lee Journal of Visualized Experiments www.jove.com

Video Article
Visualization of ATP Synthase Dimers in Mitochondria by Electron Cryo-

tomography

Karen M. Davies', Bertram Daum’, Vicki A. M. Gold', Alexander W. MUhIeip1, Tobias Brandt’, Thorsten B. Blum”, Deryck J. Mills”,
Werner Kiihlbrandt'

1Department of Structural Biology, Max Planck Institute of Biophysics
Correspondence to: Werner Kihlbrandt at werner.kuehlbrandt@biophys.mpg.de

URL: http://www.jove.com/video/51228
DOI: doi:10.3791/51228

Keywords: Structural Biology, Issue 91, electron microscopy, electron cryo-tomography, mitochondria, ultrastructure, membrane structure,
membrane protein complexes, ATP synthase, energy conversion, bioenergetics

Date Published: 9/14/2014

Citation: Davies, K.M., Daum, B., Gold, V.A.M., Mihleip, A.W., Brandt, T., Blum, T.B., Mills, D.J., Kiihlbrandt, W. Visualization of ATP Synthase
Dimers in Mitochondria by Electron Cryo-tomography. J. Vis. Exp. (91), €51228, doi:10.3791/51228 (2014).

Electron cryo-tomography is a powerful tool in structural biology, capable of visualizing the three-dimensional structure of biological samples,
such as cells, organelles, membrane vesicles, or viruses at molecular detail. To achieve this, the aqueous sample is rapidly vitrified in liquid
ethane, which preserves it in a close-to-native, frozen-hydrated state. In the electron microscope, tilt series are recorded at liquid nitrogen
temperature, from which 3D tomograms are reconstructed. The signal-to-noise ratio of the tomographic volume is inherently low. Recognizable,
recurring features are enhanced by subtomogram averaging, by which individual subvolumes are cut out, aligned and averaged to reduce noise.
In this way, 3D maps with a resolution of 2 nm or better can be obtained. A fit of available high-resolution structures to the 3D volume then
produces atomic models of protein complexes in their native environment. Here we show how we use electron cryo-tomography to study the in
situ organization of large membrane protein complexes in mitochondria. We find that ATP synthases are organized in rows of dimers along highly
curved apices of the inner membrane cristae, whereas complex | is randomly distributed in the membrane regions on either side of the rows. By
subtomogram averaging we obtained a structure of the mitochondrial ATP synthase dimer within the cristae membrane.

Video Link

The video component of this article can be found at http://www.jove.com/video/51228/

Introduction

Mitochondria are the power-houses of the cell. By converting an electrochemical proton gradient across the inner mitochondrial membrane into
chemical bond energy, the mitochondrial ATP synthase produces most of the ATP that drives cellular processes. In order to understand the
mechanisms behind mitochondrial energy conversion, we need to determine the structure of the ATP synthase in situ, and to find out how it is
arranged and distributed in the inner mitochondrial membrane Although high-resolution structures of most of the mitochondrial ATP synthase
components 13 and low-resolution maps of the whole complex are available, it is important to establish the structure and conformation of the
working enzyme in the membrane The distribution of the ATP synthase in the inner mitochondrial membrane has been widely assumed to be
random, but an early flndlng and our own initial results® indicated that this is not the case. Subsequent studies from our group and others’

have confirmed that the ATP synthase is arranged in long rows of dimers along the tightly curved ridges of the inner mitochondrial membrane
cr|stae8 while the proton pumps of the electron transport chain appear to be located at either side of the rows’. This arrangement has important
implications for the mechanisms of mitochondrial energy conversion.

The technique we have used to determine this arrangement is electron cryo-tomography (cryo-ET). Cryo-ET is currently the only method that
delivers accurate three-dimensional (3D) volumes of cells, cellular compartments or organelles at molecular resolution. Cryo-ET is particularly
suitable for studying large complexes in biological membranes, because the membranes appear with good contrast and are easy to trace in 3D
tomographic volumes.

