, not mature or near-mature adults as argued by Jasinski & Sullivan (2011); 835 

3) there is therefore no evidence that ‘Stegoceras novomexicanum’ was a peculiar small-bodied 836 

pachycephalosaur species; 4) the original diagnosis of ‘Stegoceras novomexicanum’ by Jasinski 837 

& Sullivan (2011) is problematic, but it is currently unclear whether the holotype specimen does 838 

belong to its own valid species-level taxon (Stegoceras novomexicanum) or is a juvenile of 839 

Stegoceras validum, Sphaerotholus goodwini, or another taxon; 5) at least two valid diagnostic 840 

pachycephalosaur species are known from the Campanian of New Mexico, indicating that 841 

pachycephalosaurs were an integral component of latest Cretaceous dinosaur faunas in the 842 

southern part of Western North America just as they were in roughly contemporaneous northern 843 

localities.  844 
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 1003 

Figures 1004 

Figure 1. Surface model constructed from high-resolution CT (HRCT) images using Avizo v. 8.1 1005 

visualization software and selected CT slices of the frontoparietal NMMNH P-33898, holotype 1006 

of Stegoceras novomexicanum. A, right lateral view (reversed); B, dorsal view; C, ventral view; 1007 

D, posterior view; E, anterior view; F, sagittal section right of midline (reversed); G, horizontal 1008 

section; H, coronal section at the contact of the posterior supraorbital and postorbital suture. 1009 

 1010 

Figure 2. Selected results of morphometric analysis of pachycephalosaur frontoparietal domes 1011 

(A-B; based on measurements from Evans et al. 2013, supplementary table s1) and postorbitals ( 1012 

C-D; based on measurements from Mallon et al., 2015, appendix a) including measurements of 1013 

NMMNH P-33898 (holotype of Stegoceras novomexicanum), revised measurements of 1014 

NMMNH P-27403 (holotype of Sphaerotholus goodwini), and 50900. Plots of PC1 versus PC2 1015 

(A) and PC2 versus PC3 (B) from frontoparietal measurements and PC1 versus PC2 (C) and PC2 1016 

versus PC3 (D) from postorbital measurements showing the placement of Stegoceras 1017 

novomexicanum in morphospace relative to other pachycephalosaur taxa.  1018 
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 1019 

Figure 3. Phylogeny of Pachycephalosauria. (A), Strict consensus of 12 most parsimonious trees 1020 

with a shortest length of 77 steps resulting from a phylogenetic analysis consisting of 18 1021 

pachycephalosaur taxa and two successive outgroups; Yinlong and Psittacosaurus and 50 1022 

characters, after Evans et al. (2013)(Appendix 2).  Analysis was run in TNT v. 1.1 (Goloboff et 1023 

al., 2008); consistency index = 0.753, retention index = 0.796). (B), Temporally-calibrated 1024 

phylgeny of Pachycephalosauria including NMMNH P-33898 (Stegoceras novomexicanum) 1025 

showing approximate ranges of each taxon. Time scale is after Huang (2012) and ranges of 1026 

pachycephalosaur taxa follow Evans et al. (2013). 1027 

 1028 

Figure 4. Generalized stratigraphic section for upper Campanian, Upper Cretaceous strata of the 1029 

Bisti/De-na-zin Wilderness area, San Juan Basin, New Mexico modified after Fasset amd Steiner 1030 

(1997) and Fassett (2009) showing the approximate stratigraphic position of all Fruitland and 1031 

Kirtland Formation pachycephalosaur specimens. The names Sphaerotholus goodwini and 1032 

Stegoceras novomexicanum are placed in parentheses below the holotype specimens. Specimens 1033 

referred to S. novomexicanum are followed by an asterisk. Absolute dates are based on 1034 

40Ar/39AR dates from volcanic ashes (Fasset and Steiner, 1997) as recalibrated by Roberts et al. 1035 

(2013). Magnetic polarity and reversal boundaries are placed after Fassett (2009).  1036 

 1037 

Tables 1038 

Table 1. Measurements of pachycephalosaur frontoparietals from Evans et al. (2013) with 1039 

measurements of NMMNH P-33898, revised measurements of NMMNH P-27403 and including 1040 

measurements of NMMNH P-50900. All measurements are in mm. 1041 
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 1042 

