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Abstract

Chapter One: The Truncated Wild Bootstrap for the Asymmetric Infinite Variance Case
* Advisers Dr Adriana Cornea-Madeira and Professor James Davidson

The wild bootstrap method proposed by Cavaliere et al. (2013) to perform hypothesis
testing for the location parameter in the location model, with errors in the domain of attraction
of asymmetric stable law, is inappropriate. Hence, we are introducing a new bootstrap test
procedure that overcomes the failure of Efron’s (1979) resampling bootstrap. This bootstrap
test exploits the Wild Bootstrap of Cavaliere et al. (2013) and the central limit theorem of
trimmed variables of Berkes et al. (2012) to deliver confidence sets with correct asymptotic
coverage probabilities for asymmetric heavy-tailed data. The methodology of this bootstrap
method entails locating cut-off values such that all data between these two values satisfy
the central limit theorem conditions. Therefore, the proposed bootstrap will be termed the
Truncated Wild Bootstrap (TWB) since it takes advantage of both findings.

Simulation evidence to assess the quality of inference of available bootstrap tests for
this particular model reveals that, on most occasions, the TWB performs better than the
Parametric bootstrap (PB) of Cornea-Madeira & Davidson (2015). In addition, TWB test
scheme is superior to the PB because this procedure can test the location parameter when
the index of stability is below one, whereas the PB has no power in such a case. Moreover,
the TWB is also superior to the PB when the tail index is close to 1 and the distribution is
heavily skewed, unless the tail index is exactly 1 and the scale parameter is very high.

Chapter Two: A frequency domain wild bootstrap for dependent data
* Co-authored and jointly written with Professor James Davidson1

In this chapter a resampling method is proposed for a stationary dependent time series,
based on Rademacher wild bootstrap draws from the Fourier transform of the data. The main
distinguishing feature of our method is that the bootstrap draws share their periodogram
identically with the sample, implying sound properties under dependence of arbitrary form.

1Professor Davidson has also done most of the coding using Ox programming language and his TSM
software.
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A drawback of the basic procedure is that the bootstrap distribution of the mean is degenerate.
We show that a simple Gaussian augmentation overcomes this difficulty. Monte Carlo
evidence indicates a favourable comparison with alternative methods in tests of location and
significance in a regression model with autocorrelated shocks, and also of unit roots.

Chapter Three: Frequency-based Bootstrap Methods for DC Pension Plan Strategy Evalua-
tion
* Advisers Professor Richard D F Harris and Professor James Davidson

The use of conventional bootstrap methods, such as Standard Bootstrap and Moving
Block Bootstrap, to produce long run returns to rank one strategy over the others based on
its associated reward and risk, might be misleading. Therefore, in this chapter, we will use
a simple pension model that is mainly concerned with long-term accumulation wealth to
assess, for the first time in pension literature, different bootstrap methods. We find that the
Multivariate Fourier Bootstrap gives the most satisfactory result in its ability to mimic the
true distribution using Cramér-von-mises statistics. We also address the disagreement in the
pension literature on selecting the best pension plan strategy. We present a comprehensive
study to compare different strategies using a different bootstrap procedures with different
Cash-flow performance measures across a range of countries. We find that bootstrap methods
play a critical role in determining the optimal strategy. Additionally, different CFP measures
rank pension plans differently across countries and bootstrap methods.
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Chapter 1

The Truncated Wild Bootstrap for the
Asymmetric Infinite Variance Case

1.1 Introduction

Simple linear regression models are often employed to study economic relationships,
hence the connection between the dependent and independent variables. Therefore, the
coefficients of such linear models are of interest, since if those regression coefficients are
zero, then there exists no relation between both variables of interest. In Econometrics
and Statistics, applied researchers are usually interested in constructing hypotheses tests to
determine whether such a link exists or not.

It is often the case when utilizing a statistical software package, that practitioners fail
to observe critical assumptions in their statistical analysis. In particular, some econometric
tests require strong auxiliary assumptions on the distribution of the data generating process
(DGP) of the regression model. For instance, the error terms in a regression model may need
to be independently and identically distributed (i.i.d.) (or white noise) with finite variances
(Homoscedastic). These assumptions are important because they enable practitioners to
construct a finite sample test statistic1 to test coefficients in linear models which are believed,
under such strong auxiliary assumptions, to have known distribution under the true null
hypothesis2.

1A random variable that has a known distribution when the null hypothesis is true and some other distribution
when the null hypothesis is false. It measures discrepancy between the data and the null hypothesis

2A Hypothesis, null or alternative, can always be represented by a set of DGPs. Null hypothesis refer to the
hypothesis of interest for testing in case the observed data show significance to likely follow the distribution of
a specific DGP.
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Hypothesis testing is related to constructing confidence sets. Actually, confidence sets
require finding a rejection region such that if the test statistic belongs there, the null hypothesis
is rejected (see, Section 4.5, Shao & Tu 1995, p. 129). One approach to finding this rejection
region is based on the test statistic, hence the approach’s name “test statistic” (see, Section
4.5, Shao & Tu 1995, p. 176).

A test is a combination of a test statistic and a rejection rule. In case the distribution of a
test statistic is exactly known, the test is called an exact test. In such a construction, if the
test incorrectly leads to the rejection of the null hypothesis that is true, then, a Type I error is
committed. The probability under the null hypothesis that the observed sample falls into the
rejection region is called the level of significance, or, simply, the level of the test (Davidson
& MacKinnon 2004, p. 126).

In general, the test statistic relies on random variables that may not follow an exactly
known distribution. In particular, in finite samples, the distribution of the test statistic is
usually unknown. However, as the sample size grows, the distribution of the random test
statistic converges, under mild assumptions, to a known distribution such as the t and F
distribution (see, Davidson & MacKinnon 2004, p. 147). Thus, applied researchers, in their
hypothesis testing, rely on critical values of the constructed test statistic to decide whether to
reject or not the null hypothesis.

In this regard, one needs to draw a distinction between a nominal level and an actual
rejection probability of a test in hypothesis testing. The nominal level of the test is the
probability of making a Type I error according to whatever approximate distribution of a test
statistic a researcher is using to determine the rejection region. Actual rejection probability
is the true rejection of the null hypothesis when it is valid. Usually, in practice, the actual
rejection probability is unknown due to the uncertainty of the DGP of the observed data.
Therefore, the actual rejection probability and the nominal level may differ greatly from one
another.

The usage of the finite sample of the collected data has serious consequences. Notably,
there may be serious approximation errors (Godfrey 2009, p. XI). Consider, for example,
the well-known test statistical choices used for asymptotic hypothesis testing: the t and F
statistics. Both statistics may depend on a regression model’s error distribution in finite
samples. Hence, such test statistics are not pivotal test statistics3 in finite sample but in an
infinite sample, ie. asymptotically. Hence, both test statistics are asymptotically pivotal.
Therefore, some empirical researchers, more often than not, rely on asymptotic rather than
finite sample theory to carry out tests on coefficients in their regression models.

3A test statistic, which is a random variable, is called pivotal or a pivot if its distribution is the same for any
DGPs of its input random variables in a given model (see, Davison & Hinkley 1997, p. 138-139)
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Asymptotic theory sometimes provides a poor approximation of the actual distribution of
the test statistic, however. Such tests may fail when classical assumptions are further relaxed
(Godfrey 2009, p. 2). Moreover, statisticians may have no control over the real nominal
level of the asymptotic level test on the null hypothesis for a fixed sample size (see, Janssen
& Pauls 2003, p. 769). Therefore, resampling methods for the testing hypothesis are often
preferred alternatives to asymptotic tests (Shao & Tu 1995, p. 130).

The bootstrap method is one of the most popular resampling methods and proves to be
useful in the context of hypothesis testing (see, Beran 1988, p. 691). In fact, the bootstrap
test provides a better finite sample approximation than the asymptotic test (Godfrey 2009,
p. XI). In its simplest version, the bootstrap is a method that re-samples randomly, with
replacement, from an observed sample to obtain a bootstrap sample (Efron 1979). Based on
the obtained bootstrap samples, one may compute for each bootstrap sample a test statistic
called the bootstrap test statistic. The generation of several bootstrap test statistics enables
the practitioner to compute bootstrap critical value(s)4. The Bootstrap test may be easily
performed once the rejection region is determined by the bootstrap critical values. Such a
process to test hypothesis is known as bootstrap hypothesis test (Shao & Tu 1995, p. 179).

Mammen (1992) and Janssen & Pauls (2003) have shown that in the case that the random
variables used in the computation of the test statistic are i.i.d., then the bootstrap works if
central limit theorem holds for the test statistic. In general, for the bootstrap to provide correct
coverage probabilities, it critically depends on the asymptotic behaviour of the conditional
distributions of the test statistic. Therefore, it is important, before utilizing the bootstrap,
to test if the observed data follow a practitioner’s set of assumptions, particularly if the
observations belong to the set of DGP that satisfies the central limit theorem conditions. For
further discussions on the theory of bootstrap hypothesis testing and the usage of bootstrap
in hypothesis testing see, Bickel & Ren (2001), Hinkley (1988, 1989), Mammen (1992), and
Janssen & Pauls (2003) among others and the references therein.

There exist cases where Efron’s (1979) bootstrap (also known as the usual bootstrap or
standard bootstrap) fails to mimic the distribution of the original DGP of the observations
(Efron 1979). For example, it is generally known that the bootstrap does not work when the
observations are originally generated from time-dependent (Singh 1981), heteroscedastic
(Wu 1986), or heavy-tailed (Athreya 1987, Knight 1989) distributions. Moreover, it turns out
that such properties of DGPs, in which Efron’s bootstrap fails, are indispensable assumptions
that need to be made about the observations.

4A bootstrap critical value are critical values computed based on bootstrap approach rather than asymptotic
theory approach. This usually entails computational quantile calculation.
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According to many empirical results in the literature, especially in physical and so-
cial sciences, it is hard to reject that observations do not originate from time-dependent,
heteroscedastic, or heavy-tailed series (see, for example, Fama 1965, Mandelbrot 1997, Ibrag-
imov 2014). In particular, Ibragimov et al. (2013) found that exchange rates, in emerging
and developing countries, are subject to more external shocks than that of the developed
markets. For example, discussions in Ibragimov et al. (2015) mention that financial returns
and exchange rates in developed markets typically follow power-law distributions with tail
indices that lie in the interval (2,4) and, therefore, have finite variances but their fourth mo-
ments are infinite. In addition, infinite variances and infinite first moments with asymmetric
tails are exhibited by important insurance and financial risks and economic and financial
variables such as economic losses from natural disasters, catastrophe risks, operational risks
and, according to preliminary empirical results, returns of cryptocurrencies (see, Ibragimov
et al. (2009); Ibragimov et al. (2015) and references and discussion therein). Therefore, as a
result, a number of theoretical statisticians and econometricians start modifying the original
bootstrap method to enable it to work for a different spectrum of DGPs.

1.1.1 Bootstrap Methods in the context of Heavy-tails Phenomenon

Athreya (1987) was the first to show that the usual bootstrap simulation-based test is
not valid when the DGP of the observation belongs to a sub-class of infinitely divisible
distributions (including the infinite variance case). In his argument, Athreya (1987) has
shown that as the sample size increases the bootstrap distribution of the sample mean does not
converge to a deterministic distribution. In fact, Athreya (1987) had proved that the bootstrap
measure of the bootstrap characteristic function as in the Lévy-Khintchine representation
(see, Definition A.2.3) converges to a Poisson measure and not the Lévy measure outlined in
the Lévy-Khintchine representation (see, Theorem 17.1.4, Athreya & Lahiri 2006, p. 541).

In their proof of the same result, Knight (1989) and Kinateder (1992) have utilized the
fact that the bootstrap version of the statistic could be expressed by a dot product of two
vectors: a random and deterministic vector. The random vector consists of multinomial
distributed entries while the deterministic vector consists of the deterministic observed series.
It is well-known that the limiting distribution of the multinomial random vector of size n
converges, as the sample size n grows, to an infinite vector of independent Poisson random
variables with mean one. Therefore, the limiting distribution of the bootstrap version of the
normalized sum of i.i.d. series, Sn (see equation (A.25)), is different from that of the real
distribution of the statistic Sn which was represented by LePage et al. (1981) (see Theorem
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A.2.11). Thus, the bootstrap fails to mimic the distribution of observations generated from
distributions that belong to the domain of attraction of a stable law.

Many bootstrap algorithm modifications have been introduced to test a composite null
hypothesis5 consistently. For example, Arcones & Giné (1989) and Athreya (1987) proposed
the m out of n bootstrap as a remedy to the conventional bootstrap, which yields a consistent
limiting distribution of the bootstrap mean. Similarly, Bertail et al. (1999) have introduced
the subsampling, which is similar to the m out of n bootstrap, based on resampling a smaller
sample from a bigger sample. However, different from the m out of n bootstrap, the selection
occurs without resampling.

Although the m out of n bootstrap (also known as the low intensity bootstrap) has some
advantages over the usual bootstrap when it comes to generating bootstrap confidence interval
for the sample mean (Athreya 1987), such a bootstrap remedy does not solve the problem
without further assumptions on the DGPs of the series of interest. In general, the bootstrap
has to be applied with care (Bickel & Sakov 2008). For stable limit laws, for instance, the
low intensity bootstrap can be consistent but the size m may depend on the index of stability
(del Barrio et al. 2013). Nonetheless, regardless of the reduced resampling size m, under
mild conditions the conditional limit laws for the m out of n bootstrap are infinitely divisible6

(Janssen & Pauls 2003).
Recently, Cornea-Madeira & Davidson (2015) introduced the Parametric bootstrap (PB)

that is capable of testing, under mild assumptions, the hypothesis for the mean for heavy-
tailed distributions. Moreover, they show that their new bootstrap modification gives better
results than that of the m out of n bootstrap. Furthermore, they discovered, through Monte
Carlo testing, that the m out of n bootstrap does not work well in finite samples. Additionally,
subsampling does not always provide reliable inferences if the sample size is not very large.

Also lately, Cavaliere et al. (2013) have discovered that the Liu (1988)’s Wild Bootstrap
(WB) procedure may be used as a new bootstrap method for a different purpose than what was
initially introduced. Indeed, Cavaliere et al. (2013) showed that the WB may also be utilized
to mimic the distribution of the sample mean for a set of observations whose distribution
belongs to the domain of attraction of a symmetric stable law. Although their bootstrap
modification works for the testing hypothesis, they focused on showing that their bootstrap
version delivers correct coverage probabilities that have narrower asymptotic confidence than
the standard bootstrap.

Despite the fact that the PB and the WB of the mean are consistent algorithms for testing
the location parameter in a location model with infinite variance (α-stable) innovations, both

5A composite null hypothesis leaves some parameters unknown; therefore, does not completely specify the
distribution of the DGP when the null hypothesis is true (Davison & Hinkley 1997, p. 136-137)

6Section A.2 gives an overview of infinitely divisible distributions and their relation with stable laws
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algorithms have drawbacks. For example, the PB is incapable of testing for the location
when the index of stability α is below unity. However, the WB is only applicable when the
observations belong to the domain of attraction of a symmetric stable law.

It should be emphasized that when introducing new bootstrap algorithms for hypothesis
testing, econometric theorists and statisticians often use Monte Carlo (MC) experiments to
evaluate the proposed bootstrap method. MC simulations are ideal for evaluating a bootstrap
method because the observations are being artificially generated from a predefined density
function. In this case, the DGP and all other features of the data are known. Hence, under
such conditions, it is easy to approximate, using numerical algorithms, the actual rejection
probability of a bootstrap test under the null. If the simulated bootstrap algorithm results in
a bootstrap P value (actual P values7) such that they are close or below the nominal level
when the null hypothesis is true, then the bootstrap method is consistent.

Having said that, MC simulations for bootstrap method evaluation act as a powerful
tool to compare different bootstrap methods (Giacomini et al. 2013). For example, Cornea-
Madeira & Davidson (2015) used MC simulations to show that their proposed bootstrap
method outperforms other available bootstrap methods when the null hypothesis is true. In
particular, Cornea-Madeira & Davidson (2015) showed that the PB has the lowest error in
rejection probability (ERP8) in comparison with the m out of n bootstrap and subsampling
when the null hypothesis is true. Moreover, Cornea-Madeira & Davidson (2015) pointed
that it is not enough to study only low ERP. The power of the bootstrap test should also be
considered.

We should recall that the power of a test is generally linked to the probability of rejecting
the null. Therefore, if the alternative hypothesis is true, and the power is not high (i.e.
high probability of rejecting the null), then the bootstrap proposed is not fit to be utilized
even if the ERP is low under the null. Therefore, Cornea-Madeira & Davidson (2015) also
showed that the PB is the most powerful among other bootstrap algorithms when the DGP is
generated under the alternative hypothesis.

Davidson (2008) had noted that in MC simulation experiments, in a variety of circum-
stances, the bootstrap tests perform better than asymptotic theory predicts. In particular, he
mentioned that the bootstrap discrepancy9, under the null, appears to be smaller than what
was previously expected by the Edgeworth expansion theory.

7The P value (the marginal significance level for a test statistic) is the greatest level for which a test based
on a value of the test statistics fails to reject the null. It is the significance probability that measures the level of
evidence against the null hypothesis (see, Davison & Hinkley 1997, p. 136-137)

8The Error in Rejection Probability (ERP) is the difference between the nominal (asymptotically achieved)
significance level and the actual significance level (Godfrey 2009, p. 70)

9Bootstrap discrepancy is the differences between the actual rejection probability and the nominal level
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In this chapter, we will introduce the Truncated Wild bootstrap (TWB) algorithm that
is capable of overcoming the aforementioned shortcomings of the previous PB and WB
methods. It will be shown, using MC simulations, that the TWB algorithm is capable of
testing for the null hypothesis for the location parameter when the index of stability is below
one, or for asymmetric distributions that belong to the domain of attraction of a stable law.

1.1.2 Organization of Chapter 1

Chapter 1 includes three sections; each section plays a role in justifying the results in the
simulation section in chronological order. Section 1.2 presents the location model which we
are interested in, making inferences upon its parameter. Furthermore, this section develops a
framework for the newly devised bootstrap to consistently test a hypothesis on the concerned
parameter. This bootstrap framework depends profoundly on Theorem 1.2.1 where its proof
is based on earlier literature summarized in Appendix section A.210.

In Section 1.3, we obtain simulation results based on MC procedure for comparing
different available bootstrap tests. The results show that the newly devised bootstrap test is
superior to available bootstrap tests in the literature. Section 1.4 proposes possible extensions
of the results presented in Section 1.3 in both domains practical and theoretical econometrics,
followed by a conclusion to this chapter.

1.2 Main Results

All distributions that belong to the domain of attraction of a stable law converge, when
suitably scaled and normalized, converge, as the sample size grows, to a stably distributed
random variable (see, Section A.2). Therefore, asymptotically, even if the distribution of
the i.i.d. summand, say X , is non-unimodal, such that X ∈ DA (α), its sum, when suitably
scaled and normalized, will converge to a unimodal distribution (see, Remarks of Lemma
A.2.9). Hence, in the limit, since stable distributions are continuous and differentiable, the
axis of symmetry of the distribution over a particular small interval would be the mode of
such a distribution.

10In general, Appendix A presents the mathematical background and an in-depth analysis of properties of
Stable distributions. In particular, Section A.2 shed lights on the relationship between the family of infinitely
divisible distributions and the family of stable distributions. In addition, this section focuses on restating
previous theoretical findings on the asymptotic behaviour of the central part of stable and infinitely divisible
distributions.
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Janssen (1989) proved that the central part of the sum, Σn(rn,sn), defined as

Σn(rn,sn) =
n−sn

∑
i=rn+1

Xi,n
11

when suitably selected and normalized converges in probability to zero (see, Lemma A.2.12).
His selection of the central part is based on the magnitude of the observed series. Moreover,
the number of summands in this central part of the sum grows as the sample size n grows.
Therefore, this growth in the number of summands as the sample size grows is due to the fact
that the majority of the realized summands are observed around the mode of the asymptotic
distribution, the value that appears most often in the dataset.

Additionally, Berkes et al. (2012) and Csörgő et al. (1986) have proven that there exist
some normalizing and centring constants, such that the middle part of the sum converges
to a normal distribution as n approaches infinity (see, Section A.2). Therefore, combining
the two findings, it is possible to conclude that the centring constant represents an axis that
centres the distribution such that the density is convex below this axis and concave after it.
The only property that follows such intuition is that this axis of symmetry would be the mode
of the unimodal stable distributions.

Consider the location model defined as

Xi = θ + εi (1.1)

where the sequence {εi}n
i=1 of error terms is assumed to be i.i.d. such that ε1 ∈ DA (α) such

that α ∈ (0,2). It is well-known that if X ∈ DA (α) then

Sn :=
1
an

n

∑
i=1

(Xi −θ)
d−→ Y and P(|X | ≥ x) = 1−F|X |(x) = x−αL(x) (1.2)

where Y ∈ S(α) as defined in A.2.2, where α is the parameter of stability, L(x) is a slow
varying function, θ is the location parameter of X , and the constant an is defined as in A.27
that is

an = (1−F|X |)
−1(1/n)

Moreover, suppose that the CDF of X , FX , satisfies the following equation

lim
x→∞

FX(x)
1−FX(x)+FX(−x)

= p (1.3)

11see equation (A.34) in appendix A for further details.
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where p,q ∈ [0,1] such that p+q = 1 (see, Theorem A.2.8). Observe that

n
an

−→ O(1) , as n −→ ∞ (1.4)

Now, let {X∗
i } be the bootstrap sample generated as

X∗
i = [(Xi −m)τi +m]1(|Xi| ≤ vn)+Xi1(|Xi|> vn) (1.5)

where the i.i.d. sequence {τi}n
i=1 consists of Rademacher distributed random variables such

that E(τ1) = 0 and E(τ2
1 ) = 1, and m is a constant that consists of the location θ and some

axis of symmetry. In fact, m = E(Xi1(|Xi|< vn)). The bootstrap analogue of Sn is given by

S∗n :=
1
an

n

∑
i=1

(X∗
i −θ) (1.6)

Our main interest concerns inference on θ based on the distribution of S∗n under the conditional
probability P∗ of the sequence {|Xi|}n

i=1.

Theorem 1.2.1. There exists a vn such that the limiting unconditional distribution of S∗n and
Sn is the same and

P∗(S∗n ≤ Sn) = F∗
S∗n(Sn)

d−→U (1.7)

where U is uniformly distributed random variable that is U ∼Uni f orm(0,1). Consequently,
for η ∈ (0,1), test of the null hypothesis

H0 : θ = θ0

against either (1) H1 : θ ̸= θ0, (2) H2 : θ > θ0, (3) H3 : θ < θ0, when based on the statistic
|Xn − θ0| for H1, or the statistic Xn − θ0 for H2 and H3, and using the critical values
ann−1F∗−1(1−η/2) for H1, or −ann−1F∗−1(η) for H2, or ann−1F∗−1(η) for H3, each
have asymptotic size η . Where F∗ is the distribution function of the limit of S∗n under P∗ and
F∗−1(x) := inf{y : F∗(y)≥ x}. Moreover, the confidence intervals for θ is of the form[

X̄n −ann−1F∗−1(1−η +ζ ), X̄n −ann−1F∗−1(ζ )
]

have asymptotic coverage probability 1−η for any ζ ∈ (0,η).



10 The Truncated Wild Bootstrap for the Asymmetric Infinite Variance Case

Proof. Let vn be the dth largest element of {|Xi|}n
i=1 and observe that

S∗n =
1
an

n

∑
i=1

(X∗
i −θ)

=
1
an

n

∑
i=1

X∗
i − n

an
θ

=
1
an

n

∑
i=1

X∗
i 1(|Xi| ≥ vn)+

1
an

n

∑
i=1

X∗
i 1(|Xi|< vn)−

n
an

θ

=
1
an

n

∑
i=1

Xi1(|Xi| ≥ vn)+
1
an

n

∑
i=1

(Xi −m)τi1(|Xi| ≤ vn)+m(
n−d

an
)− n

an
θ

=
1
an

n

∑
i=1

(Xi −θ)1(|Xi| ≥ vn)+
1
an

n

∑
i=1

(Xi −m)τi1(|Xi| ≤ vn)+
(n−d)

an
(m−θ)

(1.8)

Additionally, observe that

Sn =
1
an

n

∑
i=1

(Xi −θ)

=
1
an

n

∑
i=1

Xi −
n
an

θ

=
1
an

n

∑
i=1

(Xi −θ)1(|Xi| ≥ vn)+
1
an

n

∑
i=1

Xi1(|Xi|< vn)−
n−d

an
θ

=
1
an

n

∑
i=1

(Xi −θ)1(|Xi| ≥ vn)+
1
an

n

∑
i=1

(Xi −m)1(|Xi| ≤ vn)+
n−d

an
(m−θ)

(1.9)

where in the fourth line in equation (1.8) we have used the fact that

n

∑
i=1

X∗
i 1(|Xi|< vn) =

n

∑
i=1

[(Xi −m)τi +m]1(|Xi| ≤ vn)

=
n

∑
i=1

(Xi −m)τi1(|Xi| ≤ vn)+m(n−d)

using part b of (Lemma 2.1 Arcones & Giné 1989, p. 207) (see also Lemma A.2.12), it may
be concluded that the central part of the sum,

1
an

n

∑
i=1

(Xi −m)τi1(|Xi| ≤ vn)
p−→ 0 and

1
an

n

∑
i=1

(Xi −m)1(|Xi| ≤ vn)
p−→ 0
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Therefore, the limit law of both Sn and S∗n is the same since equation (1.4) holds. Moreover,
observe that

P∗(S∗n ≤ Sn) = P∗(
1

n1/2

n

∑
i=1

(
Xi −m

An
)τi1(|Xi| ≤ vn)≤

1
n1/2

n

∑
i=1

(
Xi −m

An
)1(|Xi| ≤ vn)) (1.10)

It can be concluded from equation (A.47) in Lemma A.2.15 that the random variable

Ri :=
1

An
(Xi −m)1(|Xi| ≤ vn)

converges to a normal random variable in the limit. Observe that in this case, there exists a
sequence of i.i.d. normal random variables, {Ni}n

i=1 such that

1
n1/2

n

∑
i=1

Ri ∼
1

n1/2

n

∑
i=1

Ni

Therefore, using the same ideas as LePage et al. (1981) (see, Theorem A.2.11), which are
mentioned in Appendix A (see, propositions A.1.2 and A.1.3), the above sum may be written
as

1
n1/2

n

∑
i=1

Ni
d−→

∞

∑
i=1

δiZi

where Zk = (∑k
i=1 Ei)

−1/2 and {Ei}k
i=1 is a sequence of i.i.d. exponential r.v.s with mean one

and δ1 ∼ Bin(1,−1;1/2). In this case, equation (1.10) turns out to be

P∗(S∗n ≤ Sn)−→ P∗
(

∞

∑
i=1

δiτiZi ≤
∞

∑
i=1

δiZi

)
(1.11)

The proof follows the same technical details as in (Cavaliere et al. 2013, p. 215-217).

Remark: The proof of the above also holds if 1(|Xi| ≥ vn) and 1(|Xi| ≤ vn) are replaced
by 1(|Xi −m| ≥ vn) and 1(|Xi −m| ≤ vn) respectively for some constant m.

Theorem 1.2.1 shows that there exists a numerical value vn such that if this value is known,
one may create a consistent bootstrap algorithm, to test the null hypothesis of the location
model when X ∈ DA (α), such that α ∈ (0,2), and the distribution FX is asymmetric. The
difficulty lies in determining this value, however.

It is well known that all distributions that belong to the domain of attraction of a stable
law may be standardized (see Definition A.2.1), hence converging to a standardized stable
random variable. In this case, one may study the behaviour of vn with standardized stable
random variables S(α,β ,1,0) (see Definition A.2.6). Therefore, in the subsequent sections,
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we will study the behaviour of the value vn in the standardized stable random distribution for
various index of stability α and skewness parameter β .

1.2.1 On the Selection of the Critical Value of the Normal Portion

Berkes et al. (2012) have shown that there exists a range of values such that a particular
way of trimming based upon it would enable the sum to converge to a normal distribution.
However, they were not able to demonstrate a numerical analysis to determine this ‘cut-
off’ critical value that identifies such a portion of the sum that would allow it to converge
to a normal distribution. This difficulty is due to the fact that there is a great number of
distributions that belong to the domain of attraction of a stable law; hence, there exist various
cut-off critical values depending on such distribution which are critical in determining the
norming constant An (see, Theorem A.2.14). However, the fact that all distributions that
belong to the domain of attraction of a stable law may be normalised, such that they converge
to a standard stable random variable, helps us to narrow our attention to distributions of
standardised stable random variable cases only.

Even though narrowing the focus to distributions of standardised stable random variables
leads to a significant ease, the selection of the cut-off critical value vn in equation (A.47)
would still be difficult without the help of Theorem 1.2.1. In particular, taking advantage of
Theorem 1.2.1 is a must in order to determine the critical value vn of a standardized stable
distribution. Moreover, one should note that there exist more than one critical value vn that
lead to Theorem 1.2.1. In fact, as we will see in our Monte Carlo procedure 1.2.2, there exist
more than one cut off critical value that would lead Theorem 1.2.1 to be valid.

Theorem 1.2.1 claims that as n −→ ∞, the random measure F∗
S∗n
(Sn) converges to a uniform

random variable. Therefore, we conjecture that for a finitely large n, there exists a critical
value vn such that the random measure F∗

S∗n
(Sn) behaves like a uniform distribution. In

this case, Monte Carlo simulations provide an indispensable tool that enables econometric
theorists to determine the set of plausible ranges of vn that satisfies such a criterion by taking
advantage of Theorem 1.2.1. Observe that

F∗
S∗n(Sn) ∈

[
ζ ,1−η +ζ

]
(1.12)

if and only if

θ ∈
[
X̄n −ann−1F∗−1(1−η +ζ ), X̄n −ann−1F∗−1(ζ )

]
(1.13)
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As Cavaliere et al. (2013) pointed, the determination of the confidence interval in equation
(1.13) requires no knowledge of an since

ann−1F∗−1(x) = ann−1 inf{y : F∗(y)≥ x}
= inf{ann−1y : F∗(y)≥ x}

= inf{r : F∗(
r

ann−1 )≥ x}

= inf{r : P∗(ann−1S∗n ≤ r)≥ x}
= inf{r : P∗(n−1(X̄n −θ0)≤ r)≥ x}
= inf{r : Fn−1(X̄n−θ0)

(r)≥ x}

Therefore, ann−1F∗−1 is simply the quantile function of n−1(X̄n −θ0).
Having said this, the following Monte Carlo procedure will be used to determine the

critical value vn for various sample sizes n = 50,400,1000 and for standardized stable
distributions with various index of stability α and skewness parameter β .

Algorithm Procedure 1.2.2 (Monte Carlo procedure for determining the critical value vn).

1. Generate a sample H := {εi}n
i=1 of i.i.d random variables such that ε1 ∼ S(α,β ,1,0)

where α ∈ (0,2) and β ∈ (0,1).

2. Choose a percentage of data, in absolute value, to be truncated from {εi}n
i=1. That is,

F|ε1|(vn) := π where π ∈ [[0,1]].

3. Generate, based on the sample H , bootstrap samples {{X∗
i, j}n

i=1}B
j=1 as described in

equation (1.5) where B represents the number of bootstrap samples created based on a
single sample H .

4. Compute the sequence {ri}B
i=1 such that r j := n−1(X̄∗

n, j −θ0) where j = 1,2, . . . ,B.

5. Compute the 100(ζ )% and 100(1−η + ζ )% quantiles of the sequence {ri}B
i=1 in

order to get the 100(1−η)% coverage probability of θ defined in equation (1.13).

6. Repeat the previous steps 10000 times for different values of π .

7. Display the coverage probabilities versus the truncated value for various sample sizes

Our simulation study is based on samples of size 50 and 400 observations from a standardized
stable distribution. We selected the level η = 0.05 and ζ to be half of it. Observe that when π
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is chosen to be one, then the bootstrap method described becomes the Cavaliere et al. (2013)
WB method. In this case, the above Monte Carlo procedure will assess the WB method rather
than the TWB.

Figures 1.1, 1.2, and 1.3 show the Coverage probabilities versus the percentages of data
being truncated from standardized random variables with index of stability α of 1.1, 1.8, and
1.5. The skewness parameter β ranging from 0 to 1 of sample size T = 50. Similarly Figure
1.4 shows the coverage probabilities versus the percentages of data being truncated from
standardized random variables with an index of stability α = 1.8 with a skewness parameter
β ranging from 0 to 1 of sample size T = 40012.
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Figure 1.1 P values versus the quantile of the absolute value of the data being truncated for
(α,n) = (1.1,50)

12Various values of truncation has also been conducted but it is suffice to show only these figures
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Figure 1.2 P values versus the quantile of the absolute value of the data being truncated for
(α,n) = (1.8,50)
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Figure 1.3 P values versus the quantile of the absolute value of the data being truncated for
(α,n) = (1.5,50)
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Figure 1.4 P values versus the quantile of the absolute value of the data being truncated for
(α,n) = (1.8,400)

The above figures reach the same conclusions of Berkes et al. (2012). In particular, it
seems evident that the validity of the central limit theorem depends sensitively on the be-
haviour of the tail ratio of the underlying variable X . This may be demonstrated by observing
that the coverage probabilities become worse as the skewness parameter β approaches one
or the index of stability becomes closer to one or even below it. However, the coverage
probabilities become closer to the nominal levels as the skewness parameter goes closer to
zero or the index of stability approaches two.

Moreover, the above figures also demonstrate the second conclusion of Berkes et al.
(2012). That is, increasing the number of trimmed elements and thereby decreasing the
critical value vn, does not generally improve the partial sum behaviour of the central limit
theorem. To Berkes et al. (2012), this is a paradox, because, intuitively, excluding more
relatively large terms of a sum should make the behaviour of the trimmed sum more “normal”
which is not the case, however. This could be observed by acknowledging that the coverage
probability is not close to the intended (associate) nominal level when the percentage of the
data truncated is small, and it becomes better after a certain proportion of data is truncated.

Truncation based on a percentage of data being assessed by the Monte Carlo procedure
1.2.2 is problematic when it comes to simulations. The problem is due to the fact that the
critical value changes with the sample, given the fact that the sample originates from the same
distribution. This is because such a procedure of selecting the critical value would require it
to be dependent on the perceived observations. Therefore, it is vital to determine the critical
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value based on the distribution but not on the perceived observations. This entails finding
critical values around the axis of relative symmetry, such that the Monte Carlo procedure
described above results in the “correct” nominal level of the test.

1.2.2 Symmetry around the mode of the stable distribution

As observed in subsection A.2.5 and particularly in Table A.1, there is a unique connec-
tion between the mode m of a stable distribution FX and the joint variables (α,β ) which
characterise the normalized stable distribution. Therefore, if the values α and β are known,
it is easy to find m, using the iterative computational method as displayed on Table A.1. It
is equally easy to note, using the inverse Fourier transformation on the stable characteristic
function, that the probability density function (PDF), fX , of the stable distribution is smooth
and differentiable everywhere, especially around the mode (Fofack & Nolan 1999).

Therefore, stable distributions are smooth around their unique mode which represents
a relative axis of symmetry in such PDF. It is called the relative axis of symmetry because
there exists an interval I = [−v,v] around the mode m, such that the density function fX−m

is symmetric. The level of symmetry around the mode m in the unimodal skewed stable
distributions has not been studied in the earlier literature. Therefore, to explore this, we
introduce the function g defined as

g(v) = | fX−m(v)− fX−m(−v)| , where v ∈ R+

For each index of stability α and skewness parameter β of the standardized stable random
variable X , we recorded the value v, such that the actual rejection probability is close to the
nominal level and the value of the function g is as close to zero as possible. On the one
hand, if the value of v is too small, fewer observations will be bootstrapped and the worse the
central limit behaviour may become. On the other hand, the bigger the value v is, the more
observations will be bootstrapped and the further the function g deviates from zero; hence
leading to bootstrapping asymmetric distribution which worsens the central limit theorem
behaviour (see, Berkes et al. 2012). Moreover, as a consequence of Lemma 1.2.3, applying
the wild bootstrap on skewed stable distributions results in a symmetric stable distribution.
Therefore, the critical value v must be chosen appropriately.

Lemma 1.2.3. Let {Xi −θ0}n
i=1 be an i.i.d. sequence such that X1 ∼ S(α,β ,1,θ0) where

α ∈ (0,2) and β ∈ (0,1) then for any probability value p1 ∈ (0,1) the following will hold

VT := a−1
T

T

∑
i=1

(Xi −θ0)ωi
d−→ S(α,β (p1 −q1),1,0)
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where q1 = 1− p1. {ωi}n
i=1 is a sequence of random variables such that ω1 ∼ Bin(1,−1; p1).

Proof. Define Y := X − θ0 to be the random variable associated with S(α,β ,σ ,0) dis-
tribution. Using equation (1.8) in (Nolan 2015, p. 19-20) and taking into account that
ωiYi ∼ S(α,ωiβ ,σ ,0) for i = 1,2,3, · · · ,n. Therefore, the sum

n

∑
i=1

ωiYi ∼ S(α,β1,σ1,0)

where σα
1 = nσα , β1 = βσα

1 (∑ωi)/σα = β

n ∑
n
i=1 ωi → β (p−q). Therefore,

1
n1/α

n

∑
i=1

ωiYi
d→ S(α,β (p−q),σ1,0)

As mentioned earlier, there exist more than one critical value vn that lead to the result
of Theorem 1.2.1 for the same distribution, say S(α). Therefore, in Table 1.1, we only
displayed the critical values, such that for a small change in either the index of stability α

or skewness parameter β , the critical values may exhibit the least change. The reason for
this, as we will see in section 1.3, is because the new proposed bootstrap procedure 1.2.4
will rely on estimating the parameters α and β , which would vary significantly depending on
the observations and the sample size. Since the selection of the critical value vn would be
dependent on the estimation of these two parameters, we would like to reduce the variability
by reducing the difference between the critical values vn, such that for a small change in either
of the two parametric variables there is almost no much change in the critical values. The
values that are recorded in Table 1.1 have been based on the value of the function calculated
g and the observed coverage rates of the Monte Carlo procedure, described in 1.2.2, but with
a minor alteration and with a sample size of n = 400.
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α

β 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.1 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.2 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.3 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.4 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.5 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.6 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.7 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.8 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
0.9 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6
1 0.006 0.03 0.07 0.15 0.2 0.3 0.5 0.5 0.6

β 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.1 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.2 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.3 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.4 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.5 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.6 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.7 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.8 0.7 0.7 0.7 0.8 0.8 1 1.4 1.5 2
0.9 0.6 0.7 0.7 0.8 0.8 1 1.4 1.5 2
1 0.6 0.7 0.7 0.8 0.8 1 1.4 1.5 2

Table 1.1 The Location of the symmetry point v around the Mode

Using a similar approach of constructing Table 1.1, Table 1.2 depicts the percentages
of observations being truncated such that the MC procedure described in 1.2.2 results in an
actual rejection probability close to the nominal level. It should be noted that there exists
a trade-off when utilizing each table. For example, using the values in Table 1.2, one may
witness a different critical value v every time the observed sample changes. Therefore, even
if the DGP of the sample is the same, the critical value v varies depending on the observed
sample. Therefore, as will be shown in the simulation section 1.3, the values in this table
will work well when testing the hypothesis of observed sample sizes similar or close to 400,
the sample size used in the constructing table.
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α

β 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

0.1 0.030 0.057 0.083 0.133 0.152 0.203 0.302 0.429 0.339
0.2 0.029 0.056 0.082 0.132 0.151 0.201 0.300 0.428 0.339
0.3 0.029 0.055 0.081 0.130 0.149 0.200 0.299 0.426 0.337
0.4 0.028 0.054 0.079 0.128 0.147 0.198 0.296 0.424 0.336
0.5 0.027 0.052 0.077 0.125 0.145 0.195 0.294 0.422 0.333
0.6 0.026 0.051 0.075 0.122 0.142 0.192 0.290 0.420 0.331
0.7 0.025 0.049 0.072 0.119 0.138 0.188 0.287 0.417 0.328
0.8 0.024 0.047 0.069 0.116 0.135 0.185 0.283 0.414 0.325
0.9 0.022 0.044 0.067 0.112 0.131 0.181 0.279 0.410 0.322
1 0.021 0.042 0.064 0.109 0.128 0.177 0.275 0.404 0.318

β 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

0.1 0.383 0.382 0.380 0.426 0.426 0.516 0.598 0.706 0.843
0.2 0.383 0.381 0.380 0.426 0.426 0.516 0.598 0.706 0.843
0.3 0.382 0.380 0.379 0.426 0.426 0.516 0.598 0.706 0.843
0.4 0.380 0.379 0.378 0.425 0.426 0.515 0.598 0.706 0.843
0.5 0.378 0.378 0.377 0.424 0.425 0.515 0.598 0.706 0.843
0.6 0.376 0.376 0.376 0.423 0.424 0.514 0.598 0.706 0.843
0.7 0.374 0.374 0.374 0.422 0.424 0.514 0.597 0.706 0.843
0.8 0.371 0.372 0.373 0.421 0.423 0.513 0.597 0.706 0.843
0.9 0.368 0.369 0.371 0.419 0.422 0.513 0.597 0.706 0.843
1 0.365 0.367 0.369 0.418 0.421 0.512 0.596 0.706 0.843

Table 1.2 The Probability around the Mode on the Interval I

In general, Table 1.1, is superior to Table 1.2 when the sample size is larger or even
smaller than 400. The reason for this superiority is because if the index of stability α and
skewness parameter β are known, the critical value will always be the same, regardless of
the change of the observed sample.

It seems evident from the previous discussion, that one may utilise equation (1.7) in
Theorem 1.2.1 along with tables 1.1 and 1.2 to create a new bootstrap procedure. The new
bootstrap procedure is superior to other available bootstrap methods like the PB and the
WB. This superiority is due to the fact that it is capable in testing the hypothesis of location
parameter when the index of stability is below one and when the skewness parameter is not
zero.
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1.2.3 Truncated Wild Bootstrap

The Truncated Wild Bootstrap (TWB) is a bootstrap algorithm that is similar in con-
struction to the Wild Bootstrap (WB) of Cavaliere et al. (2013) but is only limited to a number
of observations that are truncated based on some critical values around an axis of symmetry,
hence its name. The TWB is more general than the WB because it accounts for asymmetric
distributions. Moreover, under further assumptions, namely if the observations belong to the
domain of attraction of a symmetric stable law, the TWB is the WB of Cavaliere et al. (2013).

