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Abstract

Intracellular reserves are a conspicuous feature of many bacteria; such internal stores are often
present in the form of inclusions in which polymeric storage compounds are accumulated. Such
reserves tend to increase in times of plenty and be used up in times of scarcity. Mathemati-
cal models that describe the dynamical nature of reserve build-up and use are known as “cell
quota,” “dynamic energy/nutrient budget,” or “variable-internal-stores” models. Here we present
a stoichiometrically consistent macro-chemical model that accounts for variable stores as well
as adaptive allocation of building blocks to various types of catalytic machinery. The model
posits feedback loops linking expression of assimilatory machinery to reserve density. The pre-
cise form of the “regulatory law” at the heart of such a loop expresses how the cell manages
internal stores. We demonstrate how this “regulatory law” can be recovered from experimental
data using several empirical data sets. We find that stores should be expected to be negiglibly
small in stable growth-sustaining environments, but prominent in environments characterised by
marked fluctuations on time scales commensurate with the inherent dynamic time scale of the
organismal system.

Keywords: microbial growth, nutrient limitation, cell quota, cellular resource allocation,
optimal regulation, fitness, evolutionary adaptation

1. Introduction

Many bacteria form intracellular reserves, in particular during so-called “feast” periods of
growth: when nutrients are available from the ambient environment at relatively high levels,
bacterial cells accumulate polymers that can be degraded to fuel metabolism during subsequent
periods of “famine” when nutrients are absent from the environment or present at such low levels
that they do not suffice to meet the cell’s maintenance requirements (Preiss, 1989). In prokaryotes
reserves occur as metabolite pools, reserve compounds, granules, and elemental inclusions (Bev-
eridge, 1989; Preiss, 1989; Neidhardt et al., 1990). Whether the organism can continue to meet
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the requirements of endogenous metabolism for the entire duration of the “famine” depends on
the amount of accumulated reserves. For instance, in experiments involving Escherichia coli
growing on carbon as a limiting factor (Holme and Palmstierna, 1956), the level of the carbon
reserve compound glycogen accumulated by the cell was about 6–7% of the dry weight, which
supported a cell during a starvation period of 15 hours. Similar results were obtained with Ro-
dospirillum ruborem growing on acetate or butyrate and accumulating poly-β -hydroxybutyrate
(Doudoroff and Stanier, 1959).

The accumulation of reserves can be viewed as an adaptation to fluctuating environmental
conditions, which prompts us to ask at what rate the cell should allot core metabolites to the
formation of reserves during the “feast” periods. This question can be framed as an evolutionary
one: what kind of reserve management strategy maximises fitness? Any attempt at an answer
must presuppose that there is a sensible way to quantify fitness in the context of microbial ecol-
ogy. The specific growth rate µ , defined as the rate of change of the natural logarithm of the
biomass, has long been viewed as a natural measure of fitness (Lenski et al., 1991). However,
this is not valid in general (van den Berg, 2015); in particular, the growth rate is generally a
function of time t and it can be shown that the manner in which the function µ(t) should be
“discounted” over the long-term time integral strongly depends on ecological circumstances; for
instance, if we consider an ecotype in which the need to outcompete competitors (in the short
term, whenever the latter arrive) is paramount, we find that we should derive a different fitness
measure as compared to an ecotype in which competition is not a dominant effect, but in which
the cells form spores whenever they enter a spell of nutrient shortage (van den Berg et al., 2008).
Here, we consider an ecological setting in which one can assume as valid the definition proposed
by Metz and co-workers (Metz et al., 1992, 1995), namely that fitness is the eventual asymp-
totic growth rate of a colony that remains sufficiently small so as not to affect the state of the
environment. To isolate the problem of interest, selective pressure is taken to derive solely from
fluctuations in environmental availability of a nutrient; in particular, we assume that there are no
competing types and the bacterial cell does not sporulate but has to survive periods of famine
as a viable cell that has the ability to reduce endogenous metabolism under conditions of severe
starvation.

To address the question of optimal (maximally adaptive) regulation of reserve accumulation
and mobilisation we require, in addition to a quantitive measure of fitness, a suitable parametrisa-
tion of the regulatory phenotype. The biochemical and genetic particulars are intricate and highly
variable between different species (Dawes, 1989), suggesting that optimisation would be chal-
lenging in view of the high-dimensional parameter spaces of mathematical models at this level
of detail. One solution is to tackle the problem at the higher, aggregated level of macro-chemical
kinetics models, also known as “variable-internal-stores” models (Williams, 1967; Droop, 1968;
Grover, 1991). We previously proposed that the regulation of internal stores in such models can
be represented by so-called “regulatory” functions that link the physiological state of the cell (in
the case at hand: the reserve levels) to the allocation of molecular building blocks to various types
of catalytic machinery (Nev and van den Berg, 2017b). At the biochemically detailed level, this
allocation is mediated by regulation of transcription (Kramer et al., 2010): ceteris paribus, more
of a given enzyme will be synthesised if the level of mRNA encoding that enzyme is increased
(although numerous additional factors impinge on this causal connection; Neidhardt et al., 1990).
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The aims of the present paper are, first, to support the notion of such regulatory functions,
which we will call “r-functions” in what follows, by demonstrating how they can be explicitly re-
constructed from experimental data; and second, to study the simplest example of an r-function,
specifically a decreasing sigmoid, and determine the optimal-fitness combination of the shape pa-
rameters of this function faced with an environment that switches between “feast” and “famine”
in a predictable and regular fashion, and to understand the evolutionary optima we obtain in
terms of the physiological dynamics of the cell.

The paper is organised as follows. In Section 2 we briefly review the theory of macro-
chemical kinetics with variable internal stores, as presented in our previous papers (Nev and
van den Berg, 2017a,b). In Section 3 we describe and demonstrate the reconstruction of regu-
latory rules, represented as r-functions, from observational data. The notion of r-functions was
introduced in our earlier work but is here confronted with experimental data. Finally, in Sec-
tion 4, we address the problem of evolutionarily optimal regulation of reserve density, which was
not considered in the earlier papers.

2. Macro-chemical kinetics

Before describing the reconstruction of regulatory rules, implemented here as “r-functions,”
we recapitulate the basic model so as to render the present paper reasonably self-contained (this
section overlaps with our previous work).

The model (Nev and van den Berg, 2017a,b) distinguishes n + 2 types of molecular ma-
chinery, where n corresponds to the number of different chemical species of nutrients in the
environment. In addition to synthetic machinery (RNA transcriptase, ribosomes, and the asso-
ciated molecular components) and growth machinery (DNA replicase and machinery involved
in cell envelope synthesis) there is a dedicated type of machinery for the uptake of each of
the n nutrients. The C-molar amounts of these n + 2 types of machinery are denoted as Mi
for i ∈ {0,1, . . . ,n,G}, where the index 0 stands for synthetic machinery, G for growth machin-
ery, and 1 through n for assimilatory machineries. Reserve components are likewise expressed
in C-moles, or, if carbon is not part of their chemical composition, in terms of the molar amount
of their dominant element X j. These amounts are denoted as X j for j ∈ {1, . . . ,n}.

The structural component, finally, includes the cell envelope, as well as the genetic material
and the small molecules of metabolism, the intermediates of catabolic and anabolic pathways
which are maintained at appropriate cellular concentrations. The C-molar amount of the struc-
tural component is denoted by W . Table 1 characterises the components in terms of the major
classes of proteins that are assigned to them.

The dynamics of each component is given by the following expression:

Ṁi = αiM0φ̃i , i ∈ {0,1, . . . ,n,G} , (1)

where αi is the allocation coefficient describing which portion of (the time of) the basic catalytic
machinery M0 is dedicated to the synthesis of the ith component, and φ̃i is a stoichiometric
coefficient (a tilde is used to mark parameters prior to scaling). The allocation coefficients αi
are all non-negative and satisfy ∑i∈{0,1,...,n,G}αi = 1. In principle, these coefficients should be
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Table 1: Assignment of major classes of proteins, grouped according to function, to macro-chemical components in
a typical E. coli cell

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
Ribosome-related Nutrient uptake Agmatine synthesis Catabolism
Ribosomal Core metabolism Amino-acid synthesis Chaperones/folding
RNA-related Cell division Chemotaxis
Transcriptional Cell envelope synthesis Defense
Translational Cofactor synthesis Metabolic intermediates

DNA replication Repair
Fatty acid synthesis RNA degradation
Glutamate synthesis RNA modification
Glutamine synthesis Secretion
Glutathione synthesis Storage-related
Protein synthesis Transcriptional repressors
Protoporphyrin synthesis Cell envelope
Selenophosphate synthesis Redox reactions
Spermidine synthesis
Sulfide synthesis

See Table A.2 in Appendix A for a detailed account assigning all known individual proteins.

treated as time-varying; they depend on the “regulatory state” of the organism. A particularly
simple feedback model for the αi is used in the present study, eqn (7) below.

Growth (or more precisely, structural growth) is the rate of change of W and is proportional
to MG, as follows:

Ẇ = ψ̃W MG . (2)

Summing over all gain and loss terms we obtain the dynamics of reserve component j:

Ẋ j =
n

∑
i=1

ψ̃ jiMi− σ̃ jWẆ −M0 ∑
i∈{0,1,...,n,G}

σ̃ jiαiφ̃i− c̃ jW , i ∈ {0,1, . . . ,n,G} , j ∈ {1, . . . ,n} .

