
A Framework for the Cryptographic Enforcement of
Information Flow Policies

James Alderman

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

James.Alderman@rhul.ac.uk

Jason Crampton

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

Jason.Crampton@rhul.ac.uk

Naomi Farley

Information Security Group

Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

Naomi.Farley.2010@live.rhul.ac.uk

ABSTRACT
It is increasingly common to outsource data storage to untrusted,

third party (e.g. cloud) servers. However, in such settings, low-level

online reference monitors may not be appropriate for enforcing

read access, and thus cryptographic enforcement schemes (CESs)

may be required. Much of the research on cryptographic access

control has focused on the use of specific primitives and, primarily,

on how to generate appropriate keys and fails to model the access

control system as a whole. Recent work in the context of role-

based access control has shown a gap between theoretical policy

specification and computationally secure implementations of access

control policies, potentially leading to insecure implementations.

Without a formal model, it is hard to (i) reason about the correctness

and security of a CES, and (ii) show that the security properties

of a particular cryptographic primitive are sufficient to guarantee

security of the CES as a whole.

In this paper, we provide a rigorous definitional framework for

a CES that enforces read-only information flow policies (which

encompass many practical forms of access control, including role-

based policies). This framework (i) provides a tool by which instanti-

ations of CESs can be proven correct and secure, (ii) is independent

of any particular cryptographic primitives used to instantiate a CES,

and (iii) helps to identify the limitations of current primitives (e.g.

key assignment schemes) as components of a CES.

KEYWORDS
Cryptographic Enforcement Scheme; Information Flow Policy; Ac-

cess Control; Cryptography; Key Assignment Scheme; Attribute-

based Encryption

ACM Reference format:
James Alderman, Jason Crampton, and Naomi Farley. 2017. A Framework for

the Cryptographic Enforcement of Information Flow Policies. In Proceedings
of SACMAT’17, Indianapolis, IN, USA, June 21-23, 2017, 12 pages.
https://doi.org/http://dx.doi.org/10.1145/3078861.3078868

James Alderman was supported by the European Comission through H2020-ICT-2014-

1-644024 “CLARUS".

Naomi Farley was supported by the UK EPSRC through EP/K035584/1 “Centre for

Doctoral Training in Cyber Security at Royal Holloway".

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA
© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-4702-0/17/06. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3078861.3078868

1 INTRODUCTION
Manymulti-user systems require some form of access control which

requires specifying and enforcing a policy that defines the actions

each user is authorized to perform. Traditionally, enforcement has

required trusted on-line monitors to evaluate access requests. How-

ever, this approach is not necessarily appropriate for systems where

the policy enforcement mechanism is not controlled by a trusted

party (e.g. the policy author), or if the mechanism is not always

available. An alternative is to use cryptographic techniques.

A Cryptographic Enforcement Scheme (CES) to control read ac-
cess to data objects must, at its most basic, provide a method to

protect (encrypt) data and issue users the necessary cryptographic

materials (keys) to access (decrypt) data that they are authorized

to read. Furthermore, changes to the policy, such as extending or

retracting the access rights of a user, or changing the security level

of an object should be supported by the CES; such policy changes

can have an effect on both the required cryptographic material, and

on the security and correctness of the policy enforcement itself. Fur-

thermore, as cryptographic material is vulnerable to compromise

or leakage through exposure, a CES should provide a mechanism

to refresh cryptographic material.

Whilst enforcement by a trusted monitor is guaranteed to per-

mit only authorized requests, efficient cryptographic primitives are

usually computationally secure (due to their probabilistic nature).

Further, there may be real-world concerns to be addressed by an

implementation that are not required in idealized, theorectical mod-

els. Thus, as observed by Ferrara et al. [12], there may exist a gap

between the theoretical specification of an access control policy

and a cryptographic implementation of an enforcement mecha-

nism. Hence, one must carefully consider whether cryptographic

primitives can achieve the correctness and security requirements to

properly enforce an access control policy and, if multiple primitives

are required, they can be safely combined. A vital part of such con-

sideration is the establishment of rigorous definitions and security

models for the required functionality of a CES.

To emphasize the gap between policy specification and crypto-

graphic enforcement mechanisms, let us consider Key Assignment

Schemes (KASs) [3] used to enforce an information flow policy (sim-

ilar arguments can be made for other primitives such as functional

encryption schemes). In general, KASs define how key material

is generated, and derived, for a given access structure but do not

define algorithms for encrypting objects, updating key material,

or for carrying out changes to the policy. In fact, this additional

functionality can have a significant effect on the cryptographic

material supplied by the KAS — e.g. assigning a user additional

access rights may require extra keys to be securely distributed to

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

143

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/151189858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/http://dx.doi.org/10.1145/3078861.3078868
https://doi.org/http://dx.doi.org/10.1145/3078861.3078868

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

the user, whilst the removal of a user typically requires that all of

their keys (at least) be updated, under the assumption that users

may locally store their keys and could continue to decrypt objects

for which they are no longer authorized. If such changes are not

implemented carefully, the security and correctness of the KAS

itself could be compromised, as well as that of the CES as a whole.

1.1 Related Work and Motivation
Many cryptographic enforcement mechanisms have been proposed,

primarily to enforce read access to data objects via an encryption

mechanism. Two particularly notable proposals are Key Assign-

ment Schemes (KASs) [2, 9] and functional encryption schemes,

especially Attribute-based Encryption (ABE) [6, 17]. Throughout

this paper, we shall periodically refer to both KASs and ABE as

example cryptographic mechanisms that may be used within the

context of a CES.

In general, write access can be more difficult than read-access to

cryptographically enforce and typically requires additional assump-

tions on the trustworthiness and capabilities of the storage provider,

or additional trusted entities [10]. In particular, whilst one can often

use cryptographic primitives that provide data origin authentica-

tion to detect data originating from an unauthorized writer [14, 22],

it can be difficult to prevent unauthorized writes to the (externally

controlled) file-system in the first place. Furthermore, to ensure cor-

rectness of the system following an unauthorized write, one must

ensure the storage provider maintains the ability to ‘roll-back’ data

objects or to otherwise ensure that legitimate writes are maintained.

In this paper, like most related work, we focus our attention on

read-only policies, with the observation that detection mechanisms

should be a simple future extension to this work if required.

Key Assignment Schemes (KASs) [2, 9] are symmetric crypto-

graphic primitives that can be used to enforce read-only information

flow policies. Security notions for KASs [3] capture the require-

ments that no (collusion of) users may compute a key for which they

are unauthorized (key recovery), and the stronger notion that no

information is leaked about keys for which users are unauthorized

(key indistinguishability (KI)).
While the above security notions capture the required security

of generated keys (i.e keys do not reveal information about other

keys), they do not capture the distribution, use and update of such
keys. Furthermore, when considering the use of a KAS within a

CES, it becomes clear that key recovery is not a suitable property

and that key indistinguishability alone is not sufficient. Indeed, the

security requirements of a KAS and CES are intrinsically different.

Key indistinguishability of a KAS states that a user who is not

authorized to hold a key cannot learn anything about the key even

having learned the keys of other unauthorized users. We argue

that a secure CES requires that an unauthorized user attempting

to access a particular object cannot learn anything about the data
written to that object

1
even if it can learn the keys of other unau-

thorized users, see the entire file-system, know the data written

to other objects, and force certain policy updates. In other words,

security for KASs is defined in terms of decryption keys, whilst we

1
In the context of a CES where objects are stored on an externally controlled file-

system, we cannot prevent physical access to an object but instead must protect the

data written to an object from being learned by unauthorized entities.

consider the more relevant property of access to objects which, as

we will see, is not the same as prior security notions.

Clearly, without defining the required protection properties for

objects, which keys are to be used, and how keys should be handled,

it is not necessarily true that a lack of knowledge about a single key

implies that nothing is learned about an object in a CES. Indeed,

the logical combination of a KI-secure KAS and an IND-CPA secure

encryption scheme [5] can be trivially insecure if, for example,

the file-system leaks information about other keys defined by the

KAS when writing objects. Whilst this simple example is very easy

to avoid, other scenarios may be more subtle, especially when

using multiple, complex cryptographic primitives with intricate

security properties in a system, such as a CES, comprising many

components, entities and feasible execution paths. Thus we believe

that the requirements of a CES system as a wholemust be considered

rather than just a single component. At the very least, it must be

clear what the security and correctness objectives of the system are

in order to select suitable cryptographic components.