The TWB for testing the null hypothesis 1.2.1 that we propose here is described by the
following steps.

Bootstrap Procedure 1.2.4 (Truncated Wild Bootstrap).

1. Generate a sample H := {Xi}n
i=1 of i.i.d random variables from equation (1.1) such

that Fε1 ∈ DA (α) where α ∈ (0,2).

2. Estimate α , β , and scale σ consistently from the sample H , and denote them now,
and hereafter, by α̂ , β̂ , and σ̂ respectively.

3. Select the a percentage of data to be truncated from Table 1.2 based on the estimated
α and β ; hence select vn.

4. Choose the mode m from Table A.1 based on α and β .

5. Generate, based on the sample H , bootstrap samples {{X∗
i, j}n

i=1}B
j=1 as follow

X∗
i, j =

[(
(κi −m)τ j +m

)
σ̂ +θ0

]
1(|κi −m| ≤ vn)+Xi1(|κi −m|> vn) (1.14)

where κi := σ̂−1(Xi −θ0) and B represents the number of bootstrap samples created
based on a single sample H .

6. Compute the bootstrap P value which is equal to the proportion of bootstrap statistics
S∗n more extreme than Sn

P∗
B,n,α̂n,β̂n

=
1
B

B

∑
i=1

1(S∗n,i ≤ Sn) (1.15)

Where S∗n, j := a−1
n ∑

n
i=1(X

∗
i, j−θ0), 1(.) is an indicator function, and Sn := a−1

n ∑
n
i=1(Xi−

θ0).
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Observe that as B −→ ∞, the bootstrap P value P∗
B,n,α̂n,β̂n

converges almost surely to
P(S∗

n,α̂n,β̂n,σ̂
≤ Sn) by law of large number.

This is based on the discussion of section A.2.6 on the estimation methods available on
stable parameters and due to assumption 2 in (Cornea-Madeira & Davidson 2015, p. 455),
as n −→ ∞, P(S∗

n,α̂n,β̂n,σ̂
≤ Sn) converges almost surely to the same limit distribution of the

probability measure P∗(S∗n ≤ Sn) defined in Theorem 1.2.1.

1.3 Simulation Evidence

In this section, the performance of the TWB is investigated and compared with its main
competitors: the PB and the WB. It should be noted that the PB and the WB have not been
compared in the literature previously, due to the fact that the WB is applicable only for
observations that emerge from distributions that belong to the domain of attraction of a
symmetric stable law. However, such a piece of information is too difficult to be categorically
verified. Therefore, in reality, estimation of the index of stability and skewness parameters is
indispensable.

In general, practitioners may apply the WB if the estimate of the skewness parameter is
zero, but it might be the case that the estimated skewness parameter is not zero yet the original
DGP belong to symmetric distribution. Therefore, in this case, we would be interested in
understanding the performance of the WB under the null hypothesis when the estimated
skewness parameter is not zero. Therefore, in our simulations, regardless of the estimated
skewness parameter, the WB would be applied, and the discrepancy between the actual
rejection probability of the bootstrap test and the nominal level would be computed.

In his paper, Davidson (2008) mentions that the current asymptotic theory predicts the
bootstrap test performance is worse than what simulation experiments reveal. Therefore,
simulations would be the best way of measuring the performance of a bootstrap method. Thus,
following these remarks, we resorted to simulation experiments to show the performance of
the new bootstrap procedure with respect to the PB and WB.

Our simulation study is based on sample sizes of 100, 400, and 1000. Note that tables
1.1 and 1.2 were constructed based on a sample size 400, however13. The DGP considered
in generating the sample H are t distribution with degrees of freedom 1.1, 1.5, 1.9, stable
distribution with α = 0.6,1.3,1.5,1.9, β = 0,0.5,1, and scale σ = 1.
The sequential steps we followed to perform this comparison are described as follow

13Constructing tables 1.1 and 1.2 with a sample size of 50 would not produce result in good coverage as
those tabulated; however, for larger sample sizes the procedure works as well
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Algorithm Procedure 1.3.1.

1. Generate a sample H := {Xi}n
i=1 from t distribution or stable distribution

2. Estimate α , β , and scale σ consistently from the sample H

3. Generate Bootstrap sample H ∗ := {X∗
i }n

i=1 based on the bootstrap in question.

• For the TWB 1, simulate the bootstrap observations as described in equation
(1.14) using the cut-off values in Table 1.2

• For the TWB 2, simulate the bootstrap observations as described in equation
(1.14) using the cut-off values in Table 1.1

• For the WB, simulate the bootstrap by simply multiplying by a radamacher
distributed random variable

• For the PB, simulate the bootstrap by a stable random variables such that
X∗

1 ∼ S(α̂, β̂ ,1,0)

4. Compute the bootstrap P value for each numerical simulation

• For the TWB, compute the estimated bootstrap P value P1 as described in equation
(1.15)

• For the WB, compute the estimated bootstrap P value P2 as described in equation
(1.15) but with

S∗n, j =
1
an

n

∑
i=1

(Xi −θ0)τi, j , where j = 1,2, . . . ,B

where {{τi, j}n
i=1}B

j=1 is a sequence of Rademacher distributed random variables.

• For the PB, compute the estimated bootstrap P value P3 described as

P3 =
1
B

B

∑
i=1

1(T ∗
n,i ≤ Tn)

where T ∗
n, j is defined as

T ∗
n, j =

√
n(X̄∗

n, j −θ0)

((n−1)−1 ∑
n
i=1(X

∗
i, j − X̄∗

n ))

and Tn has the same structure of T ∗
n, j but without the asterisk and the j component.
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5. Repeat the previous steps with N := 10,000 replications and with B = 400 bootstrap
repetitions to get a sequence of N bootstrap P values {P1,i,P2,i,P3,i}N

i=1.

6. Under the true null hypothesis, compute the ERP which is defined by the estimated
actual significance level of each bootstrap P Value {P1,i,P2,i,P3,i}N

i=1 and the nominal
significance level λ which is asymptotically achieved only. The ERP is given by

ERPk(λ ) :=
1
N

N

∑
i=1

(Pk,i ≤ λ )−λ , where k = 1,2,3 and λ ∈ (0,1)

As discussed previously, we are interested in comparing our simulations to Cornea-
Madeira & Davidson (2015). Accordingly, we will follow the same approach, as well as the
parameters used in the simulation section of Cornea-Madeira & Davidson (2015). Therefore,
we considered the case when the null hypothesis θ = 0 in equation (1.1) is true and the case
in which the alternative hypothesis θ =−0.5 is true. We opted to display, under the true null,
the bootstrap P value discrepancy plots which are represented by the ERP versus nominal
level. Recall that the best performance of the tests is achieved when the error in rejection
probability (ERP) is close to zero. However, under the true alternative, we will plot the
estimated power function π(θ ,λ ) versus the nominal level λ .

The explanation of the power function π(θ ,λ ) is of necessity. The power function at
θ =−0.5, π(−0.5,λ ), is justified as that if the true parameter θ in equation (1.1) is equal
to −0.5 then there is 100π(−0.5,λ )% probability chance that the test will reject the (false)
null hypothesis that the parameter θ = 0. Therefore, a bootstrap test is more powerful than
another if the power function is much different from the nominal level. In our simulations, we
plot the power function versus nominal level. Note that the further the power deviates from
the nominal the more powerful the bootstrap method is in testing hypothesis. Graphically,
this is represented by the deviation from the 45-degree line.
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Figure 1.5 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 1.3,
β = 0.5, scale σ = 1 sample size n = 400; (a) P value discrepancy plots (b) Power

Part (a) of all figures represents the P value discrepancy plots under the null hypothesis
θ = 0 is true. While part (b) of all of them represents the power plots that is the probability
when the DGP of the observations is generated from θ =−0.5 and the null hypothesis tested
is θ0 = 0.
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Figure 1.6 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 0.8,
β = 0.7, scale σ = 1 sample size n = 400; (a) P value discrepancy plots (b) Power

It can be seen in part (b) of figures 1.6 and 1.9 that the PB is powerless. In fact, the PB
is powerless in all cases when α ∈ (0,1). Hence, it is not a suitable bootstrap method for
testing the null hypothesis of location parameter in these circumstances.



1.3 Simulation Evidence 27

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.1

−5 ·10−2

5 ·10−2

0.1

Nominal Level

E
R

P

TWB 1 TWB 2 WB PB

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.2

0.4

0.6

0.8

1
c=m

Nominal Level

Po
w

er

TWB 1 TWB 2 WB PB

(b)

Figure 1.7 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 1.1,
β = 0, scale σ = 1 sample size n = 400; (a) P value discrepancy plots (b) Power

Figure 1.7 shows a symmetric distribution but with heavy-tails which indicates that the
power is not satisfactory for the PB test, while it is for all other studied bootstraps that have a
much higher power. Figures not displayed here indicate that the same conclusions hold for
the t distribution.
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Figure 1.8 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 1.5,
β = 1, scale σ = 1 sample size n = 50; (a) P value discrepancy plots (b) Power
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Figure 1.9 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 0.6,
β = 1, scale σ = 1 sample size n = 1000; (a) P value discrepancy plots (b) Power
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Figure 1.10 The TWB 1, TWB 2, WB, PB algorithms; data from stable law with α = 1,
β = 1, scale σ = 1 sample size n = 400; (a) P value discrepancy plots (b) Power

The rest of the figures, like 1.8, 1.5, and 1.10 where α is greater than one and where there
is some mild to extreme skewness level β , show that the TWB 1 and 2 are better than the
available bootstrap test for various sample sizes. Moreover, in general, the power of each
of the TWB 1 and 2 is always higher than the power of the other bootstrap tests. Results
not included here indicate that the same conclusion holds for samples smaller than the one
considered in the figure and also for the stable distribution.
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Figure 1.11 The TWB 1, TWB 2, WB, PB algorithms; data from t distribution with degrees
of freedom α = 0.9, sample size n = 50; (a) P value discrepancy plots (b) Power

There are some extreme situations where all tested bootstrap tests do not perform well,
especially when α is equal to 1 and the scale is very high. However, when α is not identically
1, the TWB 1 and 2 give satisfactory results even when sigma is large enough, and the sample
size is as small as 50. In general, the closer α is to 1, the closer β is to 1 or -1, and the bigger
the scale sigma is, the lower the power of all bootstrap tests.
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It can be noted that the TWB 1 and 2 have a faster rate of convergence than the other
bootstrap methods and perform very well. In conclusion, the figures indicate that the TWB 1
and 2 work better than other bootstrap tests available in the literature.

1.4 Extensions and Conclusion

In this chapter, a new bootstrap procedure was proposed for the purposes of inference
on the location parameter of an i.i.d. heavy-tailed distributed sample. The Truncated Wild
Bootstrap is based on the fact that some parts of the normalised sum behave asymptotically
like a normal distribution; hence, the central-limit argument holds for partial sums. However,
the validity of the central limit theorem depends sensitively on the behaviour of the tail
ratio which is influenced by both parameters, the index of stability α and the skewness
parameter β . Therefore, to determine the region of the normal part and that of the Poisson
part, the cut-off values that characterise the normal part are required. It was stated that for the
bootstrap to be estimated consistently, the location of the normal part needs to be identified
and the only way to identify it is through the estimation of the parameter α and β .

Our results show that our bootstrap is effective in testing a hypothesis as long as the
estimation of α and β is reliably precise. Moreover, the two versions of the TWB, TWB
1 and TWB 2, were able to perform reliably in testing the null hypothesis of zero location
parameter with a sample size as small as 50 and when the index of stability is either below or
above unity with extreme skewness level14.

Further research of this study may be split into two major branches in econometrics:
theoretical and empirical. In the theoretical econometric branch, it would be of interest to
study the following research questions: 1) Would a better estimation of the stable parameters
leads to a better result of the proposed bootstrap method? 2) Would it be possible to
generalize the TWB for testing the location parameter when the innovations originate from
time-dependent heavy-tailed and skewed distributions? 3) Could the proposed idea of the
TWB method help in amending the robust inference of the t-statistic approach of Ibragimov
& Müller (2010) in a way that their approach may be applicable not only to approximately
symmetric stable group estimators but also to asymmetric ones? 4) Furthermore, would the
proposed idea of the TWB help in developing inferences on regression coefficients other
than the intercept? A recent study developed by Cavaliere & Georgiev (2013) shows that by
dummying out "large" innovations that exceed a certain threshold, an approach commonly

14However, the performance deteriorates when the index of stability is 1, and the scale parameter grows.
This drawback is due to inadequate alternative for estimating the scale parameter and the re-scaling of the mode
location when the scale becomes high.
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implemented in applied econometric works, may help in testing finite-order autoregressive
provided that the innovations are symmetric.

In the empirical econometric branch, a recent study by Ibragimov et al. (2013) shows
that the tail indices of currency exchange rates in emerging and developing countries are
considerably smaller than those of developed countries. In particular, they found that several
emerging countries’ exchange rates have infinite variances. Furthermore, they discovered that
most developed countries have infinite fourth moments. According to Cont (2001) marginal
distribution of the returns (or exchange currency) has an infinite fourth moment, then the
sample autocorrelation functions (ACF) remains a consistent estimator of the theoretical
ACF but with wider asymptotic confidence bands than those of the classical case whereby
fourth moments are finite. Therefore, a natural question to ask is whether this current TWB
algorithm may help in narrowing the bands of the asymptotic confidence bands of the ACF.
Furthermore, it is interesting to device new inferential method to analyze autocorrelation
functions for dependent and heavy-tailed time series (Mikosch & Starica 1998, Davis &
Mikosch 1999). These applications are important not only for the infinite variance case but
also for the case of infinite fourth moments as the standard asymptotic theory with normal
convergence does not for autocorrelation functions of squared variables (e.g., returns) with
tail indices smaller than 4 and infinite fourth moments.

In conclusion, the truncated wild bootstrap performs better in terms of both size and
power than its main competitor the Parametric Bootstrap and the Wild bootstrap. In particular,
when α is below one, unlike the parametric bootstrap, the truncated wild bootstrap sustain
the power of the test. Furthermore, unlike the Wild bootstrap, the truncated wild bootstrap
works for asymmetric distributions. Hence, it may be deduced based on Cornea-Madeira &
Davidson’s (2015) simulations experiments that the truncated wild bootstrap is better than
subsampling and the m out of n bootstrap.





Chapter 2

A Frequency Domain Wild Bootstrap for
Dependent Data

2.1 Introduction

In econometric applications, particularly in the time-series context, when a model is misspec-
ified1, the popular asymptotic theory tests are incapable of providing a useful tool for applied
econometricians to test whether there exists a genuine or spurious link between variables2.
Therefore, bootstrap inference in dependent data is typically suggested as a remedy for
an incorrect or incomplete model specification. In particular, under such conditions, the
bootstrap principle can be viewed as a vehicle for estimating the missing model components.

In general, bootstrap methods are designed to approximate moments or the distribution
of a properly standardized estimator depending on observations from a time series model.
Therefore, since observations are acknowledged to be generated from a temporal dependence
structure, the object is to model not merely the marginal distribution of the sample data,
but also its joint distribution. Such an application requires hard compromises. Unless the
distribution possesses some basic regularities at a minimum stationarity, the sample reduces
in effect to a single observation. Even in a nonparametric context, it is inevitably necessary
to assume the joint distribution has sufficient structure to allow it to be reconstructed from
the sample data.

1A model is misspecified when its functional form is incorrect, or some important variables are excluded.
2For example, Granger and Newbold (1974) regressed two sets of independent series such that one of these

series follow an time-dependent linear process. The authors found that 93% of the time, using the usual F
statistics, the test show a "relationship" exist between the independent series (Davidson 2000, p. 153-154).
Although lots of asymptotic tests have been suggests in time series analysis, it is limited to the hypothetical
structure of the time series model.
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The various forms of block bootstrap, one form of the time-domain bootstrap procedures,
represent one approach to performing this reconstruction. They are nonparametric in char-
acter, and mimic the sample dependence of the whole by the joint distributions of short
segments. However, since these segments must be independently drawn with replacement
and concatenated, the "joins" problem places a limitation on the effectiveness of the mimicry.
Furthermore, as argued by Andrews (2002), the block bootstrap is much less effective than
the nonparametric iid bootstrap. A leading alternative to the blocks method which is among
the time-domain bootstrap procedures is the autoregressive sieve bootstrap, which is evidently
well-adapted to capturing certain types of dependence, but equally fails to capture other types,
as discussed in Kreiss et al. (2011), Bühlmann (1997). A third approach is to use an estimate
of the spectral density of the series which involves the use of frequency domain to model
the dependence of the observed time series observations, and a number of such methods are
recounted in Kirch & Politis (2011) and references therein. These latter bootstrap methods
have the advantage of not being reliant on a parametric dependence model.

The bootstrap method we propose in this chapter is related to the last-mentioned pro-
cedures, but has distinctive features of its own (see section 2.2, for comparison). While
the bootstrap resampling takes place in the frequency domain in its basic form, it does not
depend on the estimation of dependence features (see outline of bootstrap procedure 2.3.1),
whether parametric or nonparametric. In this sense, it has more in common with the classic
Efron (1979) approach for independent and identically distributed (i.i.d.) data. Moreover,
while the bootstrap draws are conditionally independent, they have the special property that
the periodogram is numerically identical to that of the original sample. Provided the data
dependence is fully embodied in second moments, it is hard to see how the bootstrap could
mimic the sample distribution any more precisely than this.

By the same token, the method is not applicable to inference problems relating to the
periodogram points themselves or functions thereof, autocovariance and autoregressive
parameters in particular; see Proposition 2.1 of Kirch & Politis (2011) for a related result.
Our method stands in contrast to the extensive literature on inference on the periodogram and
so-called ratio statistics3, as surveyed in Lahiri (2003) Chapter 9, for example. The survey
of Kreiss & Paparoditis (2011) likewise focuses chiefly on resampling of the periodogram,
a procedure our method avoids. This class of procedures has a different motivation to our

3Since bootstrap periodogram ordinates is not finitely independent, the bootstrap method suggested by
Franke & Härdle (1992) was ambiguous as to which class of ratio statistic it may be applied in general and
specifically for processes that are non-Gaussian. Therefore, Dahlhaus & Janas (1996) have clarified which class
of estimators makes such a periodogram ordinate bootstrap procedure valid. According to their paper, this class
of statistics is called the ratio-statistic. In particular, the ratio-statistic class consists of ratios of spectral-mean
estimates and the integrated periodogram. The usual moment estimator for autocorrelation is an appropriate
example that lies in this class.
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own. The method of Hidalgo (2003) shares our aim of making inferences on regression
coefficients, but it involves casting the entire regression model to the frequency domain (see,
for details, section 2.2). The so-called TFT methods of Kirch & Politis (2011) are closely
related to ours, but entail kernel estimation of the spectral density. The method of Theiler
et al. (1992) is also closely related, but resamples the phase-components of the distribution
while holding the frequency magnitudes fixed, as estimated by the periodogram.

2.1.1 Organization of Chapter 2

Our chapter is organized as follows. Section 2.2 gives a general review of the literature for
bootstrap methods in the context of hypothesis-testing in a time series analysis. This section
gives more technical details than those outlined in the introduction and helps facilitate the
arguments of the coming sections. Section 2.3 describes the proposed bootstrap algorithm
and derives key statistical properties. Among these is the peculiarity that the bootstrap
distribution of the series mean is degenerate. While this poses no problem for significance
tests on slope coefficients in regressions with autocorrelated disturbances, for example, the
method is unsuitable in its basic form for tests of location and tests for unit roots.

Section 2.4 describes a modified algorithm, which we call the augmented Fourier boot-
strap (AFB), one that overcomes this limitation. Our implementation of the AFB entails
fitting a response-surface to Monte Carlo-estimated performance measures and, as a prelim-
inary, Section 2.5 describes and justifies the “warp-speed” Monte Carlo method which is
used to accelerate the simulation of the bootstrap tests. The augmentation method itself is
explained in Section 2.6. Then, Section 2.7 reports Monte Carlo evaluations of the proposed
methods. We compare across various bootstrap methods along with a representative TFT
method, with the moving block and stationary block bootstraps, with the Auto-regressive
sieve bootstrap, and also with asymptotic inference. We also check on our method’s perfor-
mance in non-Gaussian data. Results are given for two cases, respectively, a static regression
model with two regressors and autocorrelated disturbances, and tests for a unit root in data
with correlated increments. Section 2.8 considers the multivariate case, and shows that
the cross-periodogram and cross-autocovariance properties extend the univariate case as
expected. Simulation of a bi-variate location test when the data are generated by a VAR(1)
with correlated shocks indicates that our simple augmentation formula can render good-size
properties. Section 2.9 concludes, and Monte Carlo Tables are gathered in the section 2.10.
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2.2 Literature Review

Any stationary process X = (X t : t ∈ Z) may be decomposed into a sum of sinusoidal com-
ponents (Chapter 10, Brockwell & Davis 2006). The analysis of stationary processes using
their spectral representations is often regarded as the "frequency domain" analysis of time
series. In cases the underlying process (or signal) is absolutely continuous, the power spectral
density (or simply spectral density), f (λ j), is defined as the derivative of the spectrum distri-
bution function (SDF), F(λ ). The SDF of an absolutely continuous time series spectrum X
describes the amount of variance contributed to X by frequencies lying within a specified
interval. To see this, let us introduce some mathematical preliminaries.

A spectral density can be derived from the spectral representation of a covariance function,
and is mathematically represented by

fX(ω) =
1

2π

∞

∑
k=−∞

γ(k)e−ikω , ω ∈ [0,2π] , where γ(k) = cov(X0,Xk) (2.1)

(cf. Naidu 1995, p. 16-18).
In general, covariances and variances of observations are not known, due to the uncertainty

in the data generating process (DGP) of the observations. Consequently, in the time-domain
settings, practitioners often resort to estimation methods of such values to help them create
inferences. Similarly, in the frequency-domain configuration, since spectral density is
not known due to the unknown nature of the DGP, practitioners often estimate spectral
density using periodograms. Thus, a periodogram, in the time series context, is a classical
nonparametric estimator of the spectral density. For concreteness, it is common to define the
periodogram I(λ j) at a Fourier frequency λ j := 2π j/n of the process X, as the squared value
of a discrete Fourier transform. Mathematically, it is given by

In(λ j−1) := |ax( j)|2 = 1
n

∣∣∣ n

∑
t=1

Xte−i(t−1)λ j−1
∣∣∣2

where ax( j) is the Discrete Fourier transform (DFT) of the vector x := (X1,X2, . . . ,Xn)′ and
is equal to

ax( j) =
1√
n

n

∑
t=1

Xte−i(t−1)λ j−1 (2.2)

Observe that, under such a definition, the relationship between periodograms and variances
is obvious. In particular, the sum of periodograms {In(λ j−1)}n

j=1 is equal to the squared sum
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of the process X
n

∑
j=1

In(λ j) =
n

∑
t=1

X2
t and In(0) = nX̄2

n

Based on the above discussion, it seems obvious that the inference based on spectral
densities in the frequency-domain time series analysis is equivalent to the inferences of
autocovariance in the time-domain time series analysis. This is because both the autoco-
variance function and spectral density contain the same information. Therefore, depending
on the statistician’s exercise of inference, frequency-based representation of the time series
observations proves to be more illuminating than its counter-part. In particular, the bootstrap
inference in mimicking distribution of temporal-dependence time series is a case in point.

The fact is that, under the assumption of a linear process, the sequence of periodograms4

{I(λ j)}n
j=1 evaluated at a set of frequencies {λ j}n

j=1 asymptotically behaves as a sequence of
independent and exponential random variables with a mean of spectral densities { f (λ j)}n

j=1

associated with the designated set of frequencies {λ j}n
j=1. Therefore, in the spectral repre-

sentation, the periodogram may be observed as a series of independent but not identically
distributed (i.n.i.d.) random variables. However, the periodograms have the same asymptotic
form as exponential random variables but with different means. Therefore, the periodogram
variables are considered to be a heteroscedastic sequence of random variables. This conclu-
sion has motivated bootstrap theorists to apply classical bootstrap algorithms based on the
periodograms (Kreiss & Paparoditis 2011, p. 365).

Inspired by the time series spectral analysis work of Hannan (1970) and Brillinger (1981),
and by the simulation experiments of Hurvich & Zeger (1987), Franke & Härdle (1992) have
exploited the asymptotic independence but heteroscedastic property of the periodograms to
create an i.i.d. resampling bootstrap procedure. Motivated by the estimation of the spectral
density function, Franke & Härdle (1992) devise confidence intervals for the spectral density
based on appropriately defined frequency domain residuals. Hence, the bootstrap procedure’s
name, the multiplicative residual bootstrap. In this case, the multiplicative residual bootstrap
is simply the classical bootstrap method applied to observations that are asymptotically
independent. Therefore, for such a bootstrap method to be valid asymptotically, requires
consistent estimates of the spectral density. Accordingly, Franke & Härdle (1992) rely on
nonparametric kernel spectral density estimates5.

The multiplicative residual bootstrap procedure is applied in the frequency-domain.
Therefore, in this chapter and hereafter, all bootstrap procedures that are applied in the
frequency-domain will be set to belong to the frequency domain bootstrap (FDB) class.

4A periodogram, in the time series context, is a classical nonparametric estimator of the spectral density.
5Although the periodogram is asymptotically unbiased, it is an inconsistent estimate of the spectral density,

because its variance at each spectral frequency is proportional to the square of the density at these frequencies.
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Moreover, since this bootstrap procedure is applied on the periodograms, this procedure
belongs to another class, along with the FDB, known by periodogram bootstrap class (see,
discussion Kreiss & Paparoditis 2011, p. 365).

The bootstrap procedure of Franke & Härdle (1992) has motivated different applications
of inferences. For example, Hidalgo (2003) has used such a bootstrap algorithm for hypothe-
sis testing in regression models. In particular, Hidalgo (2003) was interested in testing the
null hypothesis:

H0 : β1 = β2 = 0 (2.3)

of the linear model represented by:

Yt = β0 +β1X1t +β2X2t +Ut , , where t = 1, . . . ,n (2.4)

Hidalgo (2003) exploits the fact that the OLS estimator has both representation in the
Time Domain and the Frequency Domain to perform inferences on the coefficients β1 and
β2 in model 2.3. To see this, denote by βββ the column vector represented by the coefficients
of the explanatory variables; hence, in terms of model 2.4 βββ := (β1,β2)

′. In this case, the
ordinary least squares (OLS) estimator of βββ , β̂̂β̂β , in the frequency domain can be written as:

β̂̂β̂β = (X′X)−1X′y

= (aH
XaX)

−1aH
Xay

=

( n

∑
j=1

ax( j)Hax( j)
)−1( n

∑
j=1

ax( j)Hay( j)
)

where the superscript, H, stands for the conjugate transpose. ax( j) is defined in 2.2, the ith

row of X and y is simply the vector [X1t ,X2t ] and the scalar yt respectively, for t = 1, . . . ,n.
ay(n×1) is a column vector represented as

{ay} j := ay( j) , where j = 1,2, . . . ,n (2.5)

Remark: Observe that ax( j)Hax( j) and ax( j)Hay( j) represent the periodogram ordinate
In(λ j−1) and the cross-periodogram of the series {X j}n

i=1 and {y j}n
i=1 respectively.

Based on the frequency domain representation of the OLS estimator, Hidalgo (2003)
shows that the bootstrap distribution of the F statistic for testing the null hypothesis 2.3
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asymptotically works6. Therefore, using a different set-up of the multiplicative residual
bootstrap, most periodogram bootstrap procedures are capable of testing null hypotheses of
the form 2.3.

In general, periodogram bootstrap methods miss important features of the DGP; hence,
restricting the classes of statistics to which it may be applied on successfully, however. For
example, the asymptotic distributional characteristics of the sample-mean statistic cannot
be written themselves by means of periodograms. Therefore, all available periodogram
bootstrap procedures are incapable of testing the other null hypothesis, H1, defined by:

H1 : β0 = 0 (2.6)

Moreover, the mentioned methods are only applicable asymptotically for a few number
of classes of periodogram statistic. Therefore, Kreiss & Paparoditis (2003) have linked a
time-domain parametric and a frequency-domain nonparametric bootstrap to produce the
so-called Auto-regressive-Aided Periodogram Bootstrap (AAPB). Unlike the multiplicative
residual bootstrap, the AAPB mimics the complete covariance structure of the underlying
time series. Since it involves both domains (time and frequency), the AAPB belongs to the
class of bootstrap procedures known as Hybrid Bootstrap Class. Again, however, like the
periodogram bootstrap, the AAPB is only applicable to statistics which may be written as
functions of a periodogram (Kreiss & Paparoditis 2011, p. 367).

The time-domain steps of the AAPB procedure coincide with the time-domain bootstrap
procedural steps of Kreiss (1988), known as the Auto-regressive sieve (AR-sieve) bootstrap.
Therefore, the AAPB can be understood as an extension of AR-sieve bootstrap. The su-
periority of the AAPB over the AR-sieve and the available periodogram bootstrap can be
summarized by the following two points. Firstly, the AAPB is able to correct features of the
data which may not have been accounted for by the AR-sieve. In particular, if the underlying
data do not stem from an auto-regressive model of an order less than the fixed fitted order p,
the parametric AR-sieve would not be valid asymptotically. Secondly, the AAPB does not
neglect the dependence-structure of the periodogram ordinates as the available periodogram
bootstrap procedures (Kreiss & Paparoditis 2011, p. 367).

Preliminary simulation evidence not reported here, shows that there are not many dif-
ferences between the AAPB and the AR-sieve when it comes to the hypothesis testing of
coefficients in the form of 2.3. In fact, both the AAPB and AR-sieve have a very similar
error in rejection probability (ERP) and power. Moreover, the AAPB requires much more

6The bootstrap asymptotically works means that the approximation error of the bootstrap distribution for
the standardized distribution of the estimator converges to zero (in some meaningful sense) as the sample size
increases to infinity.
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computational time due to the additional steps of the frequency-domain algorithmic parts.
Additionally, unlike the AAPB, and superior to other available time-domain bootstrap pro-
cedures (Bühlmann 1997), the AR-sieve bootstrap is capable of testing the null hypothesis
of the form 2.6. Therefore, in our simulation experiments in section 2.7, we will only com-
pare our proposed bootstrap with the AR-sieve, rather than the AAPB, because the former
resembles the latter.

For concreteness, we will restate the AR-sieve bootstrap procedure for testing hypothesis
2.3 of model 2.4 by the following description.

Bootstrap Procedure 2.2.1 (AR-sieve).

1. Compute the OLS residuals {ε̂t}n
t=1 of the model of interest

2. Specify the dependency structure among the computed OLS residuals by choosing
a value for the lag length p̂(n) of the OLS residuals using the Akaike information
criterion (AIC).

3. Fit a pth-order autoregressive model

4. Compute the OLS coefficients {φ̂i}p̂(n)
i=1 using the Yule-Walker Equations by running the

following regression model using the following

ε̂t = φ1ε̂t−1 +φ2ε̂t−2 + · · ·+φp̂(n)ε̂t−p̂(n)+ut (2.7)

where t = p̂(n)+1, · · · ,n and ut are i.i.d. error terms.

5. Compute the OLS residuals of the model {ût}n−p̂(n)
t=1 .

6. Resample from {ût − ûn−p̂(n)} where û f = ( f )−1
∑

f (n)
t=1 ût , denote the bootstrapped

sample by {u∗t }
n−p̂(n)+m
t=1 where m is only additional generated observations that are

introduced for the sole purpose of removing start-up effects.

7. Generate the AR-Sieve ordinate of the errors as

ε
∗
t = φ̂1ε

∗
t−1 + φ̂2ε

∗
t−2 + · · ·+ φ̂p̂(n)ε

∗
t−p̂(n)+u∗t−p̂(n) (2.8)

where t = p̂(n)+1, . . . ,n+m and ε∗t = 0 for t = 1,2, . . . , p̂(n)).

8. Compute the AR-Sieve bootstrap sample given by

Y ∗
t = β̂0 + β̂1X1t + β̂2X2t + ε

∗
t+m (2.9)
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where t = 1,2, . . . ,n.

In recent years, two new bootstrap procedures were introduced: the hybrid bootstrap of
Jentsch & Kreiss (2010) and the time frequency toggle (TFT) bootstrap of Kirch & Politis
(2011). Both procedures are superior to other available bootstrap methods in the time-domain
context, because they are capable of producing a pseudo-series in the time domain that
mimics the original dependence-structure as well as moments of the observed sample.

In this chapter, to distinguish between the hybrid bootstrap class and the hybrid bootstrap
procedure of Jentsch & Kreiss (2010), we will refer to this particular bootstrap procedure
as the Modified Auto-regressive Aided Periodogram bootstrap (MAAPB). This is because
Jentsch & Kreiss’s (2010) bootstrap, in the univariate case, involves the same sequential
steps of the AAPB, but rather than applying the nonparametric pre-whitening correction
function on the periodogram, it is applied on the Discrete Fourier Transform (DFT) of the
series of interest. To generate the pseudo-series in the time domain, the MAAPB requires an
additional step (not required by the AAPB) of applying the inverse-DFT on the corrected
DFT (see, Jentsch & Kreiss 2010, p. 2326).

Although this bootstrap method is better in replicating time-series observations, in our
unreported preliminary simulations, we notice two findings. Firstly, this bootstrap procedure
is capable of making inferences on the coefficient β1 and β2 better than its predecessors’
versions (AAPB and AR-sieve). Secondly, this bootstrap procedure does not yield a lower
ERP or a higher power when testing the null hypothesis defined in 2.6. In addition to these
findings, we found at a later stage and in other simulation experiments that testing the null
hypothesis of the form described in 2.3 is almost equivalent to the residual-based bootstrap
type in the time frequency toggle Bootstrap method (RB-TFT)7. Therefore, in our simulations
in section 2.7, we will not consider the MAAPB in our simulation study.

Note that unlike the computation of the DFT, the computation of the periodogram causes
an irretrievable loss of information. This makes any bootstrap method that involves the
computation of a periodogram unsuitable for conducting inferences on a model’s intercept
coefficient, due to the lack of information the periodogram holds of a data-set of interest.
This information has motivated Kirch & Politis (2011) to find a theoretical justification to the
simulation experiments of Hurvich & Zeger (1987). Indeed, Kirch & Politis (2011) were able
to find this explanation along with other important findings which create a new perspective
of the frequency-domain bootstrap procedures.

Although represented as a bootstrap method, the TFT, in our view, describes a class of
bootstrap procedures. In particular, the basic definition of this class is that any bootstrap

7This term will be explained later in the chapter
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procedure that belongs to it—to generate pseudo-series— entails steps requiring back and
forth jumps between time-domain and frequency-domain via the aid of DFT and its inverse8.

Previous periodogram bootstrap theorists have employed in their proofs the well-known
fact that the periodogram ordinates are asymptotically independent and exponentially dis-
tributed. However, in the TFT class of bootstrap procedure, Kirch & Politis (2011) exploited
the fact that the Fourier coefficients defined by

ζX( j) = T−1/2
n

∑
i=1

Xi cos(−λ ji) (2.10)

κX( j) = T−1/2
n

∑
i=1

Xi sin(−λ ji) (2.11)

are asymptotically independent and normally distributed, to formulate three different types of
consistent bootstrap procedures: the residual-based bootstrap (RB-TFT), the wild bootstrap
(WB-TFT), and the local bootstrap (LB-TFT). These bootstrap procedures are modifications
of available periodogram bootstrap procedures. For example, the RB-TFT is very similar to
the multiplicative residual bootstrap of Franke & Härdle (1992) but rather than bootstrapping
the periodograms, Kirch & Politis (2011) bootstrap the DFT coefficients.

The LB-TFT is similar to the local bootstrap structure of Paparoditis & Politis (1999)
whereby this bootstrap method entails no initial estimation of the spectral density. The local
bootstrap of Paparoditis & Politis (1999) exploits the fact that the spectral density is smooth
enough when the periodogram ordinates are asymptotically independent and exponentially
distributed. Hence, the differences between two distinct periodogram ordinates (or the Fourier
coefficients) with associated distinct frequencies are dependent on how far the two different
frequencies are from one another. Therefore, bootstrapping based on frequencies that are
locally close to the main frequency plays a key role in causing this bootstrap procedure to be
consistent (Kreiss & Paparoditis 2011, p. 366).

The WB-TFT is identical to the parametric frequency-domain bootstrap proposal of
Hurvich & Zeger (1987). This particular bootstrap, like the RB-TFT, requires estimation
of the spectral density. This is because both bootstrap variants, the RB-TFT and WB-TFT,
require normalization of the DFT points, so that asymptotically they behave as Gaussian i.i.d.
random variables.

The currently available bootstrap procedures in the TFT class introduced by Kirch
& Politis (2011) are considered to be an extension (or modification) of the periodogram
bootstrap methods available for two reasons. Firstly, the three available bootstrap procedures

8For further description of the TFT class, please refer to Section 2.3.3
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of the TFT class and the available periodogram bootstrap yield almost identical results when
applied to statistics based on periodograms. Secondly, the bootstrap methods proposed by
Kirch & Politis (2011) are applicable to statistics of interest that are not expressible by
periodograms.

For the sake of clarity in formulating the algorithmic steps of these procedures in the
context of hypothesis testing, we will restate the RB-TFT as well as the WB-TFT procedures
in the following sequential steps:

Bootstrap Procedure 2.2.2 (RB-TFT and WB-TFT).

1. Compute the OLS residuals {ε̂t}n
t=1 of the model of interest.

2. Estimate the spectral density f̂ε̂(ω) described by:

f̂ε̂(ω) :=
(

2π ∑
j∈Z

K
(
h−1

ω j
))−1(

∑
j∈Z

K
(
h−1(ω −ω j)

)
|aε̂( j)|2

)
where K(.) is a kernel function, aε̂ is the DFT of the vector of residuals ε̂ as described
in equation (2.2), h is the bandwidth which usually depends on the sample size (usually
estimated using Newey-West estimator), ω j is the Fourier frequency.

3. Calculate the Fourier coefficients ζε̂( j) and κε̂( j) using the fast Fourier transform
(FFT) algorithm as described in equations (2.10) and (2.11), respectively.

4. Estimate the residuals of the real, as well as imaginary, part of the Fourier coefficients
and put them together into a vector {s̃ j}2r

j=1 such that

s̃ j =
(

π f̂ε̂(ω j)
)−1/2

ζε̂( j), and s̃r+ j =
(

π f̂ε̂(ω j)
)−1/2

κε̂( j) (2.12)

where j = 1,2, . . . ,r and r = ⌊(n− 1)/2⌋. Then standardize each of the values in
{s̃ j}2r

j=1 and store them into a vector {s j}2r
j=1.

Remark: This step is not required by the WB-TFT. This is because this bootstrap
procedure will resample from a standardized normal.

5. Compute the bootstrapped Fourier coefficients given by

ζ
∗
ε̂
( j) =

(
π f̂ε̂(ω j)

)
s∗j , and κ

∗
ε̂
( j) =

(
π f̂ε̂(ω j)

)
s∗r+ j (2.13)
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RB-TFT: s∗j represents an i.i.d. sample drawn randomly with replacement from the
sequence {s j}2r

j=1

WB-TFT: s∗j represents an i.i.d. draw from a standard normal distribution

6. Let ζ ∗
ε̂
(n) = κ∗

ε̂
(n) = 0; moreover, if n is even, let ζ ∗

ε̂
(n/2) = κ∗

ε̂
(n/2) = 0

7. Obtain a bootstrap sequence {ζ ∗
X( j)}r

j=1 and {κ∗
X( j)}r

j=1

8. Set the remaining bootstrap Fourier coefficients as

ζ
∗
ε̂
(n− j) = ζ

∗
ε̂
( j), and κ

∗
ε̂
(n− j) =−κ

∗
ε̂
( j)

9. Use the inverse FFT algorithm to transform the bootstrap Fourier coefficients ζ ∗
ε̂
( j)+

iκ∗
ε̂
( j) back into the time domain to receive the sequence {ε̂∗t }n

t=1.

10. Compute the RB-TFT or WB-TFT bootstrap sample given by

Y ∗
t = β̂0 + β̂1X1t + β̂2X2t + ε̂

∗
t (2.14)

where t = 1,2, . . . ,n.

In the above bootstrap procedure, it should be emphasised that the sequence {ε̂∗t }n
t=1 has

a mean identical to zero. Therefore, there will be no differences in the OLS estimation of
the intercept coefficient β0 across the bootstrap samples. Hence, this bootstrap method as
is, is not capable of testing the null hypothesis in the form of 2.6. Kirch & Politis (2011)
have already mentioned this drawback for such a bootstrap procedure to be qualified in
producing a pseudo-series in the time domain. Therefore, as a remedy, they proposed the use
of augmenting the missing information from another bootstrap procedure. In particular, they
have suggested practitioners use different bootstrap algorithms, such as the AR-sieve and
MBB, to mimic the sample mean of the time series and augment this result to the yielded
result of the TFT-bootstrap sample.

To the best of our knowledge, we are not aware of any study that focuses on studying
the proposal of Kirch & Politis (2011). Therefore, in this chapter, we will address the
idea of augmentation by comparing the results of our bootstrap procedure inferences on
testing the hypothesis 2.6 with that of the AR-sieve and the MBB. This comparison of the
intercept parameter gives an indication of whether their suggestion of such a procedure works
or not. Furthermore, in our simulation experiment in section 2.7, we opt to compare our
new proposed bootstrap method with only the RB-TFT type out of the other available TFT
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methods. The reason for this is based on the intuition that the RB-TFT and the LB-TFT
share the common underlying idea that the FFT ordinates are i.i.d.; hence, they are similar.
Additionally, although we believe that the Fourier coefficients are i.i.d., it is hard to believe
in the finite sense ("non-asymptotically") that the Fourier coefficients are Gaussian random
variables. Therefore, the RB-TFT outperform the WB-TFT since it does not force the time-
domain bootstrap sample paths to be Gaussian (see, comparison sections, Kirch & Politis
2011, p. 10).

2.3 The Fourier wild bootstrap

2.3.1 The algorithm

Let x = (x1, . . . ,xn)
′ denote the random n-vector whose joint distribution is to be modelled

by the bootstrap. We assume this to be a finite realization of a covariance stationary process
with population mean of zero. The procedure we propose, which we refer to by the acronym
FWB, consists of three basic steps:

1. Compute the discrete Fourier transform (DFT)

z = Qx (2.15)

where Q (n×n) denotes the unitary symmetric Fourier matrix with elements

q jt = n−1/2e−2πi j(t−1)/n

for t = 1, . . . ,n and j = 0, . . . ,n−1, where i =
√
−1.

