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Abstract

1. Biologists are increasingly interested in decomposing trait dynamics into underlying processes,

such as evolution, plasticity and demography. Four important frameworks that allow for such

a decomposition are the quantitative genetic animal model (AM), the ‘Geber’ method (GM),

the age-structured Price equation (APE), and the integral projection model (IPM). However,
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as these frameworks have largely been developed independently, they differ in the assumptions

they make, the data they require, as well as their outcomes and interpretation.

2. Here we evaluate how each framework decomposes trait dynamics into underlying processes.

To do so, we apply them to simulated data for a hypothetical animal population. Individual

body size was affected by, among others, genes, maternal effects and food intake. We simulated

scenarios with and without selection on body size, and with high and low heritability.

3. The APE and IPM provided similar results, as did the AM and GM, with important differences

between the former and the latter. All frameworks detected positive contributions of selection

in the high but not in the low selection scenarios. However, only the AM and GM distinguished

between the high and low heritability scenarios. Furthermore, the AM and GM revealed a high

contribution of plasticity. The APE and IPM attributed most of the change in body size to

ontogenetic growth and inheritance, where the latter captures the combined effects of plasticity,

maternal effects and heritability. We show how these apparent discrepancies are mostly due to

differences in aims and definitions. For example, the APE and IPM capture selection, whereas

the AM and GM focus on the response to selection. Furthermore, the frameworks differ in the

processes that are ascribed to plasticity and in how they take into account demography.

4. We conclude that no single framework provides the ‘true’ contributions of evolution, plasticity

and demography. Instead, different research questions require different frameworks. A thorough

understanding of the different definitions of their components is necessary for selecting the

most appropriate framework for the question at hand, and for making biologically meaningful

inferences. This work thus supports both future analysis as well as the careful interpretation of

existing work.

1 Introduction

Understanding trait and population dynamics and how the two are intertwined is crucial for predicting

population resilience and viability (e.g. Merilä & Hendry 2014). Hence, which processes shape population-

level trait dynamics (i.e. changes in trait distributions over time) is a fundamental question in ecology

and evolution, and one which is gaining in urgency given mounting concern regarding the consequences

of anthropogenic environmental change for natural populations (e.g. Parmesan 2006).

Phenotypic trait distributions may be altered across generations by genetic (i.e. evolutionary) pro-
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cesses, as well as by non-genetic processes, such as phenotypic plasticity. Since the realisation that

evolutionary and ecological processes may act on the same time scale, distinguishing between the role

of evolution and plasticity has been the subject of a substantial body of research (Hairston et al. 2005;

Gienapp et al. 2008; Post & Palkovacs 2009). To complicate matters further, changes in the demographic

structure of a population may additionally shape trait distributions (Coulson & Tuljapurkar 2008). Hence,

understanding and predicting trait dynamics ideally requires simultaneously taking into account all three

processes (Pelletier et al. 2007; Schoener 2011).

To date, four major frameworks aiming at distinguishing between the role of evolution, phenotypic

plasticity and demography have been developed: 1) The quantitative genetic framework, particularly

the animal model (AM; e.g. Henderson 1950), 2) the ‘Geber method’ (GM; Hairston et al. 2005), 3)

the age-structured Price equation (APE; Coulson & Tuljapurkar 2008), and 4) the application of the

APE in conjunction with an integral projection model (IPM; Easterling et al. 2000; Ellner & Rees 2006;

Coulson et al. 2010). Several studies have tried to explicitly estimate the relative importance of evolu-

tion, plasticity and/or demography using one of these approaches (e.g. Réale et al. 2003; Ezard et al.

2009; Ozgul et al. 2009; Rebke et al. 2010; Becks et al. 2012; Morrissey et al. 2012b). Nevertheless,

fully disentangling and quantifying evolutionary, ecological and demographic processes and ultimately

predicting the consequential trait dynamics has proven to be problematic (Gienapp et al. 2008; Schoener

2011; Merilä & Hendry 2014). At least some of these difficulties can be attributed to the large amounts of

(individual-based) long-term data required, which are often unavailable for natural populations (Clutton-

brock & Sheldon 2010). However, even if sufficient data are available, synthesis of the results from the

four frameworks is hampered by the fact that they have been developed largely independently of each

other. As a consequence, they differ in their focus and aims, and as we show here, they define biological

processes in non-equivalent ways.

Here we provide an overview of the differences, similarities and complementarity of each of these

four decomposition frameworks by applying them to the same simulated datasets and comparing their

outcomes. Thereby, we evaluate how they quantify the role of different ecological and evolutionary mech-

anisms in shaping trait dynamics under a range of biological scenarios. Together with a critical review

of the theory underlying each of the frameworks, we provide comprehensive insight into their underlying

assumptions, as well as the conceptual differences and similarities. This provides a much needed overview
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of the suitability of each framework with respect to research questions and data availability.

2 Applying the four frameworks

2.1 Data simulation

Although it comes with the loss of some biological realism, using simulated rather than empirical data

enables us to evaluate the frameworks under different scenarios and allows for replication. Furthermore,

simulated data do not suffer from the complications introduced by missing data. Finally, it provides a

reference that aids the comparison between the results of each framework. Importantly, it is not possible

to calculate “true” contributions of for example evolution without first adopting one of the frameworks

and their corresponding definitions, therefore, our simulations allow only for a qualitative assessment.