(3)
Here the first term represents gains due to uptake; the second term represents expenditure on
structural growth (increase of W ); the third term represents investment in catalytic machinery;
and the final term represents “maintenance,” dissimilatory expenditure on endogenous metabo-
lism (Herbert, 1958; Marr et al., 1962; Pirt, 1965). Thus, ψ̃ ji is the gain of reserve j per unit
machinery of type i; σ̃ jW is the loss of reserve j per unit increase of W ; σ̃ ji is the loss of reserve j
per unit synthesis of machinery of type i; c̃ j is the maintenance cost of reserve j that is being
catabolised per unit of W . The specific growth rate µ̃ equals d

dt lnW (t) by definition.
Choosing φ̃

−1
0 as a unit of time, we render the equations dimensionless, by defining the

following scaled variables:

mi =
Miφ̃0

Wm̂φ̃i
; x j =

X j

W σ̃ jW
, (4)
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where m̂ is chosen such that m0 ≡ M0/W is maintained at the dimensionless value 1 via the
r-function for growth (Nev and van den Berg, 2017b). Scaled stoichiometric parameters are
defined as follows:

ψ ji =
ψ̃ jiφ̃im̂

σ̃ jW φ̃ 2
0

; ψW =
ψ̃W φ̃Gm̂

φ̃ 2
0

; σ ji =
σ̃ jiφ̃im̂

σ̃ jW φ̃0
; c j =

c̃ j

σ̃ jW φ̃0
. (5)

We assume σ ji = σ j for every reserve j, which is reasonable as different types i of machinery
can be taken to be biochemically similar. Also, for the sake of simplicity, we assume ψ ji = 0
whenever j 6= i and write ψ j j ≡ ψ j. The scaled system of differential equations is as follows:{

ẋ j = ψ jm j−µ
(
1+ x j

)−m0σ j− c j for j ∈ {1, . . . ,n}
ṁi = αim0−µmi for i ∈ {0,1, . . . ,n,G} .

(6)

The link between reserve densities and synthesis of catalytic machinery is encoded by allocation
coefficients α j which are given by the following expressions:

α0 = (1+ r1 + · · ·+ rn + rG)−1 ; α j = r jα0 for 1≤ j ≤ n , j = G , (7)

where r1, . . . ,rn,rG are the r-functions. These are functions that are in general assumed to depend
on the (intensive) state of the cell (i.e. the variables {m0,m1, . . . ,mn,mG,x1, . . . ,xn}, perhaps aug-
mented with whatever additional state variables are required to describe the regulatory behaviour
of the organism). In the present (simplest) incarnation of the model, r j is assumed to be a de-
creasing sigmoid function of the reserve density x j for 1 ≤ j ≤ n and rG is assumed to be a
steeply increasing sigmoid function of m0, with a midpoint at m0 = 1. The latter is consistent
with observations on the relationship between the cell’s RNA content and the specific growth
rate (Herbert, 1961).

Under constant and growth-sufficient environmental conditions (i.e., the coefficients ψ j are
constant in time and permit growth at a strictly positive rate), the system (6) has a unique and sta-
ble equilibrium point (Nev and van den Berg, 2017b), characterised by the following equations:

µ = α0 =

(
1+ ∑

i∈{1,...,n,G}
ri

)−1

, (8)

mi = rim0 for i ∈ {1, . . . ,n,G} , (9)
ψ jr j = ψW rG(1+ x j)+σ j + c j/m0 for j ∈ {1, . . . ,n} , (10)

where µ = (W φ̃0)−1Ẇ = ψW mG is the specific growth rate expressed in scaled time.
Numerical estimates for the scaled parameters can be obtained by considering the stoichiom-

etry of a typical prokaryotic cell, as described in detail in Appendix A. We usually focus on
intensive scaled state variables {m0,m1, . . . ,mn,mG,x1, . . . ,xn}, which represent densities, rather
than the corresponding extensive variables {M0,M1, . . . ,Mn,MG,X1, . . . ,Xn}, which are propor-
tional to the structural biomass W ; it is the intensive variables that can plausibly be assumed to
be represented by intracellular signals.
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3. Data-driven reconstruction of the r-function

In the context of macro-chemical kinetics models such as described in the foregoing section,
r-functions serve as linker functions that connect the physiological state of the cell to the relative
rates of synthesis of new catalytic machinery (Nev and van den Berg, 2017b). We here focus
on what is perhaps the most elementary specification for the r-function, namely one that links
reserve density to the allocation of molecular building blocks to the machinery devoted to the
uptake of the nutrient that is stored.

The equilibrium conditions lead to the following pair of equations for n = 1:

x1 = ψ1
(
µ
−2−µ

−1−ψW
−1)− (1+σ1/µ + c1/µ) (11)

r1 = µ
−1−1−µ/ψW (12)

(Nev and van den Berg, 2017b). Thus, given a set of observations performed at various values
of µ̃ under steady-state conditions, we can calculate x1 and r1 and plot them as pairs (x1,r1),
obtaining a scatter plot that gives a graphical representation of the regulatory law r1(x1). For the
purposes of subsequent analysis, it is usually convenient to fit a suitable empirical function to
these data; we shall employ the following sigmoid function:

r1 = ζ1 + r̂1 (1+ exp{ϑ1 (x1−ξ1)})−1 , (13)

which has two shape parameters, a midpoint location parameter ξ1 and a midpoint slope param-
eter ϑ1, as well as a scaling parameter r̂1 and an offset parameter ζ1.

As eqns (11) and (12) make clear, the essential challenge is to estimate the scaled reserve
density x1 from the data, inasmuch as r1 is readily deduced from the scaled specific growth rate µ

(along with the scaled parameter ψW , which is estimated in Appendix A). Different strategies
must be adopted, depending on the type of data available. For instance, Schulze and Lipe (1964)
provide data on the yield of E. coli grown on glucose, defined as the amount of biomass Y gained
per unit of glucose taken up by the cell mass (Fig. 1, left panel). If we assume that the yield
at µ̃ = 0 corresponds to lean cells devoid of glycogen surplus, we can regard the difference
between Y (µ̃) and Y0 = Y (µ̃)|µ̃=0 as a measure for the glycogen surplus present at µ̃ . Taking
0.45 as the weight fraction occupied by structural biomass W within this lean cell composition
(see Appendix A), we are able to estimate the structural weight corresponding to Y−Y0 as 0.45Y0.
The scaled reserve density x1 can then be calculated using eqn (4) where the numerical value
of σ̃1,W is provided by the calculations outlined in Appendix A. The transformed data (x1,r1)
together with the best-fitting empirical form, eqn (13), are shown in Fig. 1, right panel.

Direct observations on the reserve density are available in some cases. For instance, Rhee
(1973) estimated phosphate reserves in the green alga Scenedesmus sp., grown under phosphorus-
limited conditions, by means of two different analytical methods (“surplus P” and “total polyphos-
phates”). The scaled reserve density x1 can then be directly calculated, using the estimate for the
mass of structural biomass per cell (Appendix A). The results are shown in Fig. 2.

More generally, however, the available chemical-analytical methods do not permit a specific
assignment of the particle species of interest to reserve versus non-reserve biomass, or do so only
imperfectly. In these instances, the cell quota concept introduced by Droop (1968) is useful: one
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Figure 1: Reconstruction of the r-function for Escherichia coli grown under carbon-limited conditions (the limiting
nutrient is glucose). Left: original data taken from Schulze and Lipe (1964), together the optimal non-linear least-
squares fit of eqn y = c+a/(b−x) with parameters a = 0.074; b = 1.2; c = 0.38. Right: transformed data, together
with the optimal non-linear least-squares fit of eqn (13) with parameters r̂1 = 307.84; ϑ1 = 111.65; ξ1 = 0.025;
ζ1 = 34.76.

simply states the total over all components and reports this figure on a per-cell basis. Calculating
x1 and r1 on the basis of cell quota data is more involved but it has the advantage that it is
applicable for general n≥ 1.

Let ˜̂φ j f jM j denote the flux of the corresponding nutrient through the assimilatory machinery

of type j, where ˜̂φ j corresponds to a maximum rate per unit of machinery (e.g. when the latter
is fully saturated by excess of substrate in the environment) and f j ∈ [0,1] expresses ambient
conditions (e.g. eqn (15) below). In view of the scaling for M j, eqn (4) and the equilibrium
conditions, eqns (8)–(10), we have the following expression for the nutrient uptake flux via
machinery of type j: ˜̂

φ j f j
φ̃ j

φ̃0
r jWm̂ .

At steady state, an alternative and equally valid expression for the flux is available in terms of the
cell quota Q j, a concept introduced by Droop (1968), who expressed the nutrient uptake through
assimilatory machinery of type j as Q jW µ̃ , where µ̃ = d

dt lnW (t) is the unscaled specific growth
rate. Equating these two expressions and solving for the r-function we find:

r j =
φ̃0µ̃Q j˜̂

φ jφ̃ jm̂ f j

, (14)

which can be viewed as a product of two factors: µ̃Q j/ f j, composed of three quantities that
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Figure 2: Reconstruction of the r-function for Scenedesmus sp. grown under phosphorus-limited conditions (the
limiting nutrient is phosphate). Left: original data taken from Rhee (1973). Right: transformed data, together with
the optimal non-linear least-squares fit of eqn (13) with parameters r̂1 = 7668.8; ϑ1 = 112.1; ξ1 = 2.25× 10−9;
ζ1 = 470.3. Open and filled circles correspond, respectively, to the values of surplus P and total polyphosphates
taken from Rhee (1973).

can be estimated from empirical data, and a proportionality constant which is a compound pa-
rameter condensing stoichiometric coefficients; numerical estimates of the latter on the basis of
independent data are discussed in Appendix A.