Then, for replications b = 1, ...,B:

2. Apply the Rademacher wild bootstrap to z, switching signs (of the real and imaginary
parts together) with probability 1

2 . Symbolically,

z∗b =W bz

where W b = diag(wb) and wb = (wb0, . . . ,wb,n−1)
′ is a n-vector of independent random

draws with
P(wb j = 1) = P(wb j =−1) =

1
2
.

Remark: To simulate bootstrap sample in the frequency domain, each of the bootstrap
methods used in earlier research have focused on simulating only the first half of the
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DFT of the original sample. Observe that since x is real-valued, a well-known property
of the DFT z is that Re(zn− j) = Re(z j) and Im(zn− j) =− Im(z j) for j = 1, . . . ,n/2−1
(n even) or j = 1, . . . ,(n−1)/2 (n odd). In this case, the inverse DFT Q†z is real valued
for any z of this form. If one wishes to preserve this mathematical characteristic, it
would be better to use a special case of W b, W̃ b constructed so that wb,n− j= wb j, and
hence the sign pattern is preserved. However, as will be discussed later in the chapter,
due to the construction of this bootstrap algorithm, there is no superiority in using the
special case (W̃ b) over the general one (W b).

3. Create the bootstrap draw in the time domain by

x∗b = Re(Q†z
∗
b)+ Im(Q†z

∗
b) (2.16)

where Q† denotes the conjugate transpose of Q.

Notes:

• While formulae (2.15) and (2.16) show the exact form of the Fourier transformation
and its inverse, in practice a fast Fourier transform (FFT) algorithm can be used to
obtain z and the corresponding inverse9.

• It may not be obvious why we adopt the third step of using the sum of the real and
imaginary parts of the inverse DFT to define the draw. However, as we explain in the
following section, this tactic is crucial to the properties of the method.

• Following our remark in Step 2, observe that the inverse transformation of the DFT of
the bootstrap sample z∗b does not yield, in general, a real-valued vector. In particular,
Q†z∗b is, in general, complex valued. Therefore, to show that there is no much gain of
using the special case over the general case, we have also considered the alternative
bootstrap draw procedure defined by the form

x̃∗b = Q†z̃
∗
b (2.17)

where z̃∗b is defined as
z̃∗b = W̃ bz (2.18)

In this case, equation (2.17) represents the special case of (2.16) when the imaginary
component is zero.

9The reason for using the FFT rather than the DFT lies in the circularity property of the linear transformation
this will be discussed later in the chapter.
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Although the conditional distributions of (2.16) and (2.17) are necessarily different, since
they depend on different numbers of Rademacher draws, the following section shows that
all the relevant characteristics of the first form are shared by the second, which is merely a
special case. The restricted distribution W̃ b confers no apparent advantage over W b in terms
of the properties of the algorithm, and additional bootstrap draws are evidently required to
attain the same precision. Moreover, (2.17) is relevant exclusively to real-valued data and,
while this is the usual case in the econometric context, the unrestricted formulation (2.16) is
easily generalized to resample a complex-valued series. It is this form which is used in our
simulation experiments reported in Section 2.7.

2.3.2 Properties of the FWB Algorithm

Begin by writing
Q = A+ iB, and Q† = A− iB

where A and B are both n×n symmetric matrices defined element-wise by

{A}i j = n−1/2 cos(2πi j/n), and {B}i j = n−1/2 sin(2πi j/n)

for i, j = 0, . . . ,n− 1, letting i = t − 1 for notational convenience. A and B are mutually
orthogonal, with AB = BA = 0, since for each pair i, j = 0, . . . ,n−1. That is, that

{AB}i j =
1
n

n−1

∑
k=0

cos(2πik/n)sin(2π jk/n)

=
1

2n

n−1

∑
k=0

sin(2π(i+ j)k/n)+
1

2n

n−1

∑
k=0

sin(2π(i− j)k/n)

= 0.

As in a number of similar identities to be determined subsequently, the sums vanish here
since the terms are either zero, or equal and opposite in pairs. Note that the unitary property
of Q implies

QQ† = Q†Q = AA+BB = I. (2.19)

Consider the structure of these matrices in more detail. Note that if t ∈ Z, then

n−1

∑
k=0

cos(
2tkπ

n
) =

n, if t = mod(n)

0, otherwise
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and
n−1

∑
k=0

sin(
2tkπ

n
) = 0

holds. Furthermore, note that

{AA}i j =
1
n

n−1

∑
k=0

cos(
2ikπ

n
)cos(

2 jkπ

n
)

=
1

2n

n−1

∑
k=0

(
cos(

2(i− j)kπ

n
)+ cos(

2(i+ j)kπ

n
)
)
.

These facts and standard trigonometric identities imply in particular that

{AA}i j =


1, if i = j = 0

0.5, if i = j and i = n− j, j > 0

0, otherwise

(2.20)

for n odd, and

{AA}i j =


1, if i = j = 0, and i = j = n/2

0.5, if i = j and i = n− j, j ̸= 0 and j ̸= n/2

0, otherwise

(2.21)

for n even. Note that, in either case, AAA = A. B has a structure comparable to A except
where the rows (columns) labelled 0 and n/2 (n even) are zero, and where the pairs of rows
(columns) labelled j and n− j are equal in magnitude but opposite in sign. The rank of B is
(n−1)/2 (n odd) or n/2−1 (n even). For n odd,

{BB}i j =


0, if i = j = 0

0.5, if i = j > 0

−0.5, if i = n− j, j > 0

0, otherwise,

(2.22)
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for n even,

{BB}i j =


0, i = j = 0 and i = j = n/2

0.5, i = j, j ̸= 0 and j ̸= n/2

−0.5, i = n− j, j ̸= 0 and j ̸= n/2

0, otherwise,

(2.23)

and BBB = B. Also note the direct confirmation of (2.19) from the pairs (2.20)+(2.22), or
(2.21 )+(2.23), as the case may be.

In the light of these facts, consider the steps of the proposed bootstrap draw. For ease
of notation, let the subscript b denoting the draw be henceforth implicit. The first Fourier
transform yields

z = Ax+ iBx (2.24)

and
z∗ =WAx+ iWBx (2.25)

The inverse Fourier transform leads to

Q†z
∗
= A(WAx+ iWBx)− iB(WAx+ iWBx) = (U + iV )x (2.26)

Hence, U and V are defined as

U := AWA+BWB and V := AWB−BWA (2.27)

Let R be defined as
R :=U +V (2.28)

the FWB draw has the form
x∗ = Rx. (2.29)

We may compare (2.29) with other bootstrap formulae, having this form with different
randomly drawn matrices. In the standard Efron’s (1979) bootstrap, R is constructed with n
columns randomly drawn from the identity matrix, with replacement. In the wild bootstrap R
is diagonal, with randomly drawn diagonal elements. The various block bootstrap schemes
construct R from random blocks of consecutive columns of the identity matrix, while the
sieve autoregressive method forms R as an Efron’s (1979) matrix post-multiplied by an upper
triangular matrix of moving-average weights.
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For i, j = 0, . . . ,n−1 the elements of U and V take the form

{U}i j =
n−1

∑
k=0

wkΦi jk and {V}i j =
n−1

∑
k=0

wkΨi jk

where

Φi jk = n−1
[
cos(2πik/n)cos(2π jk/n)+ sin(2πik/n)sin(2π jk/n)

]
= n−1 cos(2π(i− j)k/n)

(2.30)

and

Ψi jk = n−1
[
cos(2πik/n)sin(2π jk/n)− sin(2πik/n)cos(2π jk/n)

]
=−n−1 sin(2π(i− j)k/n).

(2.31)

Thus,
Φi+1, j+1,k = Φi jk, and Ψi+1, j+1,k = Ψi jk, (2.32)

for 0 ≤ i, j < n−1 and each k = 0, . . . ,n−1. Since it is also the case that cos(2πmk/n) =
cos(2π(m−n)k/n) and sin(2πmk/n) = sin(2π(m−n)k/n) for 0 ≤ m ≤ n, we also find

Φi+1,0,k = Φi,n−1,k, and Ψi+1,0,k = Ψi,n−1,k (2.33)

for 0 ≤ i < n−1. In other words, U and V are both Toeplitz matrices10, having the circulant
property11 that each row reproduces the one above with a shift of one place to the right, with
the last column entry wrapping around to the first position. Therefore, the coordinates of the
bootstrap draws are linear combinations of the sample series having random weights with this
circulant form. This makes it easy to see how the bootstrap draws inherit the autocorrelation
structure of the sample.

Lemma 2.3.1. Let ι (n× 1) denote the column of ones; and let U and V be as defined in
equation (2.27), then the following properties hold:
1) Uι = w0ι; 2) V ι = 0; 3) U ′V = 0; 4) U ′U +V ′V = I.

10A Toeplitz matrix, in linear algebra, is a square matrix in which each descending diagonal from left to
right is constant. The general form of an n×n Toeplitz matrix is represented by Tn = [rk, j;k, j = 0,1, . . . ,n−1]
where rk, j = rk− j. For more details consult Gray (2006)

11A Circulant matrix is a special case of a Toeplitz matrix whereby every row of the matrix is a right cyclic
shift of the row above it. “In numerical analysis, circulant matrices are important because they are diagonalized
by a discrete Fourier transform, and hence linear equations that contain them may be quickly solved using a
fast Fourier transform.” (see, Davis 2012).
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Proof. Parts (1) and (2) follow directly from the facts that Aι = (
√

n,0, . . . ,0)′ and Bι = 0 .
For Part (3), using the facts that A and B are symmetric and orthogonal, we obtain

U ′V = AWAAWB−BWBBWA.

Observe that WA is a matrix obtained from A by changing the signs of certain rows, and AW
is its transpose, with certain columns having a changed sign. WAAW is therefore a matrix
defined in the same way as AA in (2.20) or (2.21), except that a number of the non-diagonal
elements may have changed signs. Specifically, since w2

i = 1,

{WAAW}i j =


1, i = j = 0 and i = j = n/2 (n even)
0.5, i = j, j ̸= 0 and j ̸= n/2 (n even)
0.5wiw j, i = n− j
0, otherwise

It follows that the matrix AWAAW is defined in the same manner as A, except that certain
pairs of columns may be replaced by zero columns. Thus, for j ̸= 0 and j ̸= n/2 (n even),
{A}i j = {A}i,n− j and hence

{AWAAW}i j =
n−1

∑
k=0

{A}ik {WAAW}k j

= {A}i j {WAAW} j j +{A}i,n− j {WAAW}n− j, j

= {A}i j

[
{WAAW} j j +{WAAW}n− j, j

]
= 1

2

(
1+wn− jw j

)
{A}i j.

The rule is that the replacement by zeros of the jth and (n− j)th columns occurs if w jwn− j =

−1. Further,

{AWAAWB}i j =
1
2

n−1

∑
k=0

(1+wkwn−k){A}ik {B}k j

=
1

2n

n−1

∑
k=0

(1+wkwn−k)cos(2πik/n)sin(2π jk/n)

=
1

4n

n−1

∑
k=0

[sin(2πk (i+ j)/n)+ sin(2πk (i− j)/n)]

+
1

4n

n−1

∑
k=0

wkwn−k [sin(2πk (i+ j)/n)+ sin(2πk (i− j)/n)] . (2.34)
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Note that the first sum of terms in the last member of (2.34) vanishes since the summands
are equal and opposite in pairs, with the kth term cancelling the (n− k)th for k ̸= 0 (n odd)
and for k ̸= 0, n/2 (n even). However, the sign of wkwn−k is invariant under replacement of k
by n− k. Hence, the second set of summands also cancels in pairs, in the identical manner.
We conclude that AWAAWB = 0. The same form of argument shows that BWBBW matches
B apart from some column replacements by zero columns, according to the same rule, and
that BWBBWA = 0. This concludes the proof of (3).
To prove part (4), note that the identities AB= 0, AA+BB= I and WW = I imply respectively

U ′U = AWAAWA+BWBBWB

= I −AWBBWA−BWAAWB

and
V ′V = AWBBWA+BWAAWB.

Based on the above lemma, one may infer the following remarks:

1. The matrix R in equation (2.29) has two important properties.

• The sum of the bootstrap series matches the sum either x or −x with equal
probability 1/2, depending on the value of w0.

ι
′x∗ = ι

′Rx = w0ι
′x (2.35)

• The matrix R is an Orthogonal matrix, i.e. R′R = In.

2. Based on the properties of the matrix R, it is easy to see that the sum of the square of
the bootstrap series generated by the FWB (see, equation (2.29)) is equivalent to the
sum of square of the original series. That is, that,

x∗′x∗ = x′x. (2.36)

Hence, both the bootstrap series and the original series share the same sum of peri-
odograms.

3. Observe that if the sample data are expressed in mean deviation form such that ι ′x = 0,
as it is usually the case in applications (residuals have zero sum), the conditional
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distributions of the mean and variance of the bootstrap draws are therefore both
degenerate, being equal with probability one to the sample mean and sample variance
respectively. We explore the implications of these facts in the sequel.

4. If we replace W by the special case W̃ , as defined following equation (2.18), and so
define Ũ and Ṽ as the obvious variants of (2.27), it is easy to verify from the forms of
A and B that AW̃B = BW̃A = 0 and hence Ṽ = 0. This verifies the earlier assertion that
the imaginary component of the inverse DFT vanishes, and x̃∗ = Ũx. The following
bootstrap properties depend on the forms of A and B and hold for arbitrary choices of
W , including W̃ in particular. Since Ṽ = 0 is merely a special case, they hold for x̃∗

just as for x∗, and therefore do not require separate statements. For compactness we
leave the alternative cases implicit and refer only to W in formulae, noting that the
result of substituting W̃ is to eliminate the imaginary terms.

Theorem 2.3.2. The periodogram of a FWB draw is identical with that of the sample series.

Proof. For any vector a, let the notation a◦2 and |a| denote the element-wise square (Hadamard
product with itself) and absolute value vectors with the same dimension as a, respectively.
Then the periodogram points of x can be written as

|z|◦2

2π
=

(Ax)◦2 +(Bx)◦2

2π

The periodogram points of the bootstrap draw (2.28) take the corresponding form

(Ax∗)◦2 +(Bx∗)◦2

2π

where
Ax∗ = AAW (A+B)x = PAx (2.37)

and
Bx∗ = BBW (B−A)x = PBx (2.38)

the second equalities defining PA and PB. Replacing W by W̃ , note that these formulae
become P̃A = AAW̃A and P̃B = BBW̃B. Referring to the formulae in (2.20) and (2.21), we
deduce that, except for the cases j = 0 and j = n/2 (n even), the rows of the matrix AAWA
have three possible forms. If w j = wn− j = 1, rows j and n− j match rows j and n− j of A.
If w j = wn− j =−1, rows j and n− j match the corresponding rows of −A. And, if the signs
of w j and wn− j are different, the corresponding pairs of rows are zero. Rows 0 and n/2 (n
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even) match the corresponding rows of A or −A, with the signs taken from w0 and wn/2 (n
even), respectively.
On the other hand, the matrix AAWB has zeros for rows j and n− j if w j = wn− j =±1. It
has jth and n− jth rows matching those of B, if w j = 1 and wn− j =−1, and matching those
of −B if w j = −1 and wn− j = 1. Rows 0 and n/2 (n even) are zero, matching those of B.
Notice how the zero rows arise in complementary positions in the two matrices.
Putting these results together, we can set out the following table where the notation identifies
the jth rows of the matrices in question, for j ̸= 0 and j ̸= n/2 (n even), depending on the
signs of the Rademacher pairs:

{PA} j· =


{A} j· if w j = wn− j = 1,
{−A} j· if w j = wn− j =−1,
{B} j· if w j = 1 and wn− j =−1,
{−B} j· if w j =−1 and wn− j = 1.

(2.39)

The last two of these cases do not arise when w j is replaced by w̃ j. Also, {PA}0· = w0{A}0·,
and {PA}n/2· = wn/2{A}n/2· (n even). The corresponding analysis of the matrices BBWA and
BBWB, making use of the formulae in (2.22) and (2.23), yields

{PB} j· =


{B} j· if w j = wn− j = 1,
{−B} j· if w j = wn− j =−1,
{−A} j· if w j = 1 and wn− j =−1,
{A} j· if w j =−1 and wn− j = 1

(2.40)

and also {PB}0· = 0′, and {PB}n/2· = 0′ (n even).
After squaring has eliminated the negative signs, the implication of (2.39) is that the elements
of (PAx)◦2 match either corresponding elements of (Ax)◦2 or the corresponding elements of
(Bx)◦2 , depending on whether the Rademacher pairs match or differ. (They of course cannot
differ for P̃A and P̃B.) The elements of (PBx)◦2 on the other hand, according to (2.40), are
the complementary cases from (Bx)◦2 and (Ax)◦2. In other words, if an element of (PAx)◦2

matches that of (Ax)◦2, the corresponding element of (PBx)◦2 matches that of (Bx)◦2. If an
element of (PAx)◦2 matches that of (Bx)◦2, the corresponding element of (PBx)◦2 matches
that of (Ax)◦2. It follows that

(PAx)◦2 +(PBx)◦2 = (Ax)◦2 +(Bx)◦2

and the theorem follows directly.
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Corollary 2.3.2.1. The periodogram of x∗ in (2.29) matches that of the inverse transform in
(2.26).

Proof. The DFT of (2.26) is identical with z∗ in (2.25), noting that

(A+ iB)[(AWA+BWB)+ i(AWB−BWA)]

= (AA+BB)WA+ i(AA+BB)WB

=W (A+ iB)

(2.41)

Next, let E∗(.) denote the expected value under the bootstrap distribution of the random
elements w0, . . . ,wn−1, conditional on the sample.

Theorem 2.3.3. Let xi denote the ith element of x, for i = 0, . . . ,n−1, and let x∗i denote the
corresponding element of the FWB draw. For m ≥ 0 and i ≥ m,

E∗(x∗i x∗i−m) =
1
n

n−1

∑
j=m

x jx j−m

Proof. Let ϒi jk = Φi jk +Ψi jk from (2.30) and (2.31), so that

x∗i =
n−1

∑
j=0

n−1

∑
k=0

wkϒi jkx j

and for i ≥ m,

x∗i x∗i−m =
n−1

∑
j=0

n−1

∑
k=0

n−1

∑
j′=0

n−1

∑
k′=0

wkwk′ϒi jkϒi−m, j′k′x jx j′.

Since

E∗(wkwk′) =

1, if k = k′

0, if k ̸= k′
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we have

E∗(x∗i x∗i−m|x) =
n−1

∑
j=0

n−1

∑
j′=0

x jx j′
n−1

∑
k=0

ϒi jkϒi−m, j′,k

=
n−1

∑
j=m

x jx j−m

n−1

∑
k=0

ϒi jkϒi−m, j−m,k +
n−1

∑
j=0

∑
j′ ̸= j−m

x jx j′
n−1

∑
k=0

ϒi jkϒi−m, j′,k

=
1
n

n−1

∑
j=m

x jx j−m

Here, the third equality makes use of the facts that

n−1

∑
k=0

ϒi jkϒi−m, j−m,k =
1
n2

n−1

∑
k=0

[
cos2(2π(i− j)k/n)+ sin2(2π(i− j)k/n)

]
−2

1
n2

n−1

∑
k=0

cos(2π(i− j)k/n)sin(2π(i− j)k/n)

=
1
n

(2.42)

in view of (2.32) and cos2+sin2 = 1, and also that for each i and j′ ̸= j−m,

n−1

∑
k=0

ϒi jkϒi−m, j′k =
n−1

∑
k=0

cos(2π(i− j)k/n)cos(2π(i−m− j′)k/n)

+
n−1

∑
k=0

sin(2π(i− j)k/n)sin(2π(i−m− j′)k/n)

−
n−1

∑
k=0

cos(2π(i− j)k/n)sin(2π(i−m− j′)k/n)

−
n−1

∑
k=0

sin(2π(i− j)k/n)cos(2π(i−m− j′)k/n)

=
n−1

∑
k=0

cos(2π(m− j+ j′)k/n)−
n−1

∑
k=0

sin(2π(2i−m− j− j′)k/n)

= 0,

(2.43)

noting that m− j+ j′ and 2i−m− j− j′ are always nonzero integers.

Note how the bootstrap draw must be defined by (2.28) to achieve this result. The real and
imaginary parts in (2.26) both have the circulant property producing the correct autocorrela-
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tion structure of a draw, but the associated scale parameters are individually too small. The
one exception is of course the case W = W̃ so that the imaginary part is zero. If the sample
data are expressed in mean deviation form, Theorem 2.3.3 gives the autocovariance function
of the bootstrap.

These results show that the bootstrap distribution is closely affiliated with the sample
distribution and, for some purposes, too closely affiliated to be useful. As has been noted
by Kreiss & Paparoditis (2011), it is clearly not feasible to use this bootstrap to analyse the
distribution of functionals of the periodogram points. This is an issue to which we return in
the next section. However, although their conditional distribution has restricted rank, there is
no implication that the bootstrap draws are statistically dependent. In particular,

Theorem 2.3.4. If W a and W b are independent Rademacher draws, defining Rp in (2.28)
and x∗p = Rpx for p = a,b then

E∗(x∗ax∗′b ) = 0

The same result holds for R̃p.

Proof. Rearranging (2.29) as

x∗ = Rx = (A−B)WAx+(A+B)WBx

shows that x∗ax∗′b is the sum of four rank 1 matrices, whose elements are sums of conditionally
fixed terms weighted by random coefficients of the form wa jwbk for j,k = 1, . . . ,n. Since wa j

and wbk are independent random variables with zero means, the theorem follows directly.

Since all the wk have even moments equal to 1 and odd moments equal to 0, similar reasoning
shows that all higher-order co-moments also vanish. Moreover, Theorem 2.3.3 and the FWB
sample (represented by equation (2.29)) have the following implication.

Theorem 2.3.5. If the process generating the sample x satisfies the conditions of the central
limit theorem, the FWB draws are asymptotically jointly Gaussian series, with an autoco-
variance function

γm = plim
n→∞

1
n

n

∑
t=m+1

(xt − x̄)(xt−m − x̄), , where m ≥ 0.

Proof. Conditional on W , the bootstrap draw is a series composed of linear combinations
of the sample data with weights (the rows of R in (2.28)) summing to a fixed value, either
+1 or −1, and which are trigonometric functions of the time index bounded absolutely by
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n−1/2. This is therefore a straightforward application of the cited central limit theorem for
dependent processes.

Discussion:

Theorem 2.3.5 recommends the FWB method to be applied to samples that are stationary
with Gaussian characteristics (not necessarily Gaussian themselves), particularly when higher
moments of the data, as well as the autocorrelation structure, influence the distribution of
sample statistics. Recall that, in regression models, the OLS estimators are still consistent
and unbiased even when the assumption of no autocorrelation is violated. This is because
these properties depend on other assumptions that are still not violated; namely: 1) the
error terms are homoskedastic and have a mean of zero; 2) the explanatory variables are
nonstochastic, i.e. fixed in repeated samples (cf. Baltagi 2011, p. 112). Since this is the case
in every bootstrap sample drawn, the FWB method should be robust to the form of the shock
distribution, subject only to the existence of the variance.

Consider, for example, the properties of this method in the context of significance
tests in a regression model, where the disturbances are serially dependent while distributed
independently of the regressors. As noted, under the usual conditions of regularity, the
bootstrap draws are jointly Gaussian in large samples. The bootstrap t statistics are likewise
asymptotically normal, although if the conventional variance formula is used in the presence
of residual autocorrelation, these distributions are not asymptotically pivotal12. The preferred
procedure is, therefore, to use a heteroskedasticity and autocorrelation-consistent (HAC)
variance estimator in the construction of test statistics. The correct asymptotic size and
consistency of the bootstrap t-tests then follow by standard reasoning from the coincidence
of the sample and bootstrap pivotal distributions.

Originally, Newey & West (1987) introduced the HAC method to obtain standard errors of
OLS estimators that are corrected for autocorrelated or heteroscedastic error terms. Usually
the HAC method is used when the model, say, for example, model 2.4 is misspecified.
Moreover, it should be emphasized that Newey & West’s (1987) method is only valid in
large samples and is not appropriate in smaller ones. Additionally, in smaller samples, the
usual OLS procedure might do better than their procedure (Section 12.11, Gujarati 2009).
However, the HAC in our augmented Fourier bootstrap (AFB) algorithm will be used for a
different purpose than its original version. As will be explained in later sections, the HAC is
used to add the correct ‘scaled’ noise for making inferences on the intercept coefficient.

12For more details and clarification on definitions, please refer to the introduction section 1.1 of chapter 1.
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2.3.3 The TFT class

The “time frequency toggle” procedures proposed by Kirch & Politis (2011), share with our
proposed method the core idea of drawing bootstrap observations from the DFT of the sample,
followed by inverse transformation to transform the pseudo generated observations back to
the time domain. Based on our definition of this class (see, Section 2.2), the FWB satisfies
this condition; therefore, it belongs to the TFT class of bootstrap procedures. However,
unlike Kirch & Politis’s (2011) three basic variants in the TFT class (RB-TFT, WB-TFT,
LB-TFT), the FWB differs in its resampling method.

The RB-TFT normalizes the DFT points to equal variance, dividing by the square roots of
kernel estimates of the spectral density for the relevant frequency (see, bootstrap procedure
2.2.2). The real and imaginary DFT points are treated equivalently and combined into a single
vector. Following standardization to zero mean and unit variance, these points are randomly
resampled with equal probability by the Efron’s (1979) method. Lastly, the resampled points
are assigned frequencies by multiplication by the normalization weights, and randomly
allocated to the real and imaginary parts of the bootstrap DFT before inversion back to the
time domain. The WB-TFT13 uses standard Gaussian drawings in place of the DFT residuals,
while re-normalizing these using the kernel spectral density estimator in the same manner (cf.
bootstrap procedure 2.2.2). The LB-TFT uses normalized kernel weights as probabilities to
resample DFT points, at random, but with a higher probability of being drawn from the same
frequency range as the sample points they replace.

Each of the RB-TFT, WB-TFT, and LB-TFT methods are dependent on a choice of kernel
function and bandwidth. Due to the availability of many choices of kernel functions and
different bandwidth, many combinations and hence variants are available for each of those
bootstrap methods. In particular, they represent a large class of alternative algorithms. For
this reason, a systematic evaluation of these methods is not possible unless these choices of
kernel function and bandwidth selection are specified. Given ‘reasonable’ choices14, they
should behave in a similar way to our proposed bootstrap, at least in large samples. As
weighted averages of sample data points, they will share the asymptotic Gaussianity property,
and a version of Theorem 2.3.5 should apply, although the autocovariance functions will

13Hence, take care to note that the designation “wild” is used in a somewhat different sense by these authors
to the one we use here. Also, note that this method is an exception to the rule of construction by formula (2.29).
The original sample is used only for estimation of the periodogram and is not itself resampled.

14‘Reasonable’ choices in the sense that the chosen kernel function and bandwidth selection criteria are
capable of estimating the spectral density fX(·) of the process X by f̂X(·) such that

sup
ω∈[0,π]

| f̂X(ω)− fX(ω)| p−→ 0.
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need to be established differently. The bootstrap draws have a spectral density matching that
estimated from the sample by construction, and the bootstrap periodograms accordingly have
a conditional distribution centred on this. However, there are no counterparts of Theorem
2.3.2 and Corollary 2.3.2.1. Like all of the suggested bootstrap methods of Kirch & Politis
(2011), the FWB method, as defined, is incapable of identifying the distribution of the sample
mean due to its degeneracy in producing the bootstrap mean as was stated in the remarks
following lemma 2.3.1.

However, in comparing these methods as they are, the key point that needs to be high-
lighted in this chapter is that our Fourier bootstrap (the FWB) provides the closest possible
match between sample and bootstrap autocovariances. This is due to the fact that the boot-
strap samples share the exact periodogram of the original sample (see, theorem 2.3.2). Indeed,
our method is not suitable for making inferences on the dependence structure of the process
itself, but, as we show, is very well adapted to applications such as significance tests in
regression.

In what follows, for clarity purposes, we will use the respective acronyms TFT and FWB
to distinguish Kirch & Politis’s (2011) procedures from our own.

2.4 Tests of Location

The noted degeneracy of the sample mean following from lemma 2.3.1 is one important
respect in which the conditional distribution of the FWB fails to match the joint distribution
of the sample. If the sample series is centred, as is typically the case with regression residuals,
the bootstrap series will likewise sum identically to zero in every case. As a result, certain
tests will fail. The FWB is a valid procedure for tests of significance of regressors and
restrictions on slope coefficients, since these statistics are formulated in mean deviations and
hence are unaffected by this quirk. However, the phenomenon is important in the context of
tests of location based on the intercept of a regression, where the mean of the disturbances
plays a role in the distribution of the test statistic.

For these applications, like Kirch & Politis (2011), we propose an augmentation of the
basic draw. However, unlike them, we do not suggest to augment with our FWB draw a
sample mean which was simulated based on a different bootstrap method like the MBB or
the AR-sieve bootstrap. To modify our bootstrap procedure so that it does not generate a
degenerate sample mean, our bootstrap sample x∗b drawn from the centred sequence x needs
to exhibit a randomly distributed sample means with central tendency zero. For this reason,
our procedure involves adding, element-wise, an independent zero-mean random variable to
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the generated sample x∗b. This additional random variable will create some noise that will
lead to the desired modification of our bootstrap algorithm.

Although adding a random variable will modify our bootstrap and make it suitable to
test a hypothesis of form 2.6, this addition requires ‘caution’. In particular, adding a random
variable that does not satisfy the CLT conditions will eventually invalidate our bootstrap
procedure. Furthermore, even if this additional random variable possesses the properties that
meet the CLT conditions, if it is not well adjusted for the variance of the sample at hand, it
will cause this bootstrap procedure to mimic the wrong distribution.

Having said this, the natural choice is a standard Gaussian drawing multiplied by a
scale factor Ŝn/

√
n where Ŝ2

n estimates the long-run variance15 of x. If centring means that
x = y− ι ȳ where y is a drawing from a distribution with zero mean, then what is wanted is
an estimate of E(ȳ2). However, kernel estimators applied to x and y are fortunately identical,
and implicitly estimate the latter quantity.

In what follows, we will call this random drawing scaled by Ŝn/
√

n the ‘surrogate mean’
of the process. Under weak dependence, the added term is of Op(n−1/2) and it vanishes in
the calculation of any statistic that only depends on x∗b in mean-deviation form and hence
cannot affect the distribution of such statistics. The Gaussianity likewise entails no loss of
generality in large samples thanks to Theorem 2.3.5. We will refer to the bootstrap procedure
based on resamples with added surrogate means as the “augmented Fourier bootstrap” (AFB).
To implement the AFB, the remaining problem is to choose Ŝ2

n. We describe the simulation-
based approach we have adopted in Section 2.6, but for clarity, we first need to outline the
Monte Carlo technique underlying it.

2.5 Monte Carlo Methodology

Monte Carlo calibration and evaluation of the AFB have been performed using the ‘warp
speed’ technique proposed by Giacomini et al. (2013). In this approach, a single bootstrap
distribution is estimated for the whole experiment, with an order-of-magnitude reduction in
computational cost relative to running an actual bootstrap test at each replication.

Algorithm Procedure 2.5.1. The experimental procedure is as follows. For each of K Monte
Carlo replications:

15The long-run variance of a covariance stationary process {yt}n
i=1 is a measure of standard error of the

sample mean, i.e.,

lim
n→∞

Var
(√

n(ȳn −Eyt)
)
= lim

n→∞
nE(ȳn −Eyt)

2 =
+∞

∑
j=−∞

Cov(yt ,yt− j).
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1. Generate a sample data-set, calculate estimates, residuals and test statistics from these
data, and store the latter.

2. Take a single bootstrap draw from the residuals from Step 1, compute matching test
statistics from the bootstrap sample and also store these.

At the termination of the experiments, we therefore have (for each test) two empirical
distributions for comparison. We refer to the ‘sample statistics’ and ‘bootstrap statistics’,
respectively. We sorted the K bootstrap statistics {t∗i }K

i=1 and the sample statistics {ti}K
i=1

into rank order, from smallest to largest and, for each k = 1, . . . ,K, as

t∗(1) ≤ t∗(2) ≤ ·· · ≤ t∗(K)

t(1) ≤ t(2) ≤ ·· · ≤ t(K)

The p-value pk ∈ [0,1] for the kth experiment is estimated by one of K +1 equally spaced
points on the unit interval, representing the position of the kth sample statistic in the bootstrap
distribution. For a 1-tailed test with rejection in the upper tail, pk is the value such that
K(1− pk) of the bootstrap statistics fall below or at most equal the kth sample statistic. That
is, that

pk =
1
K

K

∑
i=1

1{t∗i < t(k)}

The bootstrap test, therefore, results in rejection at significance levels greater than or equal to
pk. For a two-tail test based on a signed statistic, there are two options: (a) a 1-tailed test of
the absolute statistics (discarding the sign, assuming symmetry of the test distribution about
zero) and (b) the equal tails procedure, which was the one adopted for these experiments. In
this case, the p-values are estimated as

pk = min(1,2m/K)

where m ≥ 0 is the smallest integer, r, such that the kth sample statistic either equals or
lies below the bootstrap draw ranked r+1 in increasing order, or equals or lies above the
bootstrap draw ranked K − r. In a mathematical form, m is defined as

m := inf
r=1,2...,K

{
r : {t∗(r) ≥ tk}∪{t∗(K−r) ≤ tk}

}
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Letting p(k) denote the kth-ranked empirical p-value such that 0 ≤ p(1) ≤ ·· · ≤ p(K) ≤ 1, if
the bootstrap and sample distributions match and are continuous, we expect p(k) to be close
to k/K for each k when the number of Monte Carlo replications is large enough.

The validity of the warp speed method depends on the fact that while the bootstrap
draws are conditional on the sample data in replication k, they have a common unconditional
distribution in the experiment. If and, in general, only if the bootstrap is valid, this distribution
must match the distribution of the sample replicates. Formally, let ξ represent the Monte
Carlo replicate obtained at Step 1, and let ζ represent the random drawing that conditionally
generates the bootstrap data at Step 2. Then, let t = t(ξ ) denote the sample statistic with
distribution F(x) = P(t ≤ x), which we assume to be continuous, and let t∗ = t∗(ξ ,ζ ) denote
the bootstrap statistic. The conventional bootstrap exercise estimates the random measure
Fξ (x) = P(t∗ ≤ x|ξ ). Locating t in this distribution estimates the p-value, which defined
either as

g(t) = 1−Fξ (t) (2.44)

in the case of a 1-tailed test, or as

g(t) = 2min(Fξ (t),1−Fξ (t)) (2.45)

in the case of a two-tailed test with equal tails. To the extent that the error in rejection
probability (ERP) of the test at any significance level is small, the distributions F and Fξ

match, and hence the latter does not in practice depend on ξ . If the distributions match and
are continuous, g(t) is distributed uniformly on [0,1]. How far this property obtains is what
the conventional Monte Carlo exercise seeks to measure.

Now consider the warp-speed Monte Carlo procedure. This estimates directly, and
compares, the distributions F and F∗, where F∗(x) = Eξ (Fξ (x)) and Eξ represents the mean
with respect to the distribution of the replicated samples. The warp-speed p-values are
g∗(t), defined by (2.44) or (2.45) with F∗ replacing Fξ in the formulae to the extent that
the bootstrap is valid and Fξ does not depend on ξ , F∗ and Fξ match and hence F and F∗

match. In particular, if Fξ = F with probability 1 and F is continuous, then g∗ is uniformly
distributed on [0,1]. It is not impossible to have F matching F∗ in spite of bootstrap failure
with positive probability, if the deviations of Fξ from F average to zero, so “only if” can not
strictly be asserted here, as it can in a conventional experiment. For example, it’s well-known
that the bootstrap fails when the sample data have no variance, the bootstrap distribution
depending on ξ even in the limit (Athreya 1987). In such circumstances, we cannot predict
how the warp-speed method might perform. Excepting such cases, however, warp-speed
experiments can be proposed as a reliable technique of bootstrap evaluation. As a check,
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we ran one of our experiments conventionally (1000 replications with 399 bootstrap draws
in each) but found no difference in the results that could not be accounted for by the usual
margin of experimental error.

2.6 Constructing the Surrogate Mean

In our simulation experiments, we find that a surrogate mean based on a simple kernel HAC
variance estimator of S2

n greatly improves the size characteristics of tests of location, relative
to the uncorrected bootstrap. However, a fairly substantial error in rejection probability (ERP)
remains. The variance estimator applied to fitted regression residuals is downward-biased,
and the resulting ERP appears greater as the sample is small, and the degree of autocorrelation
is large.

Therefore, to correct for the ERP, especially when the sample is small or the degree of
autocorrelation is large, we introduced a response-surface correction as a function of the
initial variance estimate and the sample size. The procedure we utilize for constructing the
response-surface is summarized in the following sequential algorithmic steps.

Algorithm Procedure 2.6.1.

1. Generate artificial data from the model

Yt = µ +Vt , Vt = ρVt−1 +Ut , Ut ∼ NI(0,1), t = 1, . . . ,n (2.46)

where the null hypothesis µ = 0 is true, and various values are assigned to ρ and n;
such that n = {50,100,200,400,800,1600} and ρ = {0,0.3,0.6,0.9}.

2. Compute from the mean deviations Yt − Ȳ the kernel long-run variance estimator,
ω̂2 = σ̂2 +2λ̂ where λ̂ denotes the appropriately weighted sum of autocovariances.

Remark: The Bartlett kernel16 was used with bandwidth chosen automatically by the
Newey & West (1994) plug-in method.

3. Perform bootstrap tests of the null hypothesis using the AFB as described in Section
2.4 with an estimated “long-run variance” of the form

Ŝ2
n = ω̂

2Ri (2.47)

16The Bartlett kernel belongs to the set of kernels that satisfy the “reasonable” choices for the RB-TFT
bootstrap to work (Kirch & Politis 2011). According to Kirch & Politis’s (2011) simulation experiments, the
Bartlett kernel works better than the uniform kernel in cases such as the change-point test and Unit root testing.
However, in the former case, the Bartlett kernel exhibits more loss of power.
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where R0 = 0.5, and Ri = 1.1Ri−1; i = 1,2, . . .

4. Apply, for each i, and for the same values of ρ and n, the previous steps with K := 5000
warp-speed Monte Carlo experiments run.

5. Compute the bootstrap p-value pk: the proportion of the bootstrap statistics exceeding
the kth sample statistic, as described in Section 2.4, for each warp-speed Monte Carlo
experiment k = 1,2, . . . ,K.

6. Estimate the empirical rejection rate in an α-level test as

P̂(α) = K−1
K

∑
k=1

I(pk ≤ α) (2.48)

where I(.) denotes the indicator function.

7. Compute, for each i, the Cramer-von Mises (CvM) goodness-of-fit criterion for the
p-value distribution as

CvMi = K−1
K

∑
k=1

(P̂(k/K)− k/K)2. (2.49)

If correct experimental test size at any chosen α is the case |P̂(α)−α| ≤ 1/K, we
expect CvM to approach zero for large K in the best case.17

8. Record the value of (Ri, σ̂
2) that minimizes the CvMi for the specific combination of

(n,ρ).

As discussed in the above algorithm, trial surrogate-means were created using the variance
formula Ŝ2

n = ω̂2R̂i over a grid of values defined by Ri = 1.1Ri−1, starting with R0 = 0.5.
The sequence of experiments was terminated as soon as CvM was observed to increase at
three successive grid points. The value of R yielding the minimum of CvM over the grid was
then recorded. These experiments yielded 24 triples (R,n, σ̂2) where σ̂2 is computed as the
mean of the estimated sample variances over the 5000 replications.18 A trans-log regression

17The Kolmogorov-Smirnov criterion

KS = max
1≤k≤K

{|P(k/K)− k/K|}

yielded the same result as CvM in nearly every case, in our experiments.
18We also tried fitting the response-surface to the average of the long run variances ω̂2. However, the scheme

described gives a better fit to the data.
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(the form selected as giving a better least squares fit than the corresponding linear form) was
fitted to these data points yielding:

R̂(n, σ̂2) = exp{4.33337−2.07486logn+0.3395(logn)2 −0.01868(logn)3

+4.05463log σ̂
2 +0.56462(log σ̂

2)2 −0.30931(log σ̂
2)3

−1.08039logn log σ̂
2 +0.01368logn(log σ̂

2)2

+0.07224(logn)2 log σ̂
2}.

(2.50)

The experiments reported below use the scale factor Ŝn/
√

n given by (2.50) in (2.47)
where σ̂2 is the residual variance in the sample regression and ω̂2 is the kernel estimator
of the long-run variance. Notwithstanding the experimental context in which (2.50) was
created, note that the ingredients of the correction are available from the sample data (in this
case letting σ̂2 denote the sample variance) so that this procedure is fully operational for
practical applications. The experimental setup leading to (2.50) is the simple test of location
in a univariate model, but our experiments suggest that the resulting correction has quite a
general application.

2.7 Monte Carlo Evidence

We have run a number of experiments, designed to evaluate the performance of different
test procedures in the presence of neglected autocorrelation (see, section 2.10). We set
K = 50,000 replications, a feasible choice for the warp speed method. Since, in all cases,
our test is based on HAC variance estimates, the obtained test statistics, in all cases, are
asymptotically pivotal. A feature of bootstrap tests that our experiments do not capture is
the approximation due to a feasibly small number of bootstrap draws. Using the warp-speed
method, by contrast, we can claim to approach the asymptote in measuring bootstrap rejection
rates.

We compared the performance of the AFB, implemented as described, with alternatives
including the TFT residual bootstrap, with spectral density estimated according to the Parzen
window and a bandwidth of ⌊n1/3⌋; the moving blocks method of Künsch (1989) with
block length ⌈n1/3⌉; the stationary block bootstrap method of Politis & Romano (1994)
with mean block length ⌈n1/3⌉; and the AR-sieve bootstrap of Bühlmann (1997) with lag
length chosen by the Akaike criterion up to a maximum of ⌊0.6n1/3⌋. All these bootstrap
methods were applied subject to a pretest for autocorrelation. If the absolute value of the
first-order autocorrelation coefficient is less than 2/

√
n, the standard Efron’s (1979) bootstrap
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with random sampling of the sequence coordinates is used.19 To provide a baseline for the
comparisons, we also performed asymptotic tests, using critical values from the Student t
tabulation with n−3 degrees of freedom.