Data were simulated using a two-sex individual-based model of a closed population of a hypothetical

animal species, implemented in R (R Core Team 2015). Here, we provide a brief overview, while a more

complete description can be found in supporting information S1. We also provide the R code on

https://github.com/koenvanbenthem/Disentangling_Dynamics_IBM. We simulated a single trait,

body size z. Size at birth is determined by an individual’s genotype (10 loci, with 10 alleles each

and mendelian inheritance, more details in S1.1), the body size of its mother (i.e. a maternal effect as in

Falconer (1965)), and a stochastic component (drawn from a Gaussian distribution; S1.2). Ontogenetic

growth results in an increase of body size with age. Growth rate, the proportional increase in body size,

decreases with age, and is further influenced by per-capita food availability (S1.3). Males were randomly

assigned to females, who have a 50% chance of becoming reproductive after one year and whose repro-

ductive probability increases with age. The litter size that a female produces depends on per-capita food

availability, a stochastic component, and body size (S1.4). Survival probability first increases with age,

but starts decreasing after year five, reflecting senescence, and is further influenced by per-capita food

availability and body size. Maximum age is 30 years. Furthermore, a trade-off exists between female

reproduction and survival, i.e. reproducing at time t decreases survival probability to time t + 1 (S1.5).

We simulated fifty time steps (years). After ten years, total food availability started to decline. Every

year the available food is divided over all individuals, with some individuals randomly obtaining more

than others. Individual food intake affects survival, growth and (female) reproductive success (S1.6). The
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first ten years were discarded from further analyses to allow the age structure to stabilize (Fig. 1(f)) The

remaining data spanned 40 years (i.e. approximately 13 generations), which is comparable to the length

of some of the field studies these frameworks have been applied to (Clutton-brock & Sheldon 2010).

To evaluate the behaviour of the frameworks under different circumstances, we simulated four different

scenarios. First, survival and fertility selection on body size was either present (s+) or absent (s0). Under

the s+ scenarios, there was a positive effect of body mass on survival and on litter size for mothers. Second,

the relative importance of genetic variation in shaping body size, commonly measured as heritability, was

either high (h+) or low (h
−

). This was done by using either of two pre-defined genotype-phenotype maps:

one with big and one with small variation in the effects of alleles. Furthermore, to keep the phenotypic

variance comparable, we decreased the plastic component in birth size in the h+ scenarios. The parameter

values for each of the four scenarios (s0h−
, s0h+, s+h

−
and s+h+) can be found in S1.7. To evaluate the

effect of stochasticity, each scenario was replicated 100 times.

Fig. 1 provides an illustration of some of the key characteristics of the datasets simulated under each

scenario. Despite a substantial amount of stochastic variation across replicates within each scenario, clear

differences in trait and population dynamics are apparent. As expected, the s+ scenarios show a positive

relation between body size and annual fitness, calculated as the sum of survival and litter size to t + 1,

whereas the s0 scenarios do not (Fig. 1(e)). Furthermore, the proportion of the phenotypic variance

attributable to variance in the simulated genotypic values (i.e. broad-sense heritability) was ca. 0.50 in

the h+ and 0.08 in the h
−

scenario.

Although in all scenarios population size first increased (until year 20) and then decreased (Fig. 1(a)),

the population size averaged across replicates reached up to 322 and 334 individuals in scenarios s+h
−

and s+h+, whereas in s0h−
and s0h+ the maximum average population size was 245 and 252 individuals,

respectively. Mean body size first increased rapidly, but decreased in all scenarios between the eleventh

and fiftieth year (Fig. 1(b)): in s0h−
with (mean ± SE) −0.47 ± 0.058 [−1.45; 0.63 95% interval], in

s0h+ with −0.46 ± 0.061 [−1.59; 0.0.68], in s+h
−

with −0.75 ± 0.051 [−1.87; 0.08], and in s+h+ with

−0.16 ± 0.057 [−1.12; 0.83]. Note that the 95% intervals, here and in the rest of the manuscript, are

ranges of point estimates across replicates. They reflect the stochasticity of the simulations rather than

the precision of the estimates. The standard errors for each average were calculated by dividing the

standard deviation of the values of the replicates by 10 (the square root of the number of replicates). A
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full power analysis of the methods is beyond the scope of this manuscript.

Contrary to average body size, genotypic values for birth size continued to increase only in sce-

nario s+h+. Here, the change in average genotypic value (across the entire population) between year

11 and year 50 was 0.62 ± 0.022 [0.23; 1.04] (Fig. 1(d)). In s+h
−

a smaller increase was observed

0.08 ± 0.0083 [−0.074; 0.24], whereas s0h−
and s0h+ show on average no change in genotypic values.

Correspondingly, average birth size increased only in the s+h+ scenario, with 0.58 ± 0.027 [0.092; 1.11],

between year 11 and year 50 (Fig. 1(c)).

2.2 Decomposing simulated trait dynamics

Rather than providing an exhaustive overview of all methods allowing for the decomposition of trait

dynamics, we have chosen to focus on four, commonly-used, frameworks. The four frameworks have

different data requirements and do not yield identical results. This is illustrated in the following section,

in which we analyse the simulated data using each framework.