To this end, Ferrara et al. [12] emphasize the importance of

providing a formal model for secure Cryptographic Role-based

Access Control. They describe how cryptographic access-control

schemes often only informally analyze the gap between policy spec-

ification and a proposed implementation. To illustrate this point,

they describe how cryptographic guarantees are probabilistic whilst
policies are deterministic (some party does/does not have access

to some object). Gifford [15] previously presented a framework

for cryptographic access control (including information flow), but

could not, at the time, consider modern cryptographic security

notions for computationally secure primitives, and presented sepa-

rate models for symmetric and asymmetric primitives. In contrast,

our framework provides formal cryptographic games to model cor-

rectness and security and is defined independently of particular

cryptographic primitives. In concurrent work, Damgård et al. in-
troduced the notion of Access Control Encryption [10] which aims

to restrict write access within an encryption scheme. Whilst this

work certainly appears to be in a promising direction, it requires

an additional entity known as the Sanitizer to process all data sent

over public channels.

1.2 Contributions
In order to ensure that a cryptographic mechanism adequately

enforces an information flow policy, it is vital to have a rigorous

and concrete framework to specify the functional, correctness and

security requirements of a CES. The aim of this paper is to introduce

such a framework, which is intended to be useful to designers and

implementers of CESs, both to guarantee the adequacy of existing

proposals and to identify areas that need further research.

Ferrara et al. [12] studied the setting of role-based access control
(RBAC). In this paper, we consider CESs for read-only informa-

tion flow policies. Crampton [8] showed that many access control

policies of practical interest, such as attribute- and role-based poli-

cies, can be represented as information flow policies; therefore,

our framework is widely applicable and can be viewed as a con-

tinuation of the work of Ferrara et al. to bridge the gap between

the specification of access control models and the capabilities of

cryptographic primitives. Indeed, as future work, Ferrara et al. [12]

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

144

A Framework for the Cryptographic Enforcement of Information Flow Policies SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA

suggested modeling general access control frameworks; one can

view our work as a step towards this goal.

Whilst there is a wealth of work considering cryptographic ac-

cess control requirements [1, 2, 9, 11, 14, 17–21], such works often

focus on using particular cryptographic primitives or are tailored

to a specific application. In contrast, we start from the specification

of a general access control policy (information flow policies), from

which we identify the requirements of a CES. We do not target any

particular primitives and, instead, aim to provide a framework that

can be instantiated by a range of cryptographic primitives, both

symmetric and public key. We define several classifications of CESs

based on their desired, generic, functionality. As a result, we hope

to provide a framework within which one can analyze specific CES

instantiations to ensure correctness and security.

We begin in Section 2 by introducing some notation and recalling

basic concepts related to information flow policies. In Section 3, we

introduce our model of CESs and classify the required functionality,

before defining correctness and security in Section 4. In Section 5,

we discuss some example schemes, highlighting their shortcomings

in the context of our model. We conclude the paper with a summary

of our contributions and some ideas for future work.

2 PRELIMINARIES
We write a ← x to denote the assignment of x to variable a, whilst

a
$

←− X denotes a being assigned a value selected uniformly at

random from the set X . We write a ← B(c) to denote a polynomial

time algorithm B being run on input c and the output being assigned

to a, and write a
$

← B(c) if B is probabilistic polynomial time (PPT).

We denote a security parameter by ρ and its unary representation

by 1
ρ
. A function f is negligible if, for every polynomial p(·), there

exists an N such that for all integers n > N , f (n) < 1

p(n) .

We use the symbol⊥ to denote (i) failure when output by an algo-

rithm, and (ii) a null value when assigned to a variable. We denote

the elements of a list or array A of n elements by A[0], . . . ,A[n − 1].
A partially ordered set or poset is a pair (L,⩽), where ⩽ is a

binary, reflexive, anti-symmetric, transitive relation on L. For a
poset (L,⩽), we write x < y if x ⩽ y and x , y and may write

x > y if y < x . The empty set is denoted ∅.

A read-only information flow policy is a tuple P = ((L,⩽),U ,O, λ),
where (i) (L,⩽) is a partially ordered set of security labels; (ii)U is the

set of users; (iii)O is the set of data objects; and (iv) λ : U ∪O → L
is a function mapping users and objects to security labels in L. We

say u ∈ U is authorized to read an object o ∈ O if λ(o) ⩽ λ(u).
For simplicity, and without loss of generality, we may choose

U and O to be arbitrarily large and fixed, and assume that L has

a top element ⊓ and a bottom element ⊔. For any object o that is
“dormant” or “inactive”, we set λ(o) equal to ⊓; and for any user u
that is dormant, we set λ(u) to be ⊔. No user is assigned to ⊓ and no
object is assigned to ⊔. In other words, inactive objects cannot be

read by any user, and inactive users cannot read any object. Then,

to model the addition of a user or object, we can instead activate a

dormant user or object by changing the security label from ⊔ or ⊓,

respectively; users and objects can similarly be removed by setting

the security label to ⊔ or ⊓.

Traditionally, access control policies can be enforced by inter-

cepting all attempts by users to interact with protected objects and

determining whether the interaction is authorized. These functions

are performed by what is known as a reference monitor (or, in

more modern settings, the policy enforcement and policy decision

points), a trusted software component that implements the logic

of the authorization policy to evaluate a request from u to read o.
Roughly speaking, the reference monitor instructs an unintelligent

storage system to release an object to the user if the interaction is

found to be authorized.

3 CRYPTOGRAPHIC ENFORCEMENT OF
INFORMATION FLOW POLICIES

Recently, we have seen considerable interest in outsourcing the

storage of data. In this case, the storage provider, not the data owner,

controls access to the data. Moreover, the storage provider may

have incentives to inspect the data it stores on behalf of its clients.

Conversely, the data owner may not wish the storage provider to

have read access to the data. Thus, informally, the data owner may

wish to encrypt data before giving it to the storage provider, thus

preventing the storage provider (and any entity to which the storage

provider releases the data) from reading the data. In addition, the

data owner will distribute appropriate keys to authorized users.

As mentioned, we focus on read access in this paper. We assume

that the data owner (or a manager entity) is responsible for the

protection of all objects and supplying the encrypted objects to

the storage provider via an authenticated channel. (In practice, the

manager could represent a set of authorized writers if required.) The

storage provider simply stores all encrypted objects it is given and

releases them on request to users. In other words, the storage system

is essentially public and all users have access to all encrypted
objects (but not all users have access to all decryption keys). We

model the storage provider as an honest-but-curious adversary —

it will store objects correctly and release them on request, but may

try to learn information about the stored contents.

As mentioned in the introduction, we believe it is important,

especially when considering complex cryptographic primitives, to

have a rigorous framework for the requirements of a CES, both

to aid the design of CESs and to identify areas for future work. In

this section, we formulate the requirements of a read-only CES,

building from the access control requirements of the policy with

no particular instantiation or cryptographic primitives in mind.

Indeed, our definitions of the algorithms that a CESmust implement

are intentionally general, in order to cater for different possible

instantiations. In particular, our definitions may be instantiated

using symmetric or asymmetric cryptographic primitives. Where

appropriate, we shall, however, refer to example instantiations to

illustrate certain concepts.

3.1 State Requirements
In a CES, data objects are encrypted using some kind of crypto-

graphic primitive and access to an object is effected by decrypting.

Thus, any CES needs to maintain a certain amount of cryptographic

material, some of which will be public and some secret, held by

different entities. We begin our development of a framework by

considering the information, or state, that each entity within a CES

must maintain, distinguishing between user, object and system

states. We distinguish between an object (as created by the data

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

145

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

Notation Meaning Part of

stM State of the manager/system -

α(l) Secret material associated to label l stM

ϕ Private additional information held by

the manager

stM

Π Public information including the file-

system FS
-

FS Public file-system Π

π (l) Public material associated to label l Π

ψ Additional public information Π

o An object identifier O

d(o) Data written to o o

d(o) Protected form of o FS

u A user identifier U

stu State of user u -

Table 1: Notation used for modeling states of entities

owner) and its state in the system (in a protected format with any

necessary metadata). We will then, in Section 3.2, consider the al-

gorithmic requirements to use, maintain and update these states,

which will lead us to consider a classification of CESs according to

their functional requirements. Table 1 summarizes the notation we

shall introduce in the next section to describe states in a CES.

3.1.1 System. Clearly, within a CES, some cryptographic ma-

terial must be generated. This is performed by the trusted system

manager (or data owner),M. The manager will also need to use

some of the generated material to protect objects as they are written
(recall that the manager performs all write operations in a read-

only CES), to refresh existing material throughout the lifetime of

the system, and to grant access to users (by distributing appropriate
material). Therefore, the manager must store some or all of the

material it generates for later use. We denote the state, containing
all information currently held by the manager, by stM .

In information flow policies, access is determined in terms of

security labels. Hence, a CES for such policies may require, for each

label l ∈ L:

• some secret information, denoted α(l) (e.g. cryptographic
material for performing encryption and decryption of ob-

jects that have security label l); and
• some public information, denoted π (l) (e.g. public informa-

tion to aid the derivation of α(l) in a KAS).