Other methods to study the 3D structure of cells or organelles do not provide molecular detail. Super-resolution light microscopy10 is superb

at revealing the position or distances between light-emitting labels attached to proteins of interest with a precision of tens of nm, but it does not
reveal the structure of the protein itself, even at low resolution. Transmission electron microscopy of serial sections'? or block-face i imaging by
scanning electron microscopy ~ of plastlc-embedded biological samples provide low-resolution views of cellular volumes but likewise do not
reveal molecular detail. Atomic force microscopy " canin prlnC|pIe deliver molecular or even atomic resolution, but only at the surface of objects
on an atomically flat, solid support. Finally, X-ray tomography or scattering of intense X-ray pulses from free-electron lasers'® is unlikely to
reveal the structure of large, complex, aperiodic objects such as whole cells or organelles at molecular resolution in the foreseeable future. Thus
at present, there is no alternative to cryo-ET for studies of the 3D structure of cells or organelles at nanometer resolution.

Cryo-ET is the method of choice for examining the structure and conformation of membrane-associated protein assemblies including the nuclear
pore complex1 the influenza spike complexes18 and the flagella motor protelns22 2 put also the organization of whole bacterial cells'® and
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entry of pathogenic viruses such as HIV in to cells?®23, Cryo-ET is invaluable for visualizing filamentous proteins and their interactions in the cell,
including actin filaments®* or axonemes®. The resolution can be enhanced to 2 nm or better by subtomogram averagingze, whereby subvolumes
of repeated, regular features are cut out of a tomographic volume and averaged by single-particle image processing techniques.

Cryo-ET involves the acquisition of a series of projection images of a thin specimen (<250nm) taken at different tilt angles in a transmission
electron microscope (TEM). The specimen must be thin so that electrons, which interact strongly with matter, are scattered no more than once.
Multiple scattering makes the resulting images difficult to interpret and reduces contrast. Images of the selected specimen area are aligned
relative to each another and projected into a 3D space by a suitable computer program, generating a 3D volume of the specimen. The alignment
of the images is aided by gold fiducial markers, which are mixed with the sample prior to freezing. Ideally 10 or more evenly distributed fiducial
markers should be present in each image to achieve a good alignment.

To observe molecular detail, samples are plunge-frozen in liquid ethane, which preserves their native hydrated state. Freezing in liquid ethane is
so fast (~105 °C/sec)27 that water does not crystallize but remains in a vitrified, glass-like state. Ice crystal formation damages sensitive biological
structures. As biological samples suffer from radiation damage, there is a limit to the total number of scattering events the specimen can tolerate.
Images are thus acquired in low-dose mode: An area of interest is identified at low magnification (1,500X) with an electron dose below 1 e’/nm?
(search mode). The image is then focused at a higher magnification, off the area of interest (focus mode). Only when an image is acquired, the
area of interest is irradiated with a higher electron dose (exposure mode).

Here, we present an overview of how to collect and process electron cryo-tomograms, using ATP synthase dimers in the inner mitochondrial
membrane as an example. The following protocol describes how to prepare mitochondria for cryo-ET, how to set up and collect a tilt series with
a specific total electron dose, and how to process the tilt series to obtain a 3D volume of the area of interest. An overview of the procedure is
illustrated in Figure 1.

1. Preparation of Mitochondria from Cells or Tissues by Differential Centrifugation

This section describes a general procedure for the isolation of intact mitochondria from various eukaryotic organisms. The precise buffer
components and centrifugation speeds need to be optimized for each tissue/species studied.

1. Break cells in isotonic buffer (e.g., 250 mM sucrose, 10 mM HEPES pH 7.4), using a glass-bead mill (fungal mycelium)zs, enzymatic digestion
of the cell wall (Saccharomyces cerevisiae)zg, a ball-bearing homogenizer (single-cell eukaryotes/culture cells/nematodes)so, or a blender
(animal or plant tissues)31.

2. Remove cell debris by filtration through muslin followed by low-speed centrifugation (2,000 x g, 4 °C, 10 min).

3. Collect supernatant and pellet mitochondria by high-speed centrifugation (9,000 x g, 4 °C, 10 min).

4. Where necessary, use an isotonic density step gradient for additional purification of the mitochondrial fraction®2.

2. Preparation of Mitochondria for Electron Cryo-tomography

The following section describes how to obtain frozen-hydrated samples for cryo-ET. NOTE: The method involves the use of extremely cold liquid
nitrogen and ethane, which can cause severe skin burns. Safety goggles and cryo-protection gloves must be worn. Liquid ethane, which is also
flammable, must be handled in a fume hood.