Animal Model The animal model (AM) is a quantitative genetic method that was developed for

commercial breeding (Henderson 1950, 1976), where it has been used successfully for several decades

(e.g. Lynch & Walsh 1998). Only recently has it been applied to wild animal (e.g. Réale et al. 2003;

Postma 2014) and plant (Stinchcombe et al. 2014) populations. For extensive explanations of the AM as

applied to natural populations, see Kruuk (2004) and Wilson et al. (2009).

The AM is a linear mixed effects model that is fitted to individual-level data and assumes a quantitative

genetic model, where a phenotypic trait (z) is influenced by a large number of genes with small effects

(Roff 2007). The variance in z is partitioned into genetic and non-genetic sources of variation. Under the

assumption that this partitioning is additive (i.e. in the absence of genotype-environment correlations

and interactions), z can be written as the sum of a population mean (µ), an additive genetic effect (the

breeding value, a) and a residual (environmental) value capturing plasticity (e), thus z = µ + a + e.

Information on the relatedness between individuals (estimated from a pedigree or genetic markers) is

used as a constraint in the fit, allowing for the estimation of a. If the data allow for it, other components

contributing to variation in z, such as maternal, common, and permanent environmental effects can

be accounted for explicitly. This variance decomposition can be used to estimate genetic change over

time—resulting from, for example, selection or genetic drift.
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There are several ways to estimate evolution within the AM framework (see discussion), but here

we illustrate only one. We fitted a univariate AM and quantified the change in the best linear unbiased

predictors (BLUPs) for the breeding values over time (Postma 2006; Hadfield 2010). We used body size as

the sole response variable, and intercepts for breeding values, maternal effects, permanent environment,

and year were included as random effects. Maternal and permanent environment effects were modelled

by fitting maternal and individual identity, respectively. An alternative specification of the maternal

effects, more in line with the simulation process, is briefly discussed further below. Age was included as a

continuous fixed effect (both as linear and quadratic terms). All fits were performed using the R-package

MCMCglmm (Hadfield 2010) using inverse-Wishart priors with variance and degree of belief both set to 1.

The posterior distributions were estimated based on 1,000 MCMC samples, from 50,000 iterations with

a thinning interval of 40 and a burn-in of 10,000, thus ensuring that the correlation between successive

samples of all parameters is below 10%.

We estimated the temporal trend in the BLUPs for all random effects. We accounted for their

uncertainty following Hadfield et al. (2010) by performing a regression of the BLUPs on time for each

MCMC sample of the model. This provided a posterior distribution of linear slope coefficients, estimating

the change in additive genetic, maternal, and permanent environment effects per time step. More details

on the fitted models are given in S2.1.

As depicted in Fig. 2(a), in all scenarios the contributions of evolution and individual plastic-

ity were largest, while the contributions of permanent environment and maternal effects were very

small. On average, the per year change in breeding values was positive in both scenario s+h
−

(0.0013 ± 0.0003 [−0.0038; 0.0095]) and scenario s+h+ (0.014 ± 0.0007 [0.00021; 0.029]). Note that the

large error bars in Fig. 2(a)) mostly reflect a substantial amount of variation in the rate of evolution-

ary change among replicates due to genetic drift, rather than the uncertainty in the point estimates.

Negative contributions of individual plasticity were found, particularly in the scenarios with selection

−0.02 ± 0.0013 [−0.049; 0.0018] and −0.019 ± 0.0013 [−0.045; 0.0029] for h
−

and h+, respectively.

Despite substantial drift, we would expect the contribution of evolution averaged over replicates to

be 0 in the s0 scenarios. Instead, our model inferred a genetic decline for h
−

and h+ of −0.0057 ±

0.0005 [−0.016; 0.0040] and −0.0073 ± 0.0009 [−0.024; 0.0087], respectively. The AM therefore estimates

evolution with a negative bias. The reason is a mismatch between the model structure and the simulation

This article is protected by copyright. All rights reserved. 
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process. As mean size decreases with time, the maternal contributions to birth size decreases. Because we

modelled maternal effects as maternal identity rather than maternal current size, this change is mistaken

for evolution. We performed an additional analysis using maternal size instead of maternal identity,

which strongly reduced this artefact (details and results in S2.2).

Geber method The ‘Geber method’ (GM) (Hairston et al. 2005) is a very general method that quan-

tifies how temporal changes in various factors influence the response variable of interest. Because of this

generality, the biological assumptions depend on the specific implementation. The GM may for example

estimate how temporal changes in mean breeding value a and in an environmental factor k such as food

availability propagate to a population-level response variable X , such as mean trait value. Examples of

its application can be found in Ellner et al. (2011) and Becks et al. (2012).