An often-employed model that relates f j to ambient conditions is the Michaelis-Menten hy-
perbola (van den Berg, 2011):

f j = (1+K j/[N j])−1 , (15)

where [N j] denotes the ambient concentration of the nutrient and K j is the saturation constant.
On this relationship, eqn (14) becomes:

r j =
Q jµ̃ φ̃0(1+K j/[N j])˜̂

φ jφ̃ jm̂
. (16)

The cell quota is given by the following equation:

Q j = κW +κm,0m0 ++κm,GmG +
n

∑
`=1

(
κm,`m` +κx,`x`

)
, (17)

where κ? accounts for the amount of nutrient that is incorporated per scaled unit of the corre-
sponding component ?; numerical estimates of these coefficients, on the basis of independent
data, are discussed in Appendix A. In general, we thus obtain a linear system which can be
solved for x1, . . . ,xn.
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Figure 3: Reconstruction of the r-function for Skeletonema costatum grown under nitrogen-limited conditions (the
limiting nutrient is ammonium). Left: original data taken from Harrison et al. (1976), together with the optimal non-

linear least-squares fit of eqn (18) with parameters K1 = 4.7×10−6 g/l; ˜̂φ1 = 3.3×109 g per g of uptake machinery
per second. Right: transformed data based on cell quota data from Harrison et al. (1976), together with the optimal
non-linear least-squares fit of eqn (13) with parameters r̂1 = 7.2× 10−13; ϑ1 = 77.6× 10−12; ξ1 = 0.4× 1012;
ζ1 = 0.64×10−13.

In practice, it is convenient to begin by estimating the parameters K j and ˜̂φ j by means of
the least-squares criterion, on the basis of the experimental data of the form {u j, [N j]}, where
u j = Q jµ̃ is the uptake rate of the corresponding nutrient N j. According to the Michaelis-Menten
relationship, eqn (15), u j depends on N j as follows:

u j = ˜̂
φ j(1+K j/[N j])−1 . (18)

Applying this procedure to data pertaining to the diatom Skeletonema costatum grown under
nitrogen-limited conditions, we obtain the result shown in Fig. 3.

It can be seen that the sigmoid function, eqn (13), is adequate for the three data sets consid-
ered here. The good agreements suggest that the r-function, which might be dismissed as a mere
conceptual device to provide mathematical closure for the macro-chemical kinetics equations,
can be regarded as reified by the data to some extent. It is best thought of as a grosso modo
description of the regulatory feedback mechanisms in the organism.

A striking difference between the three examples shown is the relative steepness of the sig-
moid which corresponds to how stringently the reserve is regulated to the midpoint value ξ1.
Provided that the range of r-values allowed by ζ1 and r̂1 is great enough, the variation in r1 is
translated into an adapative re-allocation of molecular building blocks toward the corresponding
uptake machinery. If the range is great enough and the sigmoid is steep, even small variations
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will translate into large swings in how building blocks are allocated to the various types of ma-
chinery, and thus the growth rate is rapidly adjusted to a value commensurate with maintaining
the reserves at level ξ1 under the prevailing ambient conditions. If the steepness is smaller (and
also if the range between ζ1 and r̂1 is smaller), the cell allows a certain range of variation of the
reserve density, i.e. reserve homeostasis is less stringent.

From a biological point of view, it is almost self-evident that the shape parameters of the
r-function, which express how the organism manages its reserves, assume values in response to
selective pressure. In other words, the parameter values that characterise a particular organism,
for a given type of nutrient reserve, are presumed to constitute an evolutionary optimum. In
the remainder of this paper, we explore the hypothesis that this is the case, and investigate in
particular the problem of optimality in the face of ambient fluctuations in nutrient availability.

4. Evolutionary adaptation of the r-function

In order to assess evolutionary optimality of the design parameters in any given biological
system, a suitable criterion of optimality is required. This is the fitness (or more precisely, the
marginal fitness) associated with the parameter set {ξ j,ϑ j, r̂ j,ζ j} j=1,...,n. For microorganisms,
the specific growth rate µ̃(t) ≡ d

dt lnW (t) is an obvious candidate: if two competing types are
characterised by the values µ̃A and µ̃B, the relative abundance of type A with respect to B is
expected to grow as exp{µ̃A− µ̃B} and thus the condition µ̃A > µ̃B amounts to the statement
that A is fitter than B. Although this argument seems to have gained currency among microbi-
ologists (e.g., Lenski et al., 1991) it is readily shown by means of elementary counterexamples
that instantaneous fitness can be problematic and, in particular, that the ecophysiology of the
organism dictates which regime of discounting µ̃(t) over time t is the appropriate measure of
fitness (van den Berg et al., 2008).

A suitable definition of fitness in this context is the long-time average specific growth rate,
defined as follows:

ρ = lim
t→∞

lnW (t)
t

(19)

(cf. Metz et al., 1992). For the practical purposes of estimating fitness via numerical simulations,
we use a sufficiently large averaging time to approximate this limit.

4.1. Optimal regulation in a constant environment
Consider the model with n ≥ 1 types of reserves, subjected to a time-constant environment

characterised by the parameters {ψ1, . . . ,ψn} with all constants ψ j strictly positive and growth-
sufficient. In such an environment, the optimal r-function for all reserves j is characterised by
the double limit ϑ j → ∞ ;ξ j → 0 ∀ j. To see this, first observe that this condition is equivalent
to x j ≡ 0 ∀ j, eventually as t→ ∞, as a result of the adaptive re-allocation property of the model;
in other words we are disregarding any transient behaviour for small t and consider the model in
steady state, eqns (8)–(10).

We thus have to establish optimality of the condition x j ≡ 0 ∀ j, which, in view of the fact
that x j < 0 is not permitted in the theory for any j (cf. Nev and van den Berg, 2017a), amounts
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to showing that any set of non-negative reserve density values {x1, . . . ,xn} is sub-optimal when-
ever at least one element is strictly positive. Without loss of generality, relabelling reserves and
corresponding nutrient species if necessary, we may assume that x1 is strictly positive.

Consider the ray emanating from the origin and passing through the point (x1, . . . ,xn). The
distance between this point and the origin is

R = x1

√
1+η2

2 + · · ·+η2
n , (20)

where the parameters η j = x j/x1, 1 < j ≤ n, are fixed along the ray. We consider the rate of
change of the steady-state value of µ as we move along this ray. From eqns (20) and (8)–(10) we
find:

dµ

dR
=

−µ
(
ψ
−1
1 +η2ψ

−1
2 + · · ·+ηnψ−1

n
)√

1+η2
2 + · · ·+η2

n
(
ψ
−1
W +ψ

−1
1 + · · ·+ψ

−1
n + µ−2

)
+R

(
ψ
−1
1 +η2ψ

−1
2 + · · ·+ηnψ

−1
n
) ,

(21)
which shows that dµ/dR < 0 and thus any steady state in which not all x j are zero (i.e., one
or more are strictly positive) can be improved upon by choosing any point, closer to the origin,
along the ray connecting this state to the origin. It follows that the optimal steady state is at the
origin, that is, µ is maximal when x j = 0 for all j. This steady state with all reserve densities
at zero can be characterised as the “lean growth” or “balanced growth” condition (van den Berg,
2001); “lean” because the cells in this state consist entirely of structural components and machin-
ery, “balanced” as re-allocation due to the r-functions effectively “counter-skews” stoichiometric
imbalances in the environment (cf. van den Berg et al., 2002).

This lean regulatory regime is optimal only if the environment is unchanging and growth is
sufficient, for in that case the steady-state value of µ becomes identical to the fitness ρ as defined
by eqn (19), as ultimately W (t) ∼ exp{µt} or ln{W (t)}/t ∼ µ . We can tentatively extend this
conclusion to environments that do fluctuate, but remain growth-sufficient in perpetuity: pro-
vided that the long-term increase in biomass is not affected too strongly by the transients during
which the cells “re-balance” through adaptive re-allocation, µ will be close to the optimum dic-
tated by environmental conditions most of the time. Moreover, steep r-functions (i.e. ϑ j � 1)
offer the most reactive response to the changing conditions, minimising the losses that accom-
pany such transients.

4.2. Optimal regulation in a “feast-or-famine” environment
If the environment intermittently imposes conditions which do not support growth at a posi-

tive rate (i.e. periods of “famine”), the possibility arises that reserve management is no longer op-
timal when it is geared to balanced growth, characterised by low ξ j and high ϑ j, which promote
x j ≈ 0 ∀ j. Whereas these parameter settings maximise fitness in a constant, growth-sufficient
environment, as shown in Section 4.1, permitting a certain reserve surplus to build up during
times of plenty may allow the organism to maintain growth during times of nutrient shortage.
Such a strategy could increase fitness in the sense of eqn (19), in view of the down-time losses
incurred when the cell enters a state of metabolic shut-down with zero growth. A cell which
maintains reserves close to zero at all times (even during “feast” periods) will spend essentially
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Figure 4: The time-varying environment: a “feast” of duration T alternates with a “famine” also of duration T .

the entire famine period in this shut-down state, in which the metabolic rate has slowed down
to virtually zero, and this may depress fitness ρ . The behaviour of the present model as it en-
ters such shut-down states has been treated in detail in a previous paper (Nev and van den Berg,
2017a); essentially, this extreme starved state corresponds to a sliding mode of the dynamical
system.