1. Resuspend pelleted mitochondria in 250 mM trehalose, 10 mM HEPES buffer at pH 7.4 to a concentration of approximately 5 mg/ml total
protein.

2. Glow-discharge holey carbon EM grids, carbon side up, in a vacuum device according to manufacturer’s instructions.

3. Liquefy a few milliliters of ethane by directing a stream of ethane gas onto the inner side of a liquid nitrogen cooled aluminum container.

4. Mix protein A-conjugated gold fiducial suspension 1:1 with mitochondrial suspension and immediately apply 3 pl to a glow-discharge EM grid
held in tweezers.

5. Place the tweezers in a vitrification device, e.g., a home-made guillotine. Blot off excess liquid with a wedge of filter paper (~5 sec or until
liquid stops spreading) and immediately plunge the grid into liquid ethane by releasing the trigger.

6. Transfer the grid from liquid ethane into liquid nitrogen. During transfer, remove excess ethane from the grid with filter paper. Place the tip of
a wedge-shaped piece of filter paper into the liquid ethane. As the liquid ethane rises, gently drag the grid up the filter paper but keep it below
the liquid front. Liquid ethane is removed from the grid by capillary action and once all liquid ethane has been removed, immediately transfer
the grid into liquid nitrogen.

7. Place the vitrified grid into a grid storage box, and store under liquid nitrogen for later use as appropriate.

3. Recording of Tomographic Tilt Series

The following section describes how to set up and collect a tomographic tilt series of a mitochondrion with a Polara electron microscope
equipped with a post-column energy filter and CCD camera. Similar protocols are used with all electron cryo-microscopes equipped with CCD or
direct electron detector cameras.

1. Align the Microscope
1. Insert test specimen e.g., graphite and gold islands on holey carbon film.
2. Select search mode in the microscope’s low-dose system.
3. Bring sample to eucentric height. This is the point of minimal xy movement when tilting the specimen holder. Center a point of interest
at 0° tilt, tilt the stage to 20° and re-center the point by altering the z-height. Return to 0° and repeat until lateral offset is minimized.
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4. Select exposure mode. Choose desired magnification for collecting a tomogram (e.g., 25,000X on detector = 0.6 nm specimen pixel
size).

5. Choose a small condenser aperture (50-70 mm) and select a spot size and beam intensity so that the beam is just wider than the
imaging device and gives a pixel reading of 60 e/pixel (CCD) or 14 e/pixel/sec (direct electron detector, counting mode).

6. Center condenser aperture.

7. Find Gaussian focus e.g., point of minimal contrast. Reset microscope defocus reading and correct pivot points and rotation center
according to manufacturer’s instructions.

8. Dial in desired defocus for recording tomogram. NOTE: High defocus (8 pm) increases contrast but reduces resolution, whereas low
defocus (2-4 um) increases resolution at the expense of contrast.

. Over an empty hole, generate a new gain reference and align energy filter according to manufacturer’s instructions.

10. Align search and exposure modes. In exposure mode, center a point of interest and switch to search mode. Select magnification of
1,500X (0.033 pm/pixel of specimen on detector) and defocus of 100 um (for increased contrast). Bring point of interest back to center
using image shift coils.

11. In search mode, adjust spot size and beam intensity so that the beam is just wider than the imaging device and gives a pixel reading of
~20 e’/pixel (CCD) or ~8 e'/pixel/sec (direct electron detector, counting mode).

2. Finding a Good Specimen Area

1. Insert the grid with frozen-hydrated mitochondria into the electron microscope at liquid nitrogen temperature (refer to EM
manufacturer’s instructions).

2. In search mode, search the grid for areas of appropriate ice thickness and specimen quality. Take a 6 sec search image of promising
areas to determine suitability for tomogram collection. Both the inner and outer mitochondrial membrane should be visible at this
magnification.

3. Recording of a Tomographic Tilt Series

4.

1. Once a good specimen area is found, tilt the stage +60° to determine the maximum tilt range that is available without any obstruction of
the exposure or focus area by grid bars or ice lumps.

2. On a nearby ice-filled hole of similar appearance, change to exposure mode and adjust the beam intensity or image acquisition time so
each recorded image has an electron dose of 30-50 e’/pixel for CCDs or 6-8 e/pixel/s direct electron detectors, counting mode.