Our implementation of the GM follows the analysis of fledgling mass in Ellner et al. (2011). We took

the average body size (z) as the population-level response variable, and decomposed the change in z into

a contribution of the environment (k) and a contribution of a phenotypic change in size at birth. The

latter was decomposed further into an evolutionary (a) and a plastic component (p):

dz

dt
=

∂z

∂k

dk

dt
+

∂z

∂a

da

dt
+

∂z

∂p

dp

dt
(1)

For each year between years 11 and 50, we calculated the mean body size (z), mean size at birth of

newborns, the average food availability that alive individuals had access to during their life up to that

moment (k), and the mean breeding value as estimated by the AM (a) (see above). As breeding values

can not be observed directly, the application of the GM to empirical data relies on other methods such as

the AM for their estimation. Finally, we calculated a plasticity term (p), equal to the difference between

the average size at birth and the average breeding value for size at birth. Thereby this term only captured

plasticity in mass at birth. We fitted a linear model to estimate the effects of a, p and k on z. Using

this model, together with separate linear models that describe how each of the three underlying factors

changes over time, we evaluated their respective influence on z. This procedure is described in more

detail in S3.1.

The results of the GM are shown in Fig. 2(b). The results for the evolutionary component are, as

expected, nearly identical to the results of the AM. This evolutionary component is counter-acted by

a decrease in food availability, as is shown by the negative ‘environmental’ contributions. The latter
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is largest for the s+ scenarios, under which population size is higher (Fig. 1(a)) and per capita food

availability therefore lower.

The average contributions of plasticity are more equivocal. Whereas we expected the slight reduction

in maternal body size, and hence in the maternal effect, to result in a minor negative contribution of

plasticity, we instead see mainly positive contributions. This is the result of the downwardly biased

trend in the breeding values (as discussed above). When the analysis was repeated with the ‘true’

genotypic values from the simulations instead of the estimated breeding values, all scenarios showed

negative contributions of plasticity (S3.2).

Age-structured Price Equation The age-structured Price equation (APE) (Coulson & Tuljapurkar

2008) is an extension of the Price equation (Price 1970). The APE does not explicitly consider genetic

variation. It decomposes the change in mean trait value into seven additive components. All these con-

tributions are either averages of, or covariances between, observable individual properties (e.g. individual

survival and body size).

The two selection terms describe how selective disappearance (viability selection, VS) and selective

reproduction (fertility selection, FS) alter the mean trait value. Here, VS is the covariance between z and

survival, which scales with the difference in the average trait value of the whole population and the part of

the population that survives to the next time step (e.g. Rebke 2012). This is referred to as the selection

differential in the evolutionary literature (Robertson 1966; Lande & Arnold 1983). The contribution

to the change in mean trait value due to ontogenetic development of surviving individuals is captured

by the growth term. The two inheritance-related contributions were combined into one (S4.3). This

combined term measures the contribution to changes in average body size due to the difference between

the mother’s body size (at time of giving birth) and her offspring’s body size at birth (i.e. between

generations). Because offspring are generally smaller than mothers, the inheritance contribution will

typically be negative. This stresses that the inheritance term should not be confused with heritability,

which can not be negative. Finally, the two demography contributions, here also combined into one,

describe change resulting from the age structure (S4.2). The demography term arises because the other

contributions are calculated per age class. This takes into account that their values depend not only on

the trait value of an individual, but also on its age. The total contribution is obtained by a weighted sum

of the age specific contributions.
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The APE thus allows for an exact decomposition of ∆z in discrete time into components of viability

selection, fertility selection, ontogenetic growth, inheritance, and demography in populations with over-

lapping generations. It has been applied to a range of mammals species (Coulson & Tuljapurkar 2008;

Ozgul et al. 2009, 2010; Canale et al. 2016). See S4.1 for the full equation and an explanation of the

terms. Note that a stage-structured version of the Price equation has also been developed (Barfield et al.

2011).

As is commonly done in demographic analyses, we applied the APE to the female part of the population

only. Under the s0 scenarios, we find that the average VS and FS are both indistinguishable from zero

(Fig. 2(c)). For the s+ scenarios, the contribution of selection is positive, and there is no difference

between the s+h+ and s+h
−

scenarios (VS: 0.081 ± 0.0012 [0.060; 0.10] and 0.090 ± 0.0013 [0.063; 0.11]

respectively, FS: 0.054 ± 0.0015 [0.027; 0.079] and 0.055 ± 0.0015 [0.029; 0.082] respectively). Finally, the

demographic contribution differs between the s0 and s+ scenarios, but does not differ between h+ and h
−

.

This combined demography term scales with the between-age class covariance between fitness and body

size (S4.2). In agreement with our simulation processes, this covariance is strong and positive, as older

age classes have larger average body size, and larger individuals have higher fitness in the s+ scenarios.

The negative contribution in the s0 scenarios is the result of a negative effect of age on survival, which in

the absence of positive selection will dominate the between-age class covariance. The biggest contribution

to changes in average body size comes from ontogenetic growth. This component is slightly lower in the

s+ scenarios, due to smaller per capita food availability.

The inheritance term is more negative in the s+ than in the s0 scenarios. This is because in the s+

scenarios larger mothers produce more offspring, which on average results in a larger difference between

mother and offspring size: although the maternal trait value when giving birth is higher, their offspring’s

trait value at birth does not increase by the same amount. This leads to the average contribution

of inheritance becoming more negative. Furthermore, we see that contributions from inheritance are

slightly smaller (less negative) under the h+ scenarios than under the h
−

scenarios. This is because with

increasing heritability, the mother-offspring difference decreases, leading to a less negative inheritance

term.