Each user u must be provided with a means to learn some or all

of α(l) for all l ⩽ λ(u). Similarly, each object o must be protected

using some or all of α(λ(o)).
The manager must store (or be able to efficiently regenerate) α(l)

for each label such that it may be issued to users when relevant.M

may also require additional material to perform his duties (beyond

that associated purely to labels) e.g. additional system parameters.

We denote such material, which is known only toM, by ϕ. The
private state ofM is therefore:

stM = (ϕ, {α(l)}l ∈L).

The manager must also make certain information publicly avail-

able to users and the storage provider. We have already seen that

some public information, π (l), related to security labels may be re-

quired. In addition, the file-system, FS , containing all protected ob-

jects (i.e. the information that is outsourced to the storage provider)

is assumed to be publicly available (as any entity can request any

outsourced data directly from the storage provider) and therefore

forms part of the public state of the system. Finally, we may define

ψ to be any additional public information required by a particular

instantiation. The public state of the system is therefore:

Π = (ψ , {π (l)}l ∈L , FS).

We refer to the state of the system as a whole as stM and Π and

note that, together, they model all information held in the system

(we shall shortly introduce user states which will identify which

components of the system state is held by which entities).

Example 3.1. Consider a CES instantiated using the ABE scheme

of Goyal et al. [17], where each attribute corresponds to a secu-

rity label. Then, for each label l ∈ L, the manager must define a

secret exponent α(l) ∈ Zp and compute a public group element

π (l) = дα (l). Furthermore, the manager must store additional secret

information ϕ ∈ Zp (the system-wide secret exponent). Finally, Π

must additionally store the masking termψ = e(д,д)ϕ .
3.1.2 Objects. Each object within a CES must be protected

according to its security label. The protected object is written to a

file-system maintained by an untrusted storage provider.

In non-cryptographic settings for information flow policies, ob-

jects can be abstractly modeled entirely by an identifier and their

security label — a reference monitor is guaranteed to permit or deny

access to objects based only on consideration of security labels. This

is not the case in a CES: the enforcement mechanism (encryption)

operates not only on the label but also on the content of an object

o (the data) and the cryptographic material (α(λ(o)) and π (λ(o)))
associated to the label.

With these considerations in mind, we introduce the following

notation to fully describe an object in O :

• o is a unique identifier which allows us to refer simply to

an object and to apply the labeling function λ;
• d(o) is the data written to the object o and to which we

wish to control access; and

• d(o) denotes the protected form of o that is outsourced and

to which all entities have access. We may assume that d(o)
includes the label λ(o).

Hence, we assume that the set of objects O is a set of pairs of the

form (o,d(o)). Then the public data includes the file-system FS

which contains a set of pairs of the form (o,d(o)).2 It may be helpful

to think of o as a filename, d(o) as the contents of a file and d(o) as
the encrypted file. Clearly, one can refer to the entire object simply

by referring to the filename, and writing to the file may change the

content d(o) without changing the filename.

2
Note that in this work, we aim to protect only d (o), and not any further meta-data

of objects. In particular, the identifiers and security labels of objects are assumed to

be public such that users can efficiently decide which objects to retrieve from the

file-system and how to decrypt them.

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

146

A Framework for the Cryptographic Enforcement of Information Flow Policies SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA

3.1.3 Users. A user u is authorized to read an object o if λ(u) ⩾
λ(o). Hence, u must be given information (derived from material

contained in stM) that enables u to decrypt objects. This infor-

mation may simply be the decryption keys associated with labels

l ⩽ λ(u), or data that enables the derivation of those keys. For

example, in many key assignment schemes [3], a user u ∈ U is

given a single secret σ (λ(u)) enabling the derivation of decryption

keys associated to any y ⩽ λ(u). We may assume that stu contains

the label λ(u).

3.2 Functional Requirements
Having determined the minimal information that each entity must

hold within a CES, we now look at the required algorithms. We

shall see that one can model many different forms of CES depending

on the required functionality, and this shall lead us to produce a

classification of CESs.

A CES must support, at least, the following algorithms:

(stM , {msдu }u ∈U ,Π)
$

←− Setup(1ρ , P);

(d(o) or ⊥) ← Read(o, stu ,Π).

Setup is probabilistic and takes the policy P = ((L,⩽), U ,O, λ) and
a security parameter 1

ρ
as input. (Informally, ρ determines the

strength of cryptographic keys.) It generates an initial system state

(stM and Π) enabling the remaining algorithms to run, and a set of

messages that will be sent to users so that users can initialize their

respective user states, stu . The initial data d(o) for all objects o ∈ O
is protected and written to the file-system (within Π).

We assume thatmsдu is sent over a secure channel to the useru ∈
U . In effect, we assume that any messages sent by the manager to

users are received as intended and without leaking any information

to an adversary. (However, as we discuss in Section 4.2, we will

allow an adversary to corrupt users, thereby allowing the adversary

to learn user state.)

Read, run by a useru, is a deterministic algorithm which takes as

input the identifier of an object to which access is being requested,

the state of the user requesting access and the public information

for the CES, which includes the file-system and, in particular, d(o).
The algorithm uses the cryptographic material contained within stu
(and perhaps Π) to attempt to remove the protection mechanism

applied to the data d(o). It outputs d(o) (the data last written to o)
if λ(u) ⩾ λ(o), and an error symbol ⊥ otherwise.

The Setup and Read algorithms alone are sufficient to provide

the basic functionality required to enforce an information flow

policy cryptographically — that is, Setup generates cryptographic

material and protects objects, whilst Read removes the protection

if the user is authorized. However, we note that it may be necessary,

more efficient or otherwise convenient to extend the number of

algorithms used. We now discuss some of these alternatives.

3.2.1 Writeable. Although Setup writes the initial data d(o)
specified by the policy for each object in O , in many systems one

may wish to update the data stored in objects over the course of

the system lifetime. A writeable CES allows the manager to update

objects and supports the following algorithm:

Π
$

←−Write(o,d(o)′, stM ,Π)

This algorithm takes as input the object identifier o to be written to,

the data d(o)′ to be written to object o, the state of the manager, and

public information. It outputs updated public information, which

includes (o,d(o)′) in FS .

3.2.2 Refreshability. Over time, cryptographic material may

need to be refreshed if material is compromised or lost, or following

the removal of an authorized user. Computing advances or the

threat of a long-running attack may also necessitate periodic key

refreshing. Thus, many CESs should include a mechanism by which

cryptographic material can be updated.

Whilst a trivial solution would be to update cryptographic mate-

rial simply by re-running the Setup algorithm, this will update all
keys within the system simultaneously. It is likely more efficient to

provide a targeted Refresh algorithm (to be run by the manager):

(stM , {msдu }u ∈U ,Π)
$

←− Refresh(l , stM ,Π).

Refresh takes a label l ∈ L, the state stM of the manager and Π as

input (which, together, contain the material α(l) and π (l) associated
to the target label), and outputs updated values of stM and Π, along
with a set of messages {msдu }u ∈U , which may contain updated

cryptographic material for authorized users.

We say that a CES is refreshable if it uses a Refresh algorithm,

rather than Setup, to update cryptographic material on a per-label

basis. Refreshes may also result in changes to the cryptographic

material associated with other security labels; we denote this set of

labels by L′. (In a CES instantiated using an iterative key assignment

scheme [3], for example, L′ = {l ′ ∈ L : l ′ ⩽ l}.) Following a refresh,
therefore, we may need to update Π, stu for some users (typically

those where λ(u) ∈ L′) and d(o) for objects o where λ(o) ∈ L′.

3.2.3 Dynamic Policy. In some settings, it may be that the sets

of objects and users never change (the policy is static). The Setup
algorithm may assign the appropriate labels and cryptographic

materials for all users and objects, and write all objects to the file-

system. In some systems, however, a user or object’s label may be

changed to/from any label in L during the lifetime of the system

(e.g. in the event that a user’s role changes or an object becomes

declassified). A basic solution to fulfilling this requirement is to

re-run the Setup algorithm with a modified labelling function.

A more dynamic (and potentially more efficient) approach is to

introduce randomized algorithms ChUsL and ChObL, for changing
a user and object’s label respectively:

(stM , {msgu}u ∈U ,Π)
$

←− ChUsL(u, l ′, stM ,Π);

(stM , {msgu}u ∈U ,Π)
$

←− ChObL(o, l ′, stM ,Π).

Both algorithms take the identifier of the user or object and the

new label l ′ ∈ L to be assigned, along with the manager state and

public information, and result in updated manager states and public

information along with update messages for each user that may

update the user state stu .