3. Calculate the dose distribution ratio (ly/lg) by dividing the average electron count for a 1 sec image acquired at 0° with that of a 60°
image. This ratio describes the increase in exposure time required to maintain a constant electron count per image with increasing tilt
angle (exposure time = 1/cos(a)” where (lo/lgo)=2"). The ratio also serves as a good indication of ice thickness. Good tomograms of
mitochondria are usually recorded with an lgp/lgg = 2.3-2.6.

4. Over an empty hole, acquire a 1 sec image in exposure mode and note the electron count per A2, Taking into account the dose
distribution ratio, calculate the total number of images that can be recorded for a specific total electron dose (e.g., <40 e /A for
structure determination & ~160 e/AZ for morphology).

5. Determine the appropriate tilt interval for tomogram collection by dividing the total tilt range (e.g., 120° for +60°) by the total number of
images calculated in 3.3.4.

Set up and record a tomogram with the parameters determined above using appropriate automatic data collection software®**. Tilt series are
usually started at +20° and go through 0° before reaching high tilts in order to maximize the information contents of low-tilt images which is
destroyed by increasing electron dose.

4. Creation and Segmentation of Tomographic Volumes

This section describes how tomographic volumes of mitochondria are generated from tilt series and how the volumes are present for general
viewing.

1.

Save the tomographic tilt series to an appropriate directory. Generate an image stack and convert to an appropriate file format with open-
source software, such as dm2mrc or tif2mrc (IMOD package), which convert .dm3, .dm4 or tif files to mrc stacks. mrc stacks are required for
tomographic reconstruction with IMOD®. Other packages require different formats.

Align the images and generate a tomogram by following the steps detailed in the IMOD tutorial (http://bio3d.colorado.edu/imod/doc/
etomoTutorial.html).

Enhance the contrast of the tomogram using the non-linear anisotropic diffusion filter distributed with IMOD. This filter works well for
membranes and membrane-associated particles such as ATP synthase.

For visualization, manually segment the tomogram using commercially available programs e.g., Amira. Assign voxels corresponding to the
inner or outer membrane and generate a surface. Using the clicker option in the EM-package plugin for AMIRA®® mark the location of ATP
synthase particles.

5. Subtomogram Averaging of ATP Synthase Dimers and Fitting of X-Ray Structures

The following section describes how subtomogram averages of ATP synthase dimers can be obtained.

1.

Using the marked particles as input and an appropriate software package such as the 'Particle Estimation for Electron Tomography' program,
calculate a subtomogram average.

2. For a resolution estimate, compare two independently determined subtomogram averages by Fourier shell correlation®”.
3. Ifavailable, dock known X-ray structures into the subtomogram average by rigid body fitting, either manually or using automatic sequential
docking routines such as those in the program Chimera®®.
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Representative Results

Electron cryo-tomograms of mitochondria clearly reveal the 3D morphology of the organelle (Figure 2). Manual segmentation of the membranes
in a tomographic volume illustrates the structure of the cristae in a mitochondrion. By imaging mitochondria from different yeast knockout strains
that lack certain protein components, the effect of these proteins on cristae morphology can by assessed. Figure 3 shows a mitochondrion from
a yeast strain lacking ATP synthase subunit e. This component of the ATP synthase complex is required for the dimerization of the mitochondrial
ATP synthase. Mitochondria from this strain lack the normal lamellar cristae of the wildtype mitochondria (Figure 2) and instead contain a
number of inner membrane compartments. These compartments are either devoid of cristae or contain small balloon-shaped membrane
invaginations (Figure 3).

In tomograms with good contrast, large mitochondrial protein complexes, in this case ATP synthase dimers, are easily visible (Figure 4; Movie
1). The structures of the complexes can be determined at 2-3 nm resolution by subtomogram averaging (Figure 5; Movie 2). The average
volumes may be placed back into the tomogram in order to assess the organization of individual complexes relative to each other and to other
protein complexes in the membrane (Figure 6; Movie 3).
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Figure 1. Flow-chart showing the stages of electron cryo-tomography . Click here to view larger image.
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i space
Figure 2. Morphology of a mitochondrion from wildtype S. cerevisiae. Central slice through a tomographic volume of a wildtype S.
cerevisiae mitochondrion (left) and corresponding surface-rendered volume (right). The segmented volume of the outer membrane is shown in
grey and the volumes of the inner boundary and cristae membranes in light blue. Adapted from Davies et aP. Click here to view larger image.
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Figure 3. Mitochondrion from a S. cerevisiae strain lacking a subunit required for ATP synthase dimerization. Slice through tomographic