Integral Projection Model The integral projection model (IPM) is a general model for projecting

continuous distributions in discrete time. When describing a population, it often considers four life history
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processes: survival, reproduction, growth and inheritance (Ellner & Rees 2006). The dependencies of

these processes on a continuous phenotypic trait z are estimated using regression models. No assumptions

concerning the underlying genetics are made. Based on these regressions, the trait distribution at time

t + 1 can be predicted from the trait distribution at time t (as well as demographic properties, such as

population growth rates, e.g. Adler et al. 2010; Merow et al. 2014). Over the past years, IPMs have been

used to address a range of eco-evolutionary questions (e.g. Metcalf et al. 2008; Smallegange & Coulson

2013; Traill et al. 2014). While the specific decomposition we use involves applying the APE to a fitted

IPM, as proposed by Coulson et al. (2010), approaches using a sensitivity analysis also exist (e.g. Coulson

et al. 2011; Traill et al. 2014).

An IPM was parametrized for each simulated dataset, and as we did for the APE, we only considered

females. Models describing individual growth, survival and reproduction (both the probability of repro-

ducing and the number of offspring) were fitted using generalized linear mixed models with appropriate

link functions (logit for survival and reproduction probability, log for number of offspring). The contribu-

tion of inheritance was estimated as a linear regression of offspring size at birth on the size of the mother

at the time of giving birth, as done in Traill et al. (2014). This differs fundamentally from heritability

(h2), where offspring size is related to the mother’s size, both at the same fixed developmental stage (e.g.

birth) (Chevin 2015). For all life history processes, we tested five different models: a full model containing

age, size and their interaction, as well as all models nested within this full model. Furthermore, each

model included a random effect for year. The model with the lowest AIC was selected and used for the

IPM.

Using the selected models, a 3100×3100 matrix was parametrized (i.e. 31 age classes, 100 size classes

per age class, ranging between 1 and 50) for each replicate. See S5 for more details on model fitting and

the construction of the IPMs. For each IPM, we used the observed population vector at each time step

(excluding the first ten years) to project the population vector to the next time step (t + 1). Changes

in population structure, and thereby changes in z, are decomposed into contributions from different life

history processes.

We found very similar patterns as in the APE (Fig. 2(d)). Both viability and fertility selection were

detected in the s+ scenarios (VS was 0.045± 0.00096 [0.026; 0.063] and 0.041 ± 0.00098 [0.024; 0.060]; FS

was 0.012±0.00074 [0.00; 0.026] and 0.012±0.00076 [−0.0044; 0.028], for h
−

and h+). In contrast, in the
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s0h−

and s0h+ scenarios, average viability selection was −0.024±0.0011 [−0.045; −0.0024] and −0.019±

0.0010 [−0.039; −0.00024], respectively, and fertility selection was −0.00069±0.00069 [−0.014; 0.012] and

0.00068 ± 0.00059 [−0.011; 0.014]. As in the APE, the contribution of inheritance to ∆z was large and

negative in all scenarios, and was more negative in the s+ scenarios. Furthermore, there was a consistently

positive contribution of ontogenetic growth, with weaker effects in the s+ scenarios, again due to lower

per capita food availability. As in the APE, we considered both demographic terms together. This term

showed positive contributions in all scenarios.

To allow for a better comparison with the other three frameworks, here we focus on the average value

of ∆z, and how much various processes contribute to this. When quantifying how much of the year-to-

year variation in ∆z is explained by each process (as for example in Ozgul et al. 2009), the IPM and

APE provide more divergent results (S6).

3 Discussion

We have decomposed changes in mean body size into underlying processes by applying four major frame-

works to simulated data. Thereby we have shown that these frameworks differ substantially in their data

requirements, which processes they consider, how these are defined, and how changes in the mean trait

value are assigned to them. In the following sections we will discuss and compare the theory underlying

the four frameworks, illustrated by our simulations. We will discuss the inherent differences among frame-

works regarding evolution, plasticity, demography, and measures of uncertainty. These are summarised

in Table 1. We finish by discussing each framework with respect to data availability and the research

question at hand.

We have simulated scenarios with and without selection on body size, and with low and high heri-

tability. As multiple processes influence and interact with body size, these scenarios resulted in divergent

and relatively complex population and trait dynamics (Fig. 1). For example, in addition to genetic

effects, size at birth was influenced by maternal effects and stochasticity. Moreover, ontogenetic growth

was subject to both stochastic variation and a decrease in per-capita food availability. We also included a

trade-off between viability and fertility. It is exactly this complexity that highlights the need for a robust

framework that allows disentangling the underlying processes and quantifying their importance.
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Selection and evolution

All four frameworks infer positive selection on body size in the s+ scenarios, but not in the s0 scenarios

(Fig. 2). The APE and IPM detect positive viability and fertility selection in both the s+h+ and the

s+h
−

scenarios. The AM and GM detect a strong increase in mean breeding values in the s+h+ scenario

and a small yet positive contribution in the s+h
−

scenario. Importantly, the AM and GM estimate a

genetic change (due to selection and/or drift) whereas the IPM and GPE estimate selection. This is

highlighted by the fact that the AM and GM estimate a much larger contribution of evolution in the

s+h+ compared to the s+h
−

scenario. This contrasts with the IPM and APE, where the contribution of

selection is independent of the heritability.