Note that, for example, ChUsL may affect the states of other

users (or the secret information α(y) associated to labels y , l ′)
e.g. if the access rights of u are decreased then the cryptographic

material for all labels that u is no longer authorized for may need

to be changed; subsequently, objects protected using keys that have

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

147

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

CES Class Algorithms Run by

Basic Setup Manager

Read User

Writeable Write Manager

Refreshable Refresh Manager

Dynamic ChUsL Manager

ChObL Manager

Decentralized UserUpdate User

Table 2: Algorithms required in different classes of CES

been updated may require re-protecting. Typically, ChObL could

be implemented by decrypting d(o), calling Refresh on λ(o) and
re-encrypting d(o) using α(l ′).

Recall that we assume a large population of users, many of which

may be assigned to ⊔. The “creation” of a user may be modeled as

the activation of a user that has been assigned to ⊔, whilst user

deletion can be modeled as the assignment of an existing user to ⊔.

We can create and delete objects in a similar fashion by assigning

from and to the label ⊓. We say a CES is dynamic if it supports
ChUsL and ChObL.

3.2.4 Decentralized Updates. Note that several algorithms (Setup,
ChUsL and Refresh) are run by the manager and require resulting

updates to a user’s local state stu . Certainly, since user states are

subsets of the manager state, the manager could compute the up-

dated stu for all u that are affected, and distributemsдu containing

stu . We call this a centralized update as it is performed entirely by

the manager. However, this may place an unnecessarily onerous

burden on the manager. In some instantiations, a more efficient

solution (in terms of manager workload and bandwidth costs) may

be to provide each user u with (a smaller amount of) data that

enables u to derive stu themselves. For example, each user could

use some key derivation function to update their own user state

using a counter value or nonce broadcast by the manager. Hence,

we introduce a final algorithm UserUpdate, run by the user:

stu ← UserUpdate(stu ,msдu ,Π).

3.2.5 Classes of CES. We have seen that CESs in different set-

tings may require different functionality. In Table 2, therefore, we

classify CESs according to their required properties. We do not

claim this classification to be exhaustive but believe that it captures

many of the generic requirements of CESs. Each class of CES also

includes the algorithms of those in the Basic class, and classes may

be combined. Each algorithm may return ⊥ to denote failure e.g. if

the inputs are invalid.

To achieve a general definition satisfiable by any suitable cryp-

tographic primitives, we have strived to define general, abstract

input and output parameters for each algorithm that act as general

‘containers’, into which one can place the required cryptographic

components of the particular primitives in use. Whilst our defini-

tions may appear complicated, due to their generality, we believe

that they give the simplest possible definition of a CES, since they

show the required information flow between algorithms without

relating parameters with their supposed format within a particular

instantiation (e.g. we do not specify that an input is a cryptographic

key, but a more general parameter that may or may not contain one

or more keys when instantiated by a particular construction). For

example, looking at the Setup algorithm, we see that to initialize the

system one must specify the policy to be enforced and the level of

security required, and the algorithm simply generates some private

information (state) for each entity (manager and users) and some

public information accessible to all. We shall see concrete examples

of how such a CES can be instantiated in Section 5.

3.2.6 System State Transition. The evolution of a CES over time

can be modeled as a series of state transitions, St
a
−→ St+1, where a

is an algorithm run by the manager that results in a change to the

policy.
3
In a CES for a static, refreshable policy, for example, the

Setup and Refresh algorithms cause a transition to another state –

Read does not change the state of the system and thus produces a

trivial or null state transition.

We now attempt to specify the minimal sets of items within

the system that must be updated in some way to ensure that the

enforcement scheme reflects the updated system following a com-

mand. The specific forms of updates will be very dependent on

the specific implementation. Some schemes may choose to update

additional items (e.g. non-refreshable schemes may update all user
states following an update). Here, we simply attempt to identify the

minimal sets of items that are affected and that any implementation

must deal with. For our purposes, we assume that all necessary

updates are performed immediately i.e. we do not employ a lazy

update mechanism.

Note that a transition from a state St = (stM ,Π) to another state
St ′ = (st

′
M
,Π′) only occurs if the associated conditions hold.

• Write(o,d(o)′, stM ,Π): if o ∈ O , the manager protectsd(o)′

(using cryptographic material related to o and λ(o)) and

updates d(o) ∈ Π.
• Refresh(l , stM ,Π): If l ∈ L, then let L′ be the set of la-

bels whose cryptographic material depends on that of l
(e.g. in an iterative KAS [9], L′ = {l ′ ∈ L : l ′ ⩽ l}). Then
{α(l),π (l) : l ∈ L′} gets updated. All objects that are pro-
tected under cryptographic material that has been updated

will need re-protecting under the refreshed material. Let

O ′ be the set of such objects, then {d(o) : o ∈ O ′} must

be updated. In addition, a set of users, U ′, whose crypto-
graphic material has been updated will also need to be

issued material to update their user states.

• ChUsL(u, l ′, stM ,Π): If l
′ ∈ L \ ⊓, u ∈ U and λ(u) , l ′,

set L′ =
{
l ∈ L : l ⩽ λ(u), l ⩽̸ l ′

}
(this is precisely the set

of labels for which u is no longer authorized). Then we

need to update the set C = {α(l),π (l) : l ∈ L′}, and set

λ(u) ← l ′. For every object o ∈ O protected using material

in C , d(o) is updated. The smallest set of users whose state

needs updating is the set of users {u ′ ∈ U : λ(u ′) ∈ L′}.
• ChObL(o, l ′, stM ,Π): Let l = λ(o). If l

′ ∈ L \ ⊔, o ∈ O and

l , l ′, set λ(o) ← l ′ and update d(o). κl and π (l) should

3
Since user states can be computed from the manager state and public information,

they need not form part of the system state; therefore we do not consider UserUpdate
as an algorithm that causes a system state transition.

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

148

A Framework for the Cryptographic Enforcement of Information Flow Policies SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA

be refreshed
4
. Such key refreshes are required to prevent

the following scenario: suppose a user u locally stores d(o),
where λ(o) = l , and u is not authorized for l . Suppose o is
reassigned to label l ′, where l ′ > l , or l ′ ∥ l , and ChUsL
is run such that λ(u) = l . Now, if κl has not been updated,

then u can access the contents of his stored copy of d(o),
although u is not authorized for o since λ(o) ⩽̸ λ(u).

4 CORRECTNESS AND SECURITY
The security properties of a system employing cryptographic prim-

itives are often defined using games. A game is “played” between

a challenger and an adversary, A, and seeks to model the actions

of the adversary and its interactions with the system (represented

by the challenger). A game typically comprises an interleaving of

calls made by the challenger to algorithms provided by the system,

and calls made by the adversary to “oracles”. An adversary given

oracle access is denoted AO , where the O denotes the set of or-

acles to which the adversary has access. We assume that all data

sent amongst entities is done so via confidential and authenticated

channels; the adversary is given access to publicly observable infor-

mation, and oracles model his ability to act as the storage provider

and to corrupt users to learn any confidential information available

to attackers in a real system that take similar actions.

Informally, oracles allow the adversary to influence the system by

triggering the execution of algorithms, without necessarily know-

ing all inputs to each algorithm. This mechanism allows the adver-

sary, to some degree, to ‘embed’ information of its choosing into

the system and to control its execution; the resulting knowledge

of the system represents any prior knowledge an adversary may

have about a real system. Furthermore, oracles model an adversary

taking ‘real-world’ actions that result in an algorithm being run

by the manager — for example, an adversary may take a course

of action (e.g. placing an order with a company) which it suspects

will cause some data to be written to the file-system, and it may

have some guess about the contents of that data; in the crypto-

graphic game, this is modeled by allowing the adversary to request

data (its guess) to be written (via a Write oracle), even though the

adversary does not have the capability (e.g.the necessary access

rights or encryption keys) to write to the file-system in the real

system. If an adversary can glean any additional information from

seeing protected objects (where the adversary knows the contents)

in the game, it may be able to determine such information about

the contents of data objects in a real file-system.

Most oracles include a call to a system algorithm and take as

input a subset of the inputs to that algorithm. We do not provide

oracles for Setup or any user-run algorithms as the adversary can

run these itself. An oracle may also perform some validation of the

inputs to ensure that the adversary does not provide inputs that

could permit a “trivial win”. The only information the adversary

may learn is that which is explicitly given to it as input and that

which is output from oracles (together this should be chosen to

reflect all possible leakage in the real system).

4
An efficient instantiation may add l to a refresh list and only update its key and public

information when necessary (e.g. use lazy update mechanisms).

For the purposes of this framework, wemake the assumption that

all updates following a state transition occur immediately. In prac-

tice, one may need to lock files whilst updates are performed [14].