volume (left) and accompanying surface-rendered volume (right) of a mitochondrion from a S. cerevisiae strain lacking the protein subunit e
required for ATP synthase dimerization. When compared with Figure 2, the mitochondrion from the mutant strain lacks the normal lamellar
cristae of wildtype mitochondria. Instead, the mitochondrion has many inner membrane compartments with either no cristae or balloon-shaped

cristae. Thus electron cryo-tomography highlights alterations in membrane morphology due to gene deletions. Adapted from Davies et aP. Click
here to view larger image.

Figure 4. Mitochondrion from the fungus P. anserina. Slice through tomographic volume (left) and accompanying surface-rendered volume
(right) of a mitochondrion from the filamentous fungus P. anserina. In this tomogram, rows of 10 nm particles (yellow arrowheads) are located

above highly curved membrane ridges in the inner membrane cristae (see Movie 1). These particles were identified as ATP synthase dimers by
subtomogram averaging. From Davies et al’. Click here to view larger image.
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Figure 5. Structure and organization of the mitochondrial ATP synthase. Side and top view showing the electron density of an ATP synthase
dimer from S. cerevisiae as determined by subtomogram averaging with fitted atomic models (left). Mitochondrial inner membrane vesicle
showing the organization of ATP synthase dimers in rows (right). The figure was generated by positioning the subtomogram average of the ATP
synthase dimer into the segmented volume of the membrane vesicle, using the coordinates calculated during averaging. Adapted from Davies
et af’. Atomic models: F4/rotor-ring [PDB:2WPD]39 (blue and purple); oligomycin sensitive conferring protein-OSCP [PDB:2805]40 (green);
peripheral stalk fragment [PDB:ZCLY]1 with N-terminal residues from [PDB:ZWSS]2 (yellow and red) (see Movie 2). Click here to view larger
image.

Figure 6. Isolated crista vesicle from a P. anserina mitochondrion. Slices from a tomographic volume (left) and accompanying surface-
rendered volume (right) of a crista vesicle from P. anserina. Protein densities protruding from the membrane are clearly visible. The densities
indicated by yellow arrowheads are ATP synthase dimers, as identified by subtomogram averaging. Green arrowheads point to densities
identified by antibody labeling as NADH dehydrogenase (complex 1; for details see”). Segmentation of the protein densities reveals their
organization in the cristae, with the ATP synthase dimers (red and yellow) forming rows along the highly curved cristae ridges and the NADH
dehydrogenase complexes (green) in the membrane regions on either side of the rows (see Movie 3). From Davies et al’. Click here to view
larger image.

Movie 1. Electron cryo-tomogram of a P. anserina mitochondrion. The movie shows successive slices through a tomographic volume taken
of a mitochondrion from the filamentous fungus P. anserina. Rows of ATP synthase are indicated by yellow arrowheads. The surface-rendered,
segmented volume shows the location of ATP synthase (yellow spheres) in relation to the 3D cristae structure. Outer membrane, grey; inner
boundary membrane, transparent blue; cristae membranes, opaque blue. From Davies et aP. See also Figure 4. Click here to view video.

Movie 2. Subtomogram average of the mitochondrial ATP synthase dimer from S. cerevisiae with fitted atomic models. The average was
calculated from 121 subvolumes. The density is displayed at three contour levels: 1s - mesh, 2s - light grey and 3s - dark grey. Atomic models
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were fitted into the density using the sequential fit routine in Chimera. Atomic models: F4/rotor-ring [PDB:2WPDJ* (blue and purple); oligomycin
sensitive conferring protein-OSCP [PDB:ZBOS]40 (green); peripheral stalk fragment [PDB:ZCLY]1 with N-terminal residues from [PDB:2WSS]2
(yellow and red). Click here to view video.

Adapted from Davies et aP. See also Figure 5.