Table 1 
         

          Taxon Specimen  H:n/n  H:pfr/aso  H:aso/pso  H:pso/po  W:n/pfr  W:pfr/aso  W:aso/pso  W:pso/po  

Stegoceras validum CMN 515  16.5 15.4 10.2 14.7 26.5 41.9 51.8 58.5 

Stegoceras validum AMNH 5450  9.9 11.7 11.4 14.3 18.4 30.7 43.8 45.4 

Stegoceras validum CMN 138  15.2 11.2 8.9 14.3 25.8 39.4 55.1 56.6 

Stegoceras validum 
TMP 1984.005.0001  13.6 11.7 7.8 12.6 21.2 36.3 48.6 56.3 

Prenocephale brevis TMP 1987.050.0029  22.5 22.4 16.9 27.8 26.5 42.8 69.9 82.4 

Prenocephale brevis TMP 1991.036.0265  2.1 4.8 4.8 11 15.8 30.7 37.7 38.5 

Prenocephale brevis TMP 1985.036.0292  6.8 8.5 7.4 17.2 16.9 27.6 47.7 50.4 

Prenocephale brevis 
TMP 1999.055.0122  4.3 6 5.5 12.8 15.4 26.3 39.7 45.2 

Prenocephale brevis UALVP 8508  7.7 10.6 8.2 17.4 17.5 28.7 48.7 55.3 

Sphaerotholus 

buchholtzae 
CMN 8830  10.9 11.3 10.4 18.7 19.5 38.7 53.7 64 

Sphaerotholus 

buchholtzae 
TMP 1987.113.0003  19.8 15.7 12.1 28.9 22.2 50.6 60.3 77.6 

Sphaerotholus 

buchholtzae 
UCMP 186026  10 10.5 8 15 18 37.2 43.8 48.4 

Sphaerotholus 

buchholztae 
LACM 64000  15.5 14.9 13 20.1 23.7 52 57 61.5 

Sphaerotholus goodwini 
NMMNH P-27403  23.7 27.3 23.3 41.4 35.6 56.2 79.5 101.25 

Acrotholus audeti 
TMP 2008.045.0001  28.2 28 25.6 37 28.5 63.2 70 76.3 

 

Stegoceras  

novomexicanum 

NMMNH P-33898 7.7 7.1 9.7 8.2 13.3 30 40 43.2 

X NMMNH P-50900 29.7 28.6 26.3 31.4 27.9 52 75.4 78 

          Taxon Specimen  W:f/p  W:Sq/Sq  L:aso  L:pso  L:po  L:fp  T:f/p  

 
Stegoceras validum CMN 515  57.5 8.4 9.4 20.2 35.8 93.5 35 

 
Stegoceras validum AMNH 5450  39.2 4.3 10.1 15.5 24.5 82.3 20 

 
Stegoceras validum CMN 138  53.1 6.2 12.1 16 33.9 84.2 34 

 
Stegoceras validum TMP 1984.005.0001  52.7 7.3 11.8 14.9 29.2 85.7 25 

 
Prenocephale brevis TMP 1987.050.0029  84.1 20.5 17.6 33.7 28.3 95.1 53 

 
Prenocephale brevis TMP 1991.036.0265  39.4 12.8 8.9 17.6 17.3 57.1 27 

 
Prenocephale brevis TMP 1985.036.0292  49.3 13.9 12.8 22.7 18.3 66.8 26 

 
Prenocephale brevis TMP 1999.055.0122  44 10.7 10.5 18 16.2 61.1 24 

 
Prenocephale brevis UALVP 8508  56.4 14 12.3 22.8 20.3 70.3 31.6 

 Sphaerotholus 

buchholtzae 
CMN 8830  66 16.4 11.6 18.2 40.4 93 41 

 Sphaerotholus 

buchholtzae 
TMP 1987.113.0003  83.5 23.4 9.7 25.4 33.8 106.7 49 

 Sphaerotholus 

buchholtzae 
UCMP 186026  52.7 11.3 6.2 14.8 28 73.2 30.7 

 Sphaerotholus 

buchholtzae 
LACM 64000  62.7 17.5 4.6 17 41.1 84.4 40.9 

 
Sphaerotholus goodwini NMMNH P-27403  101 7.4 16 39.5 62.4 133.4 75 

 
Acrotholus audeti TMP 2008.045.0001  70.1 7.4 8.6 25.1 44.2 104.7 59 
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Stegoceras  

novomexicanum 

NMMNH P-33898 26.8 3 10.6 14.1 22.1 70.7 21.4 

 