Due to a misspecification of the maternal effects in the AM, we find a negative contribution of evolution

in the s0 scenarios. This mismatch highlights the need to adapt the model structure to the study system.

Only then reliable conclusions can be drawn from the AM (see also Hadfield et al. 2011). Indeed, we show

that contributions are closer to the simulation process when we use a more appropriate specification of

the maternal effects (S2.2).

Here we have chosen to quantify the contribution of evolutionary change to trait dynamics by measur-

ing the temporal change in BLUPs for breeding value in a univariate animal model. Within a quantitative

genetic framework, we could also have used the heritability estimated by the AM to apply the breeder’s

equation and estimate the expected response to selection. This approach has proven its effectiveness un-

der breeding conditions, although nonlinearities in the parent-offspring regression or the trait value-fitness

relationship may bias predictions (Heywood 2005). More serious difficulties arise in natural populations,

where the prediction of evolution can be biased when selection acts on genetically correlated traits or

when an environmental variable dominates the covariation between traits and fitness (Rausher 1992;

Morrissey et al. 2010).

A third approach relies on a bivariate AM that estimates genetic and environmental (co)variances

between a trait and a proxy for relative fitness (Lande 1979; Lynch & Walsh 2014). The additive genetic

covariance is of particular interest, as following the Robertson-Price identity it provides a direct estimate

of the evolutionary change (Robertson 1966; Price 1970; Lynch & Walsh 2014). Although more data

demanding, this approach does not require the assumptions of the breeder’s equation to be fulfilled

(Morrissey et al. 2012a), and avoids potentially biased trends in breeding values (Postma 2006).
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Unlike the AM and GM, which quantify the change in breeding values, the APE and IPM estimate the

contribution of selection, irrespective of whether this yields a genetic response. The overall contribution

of selection is obtained by summing over all age-specific selection contributions. This is an attempt

to remove the between-age covariation between traits and fitness (Engen et al. 2014), which is instead

captured by the demography term. However, the age correction is not continuous, and therefore the

choice of age classes determines how this total contribution of demography and selection is partitioned

(see S4.4 for an example).

Most studies that have applied the APE or IPM framework to natural vertebrate populations have

found a relatively small role for selection in shaping trait dynamics (e.g. Ozgul et al. 2009; Traill et al.

2014). This is in line with our application, as even in the s+ scenarios, the contribution of the other

processes was estimated to be many times larger. In the IPM, the interpretation of selection in terms of

evolutionary potential critically depends on the heritability. Heritability is, however, not assessed by the

IPM. Indeed, the inheritance function relates juvenile to adult (maternal) trait values, and ignores the

fact that individual growth trajectories may be heritable (Chevin 2015). Alternatively, trait inheritance

can be incorporated in the IPM by implementing size at birth as a fixed trait influencing offspring size

(Vindenes & Langangen 2015), or by explicitly modelling the transmission of additive genetic effects

within the IPM (Coulson et al. 2015; Childs et al. 2016).

Plasticity

Plasticity includes all individual-level phenotypic changes that are not attributable to genetic changes.

While all four frameworks estimate a large contribution of plasticity in all scenarios, they attribute them

to different biological processes. This makes it difficult to directly compare the importance of plasticity

across frameworks and may potentially lead to confusion. In this section we will focus on plasticity in

birth size.

We used the AM to separately estimate plasticity due to maternal and permanent environment effects

(Fig. 2(b)). The contribution of maternal effects was very small. This may seem at odds with the effect

of maternal adult size on offspring size at birth in our simulations, but as explained above, this was due to

a mismatch between the model structure (which included a random effect of maternal identity) and the

data generating process (which included an effect of maternal body size). The contribution of permanent
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environment was low, which is in line with the lack of a trend in the stochastic component of birth size

in our simulations.

The GM captures plasticity in size at birth due to both maternal effects and stochasticity in one

single term (Fig. 2(a)). Because plasticity at birth is here defined as the difference between actual birth

weight and the breeding value for birth weight of an individual, by construction, the plasticity term has

to compensate for the bias in estimated breeding values.

In the APE and IPM frameworks, plasticity at birth and growth are intrinsically entangled. Whereas

ontogenetic growth forms the main plastic contribution to ∆z (Figs. 2(c) and 2(d)), the body size that

is attained through ontogenetic growth is only partially (through maternal effects) transmitted to the

offspring. Most of the ontogenetic growth will thus be reset in the offspring: this is reflected in the

strong negative contribution from inheritance (for a more detailed explanation of the inheritance terms,

see S4.3.1). Also, because we applied the APE only on the female part of the population, changes in

offspring body size due to selection on males (and thus fathers) will be attributed to the inheritance term.

The role of the environment

Whereas the GM defines an explicit environmental factor, in the other frameworks, the environment

influences trait dynamics only indirectly through selection, plasticity and/or demography. For example,

high food availability may lead to an increase in average body size through plasticity. At the same time,

increased food availability may decrease competition, and thereby affect selection.

In our implementation of the GM, we defined the environment as the total food intake of an individual.