Test performance under the null hypothesis is evaluated by computing bootstrap p-values
using the warp-speed method, as explained in Section 2.5, and comparing the experimental
distribution with the uniform distribution. For the hypothesis test in question, let pk denote
the estimated p-value in the kth Monte Carlo replication, calculated as in Section 2.5.
Our experiments compare three measures of bootstrap performance. Two measures of
size distortion are P̂(α)−α for a chosen α , where P̂ denotes the empirical rejection rate
(2.48), and the Cramer-von Mises criterion (CvM) (see, 2.49), which summarizes the null
distribution as a whole. The third item reported is the rate of rejection of the null hypothesis
at the 5% level, for specific cases of the alternative. These alternatives are chosen in relation
to sample size to ensure rejection rates larger than 5% but also below 100%, to ensure a
useful comparison. Here, ‘rejection’ is defined as the case of the p-value lying below the
previously estimated null rejection rate in the nominal 5% tests; hence the tables compare
true powers in correctly sized tests, not nominal rejection rates.

Systematic comparisons must entail looking at a range of cases, and the burden of both
reporting and absorbing the resulting plethora of results threatens to become excessive. The
full set of experimental results is reported in the section 2.10. In the subsection below, we
summarize the comparisons by reporting numerical results for important cases. Specifically,
we will report the size distortions20 and power of different bootstrap methods for a particular
dependence structure and sample sizes.

The following subsections describe the models reported in detail.

2.7.1 Significance tests in a regression model

Tables 2.1, 2.2 and 2.3 show the results of experiments with a regression model with intercept
and two exogenous regressors,

Yt = β0 +β1X1t +β2X2t +Ut , , where t = 1, . . . ,n

in samples of size n = 50, 200 and 800. Regressor X1 is a serially independent standard
normal (N(0,1)) sequence, and regressor X2 is an AR(1) process with coefficient equal to

19The justification for this is simply that in preliminary experiments it appeared to improve performance in
several contexts. There are many ways to implement such a pre-test, and in a practical setting a Q test (Box and
Pierce 1970) might also be considered for this purpose.

20All distortion sizes of the tables are of 5% critical levels.
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0.5, driven by N(0,1) shocks. Regressors and disturbances Ut were all sampled afresh at
each replication, so the experimental results are not contingent on a fixed regressor set,
but on the specified distributions alone. The test statistics are robust t ratios with standard
errors computed by the HAC estimator with Parzen kernel and Newey & West (1994) plug-
in bandwidth. The bootstrap significance tests use the signed statistics with equal-tailed
rejection regions.

The alternative hypotheses used to evaluate power are constructed by setting β j = 3/
√

n,
for j = 1,2,3, the scale factor ‘3’ being selected on the basis of preliminary experiments to
yield powers exceeding size, but at the same time not too close to unity. Thus, their role is
solely to rank the relative performances of the different tests applied to an identical set of
models, and is otherwise arbitrary.

The three tables report experimental comparisons with different models of residual
dependence. Table 2.1 shows the averaged results for four different cases of the AR(1) model
Ut = ρUt−1 +Et , with Et an i.i.d. shock and coefficients ρ = 0, 0.3, 0.6 and 0.9. Combined
with the three sample sizes, these table entries, therefore, show the average performance over
12 different cases. The rows AFB, MBB and SBB refer to the augmented Fourier, the moving
blocks, and the stationary blocks bootstraps, respectively. The MBB and SMM (mean) block
lengths are respectively 4 (n = 50), 6 (n = 200) and 10 (n = 800). Do not overlook the
fact that since test statistics relating to the slope coefficients are computed solely in mean
deviations, the so-called AFB tests of β1 and β2 correspond to the basic FWB of Section
2.3. However, the t-statistics for β0 are functions of the disturbance mean, and these depend
critically on the augmentation.

Size Distortion Power
β0 β1 β2 β0 β1 β2

AFB (N) 0.0749 0.0498 0.0519 0.1100 0.3098 0.1852
AFB (χ2

1 ) 0.0840 0.0481 0.0474 0.1187 0.316 0.1793
AFB (t3) 0.0835 0.0471 0.0482 0.1398 0.3435 0.1956
RB-TFT (N) 0.3380 0.0531 0.0550 0.7037 0.3273 0.1960
MBB (N) 0.1820 0.0522 0.0532 0.3920 0.3247 0.19
SBB (N) 0.1416 0.0529 0.0555 0.3008 0.3262 0.18772
Asy (N) 0.2853 0.0636 0.0934 0.5738 0.3154 0.3426
Asy (t3) 0.2924 0.0619 0.0937 0.5907 0.4151 0.3693

Table 2.1 The regression model with correlated disturbances - robust t-ratios with HAC std.
errors for AR dependence structure ρ = 0.9 and sample size n = 200
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The symbols in parentheses show how the shocks were generated in each case. Since we
have emphasised the role of Gaussianity in validating the match of the bootstrap and sample
distributions, it is important to have evidence of how much this influences the outcomes
in practice. The AFB method was therefore compared in three cases, the standard normal
N(0,1), the normalized chi-squared (χ2

1 −1)/
√

2 supplying skewness, and the normalized
Student-t, t3/3, supplying excess kurtosis. To provide a baseline comparison, the final two
rows of the table show the outcomes of conventional asymptotic tests.

In Table 2.2, the residual dependence is generated by finite-order moving-averages, with
the form Ut = Et +Et−m for the three cases, m = 1, m = 2 and m = 4, so giving a total of
nine variations composing the average. Here the block bootstrap methods are replaced in the
comparison by the AR-sieve, denoted SAR in the table. Since interesting comparisons need
to be model-free as far as possible, we omit this method from Table 2.1. The AR-sieve can
only be a generally useful alternative if it performs well outside the autoregressive context.

Size Distortion Power
β0 β1 β2 β0 β1 β2

AFB (N) 0.0796 0.0488 0.0593 0.4615 0.5281 0.6202
RB-TFT (N) 0.1612 0.0483 0.0557 0.7108 0.5185 0.5973
SAR (N) 0.0465 0.0485 0.0520 0.2694 0.5229 0.5922
Asy (N) 0.0796 0.0488 0.0593 0.4615 0.5281 0.6202

Table 2.2 The regression model with MA disturbances with m = 2 and sample size n = 200

Table 2.3, comparing the same alternatives as in Table 2.2, shows results with stationary
fractionally integrated dependence21. The cases simulated have the form Ut = (1−L)−d

+ Et

where the fractional operator (1−L)−d
+ truncates lags to positive values of t . We set d = 0.1

and d = 0.3, so the averages in the table are over six model variants in this case.

21Note that in some finance and economics time series data, observations, taken some distance apart, show
signs of dependence. This phenomenon is known as long memory. The fractionally integrated model is one of
the many ways used to represent long memory process. Under fractionally integrated models, the corresponding
autocorrelation function will decline hyperbolically to zero.
A fractionally integrated process is stationary only if the process may be represented by a MA(∞). This happens
when the order of integration d < 1/2 (Hamilton 1994, p. 448-449).
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Size Distortion Power
β0 β1 β2 β0 β1 β2

AFB (N) 0.1094 0.0468 0.0505 0.7619 0.7144 0.7775
RB-TFT (N) 0.2314 0.0519 0.0525 0.9113 0.7400 0.7817
SAR (N) 0.0973 0.0438 0.0493 0.7175 0.6900 0.7663
Asy (N) 0.16586 0.0938 0.1068 0.16586 0.8591 0.9144

Table 2.3 The regression model with fractional disturbances with integration parameter
d = 0.1 and sample size n = 50

We emphasize that the numerical figures of the tables reported here that represents some
of our findings are intended only to highlight, and are not a substitute for the full sets of
results given in section 2.10. We can, however, note the key findings. Looking first at the
tests of significance (β1 and β2) we see that the AFB (equivalently, FWB) is generally either
superior to or at least as good as its rivals. This method is unique among the bootstrap
alternatives in not depending on a choice of bandwidth, block length or lag length. While
it is not impossible that different choices of these parameters could change the rankings,
the need to make a choice, typically poorly informed, is an significant drawback of those
methods. In the test of location (β0), it should again be pointed out that no claims are made
for the TFT method in this context, but nonetheless, it is helpful to see how it behaves in
practice. In our implementation, the AFB response-surface has been fitted to models in
the autoregressive class and so inevitably performs less well in Table 2.2 than in Table 2.1.
However, it performs as well as the AR-sieve, which is under the same constraint there and
is its only serious competitor.

The stationary fractional models of Table 2.3 are in a different category, because there are
no grounds here for assuming the tests are consistent. Under strong dependence, the statistics
are not asymptotically pivotal, and conditions for the central-limit theorem are violated.
Although the spectrum diverges at the origin, the question is whether in these circumstances
either the frequency domain bootstraps or the AR-sieve can provide better size characteristics
than the asymptotic test. Tests of location fail unequivocally, in every case, an unsurprising
result noting that the sample-means converge only at the rate O(nd−1/2). On the other hand,
the bootstrap tests of significance perform well, although without an unambiguous ranking
of alternatives, whereas the asymptotic tests are conspicuously poor.
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2.7.2 Unit Root Tests

It is well-known that there are differences between unit root and stationary processes when
it comes to asymptotic distribution and rate of convergence of the estimated coefficients
(Hamilton 1994, p. 475). It is recognised that both Said & Dickey (1984) augmented
Dickey–Fuller test and Phillips & Perron (1988) modified t-ratio tests of unit root have
considerable size distortion in finite samples. Therefore, several authors have investigated
the consequence of applying a bootstrap method in such situation, i.e., unit root tests relying
on the bootstrap critical values. In particular, they found that the bootstrap method, when
applied suitably, on the finite sample reduces the size distortion of the asymptotic theory.
See, for example, Chang & Park (2003), Ferretti & Romo (1996), Park (2003), Section 6.3 in
Kirch & Politis (2011) and Paparoditis & Politis (2005), and also Park (2002) and Kreiss &
Paparoditis (2003) for related research on these methods.

Consider the model
yt = β1yt−1 +Ut (2.51)

Our interest lies in acknowledging whether the Fourier bootstrap is capable of testing the
unit root null hypothesis defined by

H0 : β1 = 1 (2.52)

when the error terms {Ut}n
t=1 suffer from serial-correlation.

Remark: Model 2.51 is referred to case 1 in (Hamilton 1994, p. 487) which stands for no
constant or time trend in the regression.

Since Phillips & Perron (1988) modified t-ratio offers a nonparametric treatment of
dependence of the error terms {Ut}n

t=1 in model 2.51 and our object here is simply to
compare the performance of alternative bootstraps in a consistent framework rather than
finding the most powerful or best-sized test, in our experiments, we opt for using the Phillips
& Perron (1988) modified t-ratio rather than the augmented Dickey–Fuller test. There are,
of course, a number of other unit-root tests that may perform better in certain contexts, see
Elliott et al. (1996) and Ng & Perron (2001) inter alia.

In this framework, under the null hypothesis, the data-sets are generated as in the form

yt = yt−1 +Ut , Ut = ρUt−1 +Et , t = 1, . . . ,n

where y0 =U0 = 0, and Et is variously generated.
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To obtain bootstrap samples, we first fit, using the usual OLS regression, the differenced
data-set ∆yt := yt − yt−1 by the following model

∆yt = φyt−1 + εt .

Then, obtain the residuals {ε̂t}n
t=1. This unrestricted filtering step is necessary to ensure the

tests have power, undoing the effect of over-differencing under the alternative, although it
does increase size distortion in small samples. In particular, observe that the residual series
{ε̂t}n

t=1 is stationary under the null and alternative and therefore the AFB is applicable.
The modified t-test statistics suggested by Phillips & Perron (1988) requires the estimation

of the short-run variance and the long-run variance of the residuals {ε̂t}n
t=1. Therefore, denote

by γ̂ε and Ĵε the estimated short-run variance and the estimated long-run variance of the
residuals {ε̂t}n

t=1, respectively. The estimated short-run variance, γ̂ε , have been estimated
using the standard variance estimator and the estimated long-run variance, Ĵε , have been
estimated non-parametrically using the bartlett kernel and Newey & West (1994) plug-in
bandwidth. Mathematically, the modified Phillips & Perron’s (1988) t-test statistics for the
no deterministic components case is given by:

tPP :=

√
γ̂ε

Ĵε

t
φ̂
− 1

2
(Ĵε − γ̂ε)

( Ĵε

n2

n

∑
t=1

y2
t−1

)−1/2
(2.53)

Where

t
φ̂

:= φ̂/sd(φ̂) and sd(φ̂) :=
( 1

n−2 ∑
n
t=2
(
∆yt − φ̂yt−1

)2

∑
n
t=1 y2

t−1

)
Afterwards, obtain the order-one integrated bootstrap samples as:

y∗t = y0 +
t

∑
i=1

ε
∗
i

where the series {ε∗t }
n
t=1 are the AFB resampled series from the residual series {ε̂t}n

t=1 and
y0 is an initial value set to zero22Observe that the generation of the bootstrap sample fulfills
the null hypothesis 2.52 for consistency reasons23.

22The choice of the initial value y0 does not affect the asymptotic as long as this value is stochastically
bounded (See, Sec 4, Chang & Park 2003). To the best of our knowledge, we believe that the authors mean that
the random variable is bounded.

23Basawa et al. (1991b,a) have shown that in the generation of the bootstrap sample, for the bootstrap unit
root tests, the unit root must be imposed to achieve consistency.
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Remark: The usage of the AFB rather than the WFB is compulsory for this bootstrap
procedure to be consistent. In particular, the augmentation of the Fourier bootstrap is critical
to the correct performance of the test, since otherwise, the cumulation of the bootstrap draws
would yield a Brownian bridge in the limit, not the required Brownian motion.

To construct the bootstrap critical values, the bootstrap counterparts of the modified
Phillips & Perron’s (1988) t-statistic defined in equation (2.53) is required. This bootstrap
test statistic is computed with the same sequential steps described above but with OLS
residuals received by regressing the differenced bootstrap data-set on the lagged level of the
bootstrap observation.

Observe that the Phillips & Perron’s (1988) modified t-test statistic defined in equation
(2.53) converges, as n goes to infinity, to the Dickey-Fuller test statistic defined by

1
2

(
W 2(1)−1

)
(∫ 1

0 W 2(r)dr
)1/2 , where W (r) is the Wiener process (2.54)

(eq. 17.4.12 Hamilton 1994, p. 489). Therefore, based on theorems 2.3.2 and 2.3.3, it can
be shown that the bootstrap version of the modified t-statistic converges to the same limit
described in equation (2.54). Accordingly, consistency of AFB is acknowledge for unit root
hypothesis testing.

Cases of the alternative hypothesis, the data-set are generated by simply setting yt =Ut .
There is no need for an arbitrary alternative, as in the regression example, and the rates of
rejection are, in the obvious way, related directly to the degrees of induced autocorrelation in
the series. These features of the experiment can be clearly seen in the tables of individual
model results in section 2.10.

Table 2.4 shows the results obtained under null 2.52 and alternative in bootstrap unit root
tests. The entries are the averages of the same 12 combinations of autocorrelation and sample
size, as in Table 2.1.
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Size Distortion Power

5% CvM
AFB (N) 9.1 8.5 90.9
AFB (χ2

1 ) 9.6 10.0 90.8
AFB (t3) 7.6 11.4 91.2
MBB1 (N) 10.3 16.8 88.5
MBB2 (N) 9.7 14.9 89.2
SBB1 (N) 10.5 16.1 88.9
SBB2 (N) 18.8 8.6 90.0
Asy (N) 39.1 115.5 86.9
Asy (t3) 39.8 113.6 87.8

Table 2.4 Unit root tests with correlated increments using the Phillips-Perron statistic.

2.8 The Multivariate Case

For simplicity’s sake, the analysis has thus far dealt with the case of a single, autocorrelated
series. In the obvious extension to multiple time series that may be cross-autocorrelated, the
essential feature of the basic multivariate draw, to preserve the required characteristics, is
that the same Rademacher variates must be used for each element of the process. If X (n× r)
denotes the matrix whose columns are the time series of each of r variables, the FWB draw
takes the form

X∗ = RX (2.55)

where R is defined as before by (2.28).
Without loss of generality, it suffices to consider the bivariate case with r = 2. Two

additional theorems suffice to establish the requisite properties, as follows. The cross-
periodogram of X = (x1,x2) is in general a complex-valued process.

Theorem 2.8.1. The cross-periodogram of X∗ = (x∗1,x
∗
2) is identical with that of X.

Proof. Similarly to the proof of Theorem 2.3.2, the cross-periodogram points of X = (x1,x2)

can be written as the pair of vectors (2π)−1z1 ◦ z†
2 and (2π)−1z2 ◦ z†

1 where the z j are defined
by (2.24) with appropriate substitutions, where ‘†’ denotes the complex conjugate and ‘◦’
denotes the element-wise Hadamard product of the two vectors. Thus,

z1 ◦ z†
2 = Ax1 ◦Ax2 +Bx1 ◦Bx2 + i(Bx1 ◦Ax2 −Ax1 ◦Bx2) (2.56)
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and z2 ◦ z†
1 is the corresponding expression with reversed sign of the imaginary component.

Then, from (2.55) using (2.37) and (2.38), the cross-periodogram points of the bootstrap
draw take the forms of

PAx1 ◦PAx2 +PBx1 ◦PBx2 + i(PBx1 ◦PAx2 −PAx1 ◦PBx2) (2.57)

and of its complex conjugate.
We now show, reprising the arguments in the proof of Theorem 2.3.2 , that both the real

and the imaginary parts of (2.57) are identical with those of (2.56). Let us consider the real
terms first, recalling that the rows of PA follow the scheme in (2.39) and the rows of PB

follow (2.40) similarly. The sign changes disappear in the Hadamard products, similarly to
the cases of the squares, except that here the signs are not always positive. What matters
is that the signs of the elements of Ax1 ◦Ax2 must match those of (−A)x1 ◦ (−A)x2, and
similarly for B. We therefore conclude that

PAx1 ◦PAx2 +PBx1 ◦PBx2 = Ax1 ◦Ax2 +Bx1 ◦Bx2

This result holds whether or not x1 = x2, which was the case shown previously.
Now consider the imaginary parts in the light of tables (2.39) and (2.40). We find that the

elements of the vectors PBx1 ◦PAx2 and PAx1 ◦PBx2 match those of the respective vectors
Bx1◦Ax2 and Ax1◦Bx2 when the signs of the Rademacher pairs agree. When the Rademacher
pairs take opposite signs, the corresponding elements of PBx1 ◦PAx2 and PAx1 ◦PBx2 match,
respectively, those of −(Ax2 ◦Bx1) and −(Bx1 ◦Ax2). It follows that

PBx1 ◦PAx2 −PAx1 ◦PBx2 = Bx1 ◦Ax2 −Ax1 ◦Bx2. (2.58)

Since the same equalities hold for the complex conjugate, which merely changes the sign on
both sides of (2.58), the proof is complete.

We can calculate the means under the bootstrap distribution of the cross-autocovariances via
the following corollary of Theorem 2.3.3 .

Theorem 2.8.2. Let xpi denote the ith element of vector xp, for i = 0, . . . ,n−1, and p = 1,2,
and let x∗pi denote the corresponding element of the bootstrap draw. For m ≥ 0 and i ≥ m,

E∗(x∗1ix
∗
2,i−m) =

1
n

n−1

∑
j=m

x1 jx2, j−m
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E∗(x∗2ix
∗
1,i−m) =

1
n

n−1

∑
j=m

x1 jx2, j−m

Proof. This follows immediately from the arguments of Theorem 2.3.3. Simply note that

x∗pi =
n−1

∑
j=0

n−1

∑
k=0

wkϒi jkxp j

for p = 1 or p = 2. Accordingly, replace x jx j′ by x1 jx2 j′ in all the expressions where the
latter product appears, and likewise replace x∗jx

∗
j−m by x∗1 jx

∗
2, j−m and x jx j−m by x1 jx2, j−m.

With these amendments, the derivation proceeds unchanged. Then, interchange subscripts 1
and 2 for the second part of the theorem.

These results establish the theoretical properties of the basic multivariate bootstrap, on
the same basis as the univariate case. It remains to consider how best to implement the AFB
procedure of Section 2.4. Let Ω̂ = Σ̂+ Λ̂+ Λ̂

′
denote an empirical HAC covariance matrix

of X , and let lower triangular P̂ denote its Choleski decomposition, such that Ω̂ = P̂P̂′. Then,
letting Z (r×1) denote a standard Gaussian vector, the vector of surrogate means might be
computed as ŜnZ where

Ŝn = n−1/2P̂R̂(n, Σ̂)1/2

and R̂(n, Σ̂) denotes a r× r diagonal matrix of weights. A low-cost implementation of this
method would be to use formula (2.50), with the appropriate diagonal element of Σ̂ inserted
in the formula, to generate each of the diagonal elements of R̂. Systematic comparisons
are not attempted in this instance. We simply report some evidence on the adequacy of this
augmentation scheme, in particular, for testing locations in a bivariate model. Experimental
series of length n = 500 were generated by the VAR(1) model

Y1t = 0.2Y1,t−1 +0.2Y2,t−1 +E1t

Y2t = 0.3Y1,t−1 +0.1Y2,t−1 +E2t

where (E1t ,E2t) are serially independent Gaussian with unit variances and contemporaneous
covariance γ12 = 0.3. Table 2.5 shows the variances and zero-order and first-order covariances
of the resulting series, solved from the Yule-Walker equations.



2.9 Concluding Remarks 79

Y1t Y2t Y1,t−1 Y2,t−1

Y1t 1.124 0.424 0.309 0.379
Y2t 0.424 1.138 0.312 0.241

Table 2.5 VAR covariances

The estimation stage of the experiment tests the hypothesis that the series means are
jointly zero, using the asymptotically pivotal Wald statistic

W = nµ̂
′
Ω̂

−1
µ̂

where µ̂ is the vector of sample means and Ω̂ an HAC estimate of the data variance matrix.
We implement the latter with the Parzen kernel and Newey & West (1994) plug-in bandwidth.
Table 2.6 compares null rejection rates at various nominal significance levels, in 50,000
replications of the experiment, for two cases: the asymptotic test using the χ2(2) critical
values, and the AFB procedure as described. As before, the warp-speed Monte Carlo method
has been used in the bootstrap case.

Nominal significance level 0.1 0.05 0.025 0.01
Rejection rates, χ2(2) criterion 0.1256 0.0692 0.0400 0.0194
Rejection rates, AFB criterion 0.1024 0.0511 0.0264 0.0109

Table 2.6 Wald test of joint significance of series means - results from 50,000 replications

2.9 Concluding Remarks

We have proposed a simple bootstrap for dependent processes based on a Rademacher
wild bootstrap draw from the discrete Fourier transform. While similar methods have been
proposed previously (the so-called TFT class), our variant has the special virtue of exactly
reproducing the sample periodogram in the bootstrap draws. A close correspondence between
sample and bootstrap distributions should be achievable in a wide range of cases. The basic
FWB algorithm is unique in not requiring a choice of bandwidth or other arbitrary param-
eterization. Being purely nonparametric, its performance should not depend on the actual
form of the autocorrelation, subject to weak dependence. While the bootstrap distribution of
the sample mean is degenerate, this quirk is irrelevant in tests depending only on the data in
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mean deviation form, whereas tests of location and unit roots have been successfully handled
by a simple augmentation.

We provide Monte Carlo evidence showing that our method compares well with popular
alternatives, is robust to failures of Gaussianity, and performs best out of the alternatives
studied in tests of location. Examining the full set of rejection frequencies for different cases,
as reported in section 2.10, it can be noted that the AFB has relatively good-size properties
when the autocorrelation is extreme. It does not always have the best power against the
chosen alternatives, but interestingly enough, the asymptotic tests prove to be more powerful
than any of the bootstrap tests, once size-corrected, although this is not a result that can be
exploited in practice, since it depends on the true null distributions being estimated via the
Monte Carlo experiments. In unit root tests, on the other hand, the AFB appears to dominate
over all the other procedures studied.

Our present implementation of the AFB can doubtless be refined, but we note that the
method achieves a very reasonable match of sample mean distributions. In the experiments
reported in Table 2.1, we recorded the means of the generated samples and also the surrogate
means of the AFB draws. To check on the match of distributions, the variances of these
two quantities were calculated for a representative experiment: They are tabulated in section
2.10. The average over the 12 models of their ratios (bootstrap mean variance over sample
mean variance) is 1.067. While the discrepancies appear linked to sample size, they are
scarcely larger overall than what experimental error might produce, increasing confidence in
our response-surface variance estimate.

We have considered alternatives to the response-surface approach to bias correction, in
particular the application of pre-whitening24 to the kernel estimator using an AR(1) filter, as
suggested by Andrews & Monahan (1992). In trials, this method did appear to reduce the
ERP, although not as effectively as the response-surface. The response-surface is calibrated
using autoregressive dependence, and there is certainly evidence in the tables that it performs
better in this framework that when faced with the moving-average cases. An improved
calibration method is one avenue for further research.

In particular, it was reported in a number of studies that HAC methods often have poor
finite sample properties. Recent papers provide robust inference methods for dependent and
heterogeneous observations that are based on estimating the parameter of interest for each of
several groups of data and using conservativeness results for t-statistics in asymptotically
normal group estimates. The robust inference approaches are alternatives to HAC methods
that do not require estimation of unknown (long-run) asymptotic variances and have appealing

24Pre-whitening is a technique used to reduce bias and over-rejection of t statistics (constructed under the
kernel HAC estimator) or to improve coverage probabilities. Ever since their introduction to the pre-whitening
technique in the HAC covariance matrix estimator, practitioners became aware of this method’s effectiveness.
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finite sample properties in different dependence and heterogeneity settings. Therefore, it
would be interesting to compare finite sample properties of this proposed bootstrap methods
with the robust approaches discussed in Ibragimov & Müller (2010) and Ibragimov et al.
(2015).

Additionally, it would be of interest to extend this bootstrap architecturally to incorporate
more time series structures. For example, it would be interesting if one may devise a new
bootstrap approach to perform inferences on parameters of a linear time series model in which
the data set originates from a non-stationary and possibly long-memory characteristics such
as fractionally integrated and others more sophisticate processes. In the current literature,
several papers have used discrete Fourier transform to perform inference in such settings see,
Phillips (1999, 2009) and the references therein.

A feature of the FWB draw not so far discussed in detail is the degeneracy of the
distribution of the series sums of squares according to (2.36). This fact is irrelevant to
the applications studied in this paper, but there could be situations in which it assumes
importance. In such cases, a ‘surrogate variance’ might be implemented, along the lines of
our surrogate mean, by multiplying the bootstrap series by a randomly drawn scale factor
centred on 1. A squared normal variate could serve this purpose, for example. However,
investigation of this extension must also be left for future work.

2.10 Appendix: Tables

Tables of Monte Carlo relative frequencies (50,000 replications) of rejection at the 5% level.
In this section, the values P̂(0.05), which denote the empirical rejection rate at 5%, are
tabulated.

In the tables of previous sections, the columns headed “5%” under “Size Distortion”
show 1000× the average absolute deviations from 0.05 of the left-hand block entries. Under
“Power”, the columns show the average of the entries in the right-hand blocks, in percentage
form.
The case-by-case Cramer-von Mises (CvM) criteria are not reported here.

2.10.1 Regression model with two regressors

The left-hand tables show the case of the null hypothesis of zero coefficients. The right-hand
tables show cases of the alternative hypothesis, with each coefficient equal to 3/

√
n in the

DGP.
β0 = intercept, β1= serially independent regressor, β2 = AR(1) regressor.
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0501 0.0625 0.0557 0.0801 0.7483 0.5526 0.2311 0.1460
β0 200 0.0498 0.0577 0.0553 0.0749 0.8346 0.5804 0.2164 0.1100

800 0.0462 0.0551 0.0502 0.0548 0.8430 0.5676 0.2089 0.0711
50 0.0515 0.0510 0.0532 0.0538 0.7343 0.7151 0.6407 0.4154

β1 200 0.0501 0.0509 0.0484 0.0498 0.8234 0.7969 0.6613 0.3098
800 0.0510 0.0517 0.0514 0.0501 0.8433 0.8158 0.6685 0.2754
50 0.0531 0.0533 0.0570 0.0595 0.7945 0.6967 0.5050 0.2548

β2 200 0.0524 0.0528 0.0514 0.0519 0.9057 0.7687 0.5127 0.1852
800 0.0513 0.0488 0.0508 0.0508 0.9280 0.8011 0.5221 0.1617

Table 2.7 AFB with normal shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0481 0.0643 0.0723 0.1041 0.9522 0.6699 0.1933 0.1702
β0 200 0.0500 0.0643 0.0587 0.0840 0.9372 0.6084 0.1928 0.1187

800 0.0495 0.0566 0.0515 0.0595 0.8960 0.5773 0.1945 0.072
50 0.0464 0.0416 0.0421 0.0455 0.7898 0.7553 0.6744 0.4386

β1 200 0.0467 0.0456 0.0454 0.0481 0.8317 0.7914 0.6662 0.316
800 0.0498 0.0477 0.0482 0.0476 0.8465 0.8085 0.6706 0.2734
50 0.0447 0.0500 0.0477 0.0545 0.8181 0.7533 0.5304 0.2690

β2 200 0.0487 0.0498 0.0497 0.0474 0.8975 0.7915 0.5326 0.1793
800 0.0494 0.0467 0.0488 0.0500 0.9210 0.7982 0.5145 0.1647

Table 2.8 AFB with χ2
1 shocks
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0395 0.0544 0.0556 0.0975 0.7465 0.6066 0.3031 0.2070
β0 200 0.0449 0.0537 0.0562 0.0835 0.8279 0.6103 0.2701 0.1398

800 0.0453 0.0524 0.0504 0.0586 0.8386 0.5929 0.2449 0.0835
50 0.0458 0.0423 0.0442 0.0462 0.8082 0.7739 0.7073 0.4691

β1 200 0.0487 0.0481 0.0455 0.0471 0.8580 0.8225 0.6969 0.3435
800 0.0518 0.0502 0.0498 0.0479 0.8655 0.8225 0.6993 0.2878
50 0.0491 0.0497 0.0513 0.0550 0.8621 0.7706 0.5804 0.2916

β2 200 0.0481 0.0458 0.0470 0.0482 0.9153 0.8070 0.5493 0.1956
800 0.0495 0.0484 0.0468 0.0471 0.9279 0.8186 0.5439 0.1620

Table 2.9 AFB with t(3) shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.1331 0.1632 0.2218 0.4561 0.9560 0.8565 0.7174 0.8414
β0 200 0.1593 0.1743 0.1931 0.3380 0.9748 0.8737 0.6533 0.7037

800 0.1656 0.1680 0.1687 0.2466 0.9774 0.8679 0.6040 0.5435
50 0.0515 0.0495 0.0437 0.0381 0.7543 0.7175 0.5967 0.3247

β1 200 0.0506 0.0511 0.0523 0.0531 0.8274 0.7936 0.6700 0.3273
800 0.0492 0.0525 0.0508 0.0522 0.8387 0.8096 0.6609 0.2839
50 0.0530 0.0579 0.0621 0.0731 0.8154 0.7171 0.5399 0.3260

β2 200 0.0534 0.0543 0.0571 0.0550 0.9134 0.7884 0.5332 0.1960
800 0.0503 0.0510 0.0505 0.0506 0.9267 0.8069 0.5199 0.1672

Table 2.10 RB-TFT with Normal shocks
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0505 0.0638 0.0856 0.2790 0.7609 0.563 0.371 0.6065
β0 200 0.0478 0.0538 0.0640 0.1820 0.8176 0.5568 0.2814 0.3920

800 0.0501 0.0488 0.0483 0.1068 0.8479 0.5457 0.2102 0.2045
50 0.0508 0.0447 0.0460 0.0469 0.7271 0.6883 0.5983 0.3951

β1 200 0.0496 0.0502 0.0493 0.0522 0.82552 0.7935 0.6612 0.3247
800 0.0506 0.0513 0.0499 0.0526 0.8421 0.8169 0.6643 0.2874
50 0.0510 0.0552 0.0599 0.0695 0.8031 0.7063 0.5323 0.3158

β2 200 0.0504 0.0539 0.0559 0.0532 0.9007 0.7909 0.5345 0.19
800 0.0485 0.0533 0.0505 0.0500 0.9244 0.8092 0.5162 0.159

Table 2.11 MBB with block length ⌈n1/3⌉

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0523 0.0683 0.0963 0.2694 0.7563 0.5901 0.4150 0.5898
β0 200 0.0475 0.0599 0.0661 0.1416 0.8246 0.5900 0.2850 0.3008

800 0.0506 0.0528 0.0532 0.0890 0.8450 0.5808 0.2251 0.1572
50 0.0498 0.0479 0.0472 0.0461 0.7436 0.7100 0.6122 0.3874

β1 200 0.0496 0.0503 0.0490 0.0529 0.8246 0.7897 0.6631 0.3262
800 0.0504 0.0476 0.0501 0.0502 0.8384 0.8095 0.6676 0.2732
50 0.0520 0.0548 0.0584 0.0686 0.8057 0.7063 0.5381 0.3095

β2 200 0.0492 0.0512 0.0537 0.0555 0.90492 0.79076 0.52392 0.18772
800 0.0516 0.0491 0.0509 0.0511 0.93138 0.79528 0.51948 0.163

Table 2.12 Stationary blocks bootstrap (SBB) with mean block length ⌈n1/3⌉
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0894 0.1215 0.1981 0.4741 0.8927 0.7790 0.654 0.8043
β0 200 0.0579 0.0851 0.1234 0.2853 0.8628 0.7087 0.4944 0.5738

800 0.0523 0.0706 0.0852 0.1582 0.8546 0.6600 0.3673 0.3282
50 0.0970 0.0864 0.0820 0.0808 0.7398 0.6854 0.6244 0.3950

β1 200 0.0614 0.0595 0.0612 0.0636 0.8269 0.7990 0.6528 0.3154
800 0.0541 0.0526 0.0546 0.0564 0.844 0.8101 0.6660 0.2807
50 0.1037 0.1142 0.1385 0.1660 0.9409 0.8954 0.7942 0.5945

β2 200 0.0648 0.0746 0.0864 0.0934 0.9382 0.8638 0.6815 0.3426
800 0.0555 0.0629 0.0640 0.0705 0.9358 0.8480 0.6054 0.2362

Table 2.13 Asymptotic test with normal shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9

50 0.0830 0.1180 0.1975 0.4817 0.9035 0.8180 0.6913 0.8178
β0 200 0.0571 0.0822 0.1223 0.2924 0.875 0.735 0.5235 0.5907

800 0.0536 0.0696 0.0847 0.1608 0.8672 0.6750 0.3859 0.3330
50 0.0853 0.0794 0.0732 0.0762 0.9099 0.8938 0.8198 0.6088

β1 200 0.0570 0.0553 0.0570 0.0619 0.8811 0.8551 0.7554 0.4151
800 0.0528 0.0524 0.0524 0.0537 0.8682 0.8396 0.7060 0.3237
50 0.0922 0.1059 0.1282 0.1601 0.9391 0.9093 0.8266 0.6343

β2 200 0.0595 0.0711 0.0813 0.0937 0.93534 0.8817 0.7210 0.3693
800 0.0538 0.0593 0.0642 0.0652 0.9338 0.8569 0.6388 0.2393

Table 2.14 Asymptotic test with t3 shocks

2.10.2 Moving Average Dependence

Single lag coefficient of unity with lag m indicated.
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Size Distortion (m) Power (m)

n 1 2 4 1 2 4
50 0.0435 0.0840 0.1314 0.2123 0.4455 0.6169

β0 200 0.0416 0.0796 0.1029 0.2581 0.4615 0.5449
800 0.0439 0.0692 0.0784 0.2772 0.4146 0.4689
50 0.0508 0.0427 0.0571 0.4976 0.4018 0.5001

β1 200 0.0499 0.0488 0.0474 0.5363 0.5281 0.5276
800 0.0499 0.0495 0.0518 0.5620 0.5463 0.5604
50 0.0544 0.0544 0.0611 0.4378 0.5290 0.5883

β2 200 0.0515 0.0593 0.0544 0.4976 0.6202 0.6578
800 0.0531 0.0558 0.0528 0.5168 0.6189 0.6637

Table 2.15 AFB with normal shocks

Size Distortion (m) Power (m)

n 1 2 4 1 2 4
50 0.1393 0.1760 0.2358 0.6397 0.7308 0.8166

β0 200 0.1469 0.1612 0.2088 0.6776 0.7108 0.7934
800 0.1588 0.1516 0.1519 0.6979 0.6937 0.7051
50 0.0481 0.0431 0.0578 0.4665 0.4238 0.5164

β1 200 0.0495 0.0483 0.0466 0.5502 0.5185 0.5182
800 0.0512 0.0496 0.0514 0.5585 0.5541 0.5641
50 0.0545 0.0544 0.0625 0.4403 0.5304 0.6015

β2 200 0.0528 0.0557 0.0525 0.4934 0.5973 0.6484
800 0.0491 0.0538 0.0545 0.5018 0.5999 0.6710

Table 2.16 RB-TFT with Normal shocks
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Size Distortion (m) Power (m)

n 1 2 4 1 2 4
50 0.0307 0.0857 0.1335 0.1212 0.4510 0.6115

β0 200 0.0661 0.0465 0.1128 0.3956 0.2694 0.5642
800 0.0606 0.0621 0.0702 0.3813 0.3825 0.4167
50 0.0485 0.0373 0.0537 0.4752 0.3643 0.4670

β1 200 0.0461 0.0485 0.0464 0.5079 0.5229 0.5127
800 0.0459 0.0487 0.0479 0.5402 0.5571 0.5486
50 0.0501 0.0558 0.0604 0.3978 0.5338 0.5979

β2 200 0.0489 0.0520 0.0547 0.4813 0.5922 0.6472
800 0.0488 0.0534 0.0525 0.4934 0.6080 0.6700

Table 2.17 AR-sieve with Normal shocks

Size Distortion (m) Power (m)

n 1 2 4 1 2 4
50 0.0435 0.0840 0.1314 0.2123 0.4455 0.6169

β0 200 0.0416 0.0796 0.1029 0.2581 0.4615 0.5449
800 0.0439 0.0692 0.0784 0.2772 0.4146 0.4689
50 0.0508 0.0427 0.0571 0.4976 0.4018 0.5001

β1 200 0.0499 0.0488 0.0474 0.5363 0.5281 0.5276
800 0.0499 0.0495 0.0518 0.5620 0.5463 0.5604
50 0.0544 0.0544 0.0611 0.4378 0.5290 0.5883

β2 200 0.0515 0.0593 0.0544 0.4976 0.6202 0.6578
800 0.0531 0.0558 0.0528 0.5168 0.6189 0.6637

Table 2.18 Asymptotic test with normal shocks

2.10.3 Fractional Dependence

Fractionally integrated process with integration parameter d
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Size Distortion (d) Power (d)

n 0.1 0.3 0.1 0.3
50 0.1094 0.2962 0.7619 0.7512

β0 200 0.1643 0.4057 0.7997 0.7775
800 0.2013 0.4871 0.7805 0.8220
50 0.0468 0.0478 0.7144 0.7052

β1 200 0.0476 0.0510 0.8179 0.7696
800 0.0501 0.0481 0.8365 0.7540
50 0.0505 0.0561 0.7775 0.6877

β2 200 0.0539 0.0533 0.8747 0.6936
800 0.0499 0.0493 0.8882 0.6764

Table 2.19 AFB with normal shocks

Size Distortion (d) Power (d)

n 0.1 0.3 0.1 0.3
50 0.2314 0.4334 0.9113 0.8668

β0 200 0.3071 0.5617 0.9156 0.8978
800 0.3564 0.6127 0.8993 0.9119
50 0.0519 0.0463 0.7400 0.6863

β1 200 0.0508 0.0526 0.8251 0.7692
800 0.0510 0.0523 0.8439 0.7670
50 0.0525 0.0549 0.7817 0.6930

β2 200 0.0515 0.0541 0.8660 0.7148
800 0.0513 0.0521 0.8864 0.6744

Table 2.20 RB-TFT with normal shocks
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Size Distortion (d) Power (d)

n 0.1 0.3 0.1 0.3
50 0.0973 0.2532 0.7175 0.6985

β0 200 0.1529 0.3712 0.7804 0.7521
800 0.1893 0.4516 0.7724 0.7999
50 0.0438 0.0433 0.6900 0.6664

β1 200 0.0507 0.0494 0.8143 0.7508
800 0.0481 0.0517 0.8311 0.7605
50 0.0493 0.0534 0.7663 0.6674

β2 200 0.0501 0.0523 0.8615 0.6971
800 0.0489 0.0498 0.8760 0.6677

Table 2.21 AR-sieve with normal shocks

Size Distortion (d) Power (d)

n 0.1 0.3 0.1 0.3
50 0.16586 0.16586 0.16586 0.16586

β0 200 0.18592 0.18592 0.18592 0.18592
800 0.21870 0.21870 0.21870 0.21870
50 0.0938 0.0874 0.8932 0.8679

β1 200 0.0593 0.0604 0.8591 0.8116
800 0.0546 0.0552 0.8514 0.7864
50 0.1068 0.1217 0.9278 0.8881

β2 200 0.0675 0.0802 0.9144 0.8133
800 0.0562 0.0630 0.9024 0.7390

Table 2.22 Asymptotic test with normal shocks

2.10.4 Phillips-Perron unit root test

The left-hand blocks show rejection rates when the null hypothesis is true (series cumulated
in the DGP). The right-hand blocks show rejection rates when the null hypothesis is false
(series not cumulated in the DGP).
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0491 0.0261 0.0381 0.0188 1 0.9997 0.9191 0.0997
200 0.0513 0.0547 0.0450 0.0359 1 1 1 0.8878
800 0.0503 0.0586 0.0474 0.0432 1 1 1 1

Table 2.23 AFB with normal shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0490 0.0263 0.0343 0.0187 0.9997 0.9977 0.9292 0.0895
200 0.0503 0.0526 0.0439 0.0340 1 1 1 0.8893
800 0.0504 0.0590 0.0475 0.0426 1 1 1 1

Table 2.24 AFB with χ2
1 shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0546 0.0382 0.0424 0.0232 0.9995 0.9985 0.9368 0.1067
200 0.0512 0.0575 0.0482 0.0385 1 1 0.9999 0.9063
800 0.0520 0.0594 0.0480 0.0446 1 1 1 1

Table 2.25 AFB with t(3) shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0433 0.0304 0.0258 0.01036 1 0.9991 0.8601 0.0616

200 0.0432 0.0408 0.0347 0.02064 1 1 1 0.7766
800 0.0435 0.0450 0.0413 0.0262 1 1 1 1

Table 2.26 RB-TFT with Normal shocks
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Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0496 0.0361 0.0328 0.0174 1 0.9985 0.73912 0.02368

200 0.0487 0.0477 0.0421 0.0300 1 1 1 0.61282
800 0.0499 0.0491 0.0474 0.0333 1 1 1 1

Table 2.27 MBB with block length ⌈n1/3⌉

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0515 0.0362 0.0347 0.0183 1 0.9994 0.8359 0.0566

200 0.0515 0.0424 0.0417 0.0330 1 1 1 0.7728
800 0.0486 0.0470 0.0453 0.0364 1 1 1 1

Table 2.28 Stationary blocks bootstrap (SBB) with mean block length ⌈n1/3⌉

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0676 0.0296 0.0165 0.0058 1 0.9994 0.7471 0.0248

200 0.0571 0.0331 0.0245 0.0167 1 1 1 0.6449
800 0.0540 0.0390 0.0342 0.0214 1 1 1 1

Table 2.29 Asymptotic test with normal shocks

Size Distortion (ρ) Power (ρ)

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.0686 0.0330 0.0238 0.0098 0.9998 0.9980 0.8238 0.0348

200 0.0582 0.0357 0.0278 0.0197 1 1 1 0.6785
800 0.0516 0.0407 0.0337 0.0221 1 1 1 1

Table 2.30 Asymptotic test with t3 shocks
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2.10.5 Empirical Variances of Series Means

This table is mentioned, as a note, in the conclusion section. The data has been generated as in
the model 2.4 with an AR(1) error terms with different ρ (50,000 Monte Carlo replications).