To explore this hypothesis, we subject the model, with n = 1, to periodic environmental forc-
ing that simulates feast-or-famine conditions in a basic fashion: a piece-wise constant function
that alternates between periods of feast ( f1(t) ≡ 1) and of famine ( f1(t) ≡ 0). Feast and famine
both have duration T (in scaled time units); thus the period of the entire cycle is 2T (Fig. 4).
We set ζ1 = 0 in the analysis that follows. Numerical results were obtained via simulations per-
formed by means of a stand-alone server application written in Java 8. In view of the stiffness
properties of the equations, the Gear implicit fourth-order method (Chua and Lin, 1975) was em-
ployed to calculate a numerical solution of the system of ODEs. Furthermore, a random-restart
hill-climbing approach (Russell and Norvig, 2014) was used to maximise fitness ρ .

Let us first fix r̂1 and ϑ1 and consider the variation of the ρ-maximizing value of ξ1, the
midpoint parameter which may be interpreted as the setpoint of the reserves, as a function of the
environmental parameter T , denoted ξ ∗1 (T ). As shown in Fig. 5, ξ ∗1 (T ) is close to zero for both
T � 1 and T � 1. The non-dimensionalisation of the model is such that the typical time scale of
the dynamics is of order 1. Thus the case T � 1 can be viewed as an environment that fluctuates
much more rapidly than the inherent physiological dynamics. The latter effectively average out
these fluctuations, and the system behaves as if exposed to a constant environment with f1 ≡ 1

2
and the results of Section 4.1 can be applied. The case T � 1 is somewhat more delicate. In this
limiting case, the system spends most of its time in the eventual state belonging to the prevailing
conditions, i.e. the growth state for f1 = 1 and the sliding mode for f1 = 0. The transients
between the two phases become less important as T increases. Thus the fitness ρ is dominated
by the biomass gains made during the feast periods, and hence the optimal parameter regime
accords with the results of Section 4.1. This leaves the intermediate case where T ∼ 1. Here
transient dynamical behaviour following the changes in environmental conditions dominates the
outcome. These transients are associated with the depletion of reserves during famines and
reserve replenishment during feasts. The optimal reserve level ξ ∗1 (T ) appears to be such that the
reserve density just attains the sliding mode at the end of the feast period.
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Figure 5: Fitness-optimal midpoint shape parameter ξ ∗1 (T ) of the regulatory function r1(x1) as a function of the
environmental parameter T . Insets show each four stationary cycles at the optimal parameter value; the abscissa
thus has width 8T and the ordinate runs from 0 to 2.5× the optimal value ξ ∗1 (T ). The parameter r̂1 was fixed at the
value 10 and the parameter ϑ1 was fixed at the value 100.

Next, we fix r̂1 and ξ1 and consider the variation of the ρ-maximizing value of ϑ1, the steep-
ness parameter which may be interpreted as the regulatory reactivity of the control system, as a
function of the environmental parameter T , denoted ϑ ∗1 (T ). Again we can observe agreement
with the results of Section 4.1 in the cases T � 1 and T � 1, with much reduced optimal steep-
ness in the intermediate case T ≈ 7 (Fig. 6). This lower value of ϑ ∗1 (T ) allows for a greater
amplitude of reserve density fluctuation over the stationary cycle, again with the reserve density
just attaining the sliding mode at the end of the feast period.

More generally, we should treat ρ as a function of the three parameters {ξ1,ϑ1, r̂1}. The latter
variable, r̂1, is fitness-limiting when it is too small, since the operating range of the control system
is then constrained by this variable; for r̂1 � 10, optimal fitness ρ becomes insensitive to this
parameter. Accordingly, we fix r̂1 at the sufficiently large value 10 and determine the maximum
fitness ρ with respect to ξ1 and ϑ1. We observe that the optimal stationary cycles again display
the greatest variation in reserve density x1 for T ≈ 6, with smaller amplitude variations for both
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Figure 6: Fitness-optimal steepness parameter ϑ ∗1 (T ) of the regulatory function r1(x1) as a function of the environ-
mental parameter T . Insets each show four stationary cycles at the optimal parameter value; the abscissa thus has
width 8T and the ordinate runs from 0 to 12. The parameter r̂1 was fixed at the value 10 and the parameter ξ1 was
fixed at the value 0.1.

T � 1 and T � 1 (Fig. 7). For large T , the sliding mode behaviour at the end of famine intervals
can be seen. The optimal r-functions, shown in the insets of Fig. 7, exhibit a 2- to 3-fold variation
of r1 over the stationary cycle for the intermediate regime, with a greater variation at the extremes
(T � 1, T � 1).

5. Discussion

Intracellular reserves, also known as variable internal stores (Grover, 1991) are a conspic-
uous feature of microbial organisms, sometimes occupying a significant portion of the volume
of the cell and often present in the form of inclusion bodies (Beveridge, 1989; Preiss, 1989;
Dawes, 1989). Our results suggest that we should expect to find such features predominantly
in fluctuating environments, since the optimal management strategy regarding reserves in sta-
ble growth-supporting environments is to maintain minimal reserve densities. Moreover, the
time scale of the environmental fluctuations is important: very rapid fluctuations are irrelevant,
and very slow fluctuations are essentially equivalent to constant environments, since stores that
would allow the cells to tide them over the entire famine period would have to be unfeasibly
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Figure 7: Stationary cycles for fitness-optimal r-functions. Each panel shows four stationary cycles of the reserve
density, total duration 8T with T as indicated, with ordinate running from 0 to 0.25 for T = 0.1 and T = 10 and 12 for
all other values of T . The parameter r̂1 was fixed at the value 10 and the parameters ξ1 and ϑ1 were simultaneously
optimised for maximal ρ . Insets show the corresponding optimal r-functions, with abscissa running from 0 to 0.25
for T = 0.1 and T = 10 and 12 for all other values of T and ordinate from 0 to 6 in all cases. The heavy-lined portion
of the inset graphs corresponds to the working range of the stationary cycle.

large, and thus such periods become dead losses. Thus optimal reserve management is governed
primarily by fluctuations that happen at a time scale comparable to that of the cell’s physiology;
this might be termed “eco-physiological resonance.” An important consideration in looking for
evidence of such eco-physiological resonance in real-life ecosystems is that the intrinsic time
scale of the organism determines the timescale of ecological fluctuations on which such reso-
nance should be expected: these intrinsic time scales vary over several orders of magnitude; for
instance, doubling times in microbial habitats range from 10 min in hydrothermal vents in fresh-
water lakes (Elsgaard and Prieur, 2011) to thousands of years in deep-sea beds (Jørgensen and
Boetius, 2007).

At the height of this eco-physiological resonance regime, the optimal parameter setting ap-
pears to be such that the stores just suffice to tide the cell over. In other words, the system reaches
the sliding-mode regime just as the next feast period commences. This observation is in keep-
ing with the results obtained by Parnas and Cohen (1976) who used a similar, if slightly more
coarse-grained, model of macro-chemical kinetics.

The limitations and possible extensions of the present study are readily apparent if we con-
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sider the more general definition of fitness proposed by Metz et al. (1992): the fitness of a given
type Y is the asymptotic exponential growth rate ρE(C)(Y ) of the biomass of Y in an ergodic
environment E in which the type is present in vanishingly small proportions relative to resi-
dent types C ≡ {X1, . . . ,Xn}. This definition implies that ρE(C)(Xi) = 0 for i = 1, . . . ,n, since the
biomasses of resident types cannot go to zero (this is what it means to be resident; so ρE(C)(Xi) <
0 is ruled out) and none of those masses can go to infinity either (so ρE(C)(Xi) > 0 is ruled out
as well). By contrast, for the non-resident type Y , interest centres on the case ρE(C)(Y ) > 0
since its extinction is otherwise assured. The definition we have employed, eqn (19), accords
for the particular eco-evolutionary scenario we have studied with the general one, but the latter
encompasses ergodic environments and multiple (competing, mutant) types.

As regards the general presence of multiple competing eco-types, what we have studied here
is optimality of reserve management tout court, as it were from an engineering perspective,
isolating the role of reserves as stored supplies for times of scarcity. The presence of variant
types in the environment would complicate the analysis since another role of reserves would
come into play, namely that of capturing nutrients before a competitor can: short-term rapid
uptake of peaks in ambient availability may then become a major factor.

Moreover, the spatial ordering of the environment may be important in how these competitive
effects are transmitted. In a well-mixed environment, such as a high-turbidity lake, cells may be
expected to be exposed to competing type cells pro rata, but by the same token, the effects are
averaged out as the nutrient concentration tends to be uniform across the ecological system.
By contrast, in a more static diffusion-limited environment, such as a biofilm-like system (cf.
van Gemerden, 1993), most cells may be surrounded by cells of like type, and competition is
confined to the interfaces between subpopulations, which may allow polymorphisms to persist
which would otherwise not be available (e.g., Grover et al., 2012).