4.1 Correctness
Informally, an information flow policy is correctly enforced if all

authorized requests are permitted — that is, if a user u can read

any object o where λ(o) ⩽ λ(u). When considering a cryptographic

enforcement mechanism, we would like to consider a stronger

notion of correctness whereby we ensure that it is not possible for

the system to enter a state in which an authorized user performing

a Read operation does not receive the correct data (the last data

that should have been written to the object). To do so, we model

the system as a game, given in Figure 1, played between a scheduler
A which can observe and control the execution of the system and

a challenger; by considering all such schedulers we consider all

possible valid sequences of algorithms.

The aim of the experiment (from the scheduler’s perspective) is

to force the system into a state in which the output of reading an

object o⋆ does not equal the data that should have been last written

to this object. We must ensure that the protection mechanism can

be applied to, and removed from, data correctly by authorized

users, and that the algorithms specified in the CES do not interfere

with this operation. Recall that the storage provider is modeled as

an honest-but-curious adversary; we therefore need not consider

integrity properties since the provider is trusted to accept data only

from the manager and to store it (unmodified) in the file-system.

In effect, we must ensure our specified algorithms conform to our

expectation of a correct execution; we do not consider malicious

storage providers that deviate from these algorithms in this work.

The experiment, given as ExpCorrectnessCES,A (1ρ , P) in Figure 1, begins

with the challenger setting up the system and initializing an array

A, where A[o] contains the data d(o) for each object o ∈ O defined

in the policy; this array is used to store the data that (according

to the policy and any subsequent write requests) should currently

be stored by the storage provider. The challenger then gives A

the public information and access to a set of oracles (also shown

in Figure 1), which enables A to run CES algorithms on inputs

of its choice. Most oracles simply check that the inputs are valid,

update the policy or the array A as required, and then call the

relevant CES algorithm. The Corrupt oracle allows the scheduler

to learn the user state for a queried user (i.e. everything that the

user knows) which models compromised or colluding users. The

challenger maintains a list Cr of users that have been corrupted.

Recall that some algorithms output a set of update messages for

some users. Messages for users that the scheduler has corrupted

are given to A (in this way, A learns any additional, leaked, in-

formation from the update messages and can choose to update

the corrupted user state itself in a decentralized CES). The chal-

lenger runs the UserUpdate algorithm to update the state of all

non-corrupted users so that they remain synchronized with the

remainder of the system, and so any future corruptions will reveal

a correctly updated user state.

After polynomially many queries to the oracles, the scheduler

selects a challenge object identifier o⋆ ∈ O and a user u⋆ ∈ U . The

challenger then runs Read for o⋆ using the state of the user u⋆. If

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

149

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

ExpCorrectness
CES,A (1ρ, P)

Cr← ∅
foreach o ∈ O :

A[o]← d(o)

(stM, {msgu}u∈U ,Π)
$←− Setup(1ρ, P)

(o?, u?)
$←− AO(1ρ, P,Π)

if (λ(u?) > λ(o?)) and (Read(o?, stu? ,Π) 6= A[o?]) :

return true

else : return false

Oracle CorruptU(u)

if u 6∈ U : return ⊥
Cr← Cr ∪ {u}
return stu

Oracle ChUsL(u, l′)

if (u ∈ U and l′ ∈ L \ u) :

λ(u)← l′

(stM, {msgu}u∈U ,Π)
$←− ChUsL(u, l′, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu,Π)

return ({msgu}u∈Cr ,Π)

Oracle ChObL(o, l′)

if (o ∈ O and l′ ∈ L \ t) :

λ(o)← l′

(stM, {msgu}u∈U ,Π)
$←− ChObL(o, l′, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu,Π)

return ({msgu}u∈Cr ,Π)

Oracle Write(o, d(o)′)

if (o ∈ O) :

A[o]← d(o)′

Π
$←−Write(o, d(o)′, stM,Π)

return Π

Oracle Refresh(l)

if l 6∈ L : return ⊥

(stM, {msgu}u∈U ,Π)
$←− Refresh(l, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(stu,msgu,Π)

return ({msgu}u∈Cr ,Π)

Figure 1: Correctness of a CES

u⋆ is authorized for o⋆, and Read does not output A[o⋆] (the data
that should have been most recently written to o⋆), the scheduler
wins — it has found a sequence of state transitions that results in

an authorized user not gaining the correct data.

Definition 4.1. Let P = ((L,⩽),U,O, λ) be an information flow

policy. A CES for P is correct if for all probabilistic polynomial-time

schedulers A, all valid policies P and all security parameters ρ:

Pr

[
true← ExpCorrectnessCES,A (1ρ , P)

]
= 0

4.2 Security
Informally, a CES for a read-only information flow policy is secure
if it denies all unauthorized read requests e.g. a user u cannot learn

d(o) if λ(u) ⩾̸ λ(o). A stronger cryptographic notion of security

may require that unauthorized users can learn nothing about the

contents of objects for which they are unauthorized.
5
Unlike an en-

forcement mechanism based on a reference monitor, there are often

no absolute guarantees of security in a CES because cryptographic

primitives are probabilistic. Thus, security is defined in terms of

the probability of an adversary learning something about an object

that they are not authorized to read.

An ideal notion of security may be semantic security [16]. Un-

fortunately, it can be difficult to model exactly what is meant by

an adversary learning ‘no information’ in arbitrary settings as one

must account for any prior information the adversary may have

about data in the file-system (e.g. the language). Instead, it is com-

mon to consider an indistinguishability game [5] in which the

adversary can choose data to be written (a chosen plaintext attack).

In our indistinguishability game for a CES, the adversary chooses

a challenge object (for which it is unauthorized) and two data values.

The challenger chooses one of the data values at random and writes

it to the chosen object. To win, the adversary, having observed the

file-system, must state which data item was written. The adversary

can clearly win 50% of the time by guessing; thus we model the

5
Whilst a user u who was authorized for an object o may have learned the contents

of d (o) prior to the object’s label being changed such that u is no longer authorized

for o, the user should not be able to read any further writes to o.

adversary’s advantage in this game as the difference between the

probability of identifying the encrypted data correctly and
1

2
. For a

secure CES, we require this advantage to be close to 0.

This notion of indistinguishability implies (is stronger than) the

notion that a user is not able to decrypt d(o) if λ(u) ⩾̸ λ(o). Whilst

the weaker notion requires only that the entirety of d(o) is not
revealed, our notion requires that no information about d(o) may

be leaked from an outsourced d(o) (even when the adversary may

choose the data options to maximize its ability to distinguish the

resulting protected data items). This ensures that the file-system

reveals nothing about written data (except perhaps metadata such

as file-size); if any additional information were to leak, an adver-

sary could win this game by choosing two messages that can be

distinguished by the leaked information.

Our notion of security of a CES for an information flow policy

P = ((L,⩽),U,O, λ) is captured in ExpIndCES,A (1
ρ , P) in Figure 2.

The challenger C randomly chooses a bit b ∈ {0, 1} and a challenge
object identifier o⋆, and initializes an empty list Cr of corrupted
users. C then initializes the system via Setup and then provides the

adversary A with the public information and oracle access.

After polynomially many oracle queries, A chooses an object

identifier o⋆ and two data items d0 and d1 (of equal length). C

checks that no corrupted user is authorized for o⋆ (to prevent a

trivial win for the adversary) and writes db to o⋆. The resulting
public parameters, and oracle access, are given to the adversary

who must correctly identify the data item written to the object.

Oracles may perform ‘housekeeping’ to ensure that inputs are

valid and do not permit a trivial win by allowing A to:

(1) corrupt a user who is authorized for o⋆;
(2) change the challenge object’s label such that a corrupted

user is now authorized for o⋆;
(3) change a corrupted user’s label such that the user is now

authorized for o⋆.

Note that the set of oracles the adversary has access to depends

on the class of CES. Recall that a non-refreshable CES may be

(inefficiently) refreshed by recalling Setup with new policy inputs;

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

150

A Framework for the Cryptographic Enforcement of Information Flow Policies SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA

ExpInd
CES,A(1

ρ, P)

b
$←− {0, 1}; o? ←⊥;Cr← ∅

(stM, {msgu}u∈U ,Π)
$←− Setup(1ρ, P)

(o?, d0, d1)
$←− AO(1ρ, P,Π)

if |d0| 6= |d1| : return false

foreach u ∈ Cr :

if λ(o?) 6 λ(u) :

return false

Π
$←−Write(o?, db, stM,Π)

b′
$←− AO(1ρ, P,Π)

if b = b′ : return true

else return false

Oracle ChObL(o, l′)

if o = o? :

foreach u ∈ Cr :

if l′ 6 λ(u) : return ⊥
if (o ∈ O and l′ ∈ L \ t) :

λ(o)← l′

(stM, {msgu}u∈U ,Π)
$← ChObL(o, l′, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(msgu, stu)

return (Π, {msgu}u∈Cr)

Oracle ChUsL(u, l′)

if (u ∈ Cr and λ(o?) 6 l′) : return ⊥
if (u ∈ U and l′ ∈ L \ u) :

λ(u)← l′

(stM, {msgu}u∈U ,Π)
$← ChUsL(u, l′, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(msgu, stu)

return (Π, {msgu}u∈Cr)

Oracle Refresh(l)

(stM, {msgu}u∈U ,Π)
$← Refresh(l, stM,Π)

foreach u ∈ U \ Cr :

stu ← UserUpdate(msgu, stu)

return (Π, {msgu}u∈Cr)

Oracle Write(o, d(o)′)

Π
$←−Write(o, d(o)′, stM,Π)

return Π

Oracle CorruptU(u)

if u 6∈ U : return ⊥
if λ(u) > λ(o?) :

return ⊥
Cr← Cr ∪ {u}
return stu

Figure 2: Security of a CES

we therefore provide a Refresh oracle so that the adversary can

influence the manager to call Setup. A non-refreshable CES will

replace the call to Refresh within the Refresh oracle with a call to

Setup with the current policy as input. In our model, we do not

permit the poset to change over time, and hence the only input to

the Refresh oracle is the label to be refreshed; the adversary may

not specify the new policy as this may include an alternative poset

(permitted policy changes can be effected through other oracles).