Sample mean AFB bootstrap mean

n 0 0.3 0.6 0.9 0 0.3 0.6 0.9
50 0.979 1.981 5.789 71.94 1.264 2.183 7.328 73.14

200 0.998 2.027 6.184 92.87 1.101 1.993 6.553 85.75
800 0.999 2.043 6.246 98.47 1.106 2.001 6.471 97.22

Table 2.31 Variances of the two sample means



Chapter 3

Frequency-based Bootstrap Methods for
DC Pension Plan Strategy Evaluation

3.1 Introduction

In Pension investment literature, it is important to choose the strategy that provides the best
real income after retirement, especially seeing that individual investors must manage their
funds due to the transition from defined benefit pension (DB) to defined contribution (DC)
pension plans (Cannon & Tonks 2008). Despite the abundance of different models for long-
term investments, in theory, the choice of the best strategy should be the one that maximises
the real reward-to-risk trade off over a specific investment horizon. The computation of the
reward-to-risk trade-off of long-term investment strategies requires, among other things, an
accumulation model plot and data generation of asset returns which accounts for scenario
analysis.

An accumulation model design mainly involves annual contributions, and it may incur
lots of other complexity depending on its role to serve the research topic in question. The
generation of asset returns requires some assumptions about the possible future situations
and takes into consideration previous historical observations. Formerly, practitioners and
researchers have applied Monte Carlo and bootstrap simulation-based methods to generate
asset-return samples to build different distributions for long-term cash-flow performance
(CFP) measures such as terminal accumulated wealth (TAW) (Blake et al. 2001).

In the Monte Carlo simulation of asset returns, practitioners assume that the perceived
observations follow a particular data generating process (DGP). To create a TAW distribution,
practitioners need to simulate different artificial asset-return paths1 based on pre-specified

1Each path represents a hypothetical investor’s lifetime return on both equities and bonds.
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DGP. Then for each path, only one TAW may be computed; hence, for different artificial
samples, various TAW values are observed. Thus, a distribution of TAW can be obtained
from many artificial samples resulting in multiple values.

Bootstrap simulations are computer-intensive methods for estimating distributions by
resampling the original data. In Pension literature, due to the lack of long-term observations,
practitioners often use a bootstrap simulation of asset returns. In this simulation-based ap-
proach, the practitioner does not need to assume any particular DGP for the asset returns, and
the simulation occurs non-parametrically. Therefore, for each resampled bootstrap sample
only one TAW may be computed. When creating many bootstrap samples, a practitioner
would be able to produce many artificial observations of TAW, thus creating an empirical
distribution of TAW.

Both Monte Carlo and bootstrap simulations of asset returns involve some inaccurate
assumptions that have been previously commonplace in finance. For example, the Monte
Carlo simulation of asset returns is model-sensitive; hence, if the assets were not truly
generated from such a particular distribution the modelling of the TAW distribution, might be
misleading. Thus, lots of former researchers have favoured the bootstrap simulation method
of asset returns due to its nonparametric aspect (see, among others, Wang 2012, Moore &
Nambiar 2012, Dichtl & Drobetz 2011). However, the bootstrap methods were originally
designed to build a confidence interval for simple statistics such as the mean (Efron 1979,
Cogneau & Zakamouline 2013). Moreover, theoretical econometricians have proven that the
original bootstrap is incapable of producing a confidence interval, even for simple statistics,
when some characteristics of the DGP are not met. In particular, the standard bootstrap
(SB) may not be applied when the data suffer from heavy-tails, even in the independent and
identically distributed (i.i.d.) case (Athreya 1987). Moreover, the moving block bootstrap
(MBB) method breaks the stationarity of the originally stationary-observed series (Romano
& Wolf 1999).

Although these beliefs of bootstrap failure are well-known in econometric literature, in
long-term investment literature practitioners still apply the SB and MBB methods, believing
that they preserve many of the characteristics of the actual distribution, including the mean,
standard deviation, fat tails, and skewness of returns (Lee 2013). As a result, assuming
inaccurate assumptions led them to reach the conclusion that there is no significant impact on
long-term return analysis between Monte Carlo and bootstrap methods. Based on these false
assumptions and other available literature that lay stresses on the fact that there is not much
weight on the choices of generating asset returns from Monte Carlo or Bootstrap simulations
that affect the outcome of TAW, many researchers use normal distributions to generate asset
returns (see, Byrne et al. 2006, p. 219).
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Cogneau & Zakamouline (2013) mention the inadequacy of utilizing either the SB
or MBB in this setting. In particular, the MBB was designed to deal with constructing
a confidence interval for a parameter (also known as a statistic) that is relatively well-
understood, like the mean, median, correlation or standard deviation of the unknown primary
distribution of the DGP. However, financial practitioners apply the MBB to construct a
confidence interval for a statistic that involves successive intervals. For example, they rely on
relatively short-term returns, namely annual, to assess long-term CFP measures. Moreover,
they have found that the MBB suffers from estimation bias which may only be avoided if
specific assumptions are made about the nature of the asset returns DGP.

Inspired by Cogneau & Zakamouline’s (2013) findings, some researchers reported results
based on a range of block sizes (Forsyth & Vetzal 2016), while Dichtl et al. (2016) used
different bootstrap techniques such as the stationary bootstrap of Politis & Romano (1994)
and the matched block size method. However, it should be noted that in practice it is often
not well-understood how to decide upon which bootstrap method to apply in long-term
investment, especially when the DGP of asset returns is unknown in general.

Therefore, choosing between the different available bootstrap methods in the econometric
literature to solve practical implementation for assessing long-term decisions requires careful
compromises. In particular, for a practitioner to decide which bootstrap simulation-based
method must be applied, he or she needs to make some assumptions about, at least, the char-
acteristics of the DGP of asset returns. This may be achieved by forming “Prior knowledge”
of asset returns DGP by applying various univariate and multivariate econometric tests on
realized observations. Then, based on the “prior” information, one may create models that
represent the DGP. It might occur that there is more than one possible econometric model
from which the asset returns might be generated, because the DGP of asset returns is never
accurately known. Therefore, deciding which bootstrap method needs to be implemented
might be a puzzle due to the lack of comparison between different bootstrap methods in the
finance literature.

To the best of our knowledge, we believe that the limitation of applying different bootstrap
methods to assess a long-term investment outcome has never been studied in the previous
literature. Ideally, the bootstrap that needs to be selected in any long-term investment
is the bootstrap that generates a distribution of TAW that coincides with the actual TAW
distribution, if data is sufficient. Moreover, in the finance literature, frequency-based bootstrap
methods and other time-domain bootstrap methods that are gaining growing familiarity in
the econometric literature are seldom used. Therefore, our work will address the limitation
of applying different bootstrap methods, including the frequency-based ones, to assess a
long-term investment outcome. Based on our Monte Carlo experiments, we find that the
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Multivariate Fourier bootstrap (MFB) is the most robust bootstrap method that needs to be
implemented to generate CFP measures’ distribution similar to its original one, if data is
available. We will also compare several pension strategies across different countries using
previous bootstrap methods such as Standard Bootstrap (SB) and Moving Block Bootstrap
(MBB), along with the MFB, to understand the disputes financial researchers have when
recommending the optimal strategy.

The remainder of this work is organised as follows: Section 3.2 presents the latest
financial background on investment strategies in long-term investment such as pension plans.
Section 3.3 proposes the accumulation model which will be used to compare different long-
term parameters across different bootstrap methods and countries. Section 3.4 addresses the
difficulties in estimating long-term parameters in pension-plan literature using conventional,
simulation-based methods used in econometric literature. Section 3.5 reconsiders previous
asset returns generating simulation-based methods used in pension literature. Section 3.6
explains the gathered data which will be used for analysis in section 3.7 to give prior
information of the DGP of the assets returns. Section 3.8 illustrates our Monte Carlo
Simulation exercise for selecting the best bootstrap procedure that mimics the true distribution
for each of the various CFP measures. Based on the choice of the chosen bootstrap method,
we will rank strategies for a number of countries, based on previous as well as new bootstrap
methods in section 3.9.

3.2 An introduction to pension investment strategies

The investigation of the reward-risk trade-off of long-term investment strategies is currently
experiencing a boom in the finance literature due to the shift by many governments, public
entities, and large corporations from defined benefit (DB) to defined contribution (DC)
schemes (Poterba et al. 2006, Cannon & Tonks 2008). In the DC pension plans, the pensioner
bears the total risk of the outcome of his or her investment decisions including inadequate
contributions, provided asset price, longevity and inflation (see, Blake et al. 2001). Thus, it
is quite important for pensioners to recognise the strategy that will generate the highest real
return at retirement.

As a resolution, lots of researchers started introducing saving plans, especially for
retirement, that reduce risk in the long-run. Specifically, the life-cycle (LC) strategy is the
most common approach among governments, institutions, and other entities for investment
(Schleef & Eisinger 2007). Under this plan, pensioners invest in stocks in the early years and
then gradually switch into less volatile assets like bonds, bills, and cash in later years as the
investor ages (Shiller 2006).
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In fact, in pension-investment literature, there is little agreement among pension scholars
on the asset allocation investment strategies for multi-period long-term investors such as
pensioners. For example, Blake et al. (2001) promote high-equity content for long-term
investors, whereas Siegel (1998) recommends 100 percent stocks. This proposal is based
on the notion of time diversification; equity stocks become less volatile as the time horizon
strengthens (Siegel 1998, Campbell & Viceira 2002). Brennan et al. (1997) showing that
bonds and stocks’ returns are mean-reverting and hence are less risky from the perspective of
a long-term investor.

Nonetheless, Basu et al. (2011) show that dynamic switching in asset allocation, consid-
ering the retirement-target return, results in a higher terminal value of portfolio retirement
compared with the LC plan in the US. In particular, they propose a dynamic lifecycle ap-
proach that rearranges asset allocation based upon the annual accumulated wealth compared
with the target return. A similar approach was proposed by Wang (2012), which is called
dynamic lifecycle with a momentum (DLCM) strategy, and combines LC strategy with
market return movements. Furthermore, for comparison reasons, the 50% stocks and 50%
bonds strategy is another fixed asset allocation strategy used in the literature (see, Booth
2004, Shiller 2006).

The comparison of most of the above strategies is not uniform. For example, most of
these strategies aim to maximise nominal rather than real terminal values (Donnelly et al.
2015). Moreover, pension researchers have shown that their designed plans are superior to
other strategies for a particular country like the US, but not globally. Previously, most of the
strategies were compared using the TAW distribution rather than other CFP measures like
the internal rate of return (IRR) and the geometric mean return (GMR). Three questions are
raised in this sense:

1. Would a particular strategy outperform another when real asset returns are compared
rather than nominal asset returns?

2. Would an individual strategy outperform another only in particular countries?

3. Would a certain strategy outperform another based on TAW distribution while not
based on other CFP measures, like the IRR and the GMR?

We will approach these questions in the following section by implementing a reasonable
uniform accumulation model across different countries and selecting a reliable bootstrap
method for simulating asset returns that mimics the possible future real scenarios of an
individual’s terminal wealth based on historical observations.
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3.3 The accumulation model

To reduce most of the risks involved in DC investment plan2 and to compare the outcome of
strategies across different countries, our accumulation model considers the homogeneity of
pensioners’ initial wage; each citizen of a particular country starts with an initial salary, S0,
of 10 units of the country of interest, c. Moreover, our model assumes a homogeneity of the
pensioners’ contribution rate that is a constant for all countries and set to 10%. Hence, the
initial contribution to the pension retirement wealth for each country is equal to one unit of
value of the country’s currency.

Furthermore, just after the initial salary, the second salary of each hypothetical participant
will depend on the annual wage growth gc,t , which is heterogeneous and different in each
country c at a particular time t. We assumed, in our model, that the real wage growth is
constant over time (denoted as gc). In our simulations, we defined the annual wage growth-
rate of country-specific c (gc) as the average wage growth of that particular country c during
the period spanning between 1900 and 20073. Hence, the annual salary of an individual
living in the country c at a particular point of time t, Sc,t , can be given as

Sc,t = S0 (1+gc)
t

where S0 represents the initial salary.
A simple retirement accumulation model will be adopted to determine the expected

distribution of a retirement portfolio under different strategies in a DC pension plan. We
consider the following stream of salaries for individuals living in country c, starting their
contribution at year 1, and retiring at period T .

≈

Cash flow

Time period 0 1 2 3 T-1 T

Sc,0 Sc,1 Sc,2 Sc,T−2 Money
Withdrawal

2In a DC plan, members suffer from a range of risks involved such as: charges and other costs imposed by
the DC plan provider, risk of inadequate contributions, asset price risk, interest-rate risk, and inflation risk (see,
Blake et al. 2001, P. 188)

3These growth rates are tabulated in Table 3.1
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In this case, the TAW value of the pension fund at retirement time T in a particular
country c under a given strategy k, WT,c,k, is given by

WT,c,k = 0.1
T−2

∑
t=0

St

T

∏
u=t+2

(
1+ rc,u,k

)
where 0.1 stands for the plan contribution rate and rc,u,k represents the rate of return for each
investment strategy k, at time u, and in country c.

It is worth noting that the outcome of such simulations would represent, for each country,
an index rather than currency quantities in real money (see, Shiller 2006, Basu et al. 2011).
Indeed, a 10 unit of fixed starting salary and a 10% fixed contribution rate implies that one
unit is invested in the pension fund in the first year. Thus, if the terminal accumulated wealth
WT,c,k turns out to be 150, this means that the end-of-period wealth is 150 times the initial
contribution.

We find that the value of TAW is dependent on the portion of the investor’s annual
salary contributed to his or her retirement plan and the rate of return earned during different
periods of time until the final year before retirement. It therefore depends on the strategy of
investment as well. Considering that the rate of return changes with the investment strategy,
to reduce the sources of randomness, we assume that asset-allocation strategies within the
DC pension plans are only dependent on shifting between risky equities and riskless bonds.
Therefore the portfolio return, rc,t,k, is a combination of the return on equities, et , and the
return on bonds, bt . Denote by αt,k the proportion invested in equities at time t for each
strategy k; therefore, the investment return is defined as

rt,k = αt,ket +
(
1−αt,k

)
bt (3.1)

The pension portfolio return, rt,k, is a key variable in the model as it indicates investment
strategy k = 1,2,3,4,5 that assigns the weights of different assets in the retirement portfolio.
For example, in the 50 percent stocks and 50 percent bonds strategy, the variable αt,2 is equal
to 0.5, which is a constant proportion in equities. Thus, the variable αt,k is determined by the
strategy being implemented.

3.3.1 The mathematical representations of different strategy weights
in pension portfolio returns

1. In a 100 percent stocks strategy, the investor invests 100 percent in equities and holds
them for the entire investment period T , thus αt,1 = 1, for t = 2,3, . . . ,T .
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2. In a 50 percent stocks and 50 percent bonds strategy (50-50 strategy), as discussed
earlier, the investor invests 50 percent of his contribution in equity and the rest in
bonds, hence, αt,2 = 0.5, for t = 2,3, . . . ,T .

3. In a simple LC strategy, the investor invests 100 percent in stocks for thirty years
and then gradually switches stocks to bonds at the beginning of each year. Thus, the
proportion invested in equities, αt,3, is dependent on time t, and given by

αt,3 =

{
1 if t ≤ 30

1−0.1(t −30) if t = 31, . . . ,40

4. In the DLCM strategy, the investor invests 100 percent in a stocks portfolio, as in
a simple lifecycle strategy, until the asset-allocation switching period. Rather than
automatically switching from stocks to bonds linearly each year, the asset allocation
decision is based on the previous year’s stock return et−1. Therefore, the proportion
invested in equities, α , depends on time t as it will randomly change depending on the
random observed value et−1. If t ≤ 30 then αt,4 = 1. For t = 31, . . . ,35 αt,4 is given
by:

αt,4 =


1 if et−1 > 0.1
0 if et−1 <−0.1
0.8 if et−1 ∈ [−0.1,0.1]

For t > 35, αt is given by:

αt,4 =


1 if et−1 > 0.1
0 if et−1 <−0.1
0.6 if et−1 ∈ [−0.1,0.1]

5. In the DLCT accumulation strategy, the investor’s asset allocation decision is based
on the past performance of the retirement-accumulated wealth. For example, during
the switching period, if the investor has accumulated wealth greater than the target
accumulation (Wt,c,5 > W̃T,c) at the beginning of each year, the portfolio is partially
switched to bonds; otherwise, it remains as 100 percent in stocks. However, if the
switch has begun and the accumulated wealth drops below the target (Wt,c,5 < W̃T,c), the
fund is switched back to stocks. Therefore, again, the proportion invested in equities α

is dependent on time t as it will randomly change, depending on the random observed
value of the accumulated wealth Wt,c,5. For t ≤ 30, αt,5 = 1. For t = 31, . . . ,35 , αt is
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given by:

αt,5 =

{
1 if Wt,c,5 ≤ W̃t,c

0.8 if Wt,c,5 > W̃t,c

For t > 35, αt is given by:

αt,5 =

{
1 if Wt,c,5 ≤ W̃t,c

0.6 if Wt,c,5 > W̃t,c

where W̃T,c is the target accumulated wealth at period T . Mathematically it is dependent
on the growth rate g and target rate of each country c, and is represented by

W̃t,c =
t−2

∑
i=0

(1+gc)
i (1+ r̃T,c)

t−i−1

where r̃T,c and gc are the target return represented by the geometric mean of the annual
real equity-return and the salary growth-rate of each country c respectively. The
investor’s target return is different in each country as the stock returns in each country
are different. Table 3.1 gives our calculated values of the investors’ target return and
average wage growth for each country.

Note that the observed accumulated wealth W ∗
t,c,5 for each individual in a given country

c is different depending on his or her asset allocation whose the return at a given period
t will be denoted by r∗c,t . In this case the accumulated wealth in a given country c and
time t, W ∗

T,c,k, is computed as

W ∗
t,c,k =

t−2

∑
i=0

(1+gc)
i

t

∏
j=i+2

(
1+ r∗j,c,k

)
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Table 3.1 Target return & average real wage growth constant values used across countries

Country Target return Average real wage growth

Australia 7.9% 1.0%
Belgium 2.5% -2.0%
Canada 6.3% 1.0%

Denmark 5.3% 2.0%
France 3.7% 2.0%

Germany 3.4% 1.0%
Ireland 4.6% 1.0%
Italy 2.5% 1.0%
Japan 4.3% 6.0%

Netherlands 5.4% 4.0%
Norway 4.5% 1.0%

South Africa 7.5% 0.0%
Spain 4.0% 2.0%

Sweden 7.8% 2.0%
Switzerland 4.5% 2.0%

UK 5.5% 1.0%
USA 6.5% 1.0%
World 5.07% 1.6%

1 The Target return r̃T,c is being computed as the geometric mean across all 108 observations of the annual Real
Equity TR (% Total Return) for each country.
2 The Average real wage growth, gc, used is the mean and it is dependent on each country c.

The idea of target returns in the target accumulated wealth was introduced by Basu et al.
(2011), whereby a dynamic life-cycle strategy with a target return in which the switching of
stocks to fixed-income assets depends on whether or not the retirement accumulation meets
the investor’s target-return at that particular moment in time. In this chapter, the investor’s
target return is computed as the geometric mean of the annual real stock return for each
country.

In theory, maximising the investor’s expected utility, or terminal accumulated wealth over
a particular holding period, is referred to as the optimal portfolio. In practice, pension-related
researchers often lack sufficient data to compute the estimated risk and return. Therefore,
some of the practitioners often generate data from estimated parameters or rely on asymptotic
theory, both of which provide a poor approximation to the actual distribution of the statistic
of interest; hence, the process of doing so has always been associated with uncertainty, as
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it may lead to misleading inferences. Thus, finance researchers, to avoid difficulties in the
method of generating returns, and to improve their observed finite-sample performance, often
refer to powerful simulation techniques such as bootstrap methods.

Before specifying the bootstrap utilised in this chapter, it is of importance to discuss the
parameters required for assessing different pension strategies. As discussed earlier, we will
be using the TAW, IRR, and GMR distributions for assessing different strategies. In the next
section we discuss these parameters with mathematical rigour to show that these statistics
depend on a probability distribution of joint returns rather than probability distribution of
individual return.

3.4 The concerns of estimating long-term parameters

As discussed by Cogneau & Zakamouline (2013), formerly, bootstrap methods were designed
to find estimates of unknown parameters like mean, median, variance, correlation, etc. which
involve only one (univariate or multivariate) distribution. However, in finance, investors are
not usually interested in estimating such parameters; rather, they opt to study risk and reward
over a range of subsequent periods. Hence, temporal structure matters in such parameters.
Particularly, in finance, practitioners are interested in determining parameters with temporal
joint (Univariate or Multivariate) distributions of successive intervals of returns.

Although our parameters are similar in their construction to those of Cogneau & Za-
kamouline (2013), our settings are different for two reasons. The first reason is that, in our
model, the assessment of strategies in pension planning involves the pension-accumulation
model. For example, the Sharpe Ratio will be computed based on simulated observations
such as the TAW, IRR, and GMR rather than long-term returns. The second reason is that the
performance measures used to evaluate different strategies are not the same as those used in
their paper. In particular, our analysis is not limited to the Sharpe Ratio; other performance
measures will be employed as well.

Having said this, it is important to mention the mathematical relationship between TAW,
IRR, and GMR and the temporal joint distributions of nominal returns. Following the same
notation as in previous sections, let ρT,k = (r1,k,r2,k, · · · ,rT,k) be an observed sample of
returns which is based on strategy k and a fixed time horizon T that represents intended
retirement date. The TAW may be simplified and represented as

WT,k =
T−2

∑
i=0

(1+g)i
T

∏
j=i+2

(
1+ r j,k

)
(3.2)
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This implies that the TAW may be defined by a function, η , such that

WT,k = η
(
g,T,ρT,k

)
where g, T , ρT,k are as mentioned earlier. Based on the TAW function, the IRR, βk, may be
easily obtained by solving the non-closed form solution of the following equation(

1+βk

βk −g

)[
(1+βk)

T−1 − (1+g)T−1
]
= η

(
g,T,ρT,k

)
(3.3)

Using Descartes Rule of Sign, there is at most one IRR if the cash flow changes sign once
(Turnbull 1952, Norstrøm 1972, p. 99-102). If this happens, then there is a unique solution
for equation (3.3), which we denote by

βk = φ
(
g,T,ρT,k

)
It is also straightforward to observe that the GMR, δT,k, may be computed by the following
function

δT,k = γ
(
T,ρT,k

)
=

(
T

∏
j=2

(
1+ r j,k

))1/(T−1)

−1
(3.4)

In all of the above CFP measures, the variable ρT,k is introduced. It represents the temporal
joint distribution of the nominal returns {r j,k}T

j=2. Hence, all the represented CFP measures
depend on the temporal joint distributions of the nominal returns.

Researchers are usually interested in determining the strategy’s risk as well as its perfor-
mance measure to rank strategies. These measures are estimated based on available data.
However, due to the lack of sufficient data, professionals resort to simulation methods. To
illustrate the ideas briefly, consider that one has observed a sample of T nominal returns
ρT,k. Then one may only compute one value for each of the CFP measures, namely the
TAW, IRR, and GMR. The strategy’s risk-measures like the VaR or Shortfall Risk (SR) may
not be computed based on one sample only. Moreover, even if the observed sample, ρn,k,
of nominal returns has a length of size n such that n > T , if n is not much greater than
T , the intended year of retirement that represents individual lifetime, one may not obtain
many non-overlapping blocks to compute these parameters. Therefore, practitioners resort
to simulation methods that enable them to create many pseudo-samples that allow them to
estimate such long-term parameters.
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It should be highlighted, however, that simulation-based approaches, like the bootstrap
methods, were not originally designed for computing such parameters, say the Sharpe Ratio
which is obtained based on CFP measures (TAW, GMR, IRR) that are themselves dependent
on the joint temporal structure of nominal returns ρT,k. Therefore, estimating parameters
such as the Sharpe Ratio using a conventional bootstrap approach needs to be justified. We
will verify that when applying a particular bootstrap method on datasets that attain some mild
assumptions about the DGP, a practitioner may find reasonable estimates of such long-term
performance parameters that mimic reality. The next section presents a literature review on
simulation-based methods used in pension research to generate pseudo asset-return samples.

3.5 Previous literature on asset return DGP

Previously, scholars and actuaries often favoured the Monte Carlo simulation to evaluate the
investment risk for both DB and DC pension plans, (see, Blake et al. 2001, Johnston et al.
2001). However, Monte Carlo simulations have serious consequences. They generate data
from a predetermined probability distribution, which of course contradicts reality, as it is
never certain how data are generated. Another misconception implemented by a significant
number of practitioners, and one that almost all scholars fall into, is the classical idea that
the returns are normally distributed and their correlations constant. Therefore, scholars and
practitioners have been moving to other simulation-based methods such as the Bootstrap.

Initially, Efron (1979) introduced this method of generating pseudo-samples indepen-
dently from i.i.d. observations. The practical idea from a financial perspective is that a
practitioner may obtain a pseudo-sample from historical observations of returns which con-
tain good and bad events. Therefore, creating new observations based on such historical data
provides a hypothetical scenario of reality. Simulating many hypothetical scenarios may
allow practitioners to evaluate long-term parameters. Ultimately, this method of simulating
returns using Standard Bootstrap methods needs some assumptions on the DGP of stock
returns, namely independence, and identical distribution of returns. This approach has been
conducted by many authors including Lloyd & Modani (1983), Leibowitz & Langetieg
(1989), and Dierkes et al. (2010), among others.

Ever since its introduction, statisticians and econometricians have always tried to weaken
those assumptions to produce data from time-dependent observations. One of the most
prominent bootstrap methods that are well-known to practitioners is the MBB. Although
the MBB may be considered more robust than its counterparts, there is always a loss in the
efficiency of such a bootstrap procedure (Liu & Singh 1992). The MBB approach involves
partitioning the data into blocks of equal terms or length b, either non-overlappingly (see,
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Carlstein 1986) or overlappingly (see, Künsch 1989). In our simulation, we adopted the
overlapping case because it may provide a higher estimation efficiency than non-overlapping
blocks (see, Hall & Yao 2003). However, there are not much differences between these two
methods in the applied world (see, Horowitz 2001). Briefly, the overlapping MBB procedure
considers that the vectors in original observations are divided into overlapping blocks of
length b. Hence, we would end up with l = T −b+1 blocks. Then, to obtain a bootstrap
sample, the algorithm needs to sample randomly from the blocks with replacement from all
possible blocks.

Politis & Romano (1994) argue that in the finite dimensional space when the number
of observations is limited, the blocks being stationed next to one another will distort the
stationarity property of the observed data set. Hence, the pseudo sample becomes non-
stationary while the observed sample is stationary. Note that since the MBB re-samples
retain the same dependency structure between two dependent data in a given block, such as
the annual real returns for stocks and bonds, the MBB preserves the serial correlation and
cross-correlation within the elements of the block but not within the blocks themselves.

In finance, the MBB simulation-based approach has been conducted by a number of
scholars for estimating long-term parameters: see Hansson & Persson (2000), Mukherji
(2011), and Beach (2007), among others. Unfortunately, as correctly noted by Cogneau &
Zakamouline (2013), due to the overlapping resampling blocks, the MBB suffers from ‘small-
sample bias’ which leads to downward biasedness in the estimated variance of multi-period
returns. Although our settings are different due to the involvement of an accumulation model,
such a dilemma continues to exist when computing long-term parameters for assessing
different strategies. Unlike the estimation of the long-term performance measures used to
evaluate different portfolio investments, the estimation of long-term performance measures
used to evaluate different pension strategies, needs to be conducted on CFP measures (TAW,
GMR, IRR) rather than multi-period returns.

Having mentioned the obstacles for each of the conventional simulation methods used in
finance, it is of interest to study whether other available bootstrap methods in the econometric
literature would serve the purpose of the proposed financial application. The bootstrap
methods that are suggested are the Multivariate Sieve Bootstrap (MSB), the Multivariate
Hybrid Bootstrap (MHB), and the Multivariate Fourier Bootstrap (MFB).

Originally, the Sieve Bootstrap was introduced to compute certain statistics for the
univariate causal linear processes time series (Kreiss 1992). Paparoditis (1996) extended the
univariate sieve to the multivariate level due to his interest in approximating joint distributions
and show the validity in applying them in that framework. Meyer & Kreiss (2015) have
investigated further properties of the MSB. In particular, they study whether the MSB
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asymptotically works for a specific statistic or not. Briefly, the MSB procedure involves
fitting the observed data-set by a predefined order p, computing the residuals, and then
drawing with replacement from the set of centered residuals. Afterward, the obtained pseudo
sample of residuals is used to generate the bootstrap sample of the observed data-set. This is
known as the residual-based bootstrap replicates of the time series.

Due to the exciting features of the transformed time-dependent data in the frequency
domain, Jentsch & Kreiss (2010) were the first to introduce the MHB method, which is a
bootstrap method that requires two domains, namely the Time and the Frequency domains in
the multivariate context. This method is divided into two main steps to generate the bootstrap
observations. The first step involves generating bootstrap samples in the time-domain exactly
as the MSB, thus capturing most of the dependency structure of the observed multivariate
dataset in the time domain via a parametric fit, namely Vector Auto-Regression (VAR)
model. In the second step, the procedure uses the bootstrap observations generated in the
first step and transforms them to the frequency-domain via the aid of the Discrete Fourier
Transform (DFT). In the frequency domain, a nonparametric correction is applied to the
transformed pseudo-observations. Then corrected, transformed pseudo-observations are
back-transformed via the inverse-DFT to observe the pseudo data-set in the time-domain.
Note that the correction implemented in the frequency-domain is nonparametric, and its sole
purpose is to widen the class of time-series models that the MSB was not capable of handling.
Although the idea of the MHB is simple, its implementation may not be as straightforward
and involves lots of computational steps that are outlined in Appendix C (B).

Both the MHB and the MSB are considered to be either parametric or semi-parametric
procedures because they entail fitting data to a pre-selected time-series model, namely VAR.
However, the MFB may be a new competitive method that overcomes such parametric fitting.
In particular, the MFB is completely non-parametric.

The MFB consists of demeaning the data and transforming them into the frequency
domain via the aid of a DFT. In the frequency domain, a Rademacher draw is applied to
produce different samples in the frequency domain. Each sample created in the frequency
domain will be transferred back to the time-domain via an inverse-DFT, hence, generating
many pseudo samples in the time domain. However, these pseudo samples are mean-
degenerate; thus, for this bootstrap procedure to be fully functional, it will require additional
steps to produce a bootstrap pseudo-series in the time domain. In particular, Davidson and
Chehab (2017) have augmented the generated time-series data with a normally distributed
error that shares the diagonal elements of the heteroskedasticity and autocorrelation consistent
(HAC) variance of the original sample data. Unlike the common variance formula, the HAC



108 Frequency-based Bootstrap Methods for DC Pension Plan Strategy Evaluation

variance accounts for autocorrelation in the back-transformed dataset. Therefore, the HAC
variance estimator is preferred to the conventional variance formula.

All the bootstrap methods mentioned are capable of generating pseudo time-series data
of the original dataset, provided that the dataset in question is generated from a covariance
stationary process. The question, however, relies upon which bootstrap methods provide a
reliable procedure for producing distributions for CFP measures that are required to compute
long-term performance parameters. To address this issue, we need to understand, based on
statistical tests, the characteristics of the DGP of the asset returns. Accordingly, we will form
a “prior belief” about the DGP of our asset returns. Based on this formulated prior-belief
of the DGP, we will use Monte Carlo experiments to evaluate all the mentioned bootstrap
methods. In the next section, we will describe the compiled dataset that will be analysed to
formulate prior belief about the DGP of asset returns in different countries.

3.6 Data description

3.6.1 Asset-returns data-set

In this chapter, asset class returns were obtained commercially from Ibbotson Associates.
The dataset consists of equity and bonds’ global returns compiled by Dimson et al. (2002)
(DMS). This data set has been further updated, and it currently holds asset-class returns for
seventeen countries from 1900 to 2007. The seventeen countries include Australia, Belgium,
Canada, Denmark, France, Germany, Ireland, Italy, Japan, the Netherlands, Norway, South
Africa, Spain, Sweden, Switzerland, UK and the US. The reason we used this data is the long
time-span for different countries and typical characteristics.

DMS have chosen and, when needed, constructed the best index that ensures the widest
coverage of the market in each country during each period as the industrial composition has
changed dramatically over the covered 108 years. They followed certain criteria to guarantee
the accuracy of that index. First, equity indexes should avoid any bias, such as excluding
companies that didn’t manage to survive long. Second, all asset-returns are total returns that
include income, such as dividends, and capital gains or losses. Therefore, equity indexes are
constructed from the stock price and dividends while bond indexes use bond-level price and
coupons. Most calculations are based on end-of-year index level, but, when not available,
time-averaged or intra-year indexes are used. Third, equity indexes represent the market
fully. Fourth, long-term return indexes hold constituents weighted according to their market
capital. Finally, the use of data over an extended period and across many countries decreases
the bias of data, such as using only a prosperous economy or during the post-war period.
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Though DMS provide both nominal and real returns, we have chosen real returns, adjusted
for inflation, in all our studies. The year-on-year inflation was based on consumer price
indexes (CPI). However, since CPI were developed over time, the most reflective index
during each period for each country was used. It is understood that it might not be very
precise during some periods, but DMS argue that the chosen inflation indexes track long-
term currency fluctuations, which gives some reassurance about their inflation measures.
Therefore, the returns used are real total returns adjusted for inflation and dividends. It is
quite important to be able to compare returns over time and across countries on the same
basis.

Hence, the real total net equity index return, now and hereafter, et , can be mathematically
defined as

et = (1+πt)
−1
(

1+
Pt +Dt

Pt−1

)
−1

where Pt , and Dt refers to the price of the index and dividend. πt refers to the inflation
between periods t −1 and t (see, Dimson et al. 2000).

We also include in the study the global index constructed by DMS. The global index
was constructed as an international portfolio that invests in all therefore mentioned countries
expressed in a common currency, i.e. US dollars. Hence, each country’s local currency-return
was converted to US dollars. The weightings of the equity index were based on each country’s
GDP, converted to US dollars between 1900 to 1967, and on equity market capitalization
from end of 1967 onward. The weightings of the bond index were based on each country’s
GDP throughout the whole period covered.

3.6.2 Annual wage-growth data-set

The wage-growth data used was obtained from the Mitchell (1998) labour-earnings indices
from 1900 to 1993 and updated from the Hourly Earnings (MEI) data-set from the OECD
Main Economic Indicators. All missing years wage-growth data were supplied by the GDP
per capital from Maddison-Project (2008), which is probably one of the best estimates of
labour earnings growth. These data were previously used by Cannon & Tonks (2013)4.

4We are grateful to these authors for providing this data.
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3.7 The initial step: Data analysis of asset-returns and their
predicted DGP

Following Cogneau & Zakamouline’s (2013) remarks, the MBB may be applied when
the observations happen to be serially dependent and stationary. In the literature, it was
mentioned that practitioners believe stock returns to be mean-reverting. Hence, they apply
the MBB without checking whether the data at hand is stationary or not. It is well known that
a stationary series is mean reverting but not vice-versa5. Therefore, it is essential to test for
stationarity and to accurately specify the model of our DGP, based on our available dataset
before applying any bootstrap method.

The first step in forming prior knowledge about the DGP entails a detailed analysis of the
characteristics of the time series variables observed in our collected dataset. It is important to
gain a good understanding of the properties of individual time series by treating each of a
country’s bond returns and equity returns independently. Then, afterwards, we may study
jointly both series, namely the country’s bond returns and equity returns to formulate some of
the critical properties that are involved in generating the asset returns (bonds and equities) for
each country. The next two subsections will cover brief concepts, procedures, and theoretical
results that we employ to formulate our prior knowledge on the DGP of asset returns at both
levels: univariate and multivariate.

3.7.1 Univariate analysis

The sample autocorrelation function (ACF) and the partial autocorrelation function (PACF)
for each asset-return provide a rough indication, for our univariate time series, of whether
the DGP has stationarity or not. The corrologram figures, not shown here, indicate that it
is not likely for any of our asset-return samples to be generated by a white-noise process,
because some of the sample autocorrelations and sample partial autocorrelations cross the
dotted lines. However, lots of the coefficients at higher lags are clearly between the dashed
lines. Hence, the underlying ACF of most of the countries’ asset-return may be in line with a
stationary DGP.

Although the ACF and PACF provide an initial test of stationarity, their indication is not
evident. Therefore, we applied proper statistical tests for stationarity. One form of testing a
stationarity assumption is to test for a unit root. Each of the widely applicable tests of unit
roots (a form of non-stationarity) has been applied on each of our asset-return independently,
namely the Augmented Dickey-Fuller (ADF) test, the Phillips-Perron (PP) test, and the

5Therefore, if supposedly a series is mean-reverting, this does not imply that it is stationary.
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Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test. In our series, we observe some degree of
disagreement among the results of these tests. For example, with a 5% significance level,
we found that France Real Equity return series suffers from a unit root using the ADF test,
but this is not the result using the PP test and the KPSS test. However, in general, we may
conclude that all our series are weakly stationary6. However, we will rely more on the
ADF test, because it is more robust than other tests when applied to data-sets that might be
correlated or have witnessed some heavy-tail phenomena (see, Wang & Mao 2008).

In the wake of our previous analysis, it seems that our sample of asset returns for all
our sample countries is assumed to be stationary. Recall that the data used are described
in Section 3.6. These data-sets are annual data; hence, also known as low-frequency data
as opposed to the high-frequency data-set. It is valid to argue that since each data point in
our data-set is recorded based on annual observation, the dependence structure changes as
opposed to data points that are recorded based on a day-by-day basis. Therefore, it would be
natural to reject, based on our sample data, that the asset returns originate from a GARCH
type time series process.

To conclude, these data-sets may be originating from an Auto-Regressive Moving Average
(ARMA) models. Moreover, we are keen to test whether the data at hand suffers from time-
variation in the variance. However, before testing for any Auto-Regressive Conditionally
Heteroskedastic (ARCH) effect in our asset return series, we would need to ensure that
we have taken advantage of all the information we hold to analyse our univariate series.
Particularly, we would like to check whether a country’s equity-returns play any significant
role in predicting the same country’s bond returns, or vice-verse.

The sample cross-correlation function (CCF) is a helpful tool for identifying whether
the lags of a variable, say a country’s equity returns, are useful when predicting the current
outcomes of another variable, say a country’s bond returns. As a result, we have plotted
the CCF for each country’s asset-return where we identified that in all our sample countries,
lags of one asset show significant ability to predict the outcome of the other asset. However,
examining a significant cross-correlation sample does not imply, for example, that the lags
of equity returns better explain the current outcome in the bond returns, because we have
not accounted for the lags of the bond returns that help to explain the current bond returns.
Consequently, the Granger causality test is required to overcome this obstacle.

In the univariate case, we applied the Granger causality test by running two models. The
first represents the unrestricted model where one of the asset returns is regressed on its own
lag and the lag of the other asset-return while the other model is the asset return is regressed

6Perron (1989) argue that in case KPSS test results in rejecting its null hypothesis, it might be misleading to
infer that the process is not stationary. For example, there might be structural breaks in that data-set that are
leading to such inference.
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on its lags only. We have observed that in Australia, Ireland, Switzerland, the UK, and the
World, both returns of bonds and equities of the aforementioned countries Granger cause one
another. Whereas in countries like Denmark, Italy, and South Africa, equity returns Granger
causes bond returns. In France, Norway, and Spain bond returns Granger cause equity returns.
While the rest of the countries like Belgium, Canada, Germany, Japan, Netherlands, Sweden,
and the US neither asset-returns Granger cause one another. Therefore, in the countries
where neither asset returns Granger cause the other, accounting for the lags of either asset
returns does not help in better explaining the other corresponding current asset-return.

Based on the mentioned analysis, we have tested for ARCH effect on our series accounting
for all relevant series that help in predicting it7. For example, testing for ARCH effects for
the US equity returns involves the following steps: 1) Fit an ARMA model to this series; 2)
extract the residuals of the fitted model; 3) regress their squares on its lags; 4) test the joint
significance of the newly formed regression. The result reveals that there exist no ARCH
effects in the asset returns for each of the countries Belgium, Canada, Germany, Japan,
Netherlands, Sweden, and the US.

Although all the discussed univariate tests reveal important details about individual series,
our profound understanding of the properties of the DGP have not reached the optimal point
because we have not addressed the joint series distributions and their dynamics. The study
of joint series is important, especially when we believe that some of the asset returns in
some countries happen to Granger cause one another. Therefore, it is important to treat both
country-specific asset returns as being a priori endogenous to avoid some miss-inferences
due to the structural cross-correlations between both variables (along with their lags). In the
following section, we will continue our analysis in a Multivariate context.