As regards ergodic environments, the deterministic alteration studied here, with fixed time
scale T , can be generalised to stochastic environments in which the duration of a feast or a famine
is realised from a suitable statistical distribution, such as a Gaussian or exponential distribution.
(In more advanced variations, the level f could itself be treated as a random variable, but still
piecewise constant, or alternatively f (t) could be the subject of an SDE.) We surmise that the
present results would still go through in a qualitative sense. In particular, the average duration
of a famine would have to be order 1 to evoke ξ ∗1 bounded away from zero, as a consequence
of the eco-physiological resonance effect described above, but the effect would be tempered by
the extent to which feast periods allow the requisite storage levels to accumulate; if the feasts are
relatively short, we do not expect the stores at the start of a typical famine period to be sufficient
to keep the model away from the sliding mode for the entire duration of that famine. On the other
hand, we do not expect long feast periods to negate the need to accumulate stores (cf. Parnas and
Cohen, 1976).

Of special interest is the extension to stochastic (ergodic) environments for multiple nutrient
limitation (i.e. the case n > 1). Let us consider the simplest version of such a model, in which
each of the n environmental factors f j can occur in either the state 0 or 1. Thus 2n distinct
joint environmental states are possible, and the transitions between these states can be described
as a continuous-time Markov chain. The key quantity in this setting is the correlation between
the feast states for the various factors (and thus also between the famine states). We conjecture
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that negative correlation would result in higher reserve “setpoints” ξ j. For instance, for n = 2,
strong negative correlation would imply that at most points in time, one is high while the other
is low, with strict alternation between which one is feast and which is famine. In that case the
storage serves not so much to survive times of scarcity, but to carry on growing while only one
factor is readily available. In contrast to the “survival” aspect which is associated with providing
energy to sustain the needs of endogenous metabolism, this second role is also important with
regard to building blocks (e.g., N, P, S, trace metals,. . . ). Strong positive correlation, on the other
hand, would effectively reduce the dimensionality of the model back to n = 1, as the various
environmental factors behave as though they were a single, more complex, nutrient compound.
To conclude our conjecture on correlation, we surmise that eco-physiological resonance would
be negated, or only possible for a limited range of environmental parameter values, as n increases
when there is weak or no correlation between the environmental factors.

In terms of physiological realism, the present model implicitly assumes that the pool of core
intermediary metabolites is kept under strict homeostasis; this assumption allows the rates of syn-
thesis of macromolecules to be treated as acceptor-driven. By contrast, a detailed micro-chemical
approach would account explicitly for constraints on rates of reaction arising both from donors
(reactants) and acceptors (products) in these reactions. Specifically, the connection between such
a micro-chemical approach and the present macro-chemical approach is as follows. Let SSS denote
the stoichiometric matrix accounting for all biochemical species present in the organism; SSS has as
many rows as there are chemical elements involved and as many columns as there are chemical
species (i.e. the columns are [empirical] formulas). A reaction can be represented as a reaction
stoichiometry ννν , a vector whose elements are reaction coefficients (negative for reactants, posi-
tive for products, zero for species neither created nor destroyed) and which must satisfy SSS ·ννν = 000
since atoms undergo neither creation nor destruction or transmutation during chemical reactions,
so that a valid ννν can be written as a linear combination of a given basis of Nul SSS—if we choose
a basis for Nul SSS and let the basis vectors be the columns of BBB, the rth reaction stoichiometry νννr
can be written as BBB ·κκκr, with dim κκκr = dim Nul SSS. Moreover, if v̇r is the rate at which the rth
reaction proceeds, the net exchange flux can be written as ∑r νννrv̇r = ∑r BBB ·κκκrv̇r = BBB · ξ̇̇ξ̇ξ . Since
the number of biochemical species in a biological cell is considerable and the number of distinct
biogenic chemical elements is modest, dim Nul SSS will be sizable (even if SSS is full-rank, as is
usually the case), and this would suggest that ξ̇̇ξ̇ξ is quite high-dimensional. However, ξ̇̇ξ̇ξ is sub-
ject to homeostatic constraints. In particular, let the columns of the compositional superposition
matrix HHH describe the macro-chemical components (i.e., in the notation of the present paper,
M0, . . . ,Mn, MG, W ) in terms of their constituent biochemical species, and append to HHH standard
unit vectors picking out the small-molecular reactants assimilated or dissimilated from the am-
bient medium (nutrients, redox substrates), of the products appearing in the medium (excreta,
redox products), with signs adapted to the macro-chemical components. Thus HHH has as many
rows as there are biochemical species and as many columns as there are components plus chem-
ical species involved in the cell’s interactions with the ambient. Then BBB · ξ̇̇ξ̇ξ = HHH · ϑ̇̇ϑ̇ϑ where ϑ̇̇ϑ̇ϑ is
a macro-chemical rate vector (van den Berg, 2011, p. 112). Now ϑ̇̇ϑ̇ϑ is constrained by quantities

such as ˜̂φ j and fi which in turn depend on expression levels of the catalytic machinery mediat-
ing these fluxes, as well as ambient conditions (such as nutrient concentrations). On the present
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approach, specification of ϑ̇̇ϑ̇ϑ is completed by choosing the r-functions. Fixing ϑ̇̇ϑ̇ϑ enforces a
reduction in degrees of freedom; the number of remaining degrees of freedom is given by:

df = dim Nul [−HHH |BBB]−dim ϑ̇̇ϑ̇ϑ . (22)

The requirement of consistency of the macro-chemical description with the micro-chemical sub-
stratum is expressed by df ≥ 0. Finally, to fix the individual reaction rates v̇r, we must ad-
duce additional conditions, such as expression levels of individual enzymes (these constrain the
rates v̇r which are linked by ξ̇̇ξ̇ξ = ∑r κκκrv̇r) and, for instance, the desideratum that µ is to be max-
imised. This has been carried out in impressive detail by Palsson and co-workers (Orth et al.,
2010; O’Brien et al., 2013), who effectively assumed constant ratios between the components
M0, . . . ,Mn, MG, W ; extending their analysis to the case where this latter assumption is relaxed
should be relatively straightforward.

The assumption of acceptor-driven kinetics, which is implicit in the equations of Section 2,
breaks down under metabolic shutdown conditions, which means that under such conditions
the macro-chemical model could be extended with explicit donor-controlled rate multipliers, or
equivalently, as we have shown elsewhere (Nev and van den Berg, 2017a), by postulating a
sliding mode for the dynamics. The model is based on n + 1 feedback loops, one between each
reserve density and the allocation of molecular building blocks towards the machinery dedicated
to the assimilation of that nutrient, in addition to a basic growth-control loop that is based on
homeostasis of the density of synthetic (zero-type, i.e. machinery-making) machinery; the latter
may be referred to as the M0/MG-loop. This logic is similar to that proposed by Scott and co-
workers (Scott et al., 2010; Scott and Hwa, 2011; Scott et al., 2014). The nutrient loops are
expressed by the r-functions reconstructed from experimental data in Section 3, whereas the
M0/MG-loop is consistent with the findings by Herbert (1961). In its present form, all nutrients
are treated as essential; when nutrients can be exchanged for one another, the phenomenon of
metabolic switching must be taken into account, and the regulatory laws become more involved
than the ones considered here. Finally, we have not taken into account here the possibility of
endogenous rhythmic processes, which may supply important timing cues to the control system.
Such processes would effectively serve as clocks that govern several of the parameters of the
r-functions.
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Appendix A. Stoichiometric calculations and estimates

A wealth of data is available for the species Escherichia coli, which we will here take as our
model for a “typical” prokaryotic cell, using these data to estimate the various stoichiometric
parameters.

Appendix A.1. Assignment of proteins to components
The first step is to assign the proteins expressed, or potentially expressed, by an E. coli cell to

the macro-chemical components as distinguished within the context of the mathematical model
described in Section 2. Proteins dedicated to transcription and translation are shared between the
machinery that generates catalytic machinery (i.e., the macro-chemical component denoted M0)
and the machinery that generates more structural biomass (i.e., machinery MG generating struc-
tural biomass W ), since both types of machinery produce proteins. In addition, the machinery for
growth MG comprises proteins involved in the synthesis of the cell envelope, proteins involved in
DNA replication and cell division, genomic maintenance and duplication, as well as biosynthetic
pathways. Uptake machinery (denotes M1, . . . ,Mn) comprises proteins that underlie the assimila-
tion of nutrients from the ambient environment, such as transporters and binding proteins, as well
as the machinery required to transform these nutrients into core metabolites. Guided by these
general principles, we obtain the assignment of all currently known and functionally identified
E. coli proteins to components, as detailed in Table A.2. Valgepea et al. (2013) give quantita-
tive estimates for the cellular abundance of each of these proteins. Summing the totals for each
component, we find that the structural component (W ) accounts for ∼ 39.4% of the protein dry
weight, synthetic machinery (M0) for∼ 19.6%, growth machinery (MG) for∼ 33.8%, and assim-
ilatory (or “uptake”) machinery (M1, . . . ,Mn) for ∼ 7.2%. Among the latter, machinery devoted
to the assimilation of glucose, nitrogen, and phosphorus, accounting for, respectively, 0.563%,
0.44%, and 0.1% of the total cellular protein mass.

The structural component W comprises ∼ 39.4% of the protein mass, which means that the
fraction of RNA- and ribosome-related proteins belonging to the growth machinery is about 0.394,
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since the growth machinery is dedicated to the synthesis of the structural component. It fol-
lows that machinery M0 synthesising catalytic machinery accounts for ∼ 60.6% of all RNA- and
ribosome-related proteins in the cell. Let β0 = 0.606 denote the portion of RNA- and ribosome-
related proteins that appertain to the synthetic machinery, and 1−β0 = 0.394 for the remainder.