Whenever the policy is to be updated, the challenger updates

the policy correctly and calls the relevant algorithm. Thus, the

challenger’s view of the policy is always correct, enabling the checks

for trivial wins to be performed correctly.

Definition 4.2. A CES for an information flow policy is secure if
for all probabilistic polynomial-time adversariesA, all valid policies

P and all security parameters ρ:����Pr [true← ExpIndCES,A (1
ρ , P)

]
−
1

2

���� ⩽ f (ρ)

where f is a negligible function.

One may observe that a secure CES, in accordance with Defini-

tion 4.2, must employ some form of foward-security (e.g. one should
not be able to learn old versions of label keys). This prevents users

locally storing ciphertexts for objects that used to be assigned to

a security label l , obtaining authorization for l , and being able to

derive the old key for l to enable successful decryption of such

ciphertexts.

5 EXAMPLE INSTANTIATIONS
A Key Assignment Scheme (KAS) [3] is defined by:

• ({κx ,σx }x ∈L , Pub)
$

←− KAS.Setup(1ρ , (L,⩽)) takes a secu-
rity parameter and a poset and outputs a key κx and secret

σx for each label x ∈ L, along with some public derivation

information Pub ; and
• κx or ⊥← KAS.Derive(x ,y,σy , Pub) takes labels x ,y ∈ L,

the secret for y and Pub , and outputs the key for label x if

and only if x ⩽ y, else it outputs ⊥.

Each user is given a secret associated to their security label and

can derive all keys for which they are authorized. Figure 3 gives

(stM, {msgu}u∈U ,Π)
$←− Setup(1ρ, P)

Parse P as ((L,6), U,O, λ)

({κx, σx}x∈L, Pub) $←− KAS.Setup(1ρ, (L,6))

foreach x ∈ L :

α(x)← {κx, σx}
φ← P

stM ← (φ, {α(x) : x ∈ L})
foreach u ∈ U :

stu ← (σλ(u), λ(u))

foreach o ∈ O :

d(o)
$←− (SE.Encryptκλ(o)(d(o)), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

ψ ← (Pub, (L,6))

Π← (ψ, FS)

return (stM, {stu}u∈U ,Π)

d(o)← Read(o, stu,Π)

if o /∈ O : return ⊥
κλ(o) ← KAS.Derive(λ(o), λ(u), σλ(u), Pub)

if κλ(o) 6=⊥ :

Parse d(o) as (co, o, λ(o))

return SE.Decryptκλ(o)(c0)

return ⊥

Π
$←−Write(o, d(o)′, stM,Π)

if o /∈ O : return ⊥

d(o)
$←− (SE.Encryptκλ(o)(d(o)′), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

Π← (ψ, FS)

return Π

Figure 3: A Writeable, Centralized CES using a KAS

an example CES instantiation using a KAS (KAS) and a symmetric

encryption scheme (SE) where the key space for KAS and SE is the

same. The manager state includes all generated keys and secrets;

each user state includes the secret assigned to the user’s security

label, and Π includes the public information output by the KAS.

Theorem 5.1. Let KAS be secure in the sense of key indistinguisha-
bility and let SE be IND-CPA secure. Then the instantiation in Figure 3
is a secure static, writeable, centralized, non-refreshable CES.

The proof of Theorem 5.1 can be found in Appendix A. It is

interesting to note that, although KASs are often proposed as sym-

metric cryptographic enforcement mechanisms for information

flow policies, the natural pairing of a KI-secure KAS and an IND-

CPA secure encryption scheme yields a rather basic CES according

to our classifications. Indeed, it appears that constructing a richer

class of CES using current KASs as a black box (i.e. using the de-

fined algorithms without using the particular details of a specific

instantiation) would be challenging. Current KASs specify only

two algorithms and the Setup algorithm generates and outputs all
public and secret information for the entire system; there is no al-

ternative method by which to generate subsets of this information.

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

151

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

Thus allowing for dynamic or refreshable CESs will be problematic

— there is no mechanism by which a single key can be generated

or replaced for example. Whilst some KAS constructions do allow

for some aspects to be altered [4], this mechanism is scheme de-

pendent and does not form part of the definition or, crucially, the

security model. Future work on KASs should aim to meet the re-

quirements of our proposed framework if they are to ensure utility

as a component of a CES; in particular, a KAS used to instantiate a

more complex CES will require algorithms to update and refresh

components, and the KI security notion will need to be adapted to

accommodate changes to cryptographic material over time.

Our second example uses a large-universe key-policy attribute-

based encryption (KP-ABE) [17] scheme:

• (MK , PP)
$

←− Setup(1ρ) takes a security parameter and

outputs a master secret and public parameters;

• C
$

←− Encrypt(m,γ , PP) takes a message m, a set of at-

tributes γ and PP, and outputs a ciphertext;

• kA ← KeyGen(A,MK , PP) takes as input an access struc-

ture (policy) A, the master secret key and public parame-

ters, and outputs a key for the policy; and

• (m or ⊥) ← Decrypt(C,kA, PP) takes a ciphertext C en-

cryptingm using an attribute set γ , a key kA for a policy A
and PP. It outputs the encrypted messagem if γ ∈ A (the

policy is satisfied) or ⊥ otherwise.

Then, Figure 4 gives an instantiation of a dynamic, centralized,

refreshable, writeable CES. Each security label is associated with

an attribute, objects are encrypted using the singleton attribute set

{λ(o)} and user decryption keys are generated using the disjunc-

tive policy

∨
l⩽λ(u) l ; hence users can decrypt any object where

λ(o) ⩽ λ(u) as required. Whilst more efficient instantiations are

likely possible (e.g. using revocable KP-ABE [24]), we have aimed

here to use a simple, standard KP-ABE scheme. We use a large-

universe construction (where any string can be an attribute) to

enable ‘versions’ of attributes to disable out-of-date keys (a counter

is appended to each attribute and is updated whenever a user loses

access to an object assigned that attribute).

Again, by considering cryptographic primitives within our frame-

work, it becomes apparent that some existing proposals for enforce-

ment mechanisms for access control are not entirely sufficient.

For example, whilst there are many works considering revocation

within ABE [24, 25], it seems more difficult to reduce access rights

rather than remove the user completely without assigning an en-

tirely new user identifier.

6 CONCLUSION
We have developed a rigorous definitional framework for the cryp-

tographic enforcement of information flow policies. Our framework

has been developed ‘bottom up’ from the requirements of the ac-

cess control policy, rather than targeting a particular cryptographic

primitive or application scenario. We have provided several ex-

ample classes of CES and discussed the algorithmic requirements

of each, and provided a formal notion of correctness and security.

Finally we have provided two instantiations, based on very differ-

ent primitives, to exemplify the utility of our framework. Further

work should develop the definitions for key assignment schemes to

meet the requirements of our framework for richer classes of CES.

One could also expand our framework to consider other policies,

including write-access, and security goals such as hiding the labels

of users and objects.

REFERENCES
[1] Martín Abadi and BogdanWarinschi. 2008. Security analysis of cryptographically

controlled access to XML documents. Journal of the ACM (JACM) 55, 2 (2008), 6.
[2] Selim G. Akl and Peter D. Taylor. 1983. Cryptographic Solution to a Problem of

Access Control in a Hierarchy. ACM Trans. Comput. Syst. 1, 3 (1983), 239–248.
[3] Mikhail J. Atallah, Marina Blanton, Nelly Fazio, and Keith B. Frikken. 2009.

Dynamic and Efficient Key Management for Access Hierarchies. ACM Trans. Inf.
Syst. Secur. 12, 3 (2009).