3.7.2 Multivariate analysis

For each country, we considered the corresponding bond and equity returns jointly. Based on
our univariate analysis, it is clear that our country-specific joint asset returns dataset does
not suffer from a deterministic trend, unit roots, or even ARCH effects. Furthermore, in
this study, our model assumes that the dependency structure of equities and bonds for all
countries is linear and symmetric in time and between series8. Therefore, it is reasonable to

7It is worth noting that in the univariate analysis, when we regress different country-specific asset returns on
one another we are treating one of them as being exogenous to the regressand variable.

8Recently, a copula-based model for stationary time series with a Markovian structure has been proposed
Brechmann & Czado (2015). This model might be a better than any alternative strictly linear stationary process
such as the VAR model because it accounts for non-linear correlations when it comes to multiple time series
analysis of financial data. However, this is beyond the scope of this chapter as it deviates from the main aims of
this paper and requires further independent research.
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suggest that a Vector Auto-Regressive (VAR) model may be a potential model to characterise
our joint DGP: [

et

bt

]
=

[
α11

α21

]
+

p

∑
i=1

[
β1i φ1i

β2i φ2i

][
et−1

bt−1

]
+

[
ε1t

ε2t

]
(3.5)

where et and and bt are the total equity return and the total bond return, respectively, at time t.
In our analysis, we have gone through a list of procedures to specify our model and to check
it. This includes, but is not limited to, selecting the VAR order and imposing restrictions on
the VAR parameters9. The list of our Algorithm is described as follows:

Algorithm Procedure 3.7.1.

1. Specify the VAR model using the Akaike’s information criterion (AIC) to determine
VAR lag order specification p̂.

2. Estimate both the restricted and unrestricted levels VAR of order p̂ as in the (3.5).

3. Check for final model classification of the DGP

We employed lots of diagnostic tests on the residuals of the fitted VAR model. For
example, to check for auto-correlations, we have performed the multivariate Portmanteau
test (Ljung-Box statistics), the multivariate Breusch–Godfrey test and the Rank-Based
portmanteau test statistics10. Moreover, to test for joint non-normality, we have applied
Mardia’s, Royston’s, as well as, Henze-Zirkler’s Multivariate Normality tests11.

Remark: In some countries such as Belgium, we found that it is more appropriate to
apply a transformation to the initial dataset before carrying on with our analysis. In particular,
for such countries, we employ a logarithmic transformation on the asset returns. Thus, we
transformed the real total net index returns to the log of the total real gross returns, hence
replacing (et and bt) with (log(et +1) and log(bt +1)) in equation (3.5). In cases where this
has been done, we will refer to our model as log-VAR (or log-VARMA) model. Moreover,
in some countries such as Australia, although we observe that the residuals may follow
the white-noise process, they may not be generated from a Multivariate Normal process.

9We have also tried fitting VARMA models. Therefore, when a country’s data is better estimated with a
VARMA or VMA model we would explicitly mention it in our analysis.

10Rank-Based portmanteau test performs nicely and is more robust to heavy-tailed distributions
11The Henze & Zirkler (1990) test is based on the empirical characteristic function of the sample data at

hand. This test is very sensitive and robust when dealing with distributions that possess a normal or light tails
but less powerful when it comes to heavy-tails.
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Therefore, in this case, we may not classify the multivariate error term
[
ε1t ε2t

]′
in equation

(3.5) as multivariate normal errors. In fact, it might be that each of the errors ε1t and ε2t is
generated from a different DGP. However, since we are studying joint distribution, one may
not generate one variable irrespective of the other. For example, a vector whose elements are
white noise is not necessarily, in general, a white noise vector. Thus, the only way to classify
the joint distribution of the errors

[
ε1t ε2t

]′
is to estimate the best bivariate copula model12

based on the fitted residuals (or maybe the transformed residuals).
The ability to combine (or couple) marginal distributions with a copula model, that is

using the converse part of Sklar’s theorem, allows us to focus our attention on modelling the
univariate distributions for each residual independently without worrying about their serial
dependence structure since this has already been accounted for in our VAR model.

We opt to choose the univariate probability distribution of each residual, namely ε̂1t

and ε̂2t , independently of one another. Our choice of residuals’ distribution is based on the
skewness-kurtosis plot of Cullen & Frey (1999). We compared the values of the unbiased
estimation of skewness and Pearson’s kurtosis values of the residuals with the skewness and
kurtosis values for common distributions (see, Sokal & Rohlf 1999, p. 111-115)13. However,
once again in some countries, the computed residual from the fitted parametric models may
not follow any of the well-known available distributions. Therefore, some transformations
on the residuals, independently, need to be carried out to fit such distributions.

Accordingly, some countries in our data sample may be classified as Copula-based
multivariate models. In particular, some countries in our sample dataset would be assumed
to follow the VAR model with random vector errors generated from non-Guassian joint
distribution. In our analysis, we will assume that the variables (bond and equity errors) are
continuous, as it is not possible to believe that these variables originate from a discrete DGP.
Moreover, the selection of the bi-variate Copula model for the transformed residuals was
considered in our analysis and we implemented using the sequential two-step, maximum-
likelihood method (TSML) in which the marginals are estimated in the first step and the
dependence parameter is estimated in the second step (see, Manner 2007)14. In case, we

12“copulas are multivariate distribution functions whose one-dimensional margins are uniform on the interval
(0,1).” (Nelsen 2006, p. 1). For Further mathematical definition see (Definition 1.1, lbragimov & Prokhorov
2017, p. 5)

13Fortunately, there is built-in function called descdist in R, the open source programming language and
software environment for statistical computing and graphics, that does the following job. Please consult
Delignette-Muller & Dutang (2015) for details.

14Fortunately, there is a built-in function in R called the BiCopSelect which is available by installing either
of the R packages VineCopula or CDVine. This function selects the best fit copula iteratively based on the
information criterion of AIC/BIC.
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avoided the treatment of the marginal distribution functions, we estimated the copula based
on the semi parametric two-step estimator.

In general, a bi-variate Copula, C, is associated with the bivariate joint cumulative
distribution function (CDF), F , given as

Ff (ε1t),g(ε2t)(y1,y2) =C(Ff (ε1t)(y1),Fg(ε2t)(y2);θ) (3.6)

where f and g are the transformed functions which allow the transformed residuals to fit
well-known available distributions. θ is a parameter of the copula C, called the dependence
parameter, which measures dependence between the marginals. Ff (ε1t) and Ff (ε2t) are the
CDF associated with the transformed random variables f (ε1t) and g(ε2t), respectively.

Although we believe that the residuals are uncorrelated, the transformations applied
on the fitted residuals will impact the joint distribution of the transformed residuals15. We
will account for this impact by iterating the θ parameter in equation (3.6) when simulating
sample-paths for country-specific asset returns.

Based on our analysis, we formulated for each country our “prior knowledge” of its
asset-returns DGP. We will present only few of them as follows:

• Australian Asset Returns DGP: this model may be classified by a restricted VAR(1)
model. We have observed that there is a positive relation between the contemporary
total equity return (et) and the lag of the total bond return (bt−1). Moreover, it seems
that the total bond yield is inversely affected by the lag of the total equity return with
statistical significance. We also find that the error terms may be thought of as white
noise after applying the Portmanteau test. Moreover, we believe that the errors emerge
from normal distribution, especially after applying Henze & Zirkler (1990) Multivariate
Normality test on the residuals of the fitted VAR model. Hence, theoretically, one may
assume that the Australian asset-returns follow a strictly covariance-stationary process;
hence the MBB and the Hybrid bootstrap may be applied to this dataset.

• Belgian Asset Returns DGP: this model may be classified as a log-VARMA(6,1)
model16 with normal errors.

• Canadian Asset Returns DGP: this model may be classified as a VAR(2) model with
normal errors. Although the residuals have suffered from minor heaviness in the
tails, the Henze-Zirkler’s Multivariate Normality Test failed to reject the normality

15For arbitrary functions f and g the corr
(
ε̂1t , ε̂2t) ̸= corr( f (ε̂1t),g(ε̂2t)

)
16This model has been classified using the Extended Cross-Correlation Matrices of Tiao & Tsay (1983)
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null when applied to the residuals. Hence, the Canadian returns follow a strictly
covariance-stationary process.

• Danish Asset-Returns DGP: this model may be classified as a log-VARMA(1,1) model
with errors emerging from a bi-variate function F , with an associate Copula, C, defined
as

C(Ff (ε1t)(y1),Fg(ε2t)(y2);θ) (3.7)

where f (x) = ln(x + 1), g(x) = ln(x + 1) + 1, and θ = 0.34. The marginal CDF
are given as Ff (ε1t) ∼ N (0.0026,0.089) and Fg(ε2t) ∼Weibull(shape = 7.5,scale =
1.05). Thus, the Danish asset returns follow a covariance-stationary process that is not
a strictly stationary process.

• Spanish Asset Returns DGP: it was recognized that one may mimic the Spanish returns
by an unrestricted VAR(2) model with Gaussian stationary error terms17. Hence, the
Spanish returns may be considered a strictly covariance-stationary series.

• UK Asset-Returns DGP: this model may be classified as a restricted log-VAR(1) with
errors emerging from a bi-variate function F , with an associate Survival Gumbel
Copula, C, defined as

C(Ff (ε1t)(y1),Fg(ε2t)(y2);θ = 1.7) (3.8)

where f (x)= x, g(x)= x+1. The marginal CDF are given as Ff (ε1t)∼Logis(location=
−0.003,scale= 0.063) and Fg(ε2t)∼Weibull(shape= 5.9435,scale= 1.0693). Hence,
the UK asset returns follow a covariance-stationary process that might not be strictly
stationary.

• US Asset Returns DGP: this model may be classified as a restricted VAR(1) model
with normal errors.

3.8 Evaluating bootstrap methods for long-term parame-
ters

Based on our formulated “prior knowledge” about the characteristics of the DGP of asset
returns in different countries (see Section 3.7), we opt to use the Warp-Speed method of

17We have found that the residuals may follow a normal distribution using the Henze-Zirkler’s Multivariate
Normality Test
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Giacomini et al. (2013) for a bootstrap methods evaluation. This approach generates an
artificial sample from an assumed DGP, then accordingly draw a single bootstrap sample18

from the created sample. For each of the 40-year horizon bi-variate (bonds and equities)
samples produced, we compute the 40-year univariate returns for different strategies, as
mentioned in equation (3.1). Depending on the 40 data points annual returns of strategy
returns, we compute the single 40-year point CFP measure, namely the TAW, IRR, and GMR,
as described in equations (3.2, 3.3, and 3.4). Using the same steps we produce, for each
long-term investment strategy, 10000 Monte Carlo replications. Hence, by the end of the
experiments, we have two empirical distributions for each of the CFP measures. We refer to
the ‘artificial sample statistics’ and ‘bootstrap-method statistics’, respectively.

As mentioned earlier, our primary motivation is based on checking the reliability and
robustness of applying different bootstrap methods to several DGP asset returns. To do this,
we will use an algorithm which allows us to compare, for various strategies and different
DGP asset returns, the artificial with that of the bootstrap sample of CFP measures. Using
Cramér–von Mises two samples test, we compare both samples. If the samples match, we
accept that the specified bootstrap method is capable of being applied to estimate long-term
parameters, such as Sortino Ratio, or VaR when the DGP is assumed to follow the DGP
suggested in our Monte Carlo experiment. Otherwise, we tend to reject the notion that the
specified bootstrap method gives a reliable estimate to long-term performance parameters.

Algorithm Procedure 3.8.1.

1. Perform time-series analysis on countries’ historical asset-returns to specify a candi-
date model of the DGP for each country (see, Section 3.7)

2. Simulate artificial samples of asset returns based on assumed DGP

3. Produce five pseudo bootstrap samples19 for each artificial sample

4. Compute the CFP measures (TAW, GMR, IRR) for each of the six samples along with
the five strategies. Hence, a total of 30 combinations of performance measures will be
recorded

5. Repeat the above steps 10000 times, hence, producing 10000 combinations of CFP
measures per strategy

18In our case, we will draw five bootstrap samples for each artificial sample since each bootstrap sample
represents a different bootstrap method.

19There is more than one bootstrap sample because there is more than one bootstrap method where each
sample corresponds to a different bootstrap method for the same Artificial Sample
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The figure 3.1 illustrate the above description of our algorithm
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Figure 3.1 Descriptive diagram for modeling cash-flow performance measures

Based on our data analysis in section 3.7, our dataset may be classified to follow one of
the following DGP: 1) VAR, log-VAR, or log-VARMA with normal errors models; 2) VAR,
log-VAR, or log-VARMA with non-normal errors models. However, in our study, we will
also consider additional DGPs, such as 3) Independent Multivariate Normal processes and 4)
Copula based-models.

We examined the independent multivariate normal model to observe whether the SB
outperformed other mentioned bootstrap methods in the i.i.d. case. The Copula-based
multivariate model was chosen, due to its growing popularity in modelling financial time
series relative to the traditional correlation-based approach. Modelling dataset with a copula-
based model allows a good medium of flexibility for practitioners. In particular, it allows
specifying the model’s marginal distributions independently from the dependence structure
that models the joint distribution of bonds to equity returns. (see, Patton 2012).

Although we considered different parameters for the VAR model in equation (3.5), we
found no significant differences by iterating these parameters when comparing different
artificial sample statistics to the bootstrap method statistics. Therefore, in our reported
Monte Carlo experiments, we will use the estimated parameters of the US asset returns in the
observed dataset. For example, using the fitted parameters of the US data, we generate an
artificial sample from the following processes:
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• USA Model 1: A VAR process defined by[
et

bt

]
=

[
0.0761
0.0257

]
+

[
−0.0603 0.505
−0.0632 0.131

][
et−1

bt−1

]
+

[
ε1t

ε2t

]
(3.9)

where the errors are defined as[
ε1t

ε2t

]
∼ N

([
0
0

]
;

[
0.037 0.0037

0.0037 0.0094

])

• USA Model 2: A VAR process defined as in equation (3.9) with errors having the
same density function as the fitted residuals (kernel density estimator of CDF) with a
Gaussian Bi-variate Copula, C with dependence parameter θ = 0.21.

• USA Model 3: An Independent Multivariate Normal distribution such that[
et

bt

]
∼ N

([
0.08467
0.0237

]
;

[
0.0397 0

0 0.0095

])

• USA Model 4: A t Copula-based multivariate model20 with marginal distributions that
shares the kernel density estimation of the original observed dataset and dependence
parameters (ρ = 0.2258,ν = 1.2786x107), where ρ and ν represent the correlation
parameter and the degrees of freedom parameter.

Figures 3.2 and 3.3 show one simulated sample of each of the above model descriptions for
bonds and equities respectively.

20The Student’s t copula was selected because it neither underestimates as the Gaussian Copula nor overesti-
mates as the Gumbel Copula the probability of joint extreme downward movement of portfolios consisting of
stocks and bonds (Kole et al. 2007).
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Studentś t Copula

Original US Data-Set Simulated US Data-Set

Figure 3.2 The Bond’s Real Return of each of the Generating Models for the US Data-Set

As observed graphically, the US equities, as well as bonds, returns may follow any
of the suggested DGP models. However, an interesting question is whether any of the
earlier suggested bootstrap methods act as a powerful tool in generating distributions of CFP
measures for returns that are produced from the above-described models. This is important
for ranking different strategies, because the long-term performance parameters are based
on the distributions of the cash flows. Therefore, if the bootstrap method is incapable in
mimicking the correct distribution of the CFP measure, we might be either underestimating
or overestimating a strategy over an alternative; hence, we will have inconsistency in our
ranking strategies.
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Figure 3.3 The Equity’s index Real Return of each of the Generating Models for the US
Data-Set

Another issue we need to deal with is whether a strategy alteration would lead to a
different favoured bootstrap method. For example, for the same assumed DGP, would it
be possible to expect that the SB is better capable of mimicking the TAW distribution than
the MBB whereas the MBB outperforms the SB in its capability of mimicking this same
distribution for another strategy?

To address these questions, we resorted to Monte Carlo experiments as discussed earlier.
For each of the assumed DGP for US data-set, we simulated, for each strategy mentioned
in section 3.6, the CFP measures’ distribution. Then for each strategy, we compared the
empirical distribution of the artificially simulated distribution with the bootstrap distribution
via the Two-sample Cramér–von Mises goodness-of-fit hypothesis test (see, Anderson 1962).
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Figure 3.4 The Histograms of the TAW for Strategy One, using the VAR with Normal Error
Process - USA model 1

In our simulations, the block length is set at 10 and we randomly choose 4 blocks out of
the 100 available blocks. Our choice is motivated by our assumption that a typical participant
joins the plan at the age of 25 and retires when (s)he reaches the age of 65. Hence, (s)he has
an investment horizon of 40 years. The choice of selecting the value b is of great importance
but is beyond the scope of this paper. We used the value 10 for comparison reasons only.
The selection of block length has been investigated by Cogneau & Zakamouline (2013). For
the MHB, we selected a hybrid bandwidth of 0.1; the choice lies within Jentsch & Kreiss’s
(2010) paper where they used cross-validation and opted to choose the bandwidth depending
on the sample size. For the fit of the MSB, we selected the model length based on the AIC
criterion. For the MFB, we have utilised the Newey-West bandwidth selection procedure in
the HAC estimation.

Figures 3.4, 3.5, and 3.6, represent the histograms for the TAW, GMR, and IRR with
different strategies respectively. Figure 3.7 is a zoomed-in view of the TAW distribution. It
should be noted that all the histograms have the same number of bins.
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Figure 3.5 The Histograms of the GMR for Strategy One, using the VAR with Normal Error
Process - USA model 1

Tables 3.2, 3.3, 3.4, and 3.5 show Cramér von Mises goodness-of-fit statistics of each
of the bootstrap methods with the associated assumed US model. The result reveals that
all of the assumed DGP (the VAR with normal errors, VAR with non-Normal errors, and
Independent Multivariate with Normal errors models as well as Student’s t copula with errors
generated from the residuals inverse CDF) have favoured the MFB. In fact, it was the only
distribution that was not rejected by the Cramér von Mises goodness-of-fit test for different
strategies. There were some strategies in these assumed DGP where the MHB was not
rejected for the IRR and TAW CFP measures. See, for example, strategies 2 and 3 in table
3.5.
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Table 3.2 Two-sample Cramér–von Mises goodness-of-fit statistics for various Bootstraps for
US Model 1

USA Model 1

MHB M-MBB EB MFB MSB

Strategy 1
IRR 0.6937 1.4581 2.9855 0.0656∗ 2.3078

GMR 1.4209 2.0013 4.1735 0.0730∗ 3.4749
TAW 0.6937 1.4581 2.9855 0.0656∗ 2.3078

Strategy 2
IRR 0.5348 1.3854 1.3951 0.0845∗ 1.7500

GMR 1.0599 2.6540 2.5229 0.0459∗ 2.8663
TAW 0.5348 1.3854 1.3951 0.0845∗ 1.7500

Strategy 3
IRR 0.5468 1.7654 2.4025 0.0607∗ 1.8576

GMR 0.9108 1.9520 3.4302 0.0395∗ 2.5370
TAW 0.5468 1.7654 2.4025 0.0607∗ 1.8576

Strategy 4
IRR 0.8030 1.6221 3.4465 0.1031∗ 2.1262

GMR 1.3591 1.9810 4.1104 0.0706∗ 3.1615
TAW 0.8030 1.6221 3.4465 0.1031∗ 2.1262

Strategy 5
IRR 0.6643 1.6896 3.0927 0.0686∗ 2.2502

GMR 1.4081 2.1075 4.3852 0.0607∗ 3.4327
TAW 0.6643 1.6896 3.0927 0.0686∗ 2.2502



3.8 Evaluating bootstrap methods for long-term parameters 125

Table 3.3 Two-sample Cramér–von Mises goodness-of-fit statistics for various Bootstraps for
US Model 2

US Model 2

MHB M-MBB EB MFB MSB

Strategy 1
IRR 0.7942 1.2204 4.3788 0.1029∗ 2.3897

GMR 1.0280 1.7853 4.7543 0.0793∗ 2.6464
TAW 0.7942 1.2204 4.3788 0.1029∗ 2.3897

Strategy 2
IRR 1.2457 1.1238 1.3523 0.1975∗ 2.4250

GMR 1.5219 1.8726 2.4498 0.2250∗ 3.1552
TAW 1.2457 1.1238 1.3523 0.1975∗ 2.4250

Strategy 3
IRR 0.5119 1.2711 3.5405 0.0822∗ 1.8489

GMR 0.7737 1.7048 4.3602 0.0569∗ 2.3179
TAW 0.5119 1.2711 3.5405 0.0822∗ 1.8489

Strategy 4
IRR 0.6653 1.2375 3.1061 0.3898∗ 1.9402

GMR 0.8224 1.6966 3.7642 0.4333∗ 2.1408
TAW 0.6653 1.2375 3.1061 0.3898∗ 1.9402

Strategy 5
IRR 1.2814 1.1098 2.9991 0.2442∗ 2.2758

GMR 1.4687 1.7935 4.4559 0.1269∗ 2.9658
TAW 1.2814 1.1098 2.9991 0.2442∗ 2.2758
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Table 3.4 Two-sample Cramér–von Mises goodness-of-fit statistics for various Bootstraps for
US Model 3

US Model 3

MHB M-MBB EB MFB MSB

Strategy 1
IIRR 0.6114 1.5252 2.1921 0.1614∗ 2.1511
GMR 0.8419 2.0351 3.0992 0.0874∗ 2.6094
TAW 0.6114 1.5252 2.1921 0.1614∗ 2.1511

Strategy 2
IRR 0.8508 1.1233 1.5100 0.2397∗ 2.4013

GMR 1.4027 1.7612 2.5820 0.1724∗ 3.3621
TAW 0.8508 1.1233 1.5100 0.2397∗ 2.4013

Strategy 3
IRR 0.5586 1.5813 2.2576 0.0716∗ 2.1421

GMR 0.6629 1.5483 2.3092 0.1675∗ 2.1096
TAW 0.5586 1.5813 2.2576 0.0716∗ 2.1421

Strategy 4
IRR 0.7937 1.4544 2.1626 0.1048∗ 2.3179

GMR 1.3606 2.1776 3.0236 0.0564∗ 3.2752
TAW 0.7937 1.4544 2.1626 0.1048∗ 2.3179

Strategy 5
IRR 0.8619 1.3601 3.0358 0.1616∗ 2.8194

GMR 1.3269 1.6077 2.9848 0.0662∗ 3.3781
TAW 0.8619 1.3601 3.0358 0.1616∗ 2.8194
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Table 3.5 Two-sample Cramér–von Mises goodness-of-fit statistics for various Bootstraps for
US Model 4

US Model 4

MHB M-MBB EB MFB MSB

Strategy 1
IRR 0.7876 1.5204 2.7001 0.0514∗ 2.7896

GMR 1.4338 2.5696 4.1249 0.0893∗ 3.6070
TAW 0.7876 1.5204 2.7001 0.0514∗ 2.7896

Strategy 2
IRR 0.4173∗ 1.1884 1.9807 0.0295∗ 1.6588

GMR 0.8389 1.9504 3.1960 0.0379∗ 2.3476
TAW 0.4173∗ 1.1884 1.9807 0.0295∗ 1.6588

Strategy 3
IRR 0.3254∗ 1.2992 1.8426 0.1082∗ 1.9592

GMR 0.7660 1.7832 2.2319 0.1703∗ 2.9142
TAW 0.3254∗ 1.2992 1.8426 0.1082∗ 1.9592

Strategy 4
IRR 0.7405 1.4237 1.7486 0.2019∗ 2.2475

GMR 0.9063 2.1433 2.4066 0.2147∗ 3.0496
TAW 0.7405 1.4237 1.7486 0.2019∗ 2.2475

Strategy 5
IRR 0.7506 1.6261 1.8810 0.2517∗ 2.5857

GMR 1.0150 2.1123 2.5459 0.2596∗ 3.3407
TAW 0.7506 1.6261 1.8810 0.2517∗ 2.5857
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Figure 3.6 The Histograms of the IRR for Strategy Two, using the VAR with Normal Error
Process

Furthermore, we simulated artificial VAR models with non-Guassian errors that are more
extreme than the Gaussian copula. In particular, we ran simulations for errors emerging from
a student’s t copula with a UK dataset where the residuals in that country suffered from a
more extreme tail than the US residuals distribution. In addition, we also simulated a dataset
from a VAR model with error terms being generated from bootstrap residuals. Additionally,
we simulated copula-based random variables for Student’s t copula without any fitting of
Danish asset-returns; however, once again the same conclusion has been reached. Therefore,
in all strategies assuming any of the DGP proposed, the MFB was better in modelling the
distribution of the CFP measure than the other suggested bootstrap alternatives, provided
that before running the bootstrap algorithm, the generated returns are transformed to log of
gross returns.

The MFB overcomes other bootstrap methods for such models. In addition, the SB did
not mimic the CFP measure’s distribution, even for asset returns DGP that originated from
an independent multivariate normal distribution, whereas the MFB did.
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Figure 3.7 The Zoom-in Histograms of the TAW for Strategy four, using the VAR with
non-Normal Error Process

Having said this, the next section includes the MFB along with other bootstrap methods
utilised in that field, namely the SB as well as the MBB, to rank strategies mentioned in the
Pension literature.

3.9 Bootstrap simulations for strategy evaluation

In this section, we consider seventeen different countries and various long-term parameters
to rank different strategies. As discussed in previous sections, we perform 10,000 simulations
of CFP measures for the mentioned countries to generate their associated distributions.

To address the arguments, practitioners and researchers had about selecting the best
strategy, one needs to acknowledge the fact that they used SB and MBB to generate TAW
distribution for each strategy. According to the previous section, when return series are
believed to be dependent, such bootstrap methods are incapable of generating the ‘right’
distribution for long-term return observations. Moreover, they are not superior to their
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competitor, the MFB. Therefore, for comparison reasons, we will only consider in this
section the SB, the MBB, and the MFB.

As discussed in the previous section, the distribution of the generated future retirement
wealth depends on the investment strategy and the bootstrap method utilized. Usually, based
on their applied bootstrap algorithm, researchers and practitioners select the strategy that
generates TAW distribution with the highest mean and lowest variance (Basu et al. 2011).

In fact, researchers apply various performance and reward-to-risk measures on the simu-
lated TAW observations. For instance, some practitioners have ranked strategies based on
VaR (Blake et al. 2001). However, VaR does not address how large the losses can be when
extreme events with low probability occur (Bertsimas et al. 2004). Furthermore, as a risk
measure, the VaR suffers theoretical property that are necessarily to make it a coherent risk
measure, that is, subadditivity and convexity properties (lbragimov & Prokhorov 2017, p.
26). Therefore, following the recommendation of Tasche (2002), it is important to look at the
Conditional VaR (CVaR), also known as the Expected Shortfall (ES)21 as a better alternative
to the VaR. This is due for its theoretical properties: 1) The ES does not require the normality
assumption on the data (Bacon 2012); 2) The ES is a subadditive and coherent risk measure
(lbragimov & Prokhorov 2017, p. 114). By definition, the CVaR is “the average of the worst
losses of a portfolio, requires existence of first moments of risks to be finite” (lbragimov &
Prokhorov 2017, p. 39); therefore, it ranks strategies based solely on the downside risk level.

Definition 3.9.1. Let α ∈ (0,1) be a fixed variable (usually 5%) and Ψ be a real ran-
dom variable (representing the CFP measure) on a defined probability space such that
E
(
max(0,−Ψ)

)
< ∞. Furthermore, define the VaR of Ψ as

VaRq(Ψ) := inf{z ∈ R : P(Ψ < z)≤ q}. (3.10)

Then, the ES at level α of Ψ is given by22:

ESα(Ψ) := E
(
Ψ |Ψ ≤VaRα(Ψ)

)
(3.11)

Researchers and practitioners also rank strategies based on reward-to-risk measures. The
most common reward-to-risk measure among financial analysts and academic researchers,
such as Campbell (2006), is Sharpe ratio, which was introduced by Sharpe (1994) as the

21Although the CVar and the ES are mathematically defined differently, Corollary 4.3 in (Acerbi & Tasche
2002, p. 1496) show that they are identical.

22In general, the probability distribution of the Ψ is unknown, hence the ES can not be computed theoretically
as described by equation (3.11). Therefore, the computation of ES will need to based empirically. That is, for
each of the n observations of {Ψi}n

i=1, the estimated ES, ÊS, is given by k−1
∑

k
i=1 Ψ(i) where k := [(1−α)n];

Ψ(i) the ith smallest observation among the observations {Ψi}n
i=1, and []̇ is the round function.
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reward-to-variability ratio. A similar performance measure that shows the reward to the
total risk of the portfolio is the Information Ratio (IR). Assuming the returns are normally
distributed, the IR is especially recommended for multi-asset portfolios and for ranking
strategies (Kidd 2011). Unlike the Sharpe Ratio, instead of comparing the portfolio to
the risk-free asset, it compares the performance of a portfolio to a benchmark (Sharpe
1994). While the Sharpe ratio uses standard deviation, Sortino & Price (1994) argued that
only returns that fall below the minimum return to accomplish the goal are associated with
risk. Therefore, Sortino & Van Der Meer (1991) introduced the Sortino ratio (SR) which
differentiates between positive and negative volatility. This is referred to as downside risk
measure. Therefore, the choice of reward-to-risk measure depends on the assumptions behind
it and the definition of risk.

We tested for normality on all of the simulated CFP measures (TAW, IRR, GMR). We
observed that only very few data-sets of the IRR and GMR are normally distributed. However,
we also noticed that this result changes drastically from one country to another and from one
bootstrap method to another. Therefore, following Kidd (2011)’s remarks, in our analysis of
ranking long-term strategies, we have avoided the usage of Information Ratio (IR). Moreover,
since we do not consider the high values of CFP measure to be a risk, we obviate the need to
compute the Sharpe ratio. Hence, we will compare reward-to-risk levels of strategies based
on the Sortino ratio (SR).

In our simulations, since different strategies represent different investment decisions, we
considered the 10000 hypothetical observations of different CFP measures per strategy per
bootstrap method, as our returns on these investments that depict that strategy’s outcome.
Therefore, unlike the conventional application of SR, we will apply it on CFP measures
(which are considered equivalent to long-term returns in this case). Moreover, we will
consider that the mean of the 50-50 strategy represents the target return in the computation of
the SR, as it is the strategy with the lowest mean and variance in all countries and bootstrap
methods; hence, it has the spirit of the risk-free return in the conventional SR. Using equation
(3.2), (3.3), and (3.4), the SR is defined as follow

SR(Ψb,c, j) =
E∗ (Ψb,c, j

)
−E∗ (Ψb,c,2

)
Semi− std∗

(
Ψb,c, j −Ψb,c,2

) ,
where b represents the bootstrap method SB, MBB, or MFB. c represents the country.
j represents the strategy (100% Stock, DLCT, DLCM, LC). E∗ and Semi− std∗ are the
conditional mean and semi-standard-deviation respectively. Ψ represents the CFP measure
of interest (TAW, IRR, or GMR). Ψb,c,2 stands for the CFP measure of the 50−50 Strategy.
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Ranking of strategies varies according to the SR of different CFP measures. In particular,
in conventional finance, TAW, unlike the GMR, ranks the investments without factoring out
the in-flows in the cash-flows. Therefore, TAW will be used to compare the effect of different
bootstrap methods on the same strategy in the same country. As for the GMR, it would
be better to examine its SR when comparing different strategies across different countries
using the same bootstrap method, because GMR reflects the returns of the strategy in any
country of interest. The IRR, on the other hand, is useful to compare different strategies of
the same country and same bootstrap method because, as TAW, it takes into account both the
inflows and the returns. However, it gives more weight to substantial inflows and returns than
moderate ones. Moreover, when comparing strategies, it is important to carefully consider
the performance in later years when the investor is close to retirement. In fact, the IRR gives
more weight to the performance in later years, as the inflows increase due to the growing
wage of the investor.

Note that all rankings represented in the tables below are from highest to least in value.
That is, tables that show rankings based on SR, list the strategies with the highest return
first while tables for CVaR values list strategies with highest risk first, because they have the
highest CVaR value. This allows us to easily notice any association between reward and risk
which will be discussed later in this section.

We start by comparing strategies across countries using the CVAR and SR of the GMR,
as shown in tables 3.13 and 3.14 respectively. The main thinking behind this is to examine
in which country each strategy performs best in terms of return and risk, according to each
of the three bootstraps. For example, using the SR of the GMR, we notice that Canada and
Australia perform among the top three countries, using all the strategies in all the considered
bootstrap methods. This indicates that these countries seem to offer the highest return for
all strategies. However, looking at the CVaR, we can also see that these countries have the
highets CVaR value. Interestingly, the USA and UK were ranked around the sixth using all
CFP measures across the three bootstraps by both the SR and CVaR. In general, though there
is no exact consistency across bootstraps and strategies, it can be noted that all countries are
ranked around the same level in terms of return and risk level. Countries at the far bottom
(top, or middle) are around the same for all strategies and across bootstraps. We can clearly
conclude from this that countries at the top offer higher returns on all pension plans relative to
countries at the bottom. However, to say whether these countries offer a better environment
for pension investments forces us to consider the risk associated with that return, which again
confirms our belief that high return comes with high risk.

Furthermore, we are interested to rank strategies in each country using different bootstrap
methods and based on different CFP measures. Ranking different strategies based on SR of
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Figure 3.8 UK Sortino Ratio for the IRR using different Bootstrap methods for all strategies.

TAW, IRR, and GMR using the three bootstrap methods (SB, MBB, and MFB) for each of
the seventeen countries is represented in tables 3.7, 3.8, and 3.9. We notice that there are
differences in ranking across bootstrap methods and across performance measures. Also,
while for some countries the ranking is the same across bootstraps and performance measures,
the values are not as consistent as we might think.

The differences between the three bootstraps result in the different ranking of strategies
and different values of SR of the same performance measure. We observed that SB gave
the same ranking across the three measures for all countries, except Canada, France, and
Netherlands, using IRR. In particular, SB ranks the strategies as follow: 100% stocks, LC,
DLCT, and lastly DLCM. However, it gave different rankings from the MBB and MFB
in some countries, such as Canada, using TAW and IRR. This raises concerns around the
conclusions arrived by researchers using the SB. Moreover, though the MFB and SB give
similar rankings more than other bootstrap pairs across countries and measures, each has a
different impact on the values of the SR in the mentioned strategies. For example, in the UK,
the values of TAW using SB are the lowest for all strategies compared to other bootstrap
methods. Also, comparing the SRs of the IRR in the UK, figure 3.8 shows that the 100%
stock strategy overcomes the DLCM and the DLCT using the MFB much more than that
observed using the SB and the MBB. Hence, while ranking is important, perhaps studying
the values behind the ranking give us a clearer view.

In addition, strategy relative ranking magnitude might vary across the SRs of different
performance measures even using the same bootstrap for the same country. For example, in
the case of USA (see figures 3.9, 3.10, and 3.11), SB (and MBB) gives same ranking for
strategies under the three performance measures, but when we look at the values across the
performance measures, it doesn’t seem to be as consistent. In particular, under the SB and
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MBB, the 100% stocks strategy has much higher SR of TAW than that of DLCM, while
the SRs of their IRR (and GMR) are very close. This would lead to confusing conclusions.
However, using the MFB, it is notable how the difference in values between strategies across
performance measures of the same country is much more consistent. Different bootstrap
simulation techniques generates various pseudo returns for the same country’s observed
data-set. Therefore, the bootstrap method along with the performance measure should be
chosen carefully according to the aim of comparison, as explained previously.

Figure 3.9 USA Sortino Ratio for the TAW using different Bootstrap methods for all strate-
gies.

Figure 3.10 USA Sortino Ratio for the IRR using different Bootstrap methods for all strate-
gies.
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Figure 3.11 USA Sortino Ratio for the GMR using different Bootstrap methods for all
strategies.

Using the SR, the choice of both the bootstrap method and performance measure is a
critical point that plays a major role in reaching the conclusions. In fact, very few consisten-
cies have been noticed. Only for the UK, Australia, and Denmark the 100% stocks strategy
has been ranked first using all three bootstrap methods and all three performance measures.
Moreover, all three bootstrap methods give the same ranking using GMR measure only for
Australia, Denmark, and the UK. However, using IRR, four countries including Australia,
South Africa, UK, and the USA had the same ranking of strategies across bootstraps. Finally,
using TAW, five countries - namely Australia, Denmark, Germany, South Africa, and the
USA - had the same ranking of strategies across bootstraps. Therefore, to be able to compare
the conclusions arrived by different papers, all the tools that were used must be considered.

Furthermore, ranking based on the values of CVaR for each performance measure across
bootstrap methods, is based on the risk level of each strategy in each country. On the one
hand, when comparing the ranking by SR versus the CVaR, it is observed that it is not the
same, which is not surprising. While the Sortino Ratio takes the reward into account and
not only the risk, the CVaR ranks the strategy solely based on the risk. For example, the
Sortino ratio ranks the 100% stocks first for most of the countries across the bootstraps, and
similarly in the cases using CVaR, because there is more dispersion of TAW for the 100%
stocks strategy. However, a counter-intuitive example is the case of the USA. Across all
bootstrap methods, the 100% stocks strategy has the highest SR of TAW and IRR, while
its CVaR of TAW and IRR indicates that is less risky than other strategies, which makes it
superior in that case. Ranking strategies based on reward-to-risk differ from ranking them
based on safety. In general, we observe that the higher the risk, the higher the reward, despite
some deviations.
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On the other hand, rankings based on CVAR varied according to the bootstrap method
implemented and the performance measure used. For example, Basu et al. (2011) argue that,
using bootstrap resampling, the VaR estimate shows that, in the US, the DLCT outperforms
the LC in terms of risk. However, it is not the case using CVAR, ceteris paribus. Another
interesting example that shows inconsistency across bootstraps is the case of the UK using
CVAR of GMR. However, there is noticeable consistency between the CVAR of TAW and
IRR for most other countries and bootstrap methods. Only for Canada, Germany, Italy,
Netherlands, Switzerland, and the UK, the ranking given by TAW and IRR different only
under the SB. Nevertheless, the majority of rankings, according to the CVAR of GMR given
by different bootstrap methods, is different from that given by the CVAR of the other two
performance measures.

Bootstrap Method Strategy Average Standard Dev. SR CVaR

SB

100 % Stocks 316.42 357.18 2.58 39.59
50-50 148.67 79.79 0 50.44
DLCM 238.14 220.63 1.48 46.87
DLCT 280.04 303.39 2.05 41.37
LC 288.25 274.92 2.15 41.25

MBB

100 % Stocks 270.19 233.92 2.13 53.68
50-50 150.14 82.46 0 47.78
DLCM 217.15 173.87 1.14 48.87
DLCT 262.13 233.41 1.88 50.64
LC 259.91 202.41 1.9 54.26

MFB

100 % Stocks 227.69 94.39 2.91 94.04
50-50 141.2 48.41 0 67.96
DLCM 180.44 63.63 1.26 86.67
DLCT 208.08 87.24 1.98 83.69
LC 221.63 81.22 2.76 96.11

Table 3.6 Sortino Ratio and CVaR of the TAW for the US simulations using different bootstrap
methods and strategies
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3.10 Conclusion

Annual asset returns play a significant role in computing the risk and reward involved in a
long-term investment strategy. Moreover, it is understood that different CFP measures grade
an investment differently due to the different weighing of the involved inflows, returns, and
outflows in a cash-flow diagram. Previously, financial and pension researchers, due to the
uncertainty in the nature of the asset return generating process, commonly used conventional
bootstrap methods, such as SB and MBB, to produce asset returns to assess reward and
risk over a long horizon, using mainly TAW as a CFP measure. However, Cogneau &
Zakamouline (2013) demonstrated the potential critical pitfalls that can result in such an
improper application of a bootstrap method. The main goal of this paper is to demonstrate
the critical importance the bootstrap method and different CFP measures play in determining
the optimal strategy.

Specifically, we considered ranking four different strategies (100 % Stocks, DLCM,
DLCT, and LC ) across several countries using different CFP measures (TAW, IRR, and
GMR). First of all, we constructed an accumulation model which reflects pension savings for
an ordinary pensioner. Then, for each country, we performed statistical tests on the compiled
annual asset returns to explain the key features of the DGP. We found more than one possible
DGP that may describe the actual DGP for each country.

We opted to show our work only for the US model for comparison reasons mainly.
Then, based on each possible DGP model for the US, we simulated the distribution of the
CFP measure for the assumed true DGP model (artificial series) and the several bootstrap
pseudo-series. We inferred, through our simulation experiments, that the MFB was the only
bootstrap procedure that was able to mimic the distribution of all CFP measures and was
model insensitive. Moreover, we also understood that previously implemented bootstrap
procedures were incapable of mimicking the distribution of the CFP measures even for
the simplest proposed model. In particular, the SB method was incapable of mimicking
the distribution of the CFP measures, even when the true distribution originates from an
independent DGP.

Building on these conclusions, we report the ranking of various countries across previous
bootstrap methods (SB and MBB), along with the new, frequency-based bootstrap method
(the MFB). Comparing our results with different published work’s procedures prove that
the bootstrap method plays a critical role in determining the optimal strategy. Moreover, we
observe that different CFP measures rank strategies differently across countries and bootstrap
methods. Consequently, this shows that the CFP measure plays a vital role in comparing
different strategies based on a relative comparison. For example, if a practitioner would like
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to compare a strategy across various countries, it is better to compare the Sortino ratio based
on the GMR CFP measure, rather than the IRR or TAW.

In addition, we found that ranking different strategies using different long term parameters
is crucial. While the Sortino Ratio shows the best strategy in terms of reward-to-risk, it is
worth looking at the CVaR. This is because the CVaR measures the expected losses of a
strategy, solely. The best strategy is the one with the highest Sortino Ratio and the lowest
CVaR. However, we find that this is very rare and, when found, is not consistent across
bootstrap methods and/or CFP measures. Therefore, different participants need to choose
their strategy based on their risk-tolerance.