Hence, the environment mainly acts through within-individual plasticity through its effect on ontogenetic

growth. Importantly, the outcome of the GM depends fully on how evolution, plasticity and environment

are defined. When applying the GM to field data, where not all processes are known, it is thus crucial to

first identify the main drivers and attribute them to evolutionary, plastic or demographic processes.

Although in the APE and IPM effects of the environment are implicitly present in all terms, in our

implementation there is no explicit quantification of this environmental effect. Although an IPM can

include an environmental variable, its contribution will not be quantified by the APE when applied

to that IPM. However, alternative applications of the IPM that allow exploring the effects of such an

environmental variable do exist (e.g. Vindenes et al. 2011). Alternatively, one can parametrize different
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IPMs for different environments (e.g. Ozgul et al. 2010) and use comparison methods such as life table

response experiments to see how population and trait dynamics differ between these environments (Rees

& Ellner 2009).

In our version of the AM, all contributions of changes in the environment, such as decreasing food

availability, are captured within the residual individual plasticity term. Although not commonly done,

environmental contributions can be estimated more explicitly by including additional fixed or random

effects (Charmentier et al. 2014). One possibility is the inclusion of a fixed effect of food availability.

Furthermore, it is possible to model interactions between the environmental variable and the additive

genetic effects.

Demography

We showed how the combined demography terms in the APE scale with the covariance of age class-specific

fitness and age class-specific average body size. The demography terms hence do not reflect the effect

of changes in the age structure between time t and t + 1, but rather differences due to the existing age

structure at time t. As such it provides a demographic correction of estimates of selection, similar to the

one proposed by Engen et al. (2014).

In the AM we have quantified the demographic contribution by multiplying the slope of body size

with respect to age with the predicted change in average age. This contribution is most negative in the

s+ scenarios, meaning that here a change (decrease) in the average age in the populations over time led

to a decrease in the average body size in these scenarios, in agreement with the observed slight decrease

in average age as shown in Fig. 1(f).

Unexplained variation and uncertainty

Making conclusive statements regarding which factor has the largest influence on ∆z requires a measure

of the uncertainty in the estimates of each contribution. So far we have only considered the range of

point estimates over the replicates, generally showing smaller ranges for APE and IPM. However, APE

and IPM were estimating processes that were constant throughout replicates (e.g. selection), whereas the

AM and GM were estimating quantities subject to stochasticity (e.g. genetic drift). Differences in range

are thus due to the stochasticity in the simulations rather than the uncertainty in the point estimates.
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While the AM allows the estimation of confidence intervals for each estimated contribution, in our

implementation of the IPM, APE and GM there is no direct measure of uncertainty. For the GM,

confidence intervals can be obtained using bootstrapping methods (as in Ellner et al. 2011). As of yet, the

lack of uncertainty quantification is a major drawback of the application of the IPM and APE. However,

measures of uncertainty accompanying parameter estimates could be propagated to the decomposition,

by using bootstrapping, and in the case of the IPM also by MCMC sampling.

Residual variance is explicitly quantified in the AM. The GM does evaluate the residuals of the

underlying regressions, but does not include these in the final results (Ellner et al. 2011). In contrast,

the APE is an exact framework and hence the residual variance is zero. However, it is still subject to

sampling variance. Although the IPM uses the APE, it is constructed by fitting statistical models to the

data, each with their own residual term.

The AM can also account explicitly for additional sources of variation, by including the corresponding

random effects (for example, we incorporated individual identity as a random effect to account for indi-

vidual heterogeneity that could not be explained by additive genetic variation). IPMs can also include

a random individual effect in the underlying fitted functions. This inclusion accounts for individual het-

erogeneity when estimating vital rates. However, although this individual heterogeneity should explicitly

be propagated to the actual IPM (Vindenes & Langangen 2015), the IPM is often parametrized with the

random effect set to zero. Thereby not all individual heterogeneity is accounted for. Setting the random

effect to zero might also bias the prediction because of Jensen’s inequality (e.g. Fox & Kendall 2002).

Individual heterogeneity can be incorporated by defining a “static trait”, in addition to the continuous

state variable. This static trait does not change during development, and reflects fixed individual het-

erogeneity caused by e.g. differences in size at birth, genetics or experienced environment (e.g. Ellner

& Rees 2006; Vindenes & Langangen 2015). The role of individual heterogeneity is not captured in the

GM and APE. In case of the GM, the effects of individual heterogeneity, as estimated by the AM, can

be propagated to the response variable.

Conclusions and future directions

The urge for a better understanding of eco-evolutionary dynamics is reflected in the range of frame-

works that have been developed over the last few years aiming at quantifying the underlying processes
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(Pelletier et al. 2009; Schoener 2011), especially within the light of the consequences of climate change

(Gienapp et al. 2008; Lavergne et al. 2010). Yet, a general, predictive framework is lacking, and ap-

plications to field data remain scarce. We have shown that the animal model (AM), ‘Geber’ method

(GM), age-structured Price equation (APE) and integral projection model (IPM) frameworks differ in

generality and data requirements. Importantly, key processes are defined and interpreted differently in

the different approaches. We emphasize that one should be careful when applying one of the frameworks

and interpreting the outcomes as being the “true” contributions of different processes. Indeed, we have

shown that each framework has its own set of components and definitions.

