Why we should *not* dismiss a relationship between attractiveness

and performance: a comment on Smoliga and Zavorsky (2015)

- 3
- 4 Erik Postma

5 Department of Evolutionary Biology and Environmental Studies, University of Zurich,

6 Winterthurerstrasse 190, 8057 Zurich, Switzerland

- 7 erik.postma@ieu.uzh.ch
- 8

9 Smoliga and Zavorsky (S&Z) [1] dismiss a series of studies reporting a relationship between 10 facial attractiveness and sports performance because the proportion of variance explained is 11 small and the effect may not be generalizable to the general population. They therefore 12 conclude that such studies 'have questionable biological importance' and 'are not valid for 13 studying evolution'.

While few will disagree with S&Z when they write that statistical significance does not equal 14 biological significance, their suggestion that biological meaningfulness can be equated to the 15 proportion of variation explained (measured by r^2 ; see their first recommendation for future 16 research) is open to debate: Although the low r^2 reported in, for example, [2] indeed means 17 that physical appearance alone poorly predicts performance of a Tour de France rider, the 18 prediction of whether a Darwin's finch is going to survive to the following year on the basis 19 of its beak size is similarly imprecise ($r^2=0.06-0.09$), and this despite a significant relationship 20 between beak size and survival [3]. Their definition of biological meaningfulness would thus 21 lead S&Z to dismiss a textbook example of natural selection. 22

Fitness components such as survival, reproductive success and attractiveness are complex traits, and any single variable will - by definition - explain only a small amount of variation.

Hence, r^2 is a poor measure of the strength of selection, which is instead measured by the 25 selection differential, i.e. the covariance between some component of relative fitness (w) and 26 the trait of interest (z) [see e.g. 4]. If z is standardised to have a variance of one, a standardised 27 selection differential can be obtained by regressing w on z,. Importantly, whereas the slope is 28 given by the covariance between w and z, divided by the variance in z (which is equal to one 29 if z is standardised), the r^2 is equal to the covariance between w and z squared, divided by the 30 product of the variances in w and z. Hence, even if the slope is steep (and selection therefore 31 strong), r^2 will be low whenever variation in w is large and attributable to a multitude of 32 factors other than z. Given the complex and multidimensional nature of both endurance 33 performance and attractiveness, their shared component will therefore always be small, and 34 expecting r^2 to be any higher would be naïve. The low r^2 of a relationship between facial 35 attractiveness and performance is therefore a poor reason to dismiss its evolutionary 36 relevance. 37

Whereas [2] reports the slope of untransformed attractiveness on performance, the 38 standardised estimate of the strength of sexual selection within the 2012 Tour de France 39 peloton, estimated as the slope of the regression line of *relative* attractiveness on *variance*-40 standardised performance, is 0.056. This means that an increase in performance by one 41 standard deviation comes with a 6% increase in attractiveness. Albeit weaker than the median 42 strength of linear sexual selection observed in non-human animals (0.18) [5], assuming 43 attractiveness is correlated with reproductive success, theory predicts (a preference for) 44 performance to evolve. Although there are various reasons why we have to be careful making 45 such predictions [6], the low proportion of variance that performance and attractiveness have 46 in common is not among them. 47

S&Z furthermore make the obvious point that the Tour de France peloton is not a random
sample of the general population, capturing only a fraction of all variation in performance that

exists. How the absolute and relative importance of genes ('talent') and environment 50 ('training') in shaping variation in performance [sensu 2] differs between the Tour de France 51 peloton and the general population is an outstanding question. However, assuming that it is 52 the variation of non-genetic origin, attributable to e.g. variation in training quality and 53 volume, that is reduced in particular, performance variation within the peloton may arguably 54 be more representative of the variation that selection has acted upon during our evolutionary 55 history [7, 8]. If this indeed is the case, testing for a relationship between attractiveness and 56 performance in the general population, including both couch potatoes and ambitious athletes, 57 addresses an interesting, but fundamentally different question, and dismissing the pattern 58 observed in [2] by extrapolating it to the general population would be fallacious. 59

S&Z and I agree that an evolutionary perspective may provide novel insights into the nature of human physical fitness, and it is beyond doubt that a conclusive demonstration of endurance performance being subject to sexual selection, now or in our evolutionary past, will require more research. It is therefore unfortunate that several of their recommendations for future studies are misguided and therefore unlikely to bring us closer to an answer.

65

66 Competing interests

I have no competing interests.

68 **References**

Smoliga JM, Zavorsky GS. 2015 Faces and fitness: attractive evolutionary
relationship or ugly hypothesis? *Biol. Lett.* 11.

Postma E. 2014 A relationship between attractiveness and performance in professional
 cyclists. *Biol. Lett.* 10, 20130966.

Price TD, Grant PR, Gibbs HL, Boag PT. 1984 Recurrent patterns of natural selection
in a population of Darwin finches. *Nature* 309, 787-789.

4. Brodie ED, Moore AJ, Janzen FJ. 1995 Visualizing and quantifying natural selection. *Trends Ecol. Evol.* 10, 313-318.

5. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang

A, Gibert P, Beerli P. 2001 The strength of phenotypic selection in natural populations. *Am. Nat.* 157, 245-261.

Morrissey MB, Kruuk LEB, Wilson AJ. 2011 The danger of applying the breeder's
equation in observational studies of natural populations. *J. Evol. Biol.* 23, 2277-2288.

82 7. Bramble DM, Lieberman DE. 2004 Endurance running and the evolution of Homo.
83 *Nature* 432, 345-352.

8. Longman D, Wells JCK, Stock JT. 2015 Can persistence hunting signal male quality?
85 A test considering digit ratio in endurance athletes. *PLoS ONE* 10, e0121560.

86