It would be of interest for future research to study whether an accumulation strategy is
better than another when further data or data structure is considered. Indeed, it would be
interesting to study if the asset returns are being generated from a GARCH or any other
model that depicts volatility clustering. It is a standard stylized fact that high-frequency
data-set from financial markets exhibits volatility clustering phenomenon. Therefore, it would
be interesting to repeat this study using plausible bootstrap procedures with daily data-set
returns over the last 30 years to suggest whether a strategy outperforms another strategy.
Furthermore, a recent paper suggests the idea of utilizing both low and high-frequency
data-set based on their availability (Chambers 2016). Therefore, it would be of future interest
to seek if it is possible to take advantage of its finding to devise a bootstrap method that is
capable of generating samples that mimic the structure of the original data-generating process
which will help in deciding which strategy outperform another using both low frequency
and high-frequency data-sets. This will give a more general and robust view on which
accumulation strategy outperforms another.

We conclude that bootstrap methods and different CFP measures are of great importance
in assessing long-term investment strategies and merit extensive research. One should be
very cautious, however, which CFP measure to use. In particular, the CFP measure needs
to be unique and a good indicator to use for comparison. For example, if our cash flow had
more than one change of sign, the IRR might not be a good measure to use when comparing
different strategies across different bootstraps within a country. Moreover, it might be the
case, when a different cash-flow is suggested, to repeat our initial steps and compare whether
the MFB is able to mimic all the possible DGP before implementing it on the realised dataset.
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3.11 Tables

Table 3.7 Ranking Based on Sortino Ratio of TAW

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks DLCT DLCT 100% Stocks
LC LC LC LC 100% Stocks LC 100% Stocks 100% Stocks LC
DLCT DLCT DLCT DLCT LC DLCT LC LC DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks
LC LC LC LC LC LC LC LC LC
DLCT DLCT DLCT DLCT DLCT DLCT DLCT DLCM DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCT DLCM

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks 100% Stocks 100% Stocks LC 100% Stocks
DLCT LC LC 100% Stocks LC LC DLCT DLCM LC
LC DLCT DLCT LC DLCT DLCT LC DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM 100% Stocks DLCM

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks
DLCT DLCT LC 100% Stocks LC DLCT LC LC LC
LC LC DLCT LC DLCT LC DLCT DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Spain Sweden Switzerland
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT DLCT 100% Stocks 100% Stocks 100% Stocks 100% Stocks DLCT DLCT 100% Stocks
100% Stocks 100% Stocks LC DLCT DLCT LC 100% Stocks 100% Stocks LC
LC LC DLCT LC LC DLCT LC LC DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks 100% Stocks
DLCT LC LC LC LC LC 100% Stocks LC LC
LC DLCT DLCT DLCT DLCT DLCT LC DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM
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Table 3.8 Ranking Based on Sortino Ratio of IRR

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks DLCT LC LC
LC LC LC LC LC LC 100% Stocks DLCT 100% Stocks
DLCT DLCT DLCT DLCT 100% Stocks DLCT LC 100% Stocks DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks LC LC 100% Stocks 100% Stocks
DLCT LC LC LC LC 100% Stocks 100% Stocks LC LC
LC DLCT DLCT DLCT DLCT DLCT DLCM DLCM DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCT DLCT DLCM

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

LC 100% Stocks 100% Stocks DLCT 100% Stocks 100% Stocks LC LC 100% Stocks
100% Stocks LC LC 100% Stocks LC LC 100% Stocks 100% Stocks LC
DLCT DLCT DLCT LC DLCT DLCM DLCT DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCT DLCM DLCM DLCM

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT DLCT 100% Stocks DLCT 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks
100% Stocks 100% Stocks LC LC LC DLCT LC LC LC
LC LC DLCT 100% Stocks DLCT LC DLCT DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Spain Sweden Switzerland
DLCT DLCT 100% Stocks DLCT 100% Stocks 100% Stocks DLCT DLCT 100% Stocks
100% Stocks 100% Stocks LC 100% Stocks DLCT LC 100% Stocks LC LC
LC LC DLCT LC LC DLCT LC 100% Stocks DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks 100% Stocks DLCT 100% Stocks 100% Stocks
LC LC LC LC LC LC 100% Stocks LC LC
DLCT DLCT DLCT DLCT DLCT DLCT LC DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM
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Table 3.9 Ranking Based on Sortino Ratio of GMR

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks LC DLCT 100% Stocks DLCT DLCT 100% Stocks
LC LC LC 100% Stocks 100% Stocks LC 100% Stocks LC LC
DLCT DLCT DLCT DLCT LC DLCT LC 100% Stocks DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks 100% Stocks LC 100% Stocks LC 100% Stocks 100% Stocks
LC LC LC LC 100% Stocks LC 100% Stocks LC LC
DLCT DLCT DLCT DLCT DLCT DLCT DLCM DLCM DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCT DLCT DLCM

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

LC LC 100% Stocks DLCT 100% Stocks 100% Stocks 100% Stocks LC 100% Stocks
100% Stocks 100% Stocks LC 100% Stocks LC LC LC 100% Stocks LC
DLCT DLCT DLCT LC DLCT DLCT DLCT DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks DLCT 100% Stocks DLCT 100% Stocks 100% Stocks 100% Stocks LC 100% Stocks
DLCT 100% Stocks LC LC LC LC LC 100% Stocks LC
LC LC DLCT 100% Stocks DLCT DLCT DLCT DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

Spain Sweden Switzerland
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT DLCT 100% Stocks DLCT 100% Stocks 100% Stocks DLCT DLCT 100% Stocks
LC LC LC 100% Stocks DLCT LC 100% Stocks LC LC
100% Stocks 100% Stocks DLCT LC LC DLCT LC 100% Stocks DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks LC LC 100% Stocks DLCT 100% Stocks 100% Stocks
LC LC LC 100% Stocks 100% Stocks LC 100% Stocks LC LC
DLCT DLCT DLCT DLCT DLCT DLCT LC DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM DLCM
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Table 3.10 Ranking Based on CVaR 95 of TAW

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

LC 100 % Stocks 100 % Stocks LC LC DLCM LC LC LC
100 % Stocks LC LC DLCT DLCT DLCT 100 % Stocks DLCT DLCM
DLCT DLCT DLCT 100 % Stocks 100 % Stocks 100 % Stocks DLCT 100 % Stocks DLCT
DLCM DLCM DLCM DLCM DLCM LC DLCM DLCM 100 % Stocks

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT LC DLCM LC 100 % Stocks DLCM LC 100 % Stocks 100 % Stocks
100 % Stocks 100 % Stocks DLCT 100 % Stocks LC LC 100 % Stocks LC DLCM
LC DLCM LC DLCM DLCM DLCT DLCM DLCM LC
DLCM DLCT 100 % Stocks DLCT DLCT 100 % Stocks DLCT DLCT DLCT

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

LC LC DLCM LC 100 % Stocks DLCM LC LC DLCM
100 % Stocks 100 % Stocks 100 % Stocks 100 % Stocks LC 100 % Stocks 100 % Stocks 100 % Stocks LC
DLCT DLCM DLCT DLCT DLCM DLCT DLCM DLCT 100 % Stocks
DLCM DLCT LC DLCM DLCT LC DLCT DLCM DLCT

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

DLCM DLCM DLCM DLCT DLCM DLCM 100 % Stocks LC 100 % Stocks
DLCT DLCT DLCT DLCM 100 % Stocks DLCT LC 100 % Stocks LC
LC 100 % Stocks 100 % Stocks LC LC 100 % Stocks DLCT DLCT DLCM
100 % Stocks LC LC 100 % Stocks DLCT LC DLCM DLCM DLCT

Spain Sweden Switzerland
MBB MFB SB MBB MFB SB MBB MFB SB

DLCM DLCT DLCM DLCT LC DLCM DLCT DLCT DLCM
DLCT DLCM DLCT 100 % Stocks DLCT 100 % Stocks DLCM DLCM DLCT
100 % Stocks 100 % Stocks LC LC 100 % Stocks LC LC LC 100 % Stocks
LC LC 100 % Stocks DLCM DLCM DLCT 100 % Stocks 100 % Stocks LC

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100 % Stocks LC LC LC LC DLCM 100 % Stocks LC DLCM
LC 100 % Stocks DLCT 100 % Stocks 100 % Stocks DLCT LC 100 % Stocks LC
DLCT DLCT DLCM DLCT DLCM LC DLCT DLCT 100 % Stocks
DLCM DLCM 100 % Stocks DLCM DLCT 100 % Stocks DLCM DLCM DLCT
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Table 3.11 Ranking Based on CVaR 95 of IRR

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

LC 100% Stocks 100% Stocks LC LC DLCM LC LC DLCM
100% Stocks LC LC 100% Stocks DLCT DLCT 100% Stocks DLCT LC
DLCT DLCT DLCT DLCT 100% Stocks 100% Stocks DLCT 100% Stocks DLCT
DLCM DLCM DLCM DLCM DLCM LC DLCM DLCM 100% Stocks

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT LC DLCM LC 100% Stocks DLCM LC 100% Stocks DLCM
100% Stocks 100% Stocks DLCT 100% Stocks LC LC 100% Stocks LC 100% Stocks
LC DLCM LC DLCM DLCM DLCT DLCM DLCM LC
DLCM DLCT 100% Stocks DLCT DLCT 100% Stocks DLCT DLCT DLCT

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

LC LC DLCM LC 100% Stocks DLCM LC LC DLCM
100% Stocks 100% Stocks 100% Stocks 100% Stocks LC DLCT 100% Stocks 100% Stocks LC
DLCT DLCM DLCT DLCT DLCM 100% Stocks DLCM DLCT 100% Stocks
DLCM DLCT LC DLCM DLCT LC DLCT DLCM DLCT

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

DLCM DLCM DLCM DLCT DLCM DLCM 100% Stocks LC 100% Stocks
DLCT DLCT DLCT DLCM 100% Stocks DLCT LC 100% Stocks LC
LC 100% Stocks LC LC LC 100% Stocks DLCT DLCT DLCM
100% Stocks LC 100% Stocks 100% Stocks DLCT LC DLCM DLCM DLCT

Spain Sweden Switzerland
MBB MFB SB MBB MFB SB MBB MFB SB

DLCM DLCT DLCM DLCT LC DLCM DLCT DLCT DLCM
DLCT DLCM DLCT 100% Stocks DLCT 100% Stocks DLCM DLCM DLCT
100% Stocks 100% Stocks LC LC 100% Stocks LC LC LC LC
LC LC 100% Stocks DLCM DLCM DLCT 100% Stocks 100% Stocks 100% Stocks

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks LC LC LC LC DLCM 100% Stocks LC DLCM
LC 100% Stocks DLCM 100% Stocks 100% Stocks DLCT LC 100% Stocks LC
DLCT DLCT DLCT DLCT DLCM LC DLCT DLCT 100% Stocks
DLCM DLCM 100% Stocks DLCM DLCT 100% Stocks DLCM DLCM DLCT
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Table 3.12 Ranking Based on CVaR 95 of GMR

Australia Belgium Canada
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks 100% Stocks LC DLCT DLCM LC DLCT LC
LC LC LC DLCT 100% Stocks LC 100% Stocks LC 100% Stocks
DLCT DLCT DLCT 100% Stocks LC 100% Stocks DLCT 100% Stocks DLCM
DLCM DLCM DLCM DLCM DLCM DLCT DLCM DLCM DLCT

Denmark France Germany
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks 100% Stocks DLCM LC LC DLCM LC 100% Stocks LC
LC LC DLCT 100% Stocks 100% Stocks LC 100% Stocks LC 100% Stocks
DLCT DLCM 100% Stocks DLCM DLCM 100% Stocks DLCM DLCM DLCM
DLCM DLCT LC DLCT DLCT DLCT DLCT DLCT DLCT

Ireland Italy Japan
MBB MFB SB MBB MFB SB MBB MFB SB

LC LC 100% Stocks LC 100% Stocks LC 100% Stocks 100% Stocks DLCM
100% Stocks 100% Stocks DLCM 100% Stocks LC DLCT LC LC LC
DLCT DLCM DLCT DLCT DLCM 100% Stocks DLCM DLCT 100% Stocks
DLCM DLCT LC DLCM DLCT DLCM DLCT DLCM DLCT

Netherlands Norway South Africa
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT DLCT DLCM DLCT DLCM DLCM 100% Stocks 100% Stocks LC
LC DLCM LC LC LC 100% Stocks LC LC 100% Stocks
100% Stocks LC 100% Stocks DLCM 100% Stocks DLCT DLCT DLCT DLCT
DLCM 100% Stocks DLCT 100% Stocks DLCT LC DLCM DLCM DLCM

Spain Sweden Switzerland
MBB MFB SB MBB MFB SB MBB MFB SB

DLCT DLCT DLCM DLCT 100% Stocks 100% Stocks DLCT DLCT DLCM
DLCM LC DLCT LC DLCT LC DLCM LC DLCT
100% Stocks 100% Stocks 100% Stocks 100% Stocks LC DLCM LC 100% Stocks 100% Stocks
LC DLCM LC DLCM DLCM DLCT 100% Stocks DLCM LC

UK USA World
MBB MFB SB MBB MFB SB MBB MFB SB

100% Stocks LC LC LC LC DLCM 100% Stocks LC LC
LC 100% Stocks DLCT 100% Stocks 100% Stocks LC DLCT 100% Stocks 100% Stocks
DLCT DLCT 100% Stocks DLCT DLCT 100% Stocks LC DLCT DLCT
DLCM DLCM DLCM DLCM DLCM DLCT DLCM DLCM DLCM
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Appendix A

Mathematical Background For Chapter
One

A.1 Order Statistics

Order Statistics are one of the most powerful tools in non-parametric statistics. This power
comes from some valuable inferences one may be able to make by ranking observations
of a random sample and studying their joint distributions. Unlike Athreya (1987), Knight
(1989) has shown that the naive bootstrap fails to mimic the distribution of observations
possessing heavy-tails based on the concept of Order Statistics. Knight (1989) has utilized
the results of LePage et al. (1981) to prove his theory. LePage et al. (1981) used a valuable
property in Order of Statistics to show that the largest few summands determine the limiting
distribution. The result LePage et al. (1981) reached is critical for our chapter 1. Therefore,
this section gives more insight onto the property LePage et al. (1981) used to reach their
conclusion. Moreover, this important property has not been mentioned in the recent literature.
This section will therefore be dedicated to provide further explanation of Order Statistics and
revising previous properties that are critical for our proofs.
The order statistic is the arrangement in a decreasing order, obtained from the original
(unordered) sample, through permutation; that is, that:

Definition A.1.1. For k = 1,2, · · · ,n, let

X(k) = the kth smallest of X1,X2, · · · ,Xn

(X(1),X(2), · · · ,X(n)) is called the order statistic and X(k) the kth order variable, k= 1,2, · · · ,n.
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The ordered variables {X(i)}n
i=1 also depend on the number of observations n. Therefore,

for complete transparency, it would be better to denote the random variable X(i) as Xi:n.
Consider U1,U2, · · · ,Un to be independent random variables uniformly distributed on

(0,1). The order statistics of the {Ui} will be represented by {Ui:n}. Moreover, define a
random variable Zk by

Zk =
k

∑
i=1

Wi

where k ≤ n, and an i.i.d. sequence {Wi}n
i=1 of exponential random variables. Then the

following proposition holds.

Proposition A.1.2. The sequence {Ui:n} has the same joint distribution as {Zk/Zn+1}.

Proof. The proof consists of three steps. The initial step entails developing an equality which
will help in developing the joint probability density function of Zk/Zn+1. The second step
expands and reduces the joint probability density of Zk/Zn+1. The last step explains the joint
distribution which will be equal to that of the observed in step two. Denote by the probability
measure π defined as

P(Z1 ∈ dx1,Z2 ∈ dx2, · · · ,Zn ∈ dxn)

which is defined on the product space of n dimensional R. However, note that: Z1 = W1,
Z2 =W2+Z1, · · · , Zn =Wn+Zn−1. Therefore the random variables {Zi} are dependent while
the random variables {Wi} are independent. Thus it is of interest to transform the set

n⋂
i=1

{Zi ∈ dxi}=
n⋂

i=1

{Wi ∈ dxi − xi−1}

where x0 = 0 hence the probability measure π

π = P(W1 ∈ dx1,W2 ∈ dx2 − x1, · · · ,Wn ∈ dxn − xn−1)

observe that P(W1 ∈ dx1) ≈ fW1(x1)dx1 = e−x1dx1 and that P(W2 ∈ dx2 − x1) ≈ fW1(x2 −
x1)dx2 hence

π ≈ fW1(x1) fW1(x2 − x1) · · · fW1(xn+1 − xn)dx1 · · ·dxn+1

=
n+1

∏
i=1

fWi(xi − xi−1)dxi

=
n+1

∏
i=1

e−(xi−xi−1)dxi

= e−xn+1dx1 · · ·dxn+1
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Now we need to interpret Zi as a sum of exponential random variables; hence it would be
a Gamma distribution

Zi ∼ Gamma(i,1)

hence its pdf is given as

fZi(x) =
1

(i−1)!
xi−1e−x

Then the following equation shows

P(Z1 ∈ dx1,Z2 ∈ dx2, . . . ,Zn ∈ dxn | Zn+1 = xn+1)

= fZn+1
(xn+1)

−1[P({Z1 ∈ dx1,Z2 ∈ dx2, . . . ,Zn ∈ dxn}
∩{Zn+1 = xn+1})

]
= fZn+1

(xn+1)
−1 ×π

= e−xn+1dx1 · · ·dxn+1/ fZn+1
(xn+1)

= n!x−ndx1 · · ·dxn

Then Normalize by dividing all the entries by Zn+1

P
(

Z1

Zn+1
∈ dy1,

Z2

Zn+1
∈ dy2, . . . ,

Zn

Zn+1
∈ dyn | Zn+1 = xn+1

)
= n!dy1 · · ·dyn

when 0 ≤ y1 ≤ ·· · ≤ yn ≤ 1. On the other hand, consider the i.i.d. sequence of random
variables {Ui} and its mapping {Ui:n}. This mapping is not one to one as it is a permuta-
tion. Observe that there are n! different outcomes that all generate the same order statistic.
Therefore,

P
(

U(1) ∈ dy1,U(2) ∈ dy2, . . . ,U(n) ∈ dyn

)
= ∑

all possible outcomes
P
(

U1 ∈ dy1,U2 ∈ dy2, . . . ,Un ∈ dyn

)
= n!dy1 · · ·dyn

One important result in order statistics is the following proposition
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Proposition A.1.3. An n dimensional random vector with i.i.d. elements {X(i)}n
i=1 is equal

in distribution to {F−1
X (Zi/Zn+1)}n

i=1.

Proof. It is easy to observe that if X with continuous CDF FX , FX (X) is uniform on (0,1)
proof of such result is available in many text books including Ahsanullah et al. (2013) and Gut
(2009). Therefore, based on this result, it should be easy to understand that the distribution
of the order i.i.d. elements {X(i)}n

i=1 is equal in distribution to {U(i:n)}n
i=1 where U(i:n) is as

defined above. Therefore, using Proposition A.1.2, the result follow immediately.

Discussion:

Now, and thereafter, let X ∈ DA(Z) such that Z ∈ S(α); and let FX denote its distribution
function. Let Sn be defined as in equation A.25, where the normalizing constants an and bn

follow equations A.27 and A.28 respectively. Hence, this statistic, Sn converges in distribution
to a stable random variable Zα . where α is the index of stability.

It may also be shown that based on the views of equation A.22 the following equations
hold, as x →+∞

FX(−x)
1−FX(x)+FX(−x)

→ q and
FX(x)

1−FX(x)+FX(−x)
→ p (A.1)

where p,q ≥ 0 such that p+q = 1. Moreover, observe that

F|X |(x) = P(|X |> x) = 1−FX(x)+FX(−x) (A.2)

Therefore, based on equations A.1, and A.2, it should be clear that as x →+∞ the following
equations holds

FX(−x)∼ qF|X |(|x|) and FX(x)∼ pF|X |(x)

Let Γk = (∑k
i=1 Ei) where {Ei} is a sequence of i.i.d. exponential r.v.s with mean one.

Then, as a consequence of the Law of Large numbers, it may be shown that:

1
k

Γk =
1
k

k

∑
i=1

Ei
a.s.→ E(Ei) = 1

Hence, a gamma distributed random variable Γk divided by its shape-parameter k converges
almost surely to 1 as its shape-parameter approaches infinity, conditional on the fact that the
scale is 1.
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Let F−1
X be the inverse of Fx defined as:

F−1
X (x) = inf{y : FX(y)≤ x}

Observe that:

a−1
n F−1

X (Γk/Γn+1) = inf{a−1
n y : FX(y)≤ Γk/Γn+1}

= inf{z : n
(

Γn+1

n+1
× n+1

n

)
FX(anz)≤ Γk}

∼

inf{z : npF|X |(anz)≤ Γk} for k large, hence z ≥ 0

inf{z : nqF|X |(−anz)≤ Γk} for k small, hence z ≤ 0

→

inf{z : pz−α ≤ Γk} for k large, hence z ≥ 0

inf{z : q(−z)−α ≤ Γk} for k small, hence z ≤ 0

=

inf{z : z ≤ p1/αΓ
−1/α

k } for k large, hence z ≥ 0

inf{z : z ≤−q1/αΓ
−1/α

k } for k small, hence z ≤ 0

=

p1/αΓ
−1/α

k for k large

−q1/αΓ
−1/α

k for k small

(A.3)

where z is introduced as a substitution parameter z := a−1
n y. The limit → stand for as n→+∞.

Equation A.27 has been used among the lines.

A.2 Revisiting Various Aspects of Stable Distributions

A.2.1 Stable and Infinitely Divisible Distributions

In general, stability is a condition which describes a class of distribution under which the
sum or a linear combination of i.i.d. random variables, that possess this distribution, add
up to a random variable that possesses the same distribution. For example, the sum of i.i.d.
normal random variables is equal in distribution to a normal random variable. Similarly,
this result holds for all stable random variables such as Cauchy and Lévy. There are many
equivalent characterizations for the definition of the family of univariate α-stable distribution
(see, among others, Samoradnitsky & Taqqu 1994, Nolan 2015, Ibragimov et al. 2015, Peters
& Shevchenko 2015). Next, we will define the family of univariate α-stable distribution.
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Definition A.2.1. The probability distribution of a random variable X, FX , is stable in the
broad sense if there exist constants α ∈ (0,2] and dn ∈ R, such that

Σn
d
=n1/αX +dn (A.4)

where Σn is the partial sum of the i.i.d. random sequence {Xi}n
i=1 that are identical copies of

X. X is strictly stable if and only if dn = 0 for all n.

From the above characterization of the univariate stable distribution, it should be obvious that
this class of distributions satisfies the property of closure under convolution. In particular,
the tail index α is maintained across the sums.

The property of closure under convolution is closely related to the concept of the domain
of attraction. Consider the following definition for the domain of attraction of a non-
degenerate distributions.

Definition A.2.2. An i.i.d. sequence of random variables {Xi}n
i=1 with partial sum, Σn,

belongs to the domain of attraction of the non-degenerate distribution G if there exists a
normalizing sequence {an > 0, n ≥ 1} and centering sequence {bn, n ≥ 1} such that

Σn −bn

an

d−→ Z, as n → ∞ (A.5)

where Z is a random variable that possess a distribution G. The notation is FX ∈ DA (G),
or alternatively, X ∈ DA (Z) if Z ∈ G.

Remark: If Z in equation (A.5) is a stable random variable with index of stability α , then the
above definition will represent the Generalized central limit theorem (see, Theorem A.2.7)
and the notation is X ∈ DA (Z) such that Z ∈ S(α) or simply X ∈ DA (α).

Based on the characterization of stable distributions described in definition A.2.1 another
equivalent characterization emerges. In particular, if X is an α stable random variable then it
belongs to its own domain of attraction. That is, for a suitably normalized sum of a sequence
of discrete stable random variables {Xi}n

i=1 there exist constants dependent on n such that
the sum converges to the same distribution (see, equation (4.3), Peters & Shevchenko 2015).
This characterization poses the question of whether only stable distributions, when suitably
normalized, converge in distribution (weak-convergence) to their own law. The answer to
this question is not necessarily.

Although Pareto distribution is not among the class of stable distributions, the i.i.d.
sum of Pareto random variables converge to a stable law (Blum 1970). Therefore, there
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exist non-stable distributions, that belong to the domain of normal attraction of a stable
law, that are themselves not stable. Moreover, it is well-known that all stable distributions
are infinitely divisible. However, not every infinitely divisible random variable is stably
distributed. For example, a sum of two infinitely divisible random variables such as the
Gaussian and the Cauchy results in an infinitely divisible random variable, say X , that is not
stable but a combination of stable and normal. In fact, the univariate α-stable distribution
family represents only a sub-class of the so-called class of L distributions. The class of L
distributions represents the family of all distributions that are infinitely divisible1, such that
the normed summand are asymptotically constant2.

Using the properties of closure under convolution and infinite divisibility, Lévy (1925)
and Lévy & Borel (1954) specified the distributional membership of the L distributions family
via the characteristic function. However, Khintchine gave a simpler proof on the real line
(R). Therefore, this representation has been known as the Lévy-Khintchine representation.

Definition A.2.3 (Lévy-Khintchine representation). Given a distribution function FX of an
infinitely divisible random variable X, then the logarithm of its characteristic function, ΦX ,
admits the Lévy-Khintchine representation given generally by

ΦX(t) = exp(Ψ(t)) (A.6)

where the exponent of the characteristic function Ψ(t) is given by

Ψ(t) = iagt − 1
2

σ
2t2 +

∫
R\{0}

(eitu −1− itg(u))W (du) (A.7)

for some truncation function g : R −→ R which is measurable and satisfies for all t the
condition ∫

|eitu −1− itg(u)|W (du) (A.8)

with a drift component ag ∈ R that depends on the choice of the truncation function (g) and
a diffusion component σ2, such that σ > 0, and the jump component represented by the
Lévy-measure3 W which satisfies W (0) = 0 almost surely and∫

R\{0}
min{u2,1}W (du)< ∞ (A.9)

1An infinitely divisible random variable is a random variable that may be written in terms of sum of arbitrary
number of i.i.d. random variables (see Gut 2012, p. 442).

2see (Definition 4.14, Peters & Shevchenko 2015, p. 158)
3Is a Borel measure on R, with a certain criteria to be satisfied. It usually describes the distribution of the

jumps of the process.
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Remarks:

• It should be emphasised that every infinitely divisible probability distribution corre-
sponds in a natural way to a Lévy process (Corollary 11.6, Sato 2013, p. 63). A Lévy
process is a stochastic process with independent, stationary increments which have
continuous probabilities. In fact, Brownian motion and Poisson process belong to a
class called the Levy process with minor additional conditions to be satisfied (see,
definition 5.1, Sato 2013, p. 22).

• In general, the jump part of a Levy process is a compensated sum of the Poisson point
process with the same characteristic measure as the Levy measure.

• The general Lévy-Khintchine representation may be uniquely defined by the Lévy
triplet, also known as the generating triplet, (ag,σ

2,W ) (see, for details, Sato 2013, p.
37-39).

• Using the α-stable Lévy spectral measure which may be defined by

W (du) =
P

u1+α
1(0,+∞)(u)du+

Q
|u|1+α

1(−∞,0)(u)du (A.10)

(see, Janicki & Weron 1994) or alternatively by Lévy measure

W (u) =−c1u−α1(0,+∞)(u)+ c2|u|−α1(−∞,0)(u) (A.11)

(see, Theorem C.1, Zolotarev 1986) where P,Q,c1,c2 are non-negative numbers4. It
may be verified that the family of α-stable distributions may be represented by the
Lévy-Khintchine representation; hence, it belongs to a sub-class in the class of the L
distributions family5.

In his paper, Janssen (1994) used the Lévy-Hinčin formula6 for infinitely divisible
distributions and has shown that the convergent normalized sum of infinitely divisible i.i.d.
random variables converges to an infinitely divisible random variable, say ζ , that may be
represented by a sum of three distinct random variables that is equivalent to it in distribution.
In particular, ζ may be represented by a negative Poisson part ∆−, a positive Poisson part ∆+,
and a Gaussian part N with variance σ2 that represents the diffusion component in equation

4It can be shown that P := α p and Q := αq. Moreover, it should be noted that Wn(A) = nP(a−1
n X ∈ A)

converge as n −→ ∞ to W (see, proof of Lemma 1 and 2, LePage et al. 1981, p. 626)
5For details see (Theorem C.2, Zolotarev 1986, p. 9) and (Sato 2013, p. 80)
6The Lévy-Hinčin formula is a variant of the Lévy-Khintchine representation with a truncation function

g(u) := u1(|u|<τ)(u) and a drift component ag := 0
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(A.7). More rigorously, one may show the following representation of the infinitely divisible
random variable.

Theorem A.2.4. Any infinitely divisible random variable ζ may be represented by the
quantile representation

ζ
d
=∆

−+N +∆
++K (A.12)

where N is a Gaussian random variable with zero mean and variance σ2 that is identical
with the diffusion parameter in equation (A.7) for characteristic equation of Φζ . K is a
constant. A negative Poisson part

∆
− :=

∞

∑
i=1

[
ψ1(Γi)−E

(
ψ1(Γi)1(−τ,0](ψ1(Γi))

)]
(A.13)

A positive Poisson part

∆
+ :=

∞

∑
i=0

[
ψ2
(
Γ̃i
)
−E

(
ψ2
(
Γ̃i
)

1(−τ,0]
(
ψ2
(
Γ̃i
)))]

(A.14)

where Γi and Γ̃i are independent gamma random variables with scale i and shape 1. ψ1 and
ψ2 are quantile functions of the Lévy measure W in the characteristic equation of Φζ (see,
equations (A.10) and (A.11)). They are defined by

ψ1 (y) := min{inf{t : W (−∞, t]≥ y} ,0} (A.15)

and
ψ2 (y) := max{sup{t : W [t,∞)≥ y} ,0} (A.16)

Proof. The proofs are identical with Janssen (1994) and Csörgö et al. (1988)

Remarks:

• The sum of independent random variables, some of which are normal and some of
which are stable, converge, when suitably scaled and normalized, to a random variable,
say ζ , which consists of a normal part and a Poisson part, as discussed in Theorem
A.2.4.

• Each infinitely divisible random variable can uniquely be decomposed into the sum of
two independent infinitely divisible random variables. There exist some cases when
the Gaussian part of the infinitely divisible random variable, ζ , vanishes when σ2 = 0.
In this case, the infinitely divisible random variable ζ may be represented by Possion
parts only. Stable random variables with α < 2 are a case in point.
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Janssen (1994) is interested in finding out which parts of the normalized sum Σn of an
i.i.d. sequence of infinitely divisible random variables {Xi}n

i=1 are responsible for the normal
part and the Poisson part in the limiting random variable. He found that the middle part of
the sum converges asymptotically to a normal distribution, while the upper and the lower
extremes of the sum converge to the positive and negative spectral Poisson part of the limiting
random variable respectively. His findings are for general infinitely divisible distributions
that are asymptotically convergent when suitably scaled and normalized. However, in chapter
1, special attention will be devoted to the behaviour of the central part of the sum of random
variables that belong to the domain of normal attraction of a stable law, which is a sub-class
of the class L.

Remark: Using Order Statistic techniques, it has been shown that an n dimensional ran-
dom vector with i.i.d. elements {X(i)}n

i=1 is equal in distribution to {F−1
X (Γi,n/Γn+1,n+1)}n

i=1

(see, proposition A.1.3). In fact, Janssen (1994) has used this idea in his proof of Theorem
A.2.4 to show its results. However, to show independence between the lower and upper
parts of the partial sum of Σn in equation (A.25) as n → ∞, Janssen (1989) has written the
random variable Γk,n as a sum of two independent series ({ei}⌊n/2⌋

i=1 ,{ẽi}⌊n/2⌋
i=1 ) with common

exponential distribution with mean 1 as

Γk,n =

∑
⌊n/2⌋
i=1 ei k ≤ ⌊n/2⌋

Γ⌊n/2⌋,n +∑
k−⌊n/2⌋
i=1 ẽn+1−i−⌊n/2⌋ k > ⌊n/2⌋

(A.17)

(see, equation (3.5), Janssen 1989, p. 211) where ⌊.⌋ is the floor operator.
The most concrete and practical way to describe stable distributions in terms of func-

tionals, is through characteristic functions or Fourier transformation (see Nolan 2015, p.
7). The specification of the characteristic function of α-stable distributions may be derived
from the Lévy-Khintchine representation (Theorem C.2., Zolotarev 1986, p. 9) and (Section
4.3.4, Peters & Shevchenko 2015, p. 167). Such a derivation would lead to the A-type
parameterization of Zolotarev (1986) of an α-stable characteristic function. Definition A.2.5
gives a variant of the representation of Zolotarev’s A type characteristic function.

Definition A.2.5. A random variable X is stable if and only if there exist a ̸= 0, b ∈ R such
that

X d
=aZ +b
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where Z is a random variable with a characteristic function

E(eitZ) =

exp(−|t|α(1− iβ sign(t) tan(πα

2 )) α ̸= 1

exp(−|t|(1+ i 2
π

β sign(t) log |t|)) α = 1

Where α ∈ (0,2], and β ∈ [−1,1].

Based on definition A.2.5, it is obvious that the probability distribution function of a
stable distribution, FX , is characterized by the functionals describing its shape, location, and
scale. Indeed, definition A.2.5 has defined those parameters in only one form; however, there
are many other forms that may equally define a stable law (see Nolan 2015, p. 7). Originally,
Zolotarev (1986) introduced parametric parameterizations of the characteristic exponent
of stable laws. The idea of the parameterization of stable law is to select the explanatory
parameters precisely, such that it is practical for analysis and gives solid knowledge on the
shape of the stable density function.

In their investigation of the tail behavior of non-Gaussian stable distributions, Fofack &
Nolan (1999) were engaged in locating the mode of the stable distribution as a function of two
parameters that defines the distribution’s shape. However, unlike the popular parameterization
of Samoradnitsky & Taqqu (1994) (see, definition A.2.6), Fofack & Nolan (1999) used a
different parameterization, simply because they may better understand the bounds of the
mode employed by the alternative parameterization. In chapter 1, the parameterization of
Samoradnitsky & Taqqu (1994) will be adopted. Therefore, it is of great importance to define
this parameterization here.

Definition A.2.6. A random variable X, that possess a stable distribution, has a character-
istic function that is mainly classified by four parameters: the index of stability α ∈ (0,2],
skewness parameter β ∈ [−1,1], a scale parameter σ > 0, and a location parameter µ ∈ R.
It is mathematically defined as

E(eitX) =

exp(−σα |u|α [1− iβ sign(t) tan(πα

2 )]+ iµt) α ̸= 1

exp(−σ |u|[1+ i 2
π

β sign(t) log |t|]+ iµt) α = 1
(A.18)

Remarks:

• Equation (A.18) is characterized by four parameters. Therefore, here, and thereafter,
S(α,β ,σ ,µ) will be used to denote stable distributions that follow such parameteriza-
tions.
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• As Weron & Weron (1995) pointed out, there is a natural interpretation for each
parameter. The location parameter µ shifts the distribution to the left or right depending
on its sign. The scale parameter σ compresses or extends the distribution about µ

depending on whether its magnitude is above or below one. The exponent α ∈ (0,2)
determines the rate at which the tails of the distribution taper off. If α > 1, it could
be shown that the mean exists and it coincides with the location parameter µ . The
parameter β corresponds to the skewness of the distribution. If β is positive then the
distribution is skewed to the right, while if negative it is skewed to the left.

The Generalized Central Limit Theorem (GCLT) describes the inter-relationship between
the domain of attraction (see Definition A.2.2) and the stable distribution (Nolan 2015, p.
22). In particular, if the identical variable of the sequence of random variables belongs to
the domain of attraction of a limiting variable that follows a stable distribution, then this
describes the GCLT.

Theorem A.2.7 (Generalized Central Limit Theorem). A non-degenerate random variable Z
is α-stable for some 0 < α ≤ 2 if and only if there is an i.i.d. sequence of random variables
{Xi}n

i=1 and constants an > 0, bn ∈ R with

a−1
n

n

∑
i=1

Xi −nbn
d−→ Z (A.19)

Theorem A.2.7 has an advantage over the traditional Central Limit Theorem (CLT). For
example, the GCLT states that the normalized sum of random variables will converge in
distribution to the domain of the normal attraction of a stable law, where the Gaussian law
(thus, CLT) is only a particular case of it (when α = 2). Consider the normalized sum of
binomially distributed observations. It is well known the distribution of such sum converges
to the standard normal law. Certainly, this is because the binomial random variable possesses
the second moment. However, many other random variables may not enjoy either a first or a
second moment such as the Cauchy random variable. The normalized sum of i.i.d. Cauchy
random variables offers to epitomize the GCLT. Indeed, the normalized sum of i.i.d. Cauchy
random variables converges to a stable law (not Gaussian law). The Cauchy distribution is a
special case of the Stable family (see, Nolan 2015).

Having said this, it is worth noting that there is a difference between stating that dis-
tribution is stable, and distribution is asymptotically stable. For example, based on the
example above, one may state that the sum of binomially distributed observations, when
suitably normalized, is asymptotically normal, but one may not say it is an exact normal
distribution. Similarly, some distributions are not exactly stably distributed, but in the limit of
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their normalized sum are indeed stably distributed. For example, the Pareto distribution does
not belong to the stable distribution family, but it belongs to the domain of normal attraction
of a stable law (Politis et al. 1999, p. 262).

A.2.2 Tails of Stable Distributions:

The stable distributions, habitually, are connected with heavy tails characteristics. Indeed,
Lévy (1925) has shown the asymptotic equivalence between the tail behavior of a Pareto
law and non-Gaussian law distributions. Hence, in the literature, the name Paretian tail is
always associated with the tail behavior of stable distributions. In his proof of Theorem
A.2.7, Feller (1971) used the Lévy measure (defined in A.11) and the uniform convergence of
nFX(an(dx+bn)) to the Lévy measure W (dx)7 to show that the tails of the stable probability
distribution function, FZ , such that Z ∈ S(α), follow these equations:

P(Z > ε) = 1−FZ(ε)∼ c1ε
−α , ε −→ ∞ (A.20)

P(Z < ε) = FZ(ε)∼ c2|ε|−α , ε −→−∞ (A.21)

where c1, and c2 are some positive real constants such that c1 ≥ 0, c2 ≥ 0 such that c1+c2 > 0.
The two constants, c1 and c2, play an essential role in determining the limiting skewness

parameter8, β , in equation (A.18). Although skewness is usually defined as the measure
of the asymmetry of the probability distribution of a random variable about its mean, in
our context the skewness refers to the infinite portion of the right-hand tail over the infinite
portion of both tails. Therefore, it has nothing to do with the mean, mode, or the median.
Note that the mean does not exist when α is smaller than one (see, Lemma, Feller 1971, p.
578).

In general, the mean, which is usually considered to be a measure of central tendency,
does not necessarily exist. Therefore, this poses the question of what is the central tendency
of a random variable whose distribution is stable. The main goal of central tendency is to find
a single value that best represents the entire distribution (Gravetter & Wallnau 2016, p. 75).
In symmetric stable distribution with a finite mean, the mode, median, and the mean coincide;
hence, all may be considered as the measure of central tendency of such a distribution (see,

7The uniform convergence is shown indirectly for two reasons. The first is that the spectral measure (in this
case Lévy measure) W in A.7 is not being effected by the truncation function g. The second reason is that there
exist a unique relationship between the Lévy measure and the canonical measure M in (equation (2.34), Feller
1971, p. 564). Moreover, the constants an,bn are as discussed in equation (A.19)

8The skewness parameter β should not be confused with the skewness parameter of a random variable X
defined by the third moment of the standardize random variable, which is known as the moment coefficient of
skewness.
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for example, Blattberg & Sargent 1971). However, when it comes to the general case of stable
distributions, to the best of our knowledge, the central tendency of general stable distribution
is not clearly defined in the academic literature. Therefore, our intuition suggests that the
mode would be considered the best representative of the central tendency of the general
stable distribution for two reasons: 1) The mode is unique for stable distributions (Yamazato
1978). 2) Due to the continuity of stable distributions and its well-studied structure, the mode
is a representative of the data. In particular, the further an observation is away from the mode,
the lower the probability associated with it becomes.

Theorem A.2.8 is critical due to its essential link between the idea of a random variable
possessing a domain of normal attraction of a stable law and the asymptotic skewness
parameter of the limiting stable variable. This Theorem was initially developed by Gnedenko
& Kolmogorov (1968) and Doeblin (1940)

Theorem A.2.8. A random variable X with distribution function FX belongs to the domain
of attraction of a non-degenerate stable law FZ (X ∈ DA (Z) such that Z ∈ S(α)) with
characteristic exponent α ∈ (0,2), if and only if, as x → ∞ the following convergence is true

FX(−x)
1−FX(x)+FX(−x)

→ c2

c1 + c2
(A.22)

for some c1,c2 ≥ 0 and c1 + c2 > 0, determined by FZ . In addition, it is required that as
x → ∞

1−FX(x)+FX(−x)
1−FX(tx)+FX(−tx)

→ tα (A.23)

for each constant t > 0.

Proof. Available in English at (Gnedenko & Kolmogorov 1968) and in French at (Doeblin
1940). Recently mentioned in (Theorem 4.10, Peters & Shevchenko 2015, p. 155) and
(Theorem 3.2, Gut 2009, p. 194).

Remarks:

• The results in Theorem A.2.8 are similar to the results achieved by Feller (1971) but
with a different notation. Consider that X ∈ DA (Z) such that Z ∈ S(α). Feller (1971)
showed that

nFX(andx+bn/n) n→∞→ FZ(dx)

(Theorem 2, Feller 1971, p. 564). Based on this, it may be shown using equation
(A.20) that

nxα [1−FX(anx+bn/n)] n→∞→ xα [1−FZ(x)]
x→∞→ c1
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Hence, one can show that equation (A.22) holds.

• It may be shown that c1 and c2 in equation (A.11) can be written as:

c1 =Cp
2−α

α
and c2 =Cq

2−α

α
(A.24)

where C > 0 and p,q ∈ [0,1] such that p+q = 1 and α is the parameter of stability9.
Therefore, the convergence constant in equation (A.22) can be rewritten as

c2

c1 + c2
= q = 1− p

Moreover, the parameter β in equation (A.18) are linked to the constants p,q as follow

β = p−q = 2p−1 = 1−2q

Lemma A.2.9. Consider a random variable Z such that its distribution FZ is defined as

FZ(a) =
1
2
[FX(a)+FX(a+1)]

where FX is cdf of X such that X ∈ DA (E) where E ∈ S(α). Then Z belongs to the domain
of normal attraction of a stable law FE .