Assuming equal protein sizes on average across the components, we can convert these esti-
mates into allocation coefficients, as follows:

α0 = 0.323, αG = 0.558, αGl = 0.0093, αN = 0.0073, αP = 0.0017 , (A.1)

where the subscripts Gl, N, and P stand for glucose, nitrogen, and phosphorus, respectively.
According to Neidhardt et al. (1990), one gram of E. coli contains 0.55 g of protein and

0.2053 g RNA. This gives

0.55×0.196+0.2053×β0 = 0.232 g synthetic machinery per gram-cell ;
0.55×0.338+0.2053× (1−β0) = 0.267 g growth machinery per gram-cell ;

0.55×0.072 = 0.0396 g assimilatory machinery per gram-cell .

The structural component comprises every molecule not assigned to catalytic machinery or re-
serves; the latter comprise∼ 0.025 g per gram-cell (Neidhardt et al., 1990). Thus, by subtraction,
we have

1− (0.232+0.267+0.0396+0.025) = 0.436 g structural component per gram-cell .

Appendix A.2. Rates of production
Protein elongation. The rate of elongation attained by a single ribosome is 18 amino acids per
second (Bremer and Dennis, 1996); multiplying this by the total of ∼ 26,300 ribosomes per cell
(Bremer and Dennis, 1996), we have for the whole-cell protein synthesis elongation rate:

18×26,300 = 473,400 amino acids per second per cell .

Equivalently, using a dry weight of one cell of ∼ 2.8×10−13 grams (Neidhardt et al., 1990),

473,400/(2.8×10−13) = 1,690.7×1015 amino acids/(s·gram-cell) .

With 550 mg of protein, equivalent to 5,081× 10−6 mol amino acid residues, for every gram-
cell (Neidhardt et al., 1990), we finally calculate

1,690.7×1015×550×10−3/(5,081×10−6×NA) =
0.0003039 g protein/(s·gram-cell) ,

where NA = 6.02214129×1023.
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Scaled parameters. Using eqn (A.1) and the value of β0, we can now calculate estimates for the
stoichiometric coefficients φ̃k from eqn (1), which express the rate of production of the machinery
of type k:

φ̃0 =
0.0003039×β0× (1+g RNA in M0/g of proteins in M0)

α0× g of M0
=

0.0003039×β0× (1+0.124/0.108)
0.323×0.232

= 0.0053 per second ,

φ̃G =
0.0003039×β0× (1+g RNA in MG/g of proteins in MG)

αG× g of M0
=

0.0003039×β0× (1+0.081/0.186)
0.558×0.232

= 0.002 per second ,

φ̃Gl =
0.0003039×β0

αGl× g of M0
=

0.0003039×β0

0.0093×0.232
= 0.085 per second ,

φ̃N =
0.0003039×β0

αN× g of M0
=

0.0003039×β0

0.0073×0.232
= 0.109 per second ,

φ̃P =
0.0003039×β0

αP× g of M0
=

0.0003039×β0

0.0017×0.232
= 0.5 per second .

The specific growth rate prior to scaling µ̃ is equal to d
dt lnW (t) ≡ Ẇ/W by definition where

Ẇ = ψ̃W MG in the present model. Over a period of time in which µ̃ is not time-varying, this
parameter is related to the doubling time T̃2 by the formula µ̃ = ln{2}/T̃2. Hence, using T̃2 =
2,400 sec (Neidhardt et al., 1990), we have µ̃ = 0.00029 sec−1, which leads us to

ψ̃W =
µ̃

MG/W
=

0.00029 per second
0.267 g MG per gram-cell/0.436 g W per gram-cell

= 0.00047 per second .

Applying the scaling, eqn (5), and considering the cell in homeostasis for synthetic machinery
(i.e., m0 = 1⇔ M0/W = m̂), we obtain:

ψW =
ψ̃W φ̃G

φ̃ 2
0

m̂ =
ψ̃W φ̃G

φ̃ 2
0

M0

W
=

0.00047 per s×0.002 per s
0.00532 per s2 × 0.232 g of M0 per gram-cell

0.436 g of W per gram-cell
= 0.018 .

Appendix A.3. Stoichiometric coefficients related to glucose
Glucose as a building block. Neidhardt et al. (1990) indicate that E. coli is 50% carbon by dry
weight (d/w). Since glucose (C6H12O6, molar mass 180 g/mol) is the only source of carbon
for E. coli when grown in a minimal medium, it follows that one gram of cell d/w requires
0.5× 180/(12× 6) = 1.25 g of glucose (i.e. 180/(12× 6) = 2.5 g glucose is required for each
g C). Protein per g d/w requires 0.29 g of carbon (Neidhardt et al., 1990); therefore protein
synthesis requires

0.29 g of C per gram-cell×2.5 g glucose per g of C = 0.73 g glucose per gram-cell ,
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since we consider the glucose to be the sole source of carbon. RNA requires 0.072 g of carbon
per gram-cell (Neidhardt et al., 1990), and thus

0.072 g C per gram-cell×2.5 g glucose per g C = 0.18 g glucose per gram-cell

is required for RNA synthesis. According to Neidhardt et al. (1990), glycogen (the main glucose
reserve in the cell of E. coli) accounts for 0.028 g glucose per gram-cell, and the energetic cost
of forming the glycogen polymer out of glucose is negligible.

Glucose as a source of energy. The maximum ATP yield per molecule of glucose is∼ 29.38 ATP
molecules (Rich, 2003), thus 1/29.38 = 0.034 molecules of glucose must be completely cata-
bolised to produce one molecule of ATP. The total energy required for polymerisation of all
essential macromolecules to create one gram d/w equals 0.023 mol ATP per gram-cell (Neid-
hardt et al., 1990); accordingly, the energetic requirement to render all macromolecules in their
polymeric form is

0.023 mol ATP per gram-cell×0.034 molecules of glucose per molecule ATP×180 g/mol =
0.14 g glucose per gram-cell .

In terms of protein synthesis, 0.022 mol ATP per g d/w is required to drive the processes of
activation and incorporation, as well as to provide the cell with the energy for proofreading,
assembly, and modification reactions (Neidhardt et al., 1990). This is equivalent to

0.022 mol ATP per gram-cell×0.034 molecules of glucose per molecule ATP×180 g/mol =
0.13 g glucose per gram-cell .

In terms of RNA synthesis, a similar calculation yields:

0.00026 mol ATP per gram-cell×0.034 molecules of glucose per molecule ATP×180 g/mol =
0.0016 g glucose per gram-cell .

In addition, glucose must be expended to fuel the synthesis of the monomeric building blocks
that are assembled into the macromolecules; these include amino acids, nucleotides, lipid compo-
nents, peptidoglycan monomers, and polyamines (Neidhardt et al., 1990). All the building blocks
are derived from a central pool of a dozen core metabolites comprising glucose-6-phosphate,
fructose-6-phosphate, ribose-5-phosphate, erythrose-5-phosphate, triose-phosphate, 3-phospho-
glycerate, phosphoenolpyruvate, pyruvate, acetyl-CoA, α-ketoglutarate, succinyl CoA, and oxalo-
acetate (Neidhardt et al., 1990). The combined cost of synthesis for all required monomers from
these twelve metabolites to generate one gram-cell d/w equals 0.018 mol ATP, −0.0035 mol
NADH, and 0.017 mol NADPH (Neidhardt et al., 1990). Generation of NAD(P)H from NAD(P)+

requires 1.5 ATP molecules (Sweetman and Griffiths, 1971; Noguchi et al., 2004). Thus, the glu-
cose equivalent of the energetic requirement of 1 g d/w cell is as follows:

(0.018 mol ATP−0.0035 mol NADH×1.5 ATP per NADH+
0.017 mol NADPH×1.5 ATP per NADPH)×
(0.034 molecules of glucose per ATP)×180 g/mol = 0.23 g glucose per gram-cell .
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Similar calculations yield that energetic requirements for glucose are 0.13 g/(gram-cell) to syn-
thesise the precursors for protein production, 0.034 g/(gram-cell) to synthesise precursors for
RNA production, and 0.0009 g/(gram-cell) to synthesise precursors for glycogen production.

Glucose investment in macro-chemical components. Synthetic machinery (M0) contains both
RNA and proteins. Accordingly, we estimate the total amount of the glucose required for these
purposes in the following way:

β0× (0.18 g glucose as a building block for RNA production
+ 0.036 g glucose to fuel RNA production)
+ 0.196× (0.73 g glucose as a building block for protein production
+ 0.26 g glucose as to fuel protein production)
= 0.33 g glucose per gram-cell for synthetic machinery .

A similar calculation for growth machinery (MG) yields:

(1−β0)× (0.18 g glucose as a building block for RNA production
+ 0.036 g glucose to fuel RNA production)
+ 0.338× (0.73 g glucose as a building block for protein production
+ 0.26 g glucose to fuel protein production)
= 0.42 g glucose per gram-cell for growth machinery .

A similar calculation for assimilatory machinery (∑n
i=1 Mi) yields:

0.072× (0.73 g glucose as a building block for protein production
+ 0.26 g glucose to fuel protein production)
= 0.071 g glucose per gram-cell for uptake machinery .