Movie 3. Isolated cristae vesicle from a P. anserina mitochondrion. Successive slices through the tomographic volume are shown, followed
by the segmented surface-rendered volume. Protein densities protruding from the membrane are clearly visible. Red and yellow densities are
ATP synthase dimers. Green densities are NADH dehydrogenase (complex |) as determined by antibody labeling. From Davies et aP. See also
Figure 6. Click here to view video.

The protocol presented here provides an introduction to cryo-ET and subtomogram averaging of mitochondria, but essentially the same
procedure can be applied to any other cell compartment or membrane. To obtain the best possible data, critical steps during the procedure
are sample preparation, the plunge freezing process and data acquisition strategy. Sample quality, which is critical for success, depends on
an optimized freezing protocol to ensure suitable ice thickness, which is of paramount importance for good image contrast. The optimal data
acquisition strategy depends on the instrument and sample. Parameters to be optimized include electron dose per image, tilt scheme and
defocus. Acquiring a good tomogram of a good sample makes all further processing steps easier and ensures a satisfactory end result.

Cryo-ET combined with subtomogram averaging and atomic model fitting provides details of how protein complexes are arranged in their native
cellular environment. The technique is equally suited for investigating the structure of large membrane protein com;)lexes, such as respiratory
chain supercomplexes (1.7 MDa), ATP synthase dimers (2x500 kDa), or the nuclear pore complex (~120 MDa)s'g'1 . The organization of ATP
synthase dimers into rows cannot be observed by high-resolution techniques such as X-ray crystallography, NMR or single-particle cryo-EM,
because the dimer rows are disrupted by detergent extraction, which is a necessary step in the isolation and purification of membrane protein
complexes.

The arrangement of the ATP synthase in rows of dimers along cristae ridges is a universal organizing principle of mitochondria in all species.
The proton-pumping complexes of the electron transport chain, in particular complex | (NADH dehydrogenase), are located in the membrane
areas either side of the rows®®. This organization of the respiratory chain has profound impact on mitochondrial bioenergetics. If the dimer rows
cannot form due to the absence of dimer-specific protein subunits, the cells exhibit longer generation times and reduced cellular fitness, as
observed in the yeast mutant shown in Figure 3*T, With the growing interest in mitochondrial diseases, a detailed understanding of the molecular
basis governing mitochondrial ultrastructure and function is of paramount importance. Electron cryo-tomography provides a link between protein
structure determined by high-resolution methods, and the distribution and arrangement of these proteins in the membrane on the scale of
nanometers. This makes cryo-ET an essential tool for understanding mitochondrial structure and function in health and disease.

Further technical developments and improvements in cryo-ET include protein-labeling strategies to identify the position of protein subunits in
macromolecular complexes or the location of smaller or less distinct proteins (<0.5 MDa) in cells. In addition, hybrid EM processing methods,
which combine subtomogram averaging with single particle analysis or helical reconstruction have recently determined protein structures to ~8
A*2% These processing methods are currently restricted to purified proteins, which are well separated in ice or form helical assemblies and
are currently not applicable to crowded cellular environments like mitochondria and cristae membranes. For data collection, new computing and
hardware tools are being developed to enable automated tomogram acquisition, increase image contrast and reduce total required electron
dose. The only fundamental limitation in cryo-ET is radiation damage to the sample by the electron beam. This means that only very low electron
doses can be used to record each image of a tomographic tilt series, resulting in poor signal-to-noise ratio that ultimately limits the achievable
resolution. The new direct electron detectors, released less than a year ago, are currently revolutionizing the field of single-particle cryo-EM44’45.
These new detectors provide higher contrast and better resolution at lower electron doses. For electron cryo-tomography, this means that tilt
series with smaller step sizes or even dual axis tomograms can be collected without concerns about excessive radiation damage (one CCD
image is equivalent in electron dose to 5 direct electron detector images). The vast amounts of data produced by these detectors create their
own challenges in data handling, processing and storage, which will have to be overcome.

In addition, phase plates, which work on similar principles as those used routinely in light microscopy to enhance phase contrast, are currently
being developed for transmission electron microscopy46’47. This should allow tomograms to be collected closer to focus and therefore at higher
resolution, while at the same time preserving low-resolution features necessary for alignment and interpretation of tomographic volumes. Taken
together, these technological advances will greatly expand the range of biological questions that can be addressed by cryo-ET.
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