Proof. Theorem A.2.8 needs to be used in the proof. Indeed, if equations (A.22) and (A.23)
holds for the distribution function FX , then Lemma A.2.9 is proved. Observe first that as
a → ∞

FX(−a+1)≈ FX(−a) and FX(a+1)≈ FX(a)

Hence, it can be shown that as a → ∞

FZ(a)
FX(a)

→ 1 and
FZ(−a)
FX(−a)

→ 1

Therefore, using the above, it easily follows that

FZ(−a)
1−FZ(a)+FZ(−a)

≈ FX(−a)
1−FX(a)+FX(−a)

→ q

9To verify this one need to use equation (5.12) in (Feller 1971, p. 576) and the fact that the Lévy measure
W (du) = u−2M(du) where M is the canonical measure (see, equation (2.34), Feller 1971, p. 564)
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Hence Z satisfies equation (A.22). Moreover, it can be shown that

1−FZ(a)+FZ(−a)
1−FZ(ta)+FZ(−ta)

=
(1−FX(a)+FX(−a))+(1−FX(a+1)+FX(−a+1))

(1−FX(at)+FX(−at))+(1−FX(at +1)+FX(−at +1))

≈ 1−FX(a)+FX(−a)
1−FX(at)+FX(−at)

→ tα

Hence Z satisfies equation (A.23).

Remarks:

• One should distinguish between infinitely divisible random variables and variables that
belong to the domain of the normal attraction of a stable law. Not all distributions that
belong to the domain of the normal attraction of a stable law are infinitely divisible.
For example, as shown in Lemma A.2.9, the distribution FZ is not infinitely divisible,
but it belongs to the domain of attraction of an infinitely divisible random variable
E. In general, a linear combination of distributions that are infinitely divisible is not
necessarily infinitely divisible (see, Theorem 4.2, Gut 2012, p. 443). Moreover, note
that the distribution FZ does not belong to the class of L distributions, since the class
of L distributions will always be infinitely divisible (Remark 4.6 Peters & Shevchenko
2015, p. 159).

• Based on Lemma A.2.9, it may be observed that the non-unimodal random variable
Z belongs to the domain of attraction of the unimodal stable random variable E.
Therefore, in general, there exist distributions that are not necessarily unimodal but
belong to the domain of normal attraction of a stable law.

Lemma A.2.10. Consider a constant variable m ∈R, if X ∈DA (α) then X −m ∈DA (α)

Proof. Observe that
FX−m(−a) = FX(−a+m)

Therefore, as a −→ ∞, m becomes negligible, hence, FX(−a+m) ∼ FX(−a). Thus, both
equations (A.22) and (A.23) follow. Hence, the proof is complete.

A.2.3 Normalizing Constants of the Convergent Sum

It is of general interest, when addressing distributions that belong to the domain of normal
attraction of a stable law, to consider their corresponding normalizing constants. Initially,
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the study of the analytical expressions that the normalizing constants need to satisfy was
explained in (see, equations (5.23) and (5.28), Feller 1971, p. 579-580).

Let {Xi}n
i=1 be an i.i.d. sequence of random variables and denote by X a random variable

from that sequence such that its distribution function Fx satisfies equations (A.22) and (A.23).
Then there exist normalizing constants an > 0 and bn ∈R where n∈N such that the following
statistics

Sn =
1
an

n

∑
i=1

(Xi −bn) (A.25)

converge in distribution to a stable law with index α . In the case that Fx is the stable
distribution S(α,β ,σ ,µ) (see, equation (A.18)) then an = n1/α such choice also holds for
Pareto, Burr, and t distributions with α ∈ (1,2), but not for the log-gamma distribution with
scale v > 1 (Cornea-Madeira & Davidson 2015, p. 451-452).

Later, using probabilistic proofs, Simons & Stout (1978) discuss the relationship between
two normalizing sequences an and a

′
n, the first being the normalizing constant of distributions

that belong to the domain of attraction of a stable law and the other are stable distributions
that belong to the same law, then the division of these normalizing constants is slowly varying.
Therefore, in general, the normalizing constant an = n1/αL(n) where L(n) is a slow varying
function (Samoradnitsky & Taqqu 1994, p. 5) and (Theorem 6, Simons & Stout 1978, p.
309).

For the statistic Sn in equation (A.25), the normalizing constants an and bn must satisfy

n
∫ 1

−1
y2FX(andy)→C (A.26)

where C is the same constant defined in equation (A.24) (see, equation (5.23), Feller 1971, p.
579). It may equally be shown that an satisfies

n(1−FX(any)+FX(−any)) = nP(|X |> any)→ y−α (A.27)

and
bn =

∫ an

−an

yFX(dy) (A.28)

(see, equations (3) and (4), LePage et al. 1981, p. 624).
Remarks:

• In case X is a symmetric random variable around zero, the constant bn = 0 (Feller
1971, p. 574).
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• bn converges as n −→ ∞ to the location parameter in general. Where the location
parameter is the mean of the random variable X if α > 1.

A.2.4 On the behaviour of the central part of the Sums:

Understanding properties of partial sums of independent random variables is of critical
importance, especially when addressing heavy-tail distribution. Central limit theorem implies
weak convergence in probability theory; hence, establishing this property on specified
statistics generates useful practical applications, especially when applying hypothesis testing
procedures. Therefore, it is of interest to discuss whether a partial sum of random variables
that belong to the domain of normal attraction of a stable law, when suitably scaled and
normalized, validates the central limit theorem.

Let {Xi}n
i=1 be an i.i.d. sequence of random variables such that X , a random variable for

this sequence, belongs to the domain of normal attraction of a stable law. Then, the statistic
Sn defined in equation (A.25) converges in distribution to a stable random variable with index
of stability α denoted by Zα , that is

Sn
d−→ Zα (A.29)

we are now in a good position to introduce a new perspective on the series {Xi}n
i=1. Let

X1,n ≤ X2,n ≤ ·· · ≤ Xn,n (A.30)

and
|X (1)

n | ≥ |X (2)
n | ≥ · · · ≥ |X (n)

n | (A.31)

denote the order statistics and the ordered sample of absolute values, {|Xi|}n
i=1 the arranged

series according to decreasing moduli of {Xi}n
i=1 respectively.

Initially, LePage et al. (1981) were the first to use properties of order statistics (see,
Proposition A.1.3) to give a probabilistic proof of convergence of the normalized partial
sums Sn defined in equation (A.25). Their proof enables statisticians to give a representation
of the limiting distribution of the normalized sums Sn.

Theorem A.2.11 (Le Page et al. (1981)). Let {Xi} be a sequence of i.i.d. random variables
whose common distribution, FX , satisfies limx−→∞(P(X1 > x)/P(|X1|> x)) = p ∈ [0,1] and
P(|X1|> x) = x−αL(x) where 0 < α < 2 and L is a slowly varying. {|X ( j)

n |}n
j=1 is defined in

equation (A.31). Suppose that the sequence {an > 0;n > 1} satisfies an = inf{a : nP(|X1| ≥



A.2 Revisiting Various Aspects of Stable Distributions 177

a)≤ 1} as n −→ ∞10. Then the following holds

a−1
n (|X (1)

n |, |X (2)
n |, · · · , |X (n)

n |,0,0, · · ·) d−→ (Z1,Z2, · · ·) (A.32)

where Zk = (∑k
i=1 Ei)

−1/α and {Ei} is a sequence of i.i.d. exponential r.v.s with mean one.
Moreover, the following also holds

(δ1,n,δ2,n, · · · ,δn,n,1,1, · · ·)
d−→ (δ1,δ2, · · ·) (A.33)

where δi,n is the associated value of either ±1 of the random variable |Xn|(i) whereas
δ1 ∼ Bin(1,−1; p) 11. In addition, the two limiting sequences of r.v.s are independent.

As a result of Theorem A.2.11, LePage et al. (1981) were able to conclude that the largest
few summands determine the limiting distribution of the statistic Sn. Here, one may ask the
interesting question of whether a trimming method of the sum would lead to considerable
changes in the limiting behaviour of the statistic Sn.

In fact, as pointed out by Berkes et al. (2012): “Trimming is a standard method to decrease
the effect of large sample elements in statistical procedures, used, e.g., for constructing robust
estimators. It is also a powerful tool in understanding deeper properties of partial sums of
independent random variables.” Let the trimmed sum, denoted by Σn(rn,sn), be defined as

Σn(rn,sn) =
n−sn

∑
i=rn+1

Xi,n (A.34)

where the sequences {rn,n∈N} and {sn,n∈N} are non-negative integer sequences satisfying
rn + sn < n. It is shown in Lemma A.2.12 that there exist some values of rn and sn such that
the central sum, when suitably scaled and normalized, converge in probability to zero.

Lemma A.2.12 (Janssen (1989)). Under the assumption that {Xi}n
i=1 is an i.i.d. sequence of

random variables such that X1 belongs to the domain of normal attraction of a stable law
and that it satisfies equations (A.22) and (A.29), if the constants rn and sn satisfies as n −→ ∞

q
rn

+
p
sn

→ 0 (A.35)

then there exists a sequence {dn,n ∈ N} of real numbers such that

a−1
n Σn(rn,sn)−dn

p−→ 0 (A.36)
10Hence it also satisfies equation (A.27)
11A random variable X defined as X ∼ Bin(1,−1; p) means that X is a two-point distribution such that

P(X = 1) = p and P(X =−1) = 1− p
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Additionally, if the constants rn and sn satisfy for all n ∈ N

rn +1 > 1/α and sn +1 > 1/α (A.37)

the dn in equation (A.36) is equal to the expectation of such a partial sum

dn = a−1
n E(Σn(rn,sn))

Proof. Similar to Janssen (1989); however, discussion in the introduction of this Appendix
(A.1) facilitate the proof.

Remarks:

• Whenever, q ̸= 0, if rn < 1/α , then the mean of Xrn,n does not exist. A similar argument
holds whenever, p ̸= 0, and sn < 1/α the mean of Xn−sn+1,n does not exist.

• In case the distribution of X is one-sided, i.e. min(p,q) = 0, one may show that the
result of the Lemma also holds if rn = 0 or sn = 0.

• The constants rn and sn need to satisfy equation (A.35) as n → ∞. Implicitly this means
that as n → ∞ both rn,sn → ∞. Moreover, it can be easily shown that rn/n,sn/n → 0
as n → ∞.

• The number of terms of the ordered summands Σn(rn,sn) defined in equation (A.34),
grows as n → ∞ because as n → ∞

n− sn − rn = n(1− sn

n
− rn

n
)→ ∞

Janssen (1989) used the result of Lemma A.2.12 to show a generalization of an important
Theorem (see, Theorem 1, LePage et al. 1981, p. 627). In fact, he obtained a limiting
representation for stable random variables when the largest k elements are trimmed from the
sum Sn defined in equation (A.25).

Theorem A.2.13 (Janssen (1989)). Under the same assumptions of Lemma A.2.12 it may be
shown that

Sn −a−1
n

k

∑
i=1

δi,n|X (i)
n | d−→

∞

∑
i=1

(δiZi − (p−q)γi)−
k

∑
i=1

δiZi + γ (A.38)

where Sn is defined in equation (A.25); an normalizing constant and the limiting values p
and q are as defined in Lemma A.2.12; δi,n, δi, and Zi are as defined in Theorem A.2.11; γk is
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defined as

γk :=

0, if k ≤ 1/α

E(Zk), Otherwise

the constant, which exists, γ defined as

γ := p1/α
∆2 −q1/α

∆1 −
∞

∑
i=1

(δiZi − (p−q)γi)

where

∆2 :=
∞

∑
i=1

(Zi − γi) and ∆1 :=
∞

∑
i=1

(Z̃i − γi)

where Z̃i is an independent copy of Zi

Proof. One could write the constant bn in equation (A.25) as

nbn =
kn

∑
i=1

di,n +
n

∑
i=n+1−rn

di,n +dn

where dn is as defined in Lemma A.2.12 and

di,n :=

E
(
F−1

X (
Γi,n+1

Γn+1,n+1
)
)

if min(i,n+1− i)> 1/α

0 Otherwise

Then Sn could be split and ordered as

a−1
n

n

∑
i=1

(Xi −bn) = a−1
n

(
Σ(0,n− kn)−

kn

∑
i=1

di,n

)
+a−1

n (Σ(kn,rn)−dn)

+a−1
n

(
Σ(n− rn,0)−

n

∑
i=n+1−rn

di,n

)

by Lemma A.2.12 the second line of the above equation converges to zero in probability.
Hence, the proof of the Theorem is completed by following the same proof in (Theorem 5.2,
Janssen 1989, p. 221).

Remark: Theorem 1 of LePage et al. (1981) is a special case of Theorem A.2.13 when the
truncation term k is equal to zero.

Janssen (1989) has shown that the central part, Σn(rn,sn) of the trimmed sum when
normalized with the same normalizing constant, an of the statistic Sn in equation (A.25), then
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Σn(rn,sn) converges in probability to zero under mild assumptions on the factors rn and sn.
Csörgő et al. (1986) showed that when a certain number of the largest and the smallest order
statistics are removed, the partial sum Σn(rn,rn) converges to a normal distribution when
suitably scaled, normalized, and when the non-random variable rn satisfies the moderately
trimmed12 sum assumptions. However, many other authors such as Griffin & Pruitt (1987),
Teugels (1981), Berkes et al. (2011), and Berkes et al. (2012) were interested in modulus
trimmed sums. Modulus trimmed sum is associated with the sum when the largest d elements
are removed. Following the same notations as in equation (A.31), denote by

Σ̃n(dn) =
n

∑
i=dn+1

X (i)
n (A.39)

the partial sum of the sum ∑
n
i=1 Xi where dn elements with the largest absolute values are

removed.
Initially, Teugels (1981) considered the partial sum Σ̃n(dn) with a random norming

sequence. He proved that under additional assumptions on the CDF FX and the constant dn,
the partial sum Σ̃n(dn) is asymptotically normal. Based on the same partial sum, Berkes et al.
(2011) showed that under random centring but non-random norming, the central limit theorem
holds for all distributions that belong to the domain of attraction of a stable law, provided
that in addition to the moderately trimmed sum assumptions, dn follows dn/(log(n))γ −→ ∞

for some γ > 7. Griffin & Pruitt (1987) proved that using non-random centring and norming
sequences, say Bn and An, the central limit theorem also holds for the partial sum Σ̃n(dn)

when one of the i.i.d. summands belong to the domain of attraction of a symmetric stable law.
Berkes et al. (2012) generalized the result for i.i.d. summands that belong to the domain of
attraction of a stable law. In fact, Berkes et al. (2012) showed that the central limit theorem
for the trimmed sum depends not on the symmetry of the CDF FX , but on the speed of the
convergence in relation A.22. Moreover, they showed that increasing the number of trimmed
elements does not generally improve the CLT behaviour. This idea looks unnatural since it is
believed that if more significant elements are removed from the sum, then the partial sum
Σ̃n(dn) should behave “more” normally.

It is of importance in chapter 1 to stress the centring constant Bn of the partial sum.
Therefore, Theorem 1.1 of Berkes et al. (2012) is restated here

12According to standard terminology, the trimming of some elements in the sum Sn in equation (A.25) to get
the partial sum Σn(rn,rn) is called light, moderate, or heavy if rn converges to a constant, infinity with order
less than n, or a proportion of n respectively as n −→ ∞
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Theorem A.2.14 (Berkes et al. (2012)). Assume that X ∈ DA (α) and that

1−FX(x)
1−FX(x)−FX(−x)

= p, for all x ≥ x0 (A.40)

with some p ∈ [0,1] and x0 ≥ 0. If dn follows the moderately trimming criterion then

1
An

(Σ̃n(dn)−Bn)
d−→ N

(
0,
( α

2−α
+(p−q)2)) (A.41)

where
An = d1/2

n (1−F|X |)
−1(

dn

n
) (A.42)

and

Bn = n
{∫ x0

−x0

xdFX(x)+(p−q)
∫ 1−F|X |(x0)

dn/n
(1−F|X |)

−1(t)dt
}

(A.43)

where (1−F|X |)
−1(t) = inf{x : 1−F|X |(x)≤ t : t ∈ (0,1)}

The Following are important Corollaries of Theorem A.2.14

Corollary A.2.14.1. Assume that X ∈ DA (α) and that

1−FX(x)
1−FX(x)−FX(−x)

= p, for all x ≥ x0 (A.44)

with some p ∈ [0,1] and x0 ≥ 0. If dn follows the moderately trimming criterion then

E
(
X1(x0 < |X | ≤ vn)

)
= (p−q)

∫ 1−F|X |(x0)

1−F|X |(vn)
(1−F|X |)

−1(t)dt

where F|X |(t) = P(|X | ≤ t), (1−F|X |)
−1(t) = inf{x : 1−F|X |(x) ≤ t : t ∈ (0,1)}, and, vn is

some constant such that it approaches infinity as n −→ ∞.

Proof. The proof is available implicitly in the proof of Theorem 1.1 of (Berkes et al. 2012, p.
456) where the authors have used Theorem 1 and Lemma 1 of (Csörgő et al. 1986) to show
that

E
(1

n

n

∑
i=1

Xi1(x0 < |Xi| ≤ ηn(dn))
)
= (p−q)

∫ 1−F|X |(x0)

dn/n
(1−F|X |)

−1(t)dt

where ηn(dn) is the dth
n largest element of {|Xi| : i ≤ n : i ∈ N}. The argument then easily

followed.

Corollary A.2.14.2. Under the same conditions and notations as the previous findings, the
following results hold as n −→ ∞
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(a)
E(|X |1(|X | ≤ ηn(d)))∫ 1

d/n(1−F|X |)−1(t)dt
−→ 1

(b)
E(X1(|X | ≤ ηn(d)))∫ 1
d/n(1−F|X |)−1(t)dt

−→ (p−q)

(c)
E(X1(|X | ≤ ηn(d)))∫ 1
d/n(1−F|X |)−1(t)dt

−→ (p−q)

(d)
VAR(|X |1(|X | ≤ ηn(d)))
(d/n)[(1−F|X |)−1(d/n)]2

−→ 2
2−α

(e)
VAR(X1(|X | ≤ ηn(d)))
(d/n)[(1−F|X |)−1(d/n)]2

−→ 2
2−α

+(p−q)2

Proof. The above could be easily concluded from equation (2.11) and (2.12) in (Berkes et al.
2012, p. 455-456).

The first part of Bn in equation (A.43), n
∫ x0
−x0

xdFX(x), is very similar to the structure of
the location parameter in equation (A.28), whereas the second part of Bn represents some
other parameter that centres the distribution around an axis of symmetry in the distribution.
Recall that stable distributions belong to the domain of attraction of their own law. Moreover,
any distribution that belongs to the domain of attraction, when suitably scaled and normalized,
converges to a stable law. Hence, stable distributions satisfy the conditions for Theorem
A.2.14 to hold. Hence, the second part of Bn which represents the axis of symmetry which
coincides with the mode of stable distribution for many reasons which will be discussed
in the subsequent subsection. Therefore, the next subsection is dedicated to give a brief
introduction of the mode of stable distributions and its connection with the index of stability
and skewness parameter.

A.2.5 Mode of Stable Distributions

Although it is known that all α-stable densities are unimodal (Yamazato 1978), it remains
that there is no known formula for the location of the mode; however (Peters & Shevchenko
2015, p. 220). Fofack & Nolan (1999) present numerical analysis of the behaviour of the
mode as a function of tail index α and skewness parameter β when the scale is unity. In
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fact, they were the first to study the relationship between the mode of the stable distribution
and the parameters of the standard stable law, since they acknowledge the importance of the
mode in assessing risks in insurance models (Peters & Shevchenko 2015).

It is worth noting that all stable densities are unimodal, bell-shaped around the mode such
that the density possesses a positive derivative to the left of the mode and a negative derivative
to the right of the mode (Nolan 1997, p. 769). As Sato & Yamazato (1978) put it, a point m
is called the unique mode of a distribution function FX(x) if fX(x), the density function of
the random variable X , is convex on (−∞,m) and concave on (m,+∞). In particular, Fofack
& Nolan (1999) mention that, given a zero-mean stable random variable X ∼ S(α,β ,σ ,0),
the mode of it will be given by

m1(α,β ,σ) =

σm(α,β )+βσ tan(απ

2 ) α ̸= 1

σm(α,β )+ 2
π

βσ log(σ) α = 1
(A.45)

where m(α,β ) is a constant that lies between 1 and −1 depending on α and β provided that
σ is equal to one. Moreover, m(α,0) = 0 regardless of α and σ . Fofack & Nolan (1999)
have also shown that the rate at which the mode converges to zero as a function of α . This is
given by

g(α) =


tan(απ

2 )Γ(1+2/α)

Γ(3/α) α ̸= 1
2γ−3

π
α = 1

where γ ≈ 0.57721 is the Euler’s Constant
Observe that using the familiar parameterization of Samoradnitsky & Taqqu (1994)13, the

mode, m1, may exhibit a drawback. In particular, when the index of stability α approaches
one the mode m1 would be infinite. Using another parameterization, the mode m1 will simply
be m(α,β ) defined in A.45. However, since in chapter 1 we are interested in locating the
mode m1 using the parameterization of Samoradnitsky & Taqqu (1994), we have tabulated
the mode m1 for a variety of α and β with σ = 1. Observe that m1(α,−β ) =−m1(α,β ),
therefore, we shall only tabulate those values that correspond to the positive values of β .

Although Table A.1 shows that the skewness parameter is positive, the mode switches
between positive and negative values depending on the value of the index of stability α .
Therefore, one might be interested in understanding whether a relation between the central
tendency, or location parameter, and the mode exist. On the one hand the location parameter
in equation (A.18) is not influenced by the index of stability α nor by the skewness parameter
β , while on the other hand the mode is influenced by both. Therefore, we believe that the

13Recall that the parameterization of Samoradnitsky & Taqqu (1994) is refer to the structural characteristic
function given by equation (A.18) when describing X ∼ S(α,β ,σ ,µ)
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relationship between the mode and the location parameter is linear, in the sense that if the
location parameter shifts by a certain number a, the mode will also be shifted by that same
number a. Moreover, the mode of the general stable distribution may be computed, based on
the mode of the standardized density by a simple scaling factor (Fofack & Nolan 1999, p.
50).
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Based on the previous discussion, we will introduce one main Lemma of chapter 1 as
follows:

Lemma A.2.15. A random variable whose distribution belongs to the domain of attraction
of a stable law but is arbitrary and symmetrically truncated has a mean that consists of two
parts: a location parameter and a stabilizing constant that centres the distribution on its axis
of symmetry.

Proof. It is known that

1(|X | ≤ vn) = 1(|X | ≤ an)+1(an ≤ |X | ≤ vn)

where an is defined as the norming constant defined in equation (A.27). Observe that
1−F|X |(an) = 1/n.

E(X1(|X | ≤ vn)) = E(X1(|X | ≤ an))+E(X1(an ≤ |X | ≤ vn))

=
∫ an

−an

xdFX(x)+(p−q)
∫ 1/n

1−F|X |(vn)
(1−F|X |)

−1(t)dt
(A.46)

by recalling the centering constant bn defined in equation (A.28). In this case, the first part of
E(X1(|X | ≤ vn)) represents the location parameter as n approaches infinity. The constant vn

usually represents the dth
n largest element of {|Xi| : i ≤ n : i ∈ N} which coincides with the

proof of Theorem 1 in Berkes et al. (2012) and was denoted by the expression the ηn(dn).
However, when n goes to infinity, the value ηn(dn) grows, because we can only truncate up
to a point d such that it is of lower order than n (by assumptions of moderate trimming).
Therefore, simulating such variables, we would witness more tendency to observe more
extreme variables; therefore, out of the n observations, the largest d observations are all big
enough. In the discrete sense and by definition of the variable ηn(dn), 1−F|X |(vn) = P(|X | ≥
ηn(dn)) could be estimated as

1
n

n

∑
i=1

1(|Xi| ≥ ηn(dn)) =
d
n

However, in the continuous sense,

1−F|X |(vn)≈ d/n → 0

as n → ∞. In this case, observe that

vn =
(
1−F|X |

)−1
(d/n) and d = n

(
1−F|X |(vn)

)
→ ∞ , as n −→ ∞
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Hence, vn →∞ such that n
(
1−F|X |(vn)

)
→∞ as n→∞. Following the notations of Theorem

A.2.14,
1

n1/2

n

∑
i=1

Xi1(|Xi| ≤ vn)−E(X1(|X | ≤ vn))

vn(1−F|X |(vn))1/2
d−→ N (A.47)

Where N ∼ N (0, α

2−α
+(p− q)2). This implies that the second part of E(X1(|X | ≤ vn))

plays a centeral part in centring the distribution. In a sense that fX1(|X |≤vn)−E(X1(|X |≤vn))−(x)
is convex if x < 0 and concave if x > 0. Since all stable distributions are unimodal, then, it is
believed that such centering would represent the mode of the stable distribution.

An important corollary of the above Lemma is the following

Corollary A.2.15.1. Multiplying the series of a restricted sum of stable i.i.d. random
variables by an independent Rademacher distributed random variables, would converge such
a distribution to the same limiting normal distribution, using the same norming constant an

Proof. In the proof of Lemma A.2.15, equation (A.47) shows that the random variable

Xi1(|Xi| ≤ vn)−E(X1(|X | ≤ vn))

vn(1−F|X |(vn))1/2

converges to a normal random variable N ∼ N (0, α

2−α
+(p− q)2) as n −→ ∞. Therefore,

multiplying this random variable by an independent Rademacher random variable, say ω

with mean zero and variance one, will not alter its asymptotic convergence, thanks to the
central limit theorem already cited.

A.2.6 Estimation of Stable Parameters

Stable distributions are of great interest for applied researchers, not only in financial
economics but also in astronomy, physics, biology, and electrical engineering (Akgiray
& Lamoureux 1989). Therefore, many authors have studied the different approaches a
practitioner may adopt to perform parameter estimation for the α-stable family. In this
subsection, we do not aim to provide a comprehensive coverage of this topic, since it is
beyond the scope of this thesis. However, several excellent books and articles address these
issues: see, for instance Gabaix & Ibragimov (2011), McCulloch (1986), Koutrouvelis (1980,
1981), Akgiray & Lamoureux (1989), Peters & Shevchenko (2015), and Ibragimov et al.
(2015), to name a few.

To estimate parameters of the stable law, Akgiray & Lamoureux (1989) examine two
relatively accessible and competing estimation techniques: (a) fractile method of Fama &
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Roll (1971)14, which was improved by McCulloch (1986)15; (b) iterative regression method
of Koutrouvelis (1980, 1981)16.

In their study, Akgiray & Lamoureux (1989) recommend the use of the regression-
type estimator of Koutrouvelis (1980, 1981), when the samples are drawn from a parent
distribution of unknown origin. Moreover, Akgiray & Lamoureux (1989) add that both
methods were convenient and inexpensive when implemented for this purpose. One of the
most common estimates of the index of stability α of stable data is Hill’s estimator. However,
Hill’s estimator, as well as its new competitors, suffer from several problems17 (see, for
details, Gabaix & Ibragimov 2011).

Originally, Hill (1975) suggested ordering the observations of i.i.d. random variables and
computing the random estimate of α based on the largest k order statistics Y1,T > Y2,T ,>

Y3,T > · · ·> Yk,T and it is defined as

α̂T = (
1

k−1

k−1

∑
j=1

logYj,T − logYk,T )
−1

where T is the sample length, k := k(T )−→ ∞ in an understandable way. It is worth noting
that Hill’s (1975) proposed method accounts that there exist no parametric form for the entire
distribution but only on the asymptotic tail behavior. In particular, Hill (1975) assume that the
tails of the stable distribution behave only asymptotically, like a Pareto distribution. However,
McCulloch (1997) mentioned that using the Hill estimator when the index of stability is
between unity and two may overestimate the parameter α (see, Nolan 2001, p. 5). In fact,
Fofack & Nolan (1999) see little reason to use the Hill estimator for a stable distribution
and state that the location under which Pareto-like tail behavior starts to occur is highly
dependent on the predefined parameterization of the stable law. Additionally, in their analysis
of their numerical simulations, Fofack & Nolan (1999) mention that when they selected the
parameterization such that the mode is located around or at zero, one must get notably far
out on the tail before the power decay is accurate.

Therefore, in the Monte Carlo simulation experiments in section 1.3, we will follow
Akgiray & Lamoureux’s (1989) recommendation; hence, we will obtain initial estimates
of the parameters using McCulloch’s (1986) estimation method. Then, we will use the

14This method has two drawbacks: (1) It is restricted to the case of symmetric stable laws with finite means
i.e. β = 0 and α > 1. (2) Its estimators of α and σ are asymptotically bias.

15McCulloch (1986) generalises the Fama & Roll (1971) estimation procedure to provide consistent and
unbiased estimates of all four parameters such that α > 0.5.

16“The regression method of Koutrouvelis (1980, 1981) starts with an initial estimate of the parameters and
proceeds iteratively until some prespecified convergence criterion is satisfied.” (Akgiray & Lamoureux 1989)

17For example, the Hill’s estimator suffers from sensitivity to dependence and small sample sizes. Further-
more, other estimation method are more complex than the Hill’s estimator.
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iterative regression-type method of Koutrouvelis (1980, 1981) to estimate consistently all
parameters including the skewness parameter β and scale σ of a stable distribution. Note
that the parameterization considered in chapter 1 is the one defined by Samoradnitsky &
Taqqu (1994).

A.2.7 Generation of Stable Random Variables

There are various ways to create stable random variables due to the existence of more
than one form of parameterization. Therefore, depending on the assumptions a practitioner
requires in his application, it might be better to consider one form of a characteristic function
over another in order to reduce complexities. As stated earlier, Fofack & Nolan (1999) used
a different parameterization than that of Samoradnitsky & Taqqu (1994) because they may
have better understood the bounds of the mode. However, the S0 parameterization of Nolan
(2015) is superior to that used by Fofack & Nolan (1999) when the continuity of stable
parameters is in question (see, Peters & Shevchenko 2015, p. 179-180).

The Parametric Bootstrap method of Cornea-Madeira & Davidson (2015) critically
depends on the estimation of the parameters α and β ; hence, the continuity of both variables is
at the heart of this bootstrap method. Therefore, Cornea-Madeira & Davidson (2015) generate
the stable observations based on Chambers et al.’s (1976) algorithm because this algorithm
generates the variables from the S0 parameterization of Nolan (2015). In this situation,
Cornea-Madeira & Davidson (2015) avoid the complexity their bootstrap method would
have encountered if the parameters were not continuous. In their paper, Cornea-Madeira &
Davidson (2015) considered Samoradnitsky & Taqqu (1994) parameterization. Therefore,
to generate stable random variables from such parameterization, re-parameterization the
algorithm of Chambers et al. (1976) is required (see, Weron & Weron 1995, p. 381).

Our proposed bootstrap method will also require estimation of stable parameters; hence,
continuity of all parameters is essential. Therefore, like Cornea-Madeira & Davidson (2015),
we will generate stable random variables based on Chambers et al.’s (1976) algorithm,
accompanied by a re-parameterization mentioned in Weron & Weron (1995), to generate
stable random variables from Samoradnitsky & Taqqu (1994) parameterization.





Appendix B

The Multivariate Hybrid Bootstrap

Consider Z =(zt : t ∈ Z) to be a VAR model of order p, VAR(p), that is, that

zt = φ0 +
p

∑
i=1

φizt−i + εt (B.1)

where zt is a (k×1) multivariate vector time series, {φi}p
i=0 is a sequence of (k×k) matrices,

and εt is a (k×1) white noise vector such that E(εtε
′
t ) = Ω. Observe that the process Z may

be also represented by
φ(L)zt = φ0 + εt

where φ(L) = Ik −∑
p
i=1 φiLi; and L is the lag operator. The mean of the process may be

computed as

µ = E(zt)

= φ(1)−1
φ0

Therefore, taking ct = zt − µ , one may rewrite the VAR(p) process Z , represented by
equation B.1, as

φ(L)ct = εt

Observe that since εt is a white noise vector then

φ(L)Γl =

Ω if l = 0,

0 if l > 0.
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where the lth cross-covariance matrix is given by Γl = E(zt −µ)(zt−l −µ)
′
. The sequence of

cross-covariance matrices {Γl}p−1
l=0 is of special interest. One may rewrite the above equation

as a system of matrix equation as

(
Γ1 · · · Γp

)
=
(

φ1 · · · φp

)


Γ0 Γ1 Γ2 · · · Γp−1

Γ
′
1 Γ0 Γ1 · · · Γp−2

Γ
′
2 Γ

′
1 Γ0 · · · Γp−3

...
...

... . . . ...
Γ

′
p−1 Γ

′
p−2 Γ

′
p−3 · · · Γ0

 (B.2)

which may be equally represented by:

Γ = ΦΓ
∗
0

This system of matrix equations is called the multivariate Yule–Walker equation for VAR(p)
models. Observe that the matrix Γ and Φ have an (pk× k) dimension. The multivariate
Yule–Walker equation can be used to obtain the VAR coefficient matrices {φ j}p

j=1 from

the cross-covariance matrices {Γl}p−1
l=0 . For a stationary VAR(p) process, (zt : t ∈ Z), the

(kp× kp) square matrix Γ∗
0, is nonsingular. Therefore, one may equally use the multivariate

Yule–Walker equation to obtain the cross-covariance matrices. However, before using the
multivariate Yule-walker equations, it is important to be able to apply estimation procedure
to a given data set.

In practice, non-parametric statisticians, assuming that the underlying generating process
of the observed data originates from a VAR model, often apply some initial estimation before
determining the order of the VAR process. Here, and throughout the chapter, we assume
that we have observations {zt}T

t=1 stemming from a strictly stationary VAR(p) process Z .
The Yule-Walker equation shall be employed on the observations {zt}T

t=1 to obtain an initial
estimate of the VAR coefficients and the Variance-Covariance matrix of the error terms Ω.
To be able to exploit the Yule-Walker equation discussed above, a sample estimate of the
cross-covariance matrix (Γi) for i = 0,1,2, . . . , p− 1 needs to be computed. The sample
estimate of the cross-covariance matrix at lag l, Γl , is given by the sample cross-covariance
matrix at lag l, defined as:

Γ̂l =
1
T

T−l

∑
t=1

(zt − z̄T )(zt+l − z̄T )
′
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where z̄T is the sample mean vector given as:

z̄T = T−1
T

∑
t=1

zt

The estimated coefficients may be computed depending on the initial order of the sample, p,
as

Φ̂ = Γ̂Γ̂
∗−1
0

where the matrix Γ̂∗
0 is the estimate of the the (kp× kp) square matrix Γ∗

0 with all the cross-
covariance matrices entries replaced by the sample cross-covariance matrices, and the matrix
Γ̂ is the estimate of the (pk× k) matrix Γ defined by

Γ̂ = [ Γ̂
′
1 · · · Γ̂

′
p−1 ]

′
(B.3)

The intercept estimate, φ̂0, may be computed as

φ̂0 = (Ik −
p

∑
i=1

φ̂i)z̄T

The estimated variance-covariance matrix of the error term, Ω, is given by

Ω̂p=Γ̂0 −
p

∑
i=1

φ̂iΓ̂
′
i

All estimated matrices discussed above are based upon a predetermined VAR order p
of the stationary VAR(p) process Z . However, when dealing with observations {zt}T

t=1,
nonparametric statisticians need to estimate the order p.

There have been several proposed methods in the literature regarding order selection
of a VAR process. Following the hybrid bootstrap algorithm, the framework employed in
this paper is the Akaike information criteria (AIC). In the time-series literature, Information
criteria have been shown to be useful in selecting a statistical model, particularly when it
comes to the VAR processes. The AIC consists of two components. The first is involved
with the goodness-of-fit of the model to the data, while the other penalised more heavily
complicated models. The computation of the AIC requires a prior selection of order, starting
from one up to a predetermined number. In practice, the predetermined number usually does
not exceed 10, due to the sophistication of the other dimensions in the VAR models; hence,
in this chapter, ten will be used as the maximum number the observed series may be allowed
to each as a VAR order. Then for each order selection, l, the estimated variance-covariance
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matrix, Ω̂p, will be computed, then the AIC will easily follow. In this chapter, the AIC will
be computed as:

AIC(l) = ln |Ω̂l|+
2
T

lk2

where l is the a priori selection of order l ∈ I = {0,1, · · · ,10}, Ω̂l is the maximum likelihood
(ML) estimate of the matrix Ω, k is the dimension of the vector zt , and T is the sample size.
The estimated VAR order, p̂, which will be applied is the argument that minimizes the AIC
given by:

p̂ = argmin
l∈I

{AIC(l)}

Selecting the estimated VAR order, p̂, to be the VAR order of the observations {zt}T
t=1 is

the first step in the hybrid bootstrap algorithm. The multivariate hybrid bootstrap procedure
consists of the following steps:

1. Select the order of the assumed VAR model using the multivariate Yule Walker equa-
tions and the observations {zt}T

t=1 stemming from a strictly stationary VAR(p) process,
Z . Denote the estimated VAR order as p̂.

2. Based on the estimated VAR order p̂, estimate the VAR coefficient matrices {φ̂ j}p̂
j=1

and the covariance matrix Ω̂p̂ using the multivariate Yule Walker equations.

3. Compute the estimated residuals as:

ε̂t = ct −
p̂

∑
i=1

φ̂ict−i, t = p̂+1, . . . ,T

where ct = zt − z̄T , and then compute the estimated centered residuals denoted by ε̃t

and mathematically represented by:

ε̃t = L̂(p̂)−1(ε̂t −
1

T − p̂

T

∑
τ=p̂+1

ε̂τ) , where t = p̂+1, . . . ,T

where

L̂(p̂)L̂(p̂)
′
=

1
T − p̂

T

∑
t=p̂+1

(ε̂t −
1

T − p̂

T

∑
τ=p̂+1

ε̂τ)(ε̂t −
1

T − p̂

T

∑
τ=p̂+1

ε̂τ)
′

Hence the matrix L̂(p̂) is the lower cholesky decomposition of the covariance matrix
of the standardized residuals.
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4. Compute the k× k spectral density of the generate bootstrap time series
(
z+t : t ∈ Z

)
,

and denote it by f̂AR (ωκ), which is given by:

f̂AR (ωκ) =
1

2π

(
Ik −

p̂

∑
k=1

φ̂ke−ikωκ

)−1

Ω̂p̂

(Ik −
p̂

∑
k=1

φ̂ke−ikωκ

)−1
H

where κ = 0, . . . ,T −1.

5. Compute the k× k Cholesky decomposition of spectral density of the generated boot-
strap time series

(
z+t : t ∈ Z

)
in two ways which we shall denote as B̂(ωκ) and B̂(ωh),

where κ =−N, . . . ,N − c1 and h = 1, . . . ,N.

6. Compute the k× k periodogram matrix IT (ωk) of the mean deviation of the original
series {zt} given by:

IT (ωk) = J(ωk)JH(ωk)

=
1

2πT
(

T

∑
t=1

cte−itωk)(
T

∑
t=1

cte−itωk)H

where k = −[T/2],1− [T/2], . . . , [T/2]− c1, c1 = 1 if T is even and zero otherwise,
the series {ct} is the mean deviation of the series of observations {zt}

7. Generate bootstrap observations {z+t }T
t=1 according to the following VAR(p̂) model:

c+t =
p̂

∑
i=1

φ̂ic+t−i + Ω̂
1/2
p̂ ε

+
t ,

where (ε+t : t = 1,2, . . .T +m) is a sequence of independent draws with replacement
from the sequence (ε̃t : t = p̂+1, . . . ,T ) and Ω̂

1/2
p̂ is the lower Cholesky decomposition

of the matrix Ω̂p̂. The variable m is chosen to be 50, these are additional drawing
so that we may select the last T generation of the series {c+t } to remove the start up
effects since (c+t = 0; t = 1,2, . . . , p̂). We do this step B times where each corresponds
to a bootstrap draw.

8. Compute the (multivariate) discrete Fourier transform (mDFT) of the bootstrap obser-
vations {c+t }T

t=1, that is, that

J+(ω j) =
1√
2πT

T

∑
t=1

c+t e−itω j , j = 1, . . . ,T
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at the Fourier frequencies ω j = 2π j/T , j = 1,2, . . . , [T/2].

9. Compute the k× k spectral density matrix of the time series (z+t : t ∈ Z), given by

f̂AR(ωκ) =
1

2π
(Ik −

p̂

∑
k=1

φ̂ke−ikωκ )−1
Ω̂p̂((Ik −

p̂

∑
k=1

φ̂ke−ikωκ )−1)H

where here, and throughout the chapter, the superscript, H, represents the conjugate
transpose, and the subscript κ =−[T/2],1− [T/2], . . . , [T/2]− c1.

10. Compute the Cholesky decomposition of spectral density f̂AR(ω) at each Fourier
frequency (ωκ : κ =−[T/2],1− [T/2], . . . , [T/2]− c1), and denote it by B̂(ωκ).

11. Repeat steps 7 and 8 but for Fourier frequency (ω j : j = 1,2, . . . , [T/2])

12. Compute the Cholesky decomposition Ĝ(ω) of the following equation:

Ĝ(ω j)Ĝ(ω j)
H = B̂(ω j)(

1
T

[T/2]−c1

∑
k=−[T/2]

kh(ω j−ωk)B̂(ωk)
−1IT (ωk)[B̂(ωk)

−1]H)
−−−−−−−−

B̂(ω j)
H

where kh() is known as the Bartlett-Priestley kernel bandwidth-corrected given by:

kh(u) =
1
h

k(
u
h
)

=
3

2h
(1− (

u
πh

)2)1(|u
h
| ≤ π)

and h is the bandwidth which will be selected as h ≈ T−δ ; δ = 0.317.

13. Compute the k× k nonparametric correction matrix Q̃(ω j), that is, that:

Q̃(ω j) = Ĝ(ω j)B̂(ω j)
−1, j = 1,2, . . . , [T/2]

14. Compute the corrected (multivariate) discrete Fourier transform (mDFT) of the boot-
strap observations {c+t }T

t=1 using:

J∗(ω j) = Q̃(ω j)J+(ω j), j = 1, . . . ,N +1

15. Complete, correct, and shift so that we observe that:

J∗(ωN+i) = [J∗(ωN−i)]
H , i = 1, . . . ,N −1
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if T is even.

16. Compute the hybrid bootstrap observations {c∗t }T
t=1 which are defined as follows:

c∗t =
√

2π

T

T

∑
j=1

J∗(ω j)eitω j , t = 1, . . . ,T.
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