All four frameworks have only recently been proposed in their current form, and are only starting to

be applied to conservation-related questions. In this review we have explored the frameworks and their

assumptions and limitations. Our findings are summarized in Table 1, where we provide an overview

of which framework seems most suitable for which research question. The AM enables estimation of

quantitative genetic parameters, and genetic change in particular, that cannot be estimated by the other

frameworks. However, the AM, and the estimation on quantitative genetic parameters in general, is

data demanding and it can be difficult to isolate confounding sources of variation when data sets are

small. When individual data on reproduction, survival and growth are available, and one is interested

in explicitly quantifying the contribution of within-age class selection, IPM and APE are logical choices.

The AM can explicitly evaluate the effect of individual heterogeneity. Although the IPM can take this

information into account as well by fitting mixed effects models, it does not evaluate its effect on trait

dynamics. In contrast to the other frameworks, only the GM focuses on population-level parameters, but

knowledge (or assumptions) on processes is required beforehand, i.e. it must be known what processes

are shaped by evolution (or plasticity) and which by the environment.

We conclude that in isolation none of the frameworks provides a full picture. Instead, each framework

answers different questions and has different data requirements. By highlighting both the similarities

and the differences, we hope to have aided in the interpretation of existing work. Furthermore, we hope

this work will help researchers interested in eco-evolutionary questions in making an informed choice

regarding the most suitable framework for their particular question.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Acknowledgements

We are grateful to Luis-Miguel Chevin for providing us with constructive feedback throughout the process.

We also thank Robert O’Hara, Jarrod Hadfield, Loeske Kruuk and one anonymous reviewer for their help

in considerably improving this manuscript. Finally, we thank Tim Coulson for comments on an earlier

version of the manuscript. This work was funded by the Swiss National Science Foundation project

grants (31003A_141110 and 31003A_159462/1 to EP, 31003A_146445 to AO) and an ERC starting

grant (#337785 to AO).

Data Accessibility

The code for simulating the data that we used can be found on

https://github.com/koenvanbenthem/Disentangling_Dynamics_IBM (doi: 10.5281/zenodo.59412).

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Table 1: A selection of research questions and to what extent frameworks may be used to answer them,

ranging from impossible without major modifications (−−) to being answered by the standard formulation

of the framework already (++). AM = animal model, GM = Geber method, APE = age-structured Price

equation and IPM = integral projection model. Note that scores are based on the specific application of

the frameworks as we reviewed here; this involves the univariate AM, and the application of the APE to

the IPM, in case of the IPM. Alternative approaches of the frameworks are mentioned in the discussion.

Question AM GM APE IPM

Does the change in trait value have a genetic basis? ++ + −− −−

Is selection acting on the trait? + + ++ ++

Is the trait heritable? ++ ± − −

Is the age structure responsible for the change in mean trait

value?

+ ± ++ ++

How does individual heterogeneity affect trait value z? + ± −− −

How do trait dynamics affect population dynamics? − + − ++

Is an environmental change responsible for the change in

mean trait value?

+ ++ −− −

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le

(a) (b) (c)

(d) (e) (f)

Figure 1: Summary of the observed population and trait dynamics of simulated datasets. (a) Trends

in population size, (b) changes in mean body size, (c) mean birth size, (d) and genotypic values for

body size, (e) relations between body size and yearly individual fitness (sum of survival and litter size at

t+1), and (f) changes in mean age. Lines indicate the averages across 100 replicates. Polygons show one

standard deviation above and below the average. Red lines indicate s0 scenarios (no viability and fertility

selection), blue lines indicate s+scenarios (strong viability and fertility selection). Solid lines indicate h
−

scenarios (low heritability), dotted lines indicate h+ scenarios (high heritability). In a-d and f, the white

polygon indicates the first 10 years, which are excluded from further analysis. In e, lines are averaged

predictions based on generalized additive models over all replicates.
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(a) (b)

(c) (d)

Figure 2: Results of the different frameworks when applied to the simulated scenarios. (a) Animal model.

(b) ”Geber” method. (c) Age-structured Price equation and (d) Integral projection model. In (c) and

(d), demography includes changes in average body size due to the age structure, inheritance is the sum

of offspring mother difference and offspring difference covariance. In a-d, red bars indicate s0 scenarios,

blue bars indicate s+ scenarios. Solid bars indicate h
−

scenarios, and shaded bars indicate h+ scenarios.

Error bars represent the range in which 68% (error bars until horizontal lines) and 95% (entire error

bars) of the contributions lie when applied to 100 replicates. The y-axis is always average contribution

to mean trait change per year, although the scaling is different in a, b versus c, d.
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Wilson, A.J., Réale, D., Clements, M.N., Morrissey, M.M., Postma, E., Walling, C.A., Kruuk, L.E.B. &

Nussey, D.H. (2009) An ecologist’s guide to the animal model. Journal of Animal Ecology 79, 13–26.

Supporting Information

Supporting information S1–S6 The text in the supporting information provides additional informa-

tion on the data simulation (S1) and on the four applied frameworks (S2–S5). Finally, it also contains
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