[4] Mikhail J. Atallah, Marina Blanton, and Keith B. Frikken. 2007. Efficient tech-

niques for realizing geo-spatial access control. In ASIACCS, Feng Bao and Steven
Miller (Eds.). ACM, 82–92.

[5] Mihir Bellare, Anand Desai, E. Jokipii, and Phillip Rogaway. 1997. A Concrete

Security Treatment of Symmetric Encryption. In 38th Annual Symposium on
Foundations of Computer Science, FOCS ’97, Miami Beach, Florida, USA, October
19-22, 1997. IEEE Computer Society, 394–403. https://doi.org/10.1109/SFCS.1997.

646128

[6] John Bethencourt, Amit Sahai, and Brent Waters. 2007. Ciphertext-Policy

Attribute-Based Encryption. In IEEE Symposium on Security and Privacy. IEEE
Computer Society, 321–334.

[7] Arcangelo Castiglione, Alfredo De Santis, and Barbara Masucci. 2016. Key

Indistinguishability versus Strong Key Indistinguishability for Hierarchical Key

Assignment Schemes. IEEE Trans. Dependable Sec. Comput. 13, 4 (2016), 451–460.
https://doi.org/10.1109/TDSC.2015.2413415

[8] Jason Crampton. 2010. Cryptographic Enforcement of Role-Based Access Control.

In Formal Aspects in Security and Trust (Lecture Notes in Computer Science),
Vol. 6561. Springer, 191–205.

[9] Jason Crampton, Keith M. Martin, and Peter R. Wild. 2006. On Key Assignment

for Hierarchical Access Control. In CSFW. IEEE Computer Society, 98–111.

[10] Ivan Damgård, Helene Haagh, and Claudio Orlandi. 2016. Access control encryp-

tion: Enforcing information flow with cryptography. In Theory of Cryptography
Conference. Springer, 547–576.

[11] Sabrina De Capitani Di Vimercati, Sara Foresti, Sushil Jajodia, Stefano Paraboschi,

and Pierangela Samarati. 2007. Over-encryption: management of access control

evolution on outsourced data. In Proceedings of the 33rd international conference
on Very Large Data Bases. VLDB endowment, 123–134.

[12] Anna Lisa Ferrara, Georg Fuchsbauer, and Bogdan Warinschi. 2013. Crypto-

graphically Enforced RBAC. In CSF. IEEE, 115–129.
[13] Eduarda S. V. Freire, Kenneth G. Paterson, and Bertram Poettering. 2013. Simple,

Efficient and Strongly KI-Secure Hierarchical Key Assignment Schemes. In CT-
RSA (Lecture Notes in Computer Science), Vol. 7779. Springer, 101–114.

[14] William C Garrison, Adam Shull, Steven Myers, and Adam J Lee. 2016. On the

practicality of cryptographically enforcing dynamic access control policies in

the cloud. In Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 819–838.
[15] David K Gifford. 1982. Cryptographic sealing for information secrecy and

authentication. Commun. ACM 25, 4 (1982), 274–286.

[16] Shafi Goldwasser and Silvio Micali. 1984. Probabilistic encryption. Journal of
computer and system sciences 28, 2 (1984), 270–299.

[17] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. 2006. Attribute-

based encryption for fine-grained access control of encrypted data. In ACM
Conference on Computer and Communications Security. ACM, 89–98.

[18] Ehud Gudes. 1980. The design of a cryptography based secure file system. IEEE
Transactions on Software Engineering 5 (1980), 411–420.

[19] Shai Halevi, Paul A Karger, and Dalit Naor. 2005. Enforcing Confinement in Dis-

tributed Storage and a Cryptographic Model for Access Control. IACR Cryptology
ePrint Archive 2005 (2005), 169.

[20] Anthony Harrington and Christian Jensen. 2003. Cryptographic access control

in a distributed file system. In Proceedings of the Eighth ACM Symposium on
Access Control Models and Technologies. ACM, 158–165.

[21] Bin Liu and Bogdan Warinschi. 2016. Universally Composable Cryptographic

Role-Based Access Control. Cryptology ePrint Archive, Report 2016/902. (2016).

http://eprint.iacr.org/2016/902.

[22] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In CT-RSA (Lecture Notes in Computer Science), Aggelos Kiayias (Ed.),
Vol. 6558. Springer, 376–392.

[23] Matthew G. Parker (Ed.). 2009. Cryptography and Coding, 12th IMA International
Conference, Cryptography and Coding 2009, Cirencester, UK, December 15-17, 2009.
Proceedings. Lecture Notes in Computer Science, Vol. 5921. Springer.

[24] Nutta pong Attrapadung and Hideki Imai. 2009. Attribute-Based Encryption

Supporting Direct/Indirect Revocation Modes, See [23], 278–300.

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

152

https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/SFCS.1997.646128
https://doi.org/10.1109/TDSC.2015.2413415
http://eprint.iacr.org/2016/902

A Framework for the Cryptographic Enforcement of Information Flow Policies SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA

(stM, {msgu}u∈U ,Π)
$←− Setup(1ρ, P)

Parse P = ((L,6), U,O, λ)

(MK,PP)
$←− ABE.Setup(1ρ)

for l ∈ L :

A[l]← 0

kM
$←− ABE.KeyGen((

∨

l∈L
l||A[l]),MK,PP)

φ← (A, kM , P,MK)

stM ← φ

foreach u ∈ U :

ku
$←− ABE.KeyGen((

∨

l6λ(u)
l||A[l]),MK,PP)

stu ← (ku, λ(u))

foreach o ∈ O :

co
$←− ABE.Encrypt(d(o), {λ(o)||A[λ(o)]} ,PP)

d(o)← (co, o, λ(o))

FS ←
{
d(o) : o ∈ O

}

ψ ← (PP, (L,6))

Π← (ψ, FS)

return (stM, {stu}u∈U ,Π)

d(o)← Read(o, stu,Π)

if o ∈ O :

Parse d(o) = (co, o, λ(o))

Parse stu = (ku, λ(u))

return ABE.Decrypt(co, ku,PP)

return ⊥

(stM, {msgu}u∈U ,Π)
$←− Refresh(l, stM,Π)

if l ∈ L :

A[l] = A[l] + 1

k′M
$←− ABE.KeyGen((

∨

l∈L
l||A[l]),MK,PP)

foreach u ∈ {u ∈ U : l 6 λ(u)} :

stu
$←− (ABE.KeyGen((

∨

l′6λ(u)
l′||A[l′]),MK,PP), λ(u))

foreach o ∈ {o ∈ O : λ(o) = l} :

Parse d(o) = (co, o, λ(o))

d← ABE.Decrypt(co, kM ,PP)

d(o)
$←− (ABE.Encrypt(d, {λ(o)||A[λ(o)]} ,PP), o, λ(o))

φ← (A, k′M , P,MK)

stM ← φ

FS ←
{
d(o) : o ∈ O

}

Π← (ψ, FS)

return (stM, {stu}u∈U ,Π)

return (stM, ∅,Π)

(stM, {msgu}u∈U ,Π)
$←− ChObL(o, l′, stM,Π)

if o ∈ O and l′ ∈ L \ t :

l← λ(o)

Parse d(o) = (co, o, λ(o))

d← ABE.Decrypt(co, kM ,PP)

d(o)
$←− ABE.Encrypt(d,

{
l′||A[l′]

}
,PP), o, l′)

FS ←
{
d(o) : o ∈ O

}

λ(o)← l′

Π← (ψ, FS)

return Refresh(l, stM,Π)

return (stM, ∅,Π)

(stM, {msgu}u∈U ,Π)
$←− ChUsL(u, l′, stM,Π)

if u ∈ U and l′ ∈ L \ u :

X ←
{
l ∈ L : l 6 λ(u), l 66 l′

}

foreach x ∈ X :

A[x] = A[x] + 1

foreach o ∈ {o ∈ O : λ(o) = x} :

Parse d(o) = (co, o, λ(o))

d← ABE.Decrypt(co, kM ,PP)

d(o)
$←− (ABE.Encrypt(d, {λ(o)||A[λ(o)]} ,PP), o, λ(o))

if X 6= ∅ :

kM
$←− ABE.KeyGen((

∨

l∈L
l||A[l]),MK,PP)

φ← (A, kM , P,MK)

stM ← φ

FS ←
{
d(o) : o ∈ O

}

Π← (ψ, FS)

foreach u′ ∈
{
u′ ∈ U \ u : ∃x ∈ X,x 6 λ(u′)

}
:

stu′
$←− (ABE.KeyGen((

∨

x6λ(u′)

x||A[x]),MK,PP), λ(u′))

λ(u)← l′

stu
$←− (ABE.KeyGen((

∨

x6l′
x||A[x]),MK,PP), l′)

return (stM, {stu}u∈U ,Π)

return (stM, ∅,Π)

Π
$←−Write(o, d(o)′, stM,Π)

if o ∈ O :

d(o)
$←− (ABE.Encrypt(d(o)′, {λ(o)||A[λ(o)]} ,PP), o, λ(o))

FS ←
{
d(o) : o ∈ O

}

Π← (ψ, FS)

return Π

Figure 4: Construction of a Dynamic, Centralized, Refreshable, Writeable CES using Attribute-based Encryption

ExpS−KI−ST
A,(L,6) (1ρ)

l?
$←− A(1ρ, (L,6))

((σl, κl)l∈L, Pub)
$←− Setup(1ρ, (L,6))

b
$←− {0, 1} ; if b = 1 then κ? ← κl? , else κ

? $←− K

b′
$←− A(Pub, Corrupt,Keys, κ?)

return b′ = b

Figure 5: Static Strong Key Indistinguishability of a KAS

[25] Jun-lei Qian and Xiao-lei Dong. 2011. Fully secure revocable attribute-based

encryption. Journal of Shanghai Jiaotong University (Science) 16 (2011), 490–496.