To estimate the amount of glucose invested in the structural component, we subtract, from the
total glucose requirement for 1 gram-cell, the requirements for the catalytic machinery compo-
nents as well as the glycogen reserves as found in a cell grown under standard conditions. This
gives:

(1.25 g glucose as a building block for production of 1 gram-cell
+ 0.37 g glucose to fuel production of 1 gram-cell)
− 0.33 g glucose for M0

− 0.42 g glucose for MG

− 0.071 g glucose for (M1 + · · ·+Mn)
− 0.0289 g glucose fueling synthesis of glycogen reserves
= 0.77 g glucose per gram-cell to produce the structural component .
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Rate of glucose reserve consumption. By the scaling relations outlined in Section 2 we have

σ ji =
σ̃ jiφ̃i

σ̃ jW φ̃0
m̂ .

Since we assume that σ ji = σ j for i ∈ {0,1, . . . ,n,G}, for i = 0 we have:

σ j =
σ̃ j0φ̃0

σ̃ jW φ̃0
m̂ =

σ̃ j0

σ̃ jW
m̂ ,

and we therefore calculate the stoichiometric coefficient σGl as follows:

σGl =
σ̃Gl,0

σ̃Gl,W
m̂ , (A.2)

where m̂ = M0/W . The coefficients σ̃Gl,0 and σ̃Gl,W in eqn (A.2) denote the amounts of glu-
cose required to produce a unit of, respectively, synthetic machinery or structural component.
Accordingly, we have

σ̃Gl,0 =
0.33 g glucose per gram-cell for M0 production

0.232 g of M0 per gram-cell
= 1.4 g glucose per g M0 ,

σ̃Gl,W =
0.77 g glucose per gram-cell for W production

0.436 g of W per gram-cell
= 1.8 g glucose per g of W ,

and using m̂ = M0/W = 0.53 g of M0 per g of W , we find

σGl =
1.4 g glucose per g M0×0.53

1.8 g glucose per g W
= 0.4 .

Appendix A.4. Stoichiometric coefficients related to nitrogen
Nitrogen requirements. A single gram dry weight of cellular mass contains 0.097 g nitrogen
dispersed over its proteinaceous contents, and 0.035 g nitrogen contained in its RNA (Neidhardt
et al., 1990). Accordingly, nitrogen requirements for the production of each type of machinery
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are as follows:

β0×0.035 g nitrogen per gram-cell for RNA+
0.196×0.097 g nitrogen per gram-cell for protein =
0.04 g nitrogen per gram-cell for synthetic machinery production ;
(1−β0)×0.035 g nitrogen per gram-cell for RNA+
0.338×0.097 g nitrogen per gram-cell for protein =
0.047 g nitrogen per gram-cell for growth machinery production ;
0.072×0.097 g nitrogen per gram-cell for protein =
0.007 g nitrogen per gram-cell for assimilatory machinery production .

According to Yuan et al. (2006), glutamate (C5H9NO4, 147 g/mol, the main nitrogen reserve
in E. coli) comprises 100.55× 10−6 mol per gram-cell. In terms of stoichiometric reckoning,
only the nitrogen atoms in these glutamate molecules are assigned to the reserve, whereas the
glutamine body is assigned to the structural component, in accordance with the biochemical
notion of transaminase reactions to store the cell’s temporary nitrogen surplus onto these bod-
ies (Neidhardt et al., 1990). We have

100.55×10−6 mol per gram-cell×14 g/mol =
0.0014 g nitrogen per gram-cell attributed to nitrogen reserve .

An E. coli cell contains 14% nitrogen d/w (Neidhardt et al., 1990) and thus

0.14− (0.04+0.047+0.007+0.0014) =
0.045 g nitrogen per gram-cell in the structural component .

Rate of nitrogen reserve consumption. To estimate the stoichiometric coefficient σN we use the
following scaling equation:

σN =
σ̃N,0

σ̃N,W
m̂ , (A.3)

where m̂ = M0/W . The coefficients σ̃N,0 and σ̃N,W denote the nitrogen amount needed to produce
a unit of synthetic machinery or structural component, respectively. Accordingly,

σ̃N,0 =
0.04 g N per gram-cell for M0 production

0.232 g of M0 per gram-cell
= 0.17 g N per g M0 ,

σ̃N,W =
0.045 g N per gram-cell for W production

0.436 g of W per gram-cell
= 0.1 g N per g W ,

and using m̂ = M0/W = 0.53 g of M0 per g of W , we find

σN =
0.17 g N per g M0×0.53

0.1 g N per g W
= 0.8 .
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Nitrogen cell quota. By definition, the nitrogen cell quota is its intracellular density (amount per
cell, which can roughly by thought of as an average concentration; Droop, 1968). In terms of the
state scaled variables of the macro-chemical model we have the following linear stoichiometric
equation (assuming n = 1):

QN = κm,0m0 +κm,GmG +κm,NmN +κx,NxN +κW , (A.4)

where κ∗ is the amount of nitrogen attributed to the corresponding component ∗ in gram per cell.
Following this definition of κ∗, we express κx,NxN as follows

κx,NxN =
XN

γWW
,

where γW is the number of cells that corresponds to one gram of structural component W . There-
fore together with scaling from eqn (4) we have

κx,NxN =
W σ̃N,W xN

γWW
=

σ̃N,W xN

γW
,

whence

κx,N =
σ̃N,W

γW
= 1.25×10−14 g N per cell attributed to the nitrogen reserve .

Reasoning similarly, we represent κm,imi for i ∈ {0,N,G} in the following form:

κm,imi =
g N
g Mi

× g Mi

cell
=

g N
g Mi

× g Mi

g W
× g W

cell
=

g N
g Mi

× mim̂φ̃i

φ̃0
× g W

cell
,

whence

κm,i =
g N
g Mi

× m̂φ̃i

φ̃0
× g W

cell
.

Using this expression, we obtain the following values for the weighting coefficients:

κm,0 = 1.13×10−14 g N per cell attributed to the synthetic machinery ,

κm,G = 4.39×10−15 g N per cell attributed to the growth machinery ,

κm,N = 2.38×10−13 g N per cell attributed to the nitrogen assimilatory machinery .

The last coefficient κW can be expressed as follows:

κW =
g N
g W
× g W

cell
= 1.25×10−14 g N per cell attributed to the structural component .

In these units, eqn (A.4) takes on the following form:

QN = 1.13×10−14m0 +4.39×10−15mG +2.38×10−13mN +1.25×10−14xN +1.25×10−14 =

1.13×10−14m0 +4.39×10−15
µ̃(φ̃0ψW )−1 +2.38×10−13mN +1.25×10−14xN +1.25×10−14 ,

(A.5)

since it follows from the scaling (Section 2) and the definition of the specific growth rate that µ̃ =
µφ̃0 = mGψW φ̃0.
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Appendix A.5. Stoichiometric coefficients related to phosphorus
Phosphorus requirements for the cell components production. According to Nesmeyanova (2000),
polyphosphate, which constitutes the main phosphorus reserve, accounts on average for∼ 0.003 g
per gram-cell d/w. Since PO3H units weighs 80 g/mol and phosphorus weighs 31 g/mol, we
should assign 0.003×31/80 = 0.001 g of P per gram-cell to the phosphorus reserve.

Assuming that the four bases guanine, adenine, cytosine, and uracil are equally abundant (Ri-
ley et al., 2006), we find that an RNA unit weighs 80 + 115 + (150 + 134 + 110 + 111)/4 =
321.25 g/mol, which implies that RNA requires 31/321.25 = 0.096 g P per gram-cell. Accord-
ingly, phosphorus requirements for the production of synthetic and growth machineries are as
follows:

β0×0.096 g P per g of RNA×0.2053 g of RNA per gram-cell =
0.012 g P per gram-cell for synthetic machinery .

(1−β0)×0.096 g P per g of RNA×0.2053 g RNA per gram-cell =
0.008 g P per gram-cell for growth machinery .

An average E. coli cell is about 3% phosphorus d/w (Neidhardt et al., 1990), whence we conclude
that

0.03 g P per gram-cell− (0.012 g P per gram-cell in the synthetic machinery
+ 0.008 g P per gram-cell in the growth machinery
+ 0.001 g P per gram-cell in the reserve)
= 0.009 g P per gram-cell in the structural component .

Rate of phosphorus reserve consumption. We estimate the stoichiometric coefficient σP in ac-
cordance with the following scaling equation:

σP =
σ̃P,0

σ̃P,W
m̂ (A.6)

with m̂ = M0/W . The coefficients σ̃P,W and σ̃P,0 express, respectively, how much phosphorus is
required to synthesise one unit of the structural component and of the synthetic machinery. Thus
we obtain:

σ̃P,0 =
0.012 g of P per gram-cell for M0 production

0.232 g of M0 per gram-cell
= 0.052 g of P per g of M0 ,

σ̃P,W =
0.009 g of P per gram-cell for W production

0.436 g of W per gram-cell
= 0.02 g of P per g of W .