X NMMNH P-50900 81.8 15.7 27.1 23.4 25.5 111.8 63.2 
  1043 

 1044 

 1045 

Table 2. Measurements of pachycephalosaur postorbitals from Mallon et al. (2015, appendix a) 1046 

with those of NMMNH P-27403 (holotype of Sphaerotholus goodwini), 33898 (holotype of 1047 

Stegoceras novomexicanum), and 50900. All measurements are in mm. 1048 

 1049 

Table 2 1050 

Taxon Specimen length dorsal length ventral anterior height posterior height 

Hanssuesia CMN 9148 47 27 25 10 

Hanssuesia CMN 8817 46 39 22 25 

Hanssuesia CMN 8945 55 48 27 18 

Hanssuesia CMN 38079 46 46 25 10 

Prenocephale' brevis CMN 121 21 17 14 14 

Prenocephale' brevis CMN 8819 22 16 14 17 

Prenocephale' brevis TMP 1985.036.292 20 23 15.8 11.4 

Prenocephale' brevis ROM 31616 19.6 21 19.3 18 

Prenocephale' brevis TMP 2000.12.0001 21 23 16 14.7 

Prenocephale' brevis TMP 1987.050.0029 29.1 32 29.8 25.2 

Stegoceras CMN 515 34 34 13 7 

Stegoceras CMN 2369 30 32 NA NA 

Stegoceras CMN 138 34 37 15 7 

Stegoceras CMN 38428 41 37 19 9 

Stegoceras CMN 1074 32 34 18 11 

Stegoceras ROM 803 35 38 15 5 

Stegoceras CMN 8816 28 33 NA 6 

Stegoceras ROM 64183 (cast) 29.8 26 15 5.2 

Stegoceras UCMZ (VP) 2008.001 21.3 24 6.7 4 

Stegoceras CMN 1108A 27 25 12 7 

Sphaerotholus buchholzae UWBM 89701 30.8 32 18.3 7 

Sphaerotholus buchholzae LACM 64000 36.5 34.8 19.9 13.1 

Sphaerotholus buchholzae UCMP 186026 28.1 24.6 14.4 10.8 

Sphaerotholus buchholzae ROM 53667 38.8 37.4 24.7 19.2 

Sphaerotholus buchholzae ROM 53584 38.7 39.7 28.2 18.8 
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Sphaerotholus buchholzae TMP 87.113.03 33 36 28 16 

Sphaerotholus buchholzae ROM 65563 (cast) 28.7 32.6 31.3 21.9 

Colepiocephale CMN 8818 33 34 17 6 

Colepiocephale TMP 1992.088.001 30.3 32.8 15.4 7 

Colepiocephale TMP 1986.146.0001 40.4 48.3 17.9 11.6 

Colepiocephale ROM Colepiocephale 35.3 40.3 13.9 8.7 

Colepiocephale ROM 59044 (TMP cast) 29.8 31.7 16.2 9 

Colepiocephale TMP 1987.046.0001 42.8 45.5 20.3 9.6 

Colepiocephale TMP 2009.37.0001 39.1 41.4 13.8 7.9 

Dracorex ROM Dracorex 57.9 74 9.5 12 

Stygimoloch ROM 61045 64 74 14 8 

Sphaerotholus edmontonensis CMN 8830 36 33 10 8 

Sphaerotholus buchholzae CMN 56510 27 25 22 13 

Acrotholus TMP 2008.045.0001 44.9 39.2 34.4 15.6 

Sphaerotholus goodwini NMMNH P-27403 62.4 46.3 38.1 23.1 

Stegoceras novomexicanum NMMNH P-33898 22.1 23.2 8.2 4.0 

 
NMMNH P-50900 25.5 25.9 31.5 34.3 

 1051 
 1052 

Appendices 1053 

Appendix 1. Dataset used in PCA analyses and results of PCA analyses. Estimated measurements 1054 

are in italics. 1055 

Appendix 2. Nexus file of taxon-character matrix used in the phylogenetic analysis. 1056 