A SECURITY PROOF OF THEOREM 1
A symmetric-key encryption scheme [5] comprises:

• SK
$

←− KeyGen(1ρ) takes a security parameter and outputs

a secret key.

• c
$

←− EncryptSK (m) takes as input a secret key SK and a

messagem and outputs a ciphertext c .
• (m or ⊥) ← DecryptSK (c) takes a key and a ciphertext,

and outputs a messagem or a failure symbol ⊥.

A KAS is Strongly Key Indistinguishable (SKI) [13] if for all PPT
adversaries A and posets (L,⩽):

2

����Pr [ExpS−KI−STA,(L,⩽)(1
ρ) = b

]
−
1

2

���� ⩽ f (ρ),

where f is a negligible function, ExpS−KI−ST
A,(L,⩽)(1

ρ) is given in Figure

5 where K is the key space, Corrupt =
{
σl : l ∈ L, l < l⋆

}
and

Keys =
{
κl : l ∈ L, l , l

⋆
}
.

Proof. We first define a modified game, Game 1, which is the

same as that defined in Definition 4.2 (which we call Game 0)
except that the key used to encrypt the challenge object o⋆ is chosen

randomly rather than derived within the KAS. We show that an

adversary cannot distinguish Game 1 from Game 0 with non-

negligible advantage. Therefore, we may run the adversary against

Game 1, and with all but negligible probability, the adversary will

run correctly.

Having transitioned to Game 1, we are in a position where the

challenge encryption is generated using a random key; therefore

we can reduce security to IND-CPA of the symmetric encryption

scheme. We show that if an adversary ACES can break the secu-

rity of our CES, then we can construct an adversary AI ND that,

using ACES as a subroutine, can break the IND-CPA security of

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

153

SACMAT’17, June 21-23, 2017, Indianapolis, IN, USA James Alderman, Jason Crampton, and Naomi Farley

the symmetric encryption scheme. Since the encryption scheme is

assumed to be secure, such an adversary should not exist; therefore

a successful adversary against the CES cannot exist.

Although Theorem 5.1 requires a Key Indistinguishable (KI) KAS,

we instead use the Strong KI (SKI) [13] property instead which is

polynomially equivalent [7] but provides the adversary with all
keys (except the challenge key) to model key leakage. We find SKI

more convenient for proving interactive reductions as all keys are

immediately available.

We first show that Game 1 is indistinguishable from Game 0.
Suppose, for contradiction, that ACES is an adversary that can

distinguish these games. Let CKI be a challenger for the SKI game.

We construct an adversaryAKI which usesACES to break the SKI

security of the KAS.

AKI must simulate either Game 0 or Game 1 for ACES . It

forms a policy P , using (L,⩽) from its game with CKI , and its

choice of U ,O and λ. Note that AKI is given a single challenge

key for a single security label and that, in this static CES, all keys

are replaced whenever Refresh is called. Thus, to correctly embed

the SKI challenge into Game 0 or Game 1 before ACES decides

its challenge parameters, AKI must guess the challenge label that

ACES will choose and which version of that key will be challenged

(i.e. how many times Refresh will be called before the challenge).

Let r be a counter, initially 0, denoting the number of calls ACES

makes toRefresh. Thus,AKI makes a guess c
$

← L for the challenge

label and guesses i
$

← {0, 1, . . . ,q}, for q = poly(ρ), for the value
of r when the challenge parameters are chosen.

AKI sends c to CKI as its SKI challenge label. CKI runs

({σl ,κl }l ∈L , Pub)
$

←− KAS.Setup(1ρ , (L,⩽)), and chooses a random
bit b

$

← {0, 1}; if b = 0, κ⋆ = κc , else κ
⋆
is chosen randomly from

the key space. CKI sends the KAS public information, the set of all

keys except for the challenge key, the set of all secrets for labels

l ′ ⩽ c , and the challenge key κ⋆ to AKI . AKI initializes Cr = ∅
and o⋆ =⊥.

Now, if i , 0, then AKI does not embed the challenger’s out-

puts in the initial CES setup. Instead, it runs Setup as in Figure 3,

running KAS.Setup itself. Else, when i = 0, AKI sets stM to

include {{σl ′ : l
′ < c, l ′ ∈ L} , {κl : l ∈ L \ {c}}} and Π to include

Pub . For each user, if λ(u) < c , AKI defines stu =
{
σλu , λu

}
, and

stu = {·, λu } otherwise.
ACES is given Π and a set of oracles O as in Figure 2. If ACES

calls CorruptU on a user u ∈ U where λ(u) > c , thenAKI loses the

game (c would now be an invalid challenge and so the initial guess

of c was wrong). Similarly, AKI loses if ACES chooses o⋆ such

that λ(o⋆) , c . Whenever the Refresh oracle is called, r is increased
by 1.

When r = i ,AKI runsRefresh but instead of runningKAS.Setup,
it uses the key material received from CKI , and re-initializes the

state of the manager, users, and objects as described above in Setup
where i = 0. AKI loses the game if r exceeds i and ACES has not

yet chosen a challenge object.

Eventually, ACES guesses that it was playing Game b ′. AKI
forwards b ′ toCKI as its guess of whether the key for the challenge
label was real (b = 0) or random (b = 1). AKI wins with non-

negligible probability
Adv(ACES)

q |L | where q = poly(ρ) is the number

of calls to the refresh oracle. Since the KAS is assumed SKI-secure,

such a distinguisher ACES with non-negligible advantage cannot

exist. We can therefore hop from Game 0 to Game 1.
We now show that if an adversary ACES playing Game 1

can identify the message written to a challenge object with non-

negligible probability, then an adversary AI ND can use ACES to

win the IND-CPA game against a challenger CI ND .

CI ND randomly selects a key k from the key space, selects a

random bit b
$

← {0, 1}, and gives AI ND access to an encryption

oracle ηk,b , which takes two messagesm0,m1 of the same length

and always outputs the encryption of mb under key k . (We use

the LoR IND-CPA game instead of Find-then-Guess [5] as it allows

multiple challenges; thus we need only guess the challenge label

and not the object itself.)

AI ND runs line 1 of the CES experiment and guesses the se-

curity label c of the challenge object o⋆ that ACES will choose.

All encryptions using the key κc will be replaced by encryptions

under k . When an object o with label c is to be written, the ad-

versary calls the encryption oracle ηk,b on inputs (d(o)′,d(o)′) to
obtain an encryption under k . AI ND runs line 2 of the CES exper-

iment and gives oracle access to ACES . If ACES corrupts a user

u ∈ U such that λ(u) ⩾ c , the experiment fails (the guess of c was
wrong). Eventually, ACES chooses a challenge object o⋆ and two

messages m0,m1. If λ(o
⋆) , c , the experiment fails; else, AI ND

calls ηk,b (m0,m1), and writes the result to d(o⋆).
Eventually, ACES sends b ′ to AI ND as its guess of b; AI ND

forwards this toCI ND . IfACES can correctly guess which data was

written with non-negligible advantage Adv(ACES), then AI ND

wins the IND-CPA game with non-negligible advantage
Adv(ACES)
|L | .

This is a contradiction, since the encryption scheme is assumed

IND-CPA secure. □

Formal Techniques I SACMAT’17, June 21–23, 2017, Indianapolis, IN, USA

154

	Abstract
	1 Introduction
	1.1 Related Work and Motivation
	1.2 Contributions

	2 Preliminaries
	3 Cryptographic Enforcement of Information Flow Policies
	3.1 State Requirements
	3.2 Functional Requirements

	4 Correctness and Security
	4.1 Correctness
	4.2 Security

	5 Example Instantiations
	6 Conclusion
	References
	A Security proof of Theorem 1