Therefore we have:

σP =
0.052 g of P per g of M0×0.53 g of M0 per g of W

0.02 g of P per g of W
= 1.4 .
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Appendix A.6. Maintenance
To estimate the maintenance coefficients c j we use the scaling equation (Section 2):

c j =
c̃ j

σ̃ jW φ̃0
, (A.7)

where the coefficient c̃ j expresses the amount of substrate j per unit of structural component
per unit of time required by the cell to maintain essential processes and structures that are not
related to its growth. This parameter can be estimated by means of the following definition of
the maintenance coefficient (Pirt, 1965):

m = a/Y , (A.8)

where a denotes the specific maintenance rate, a typical value for E. coli being ∼ 0.03 h −1

(Neidhardt et al., 1990). The parameter Y is the yield coefficient for a substrate used for growth,
which is estimated as 0.25 g of cell dry weight per g glucose for E. coli growing on glucose
(Henry, 1969). Therefore we can calculate the maintenance coefficient c̃Gl for E. coli growing
on glucose as follows:

c̃Gl =
0.03/3600 per second

0.25 gram-cell per g glucose×0.436 g W per gram-cell
= 7.6×10−5 g glucose per g W per second ,

whence the scaled coefficient takes on the following form:

cGl =
7.6×10−5 g glucose per g W per second

1.8 g glucose per g W ×0.0053 per second
= 0.008 .

Appendix A.7. Adjustments for eukaryotes
Inasmuch as E. coli is much more extensively documented than almost any other microorgan-

ism, it is tempting to treat the E. coli-based estimates as quasi-universal. This can be expected
to be warranted to some extent, the more so as the parameters express intrinsic, biochemically
universal properties. For instance, the storage compounds that are accumulated in the cells can
probably be regarded as comparable, as many algal species accumulate glycogen (West, 1916),
amino acids (Dortch et al., 1984), and polyphosphate (Rhee, 1973). Nonetheless, eukaryotic
unicellular organisms are quite distinct from the prokaryote E. coli, and therefore this porting
of stoichiometric estimates must be considered with some care, and adjusted wherever data are
available for the eukaryotic species analysed in the main text. Since the cell quota is calculated
on a per cell basis rather than g d/w, the weighting coefficients (κ-type parameters) need to be
revised, using the reported dry weight of 2.9×10−10 g/cell for Skeletonema costatum (Pan et al.,
2010).
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Adjustments for nitrogen cell quota for Skeletonema costatum. The weighing coefficients for the
nitrogen cell quota equation are adjusted as follows:

κx,N = 1.3×10−11 g N per cell attributed to the nitrogen reserve ,

κm,0 = 1.2×10−11 g N per cell attributed to the synthetic machinery ,

κm,G = 4.5×10−12 g N per cell attributed to the growth machinery ,

κm,N = 2.45×10−10 g N per cell attributed to the nitrogen assimilatory machinery ,

κW = 1.3×10−11 g N per cell attributed to the structural component .

Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
Ribosome-associated Path to core metabolism Agmatine biosynthesis Catabolism

Rlml AnsA SpeA AsnB
RlmN AspA SpeB ClpP
RluB CysQ Amino-acid biosynthesis DacA
RluD DadA ArgA DacC
RmsA GadA ArgB Dcp
Rnc GcvP ArgC DegQ

RsgA LtaE ArgD Ggt
RsmB ManA ArgE GlmS
RsmC MtlD ArgG GuaA
RsuA TreA ArgH HslV
SrmB Nutrient uptake ArgI LdcA
Yfif AlsB AroA LexA

TypA AraF AroB Lon
RimM ArgT AroC Map
RaiA ArtI AroG OmpT
RbfA ArtJ AroK PepA
YchF ArtP Asd PepB
YbcJ ChbB AspC PepD
YibL Crr CysE PepE
RoxA CysA CysK PepN
YjgA CysP CysM PepP
Der Dppa DapB PepQ

RimP DppD DapD PepT
YihI DppF DapE PmbA
YjeE FepB DapF Prc
HflX FruA DkgA PrlC
RsmI FruB HisB PurF
Era GalE HisC SohB

RlmM GatA HisD TldD
Ribosomal GlnH HisF YajL

RplA GlnQ HisG YegQ
RplB GltI HisH YggG
RplC GsiB HisI YhbO
RplD HisJ IlvB Chaperones/folding
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
RplE HisP IlvC CbpA
RplF KgtP IlvD ClpA
RplI LivF IlvE ClpB
RplJ LivG IlvH ClpX
RplK LivJ IlvI CspC
RplL LivK LeuA CspD
RplM LolD LeuC CspE
RplN LptB LeuD DegP
RplO LptF LysA DnaJ
RplP LptG LysC DnaK
RplQ LsrB MetA DsbA
RplR MalE MetB DsbC
RplS MalK MetC DsbG
RplT ManX MetE FklB
RplU ManY MetK FkpA
RplV ManZ MetL FkpB
RplW MetN Mtn FtsH
RplX MetQ PheA GroL
RplY MglA ProA GroS
RpmA MlaD ProB GrpE
RpmB MlaF ProC GrxB
RpmC ModA RidA GrxC
RpmD ModF SerA GrxD
RpmE MppA SerC HdeB
RpmF MsbA ThrA HscA
RpmG MtlA ThrB HscB
RpmH NagE ThrC HslO
RpsA NlpA TrpA HslU
RpsB OmpA TrpB HtpG
RpsC OmpC TrpC NfuA
RpsD OmpF TrpD PpiA
RpsE OppA TrpE PpiB
RpsF OsmF TyrA PpiC
RpsG PhoP TyrB PpiD
RpsH PotA Usg SecB
RpsI PotD Cell division Skp
RpsJ PotF Fic SlyD
RpsK PstS FtsA SurA
RpsL PtsG FtsE Tig
RpsM PtsH FtsZ TrxA
RpsN PtsI MinC TrxC
RpsO PtsN MinD YbbN
RpsP PtsP MinE ProQ
RpsQ RbsD MreB YcdY
RpsR SapA MukE BepA
RpsS SufC RodZ Chemotaxis
RpsT ThiB Slt FliY
RpsU UgpB ZapA RbsB
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
Sra YadG ZapB Defense

YqjD YdcS ZipA Ahpc
Hpf YecC ObgE ArcA

RNA-related YgiS EngB ArcB
AlaS YtfQ FtsP Bcp
ArgS MscS DamX DcyD
AsnS TolB ZapD Dps
AspS MlaC MatP FrdA
CysS DcrB NlpI FrdB
Fmt EfeO RlpA GlnB
GlnS AroP Cell envelope synthesis KatE
GltX TolQ AccA KatG
GlyQ CorC AccB LuxS
GlyS Tsx AccC NarL
HisS PhoU AccD NarP
IleS GadC AcpP OtsA

LeuS CorA AnmK SodA
LysS ChaB BtuE SodB
LysU SstT Cld SodC
MetG TrkA DhaK SolA

MnmA LamB DhaL SpeG
PheS FadL FabA Tpx
PheT FabB WrbA
ProS FabD Yfid
RpoA FabF Yqhd
RpoB FabG Metabolic intermediates
RpoC FabH AceA
RpoD FabI AceB
RpoE FabZ AceE
RpoN FadA AceF
RpoS FadB AckA
RpoZ FadE AcnA
SerS FadI AcnB
ThrS FadJ Acs
TrpS FadM AdhE
TyrS Ffh Agp
ValS FtsY ArnC
YihD GalF AtpA
YhbY Glf AtpC
YgfZ GlpK AtpD
RraA GpsA AtpF
LepA KdsA AtpG
YceD KdsB AtpH
YciO KdsC BglA

CmoA LpcA CobB
RseB LpxA CydA
RimN LpxB CydB
MnmE LpxD CyoA
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
RapZ Mpl CyoB

Transcription MrcB DeoC
AllR MurA Dld
ArgP MurC Eda
Crl MurD Eno
Crp MurE FbaA

CysB MurF FbaB
DksA PlsB Fbp
FadR Psd FolA
Fnr PssA FolD

FruR RfaD FrmA
Fur RfaE FucO

GlpR TesA FumA
GntR TesB GabD
HupA UgpQ GabT
HupB YidC GalM
IscR YbiS GapA
Lrp MdoG GarR

MalT LolA Gcd
MetJ LptA GcvH

MhpR BamC GcvT
MprA CpoB GhrA
NadR BamB GhrB
NagC BamD GlcB
NikR BamA Glk
NrdR YnhG GlmM
OsmE LpoB GlmU
OxyR MipA GloA
PdhR WbbI GloB
PurR LpoA GltA
SlyA LolB GlyA
TrpR MdoD Gnd
TyrR YcjG Gor
YqgE ErfK GpmA
Zur LptD GpmM

NusG LapB Gst
BolA Cofactor biosynthesis HchA
YebC BioD Icd
Cra CoaA KdgK

KdgR Dxs LdhA
YehT FolE LldD
YciT Fre Lpd
YhgF FtnA MaeA
RapA HemB MaeB

Translation HemD Mdh
Efp HemE MetF
Frr HemG MetH

FusA HemX MgsA
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
InfA Iscs MurQ
InfB IspA NagB
InfC IspB NagZ
PrfC IspG Ndh
Tsf IspH NuoA

TufA LipA NuoB
YeiP MenB NuoC
EttA MoaC NuoF
YbaK MoaD NuoG
SelB MoaE NuoI

NadA Pck
NadC PfkA
NadE PfkB
NadK PflB
PanB Pgi
PanC Pgk
PdxB Pgl
PdxH Pgm
PdxJ PoxB
PncA Ppa
PncB Ppc
PntA PpsA
PntB Prs
QueC Pta
RfbA PurH
RfbB PurN
RfbC PurT
RfbD PykA
RibB PykF
RibC RbsK
RibD Rpe
RibE RpiA
SthA SdhA
SufS SdhB
ThiC SdhD
ThiD SseA
ThiE SucA
ThiF SucB
ThiG SucC
ThiL SucD
ThiM TalA
UbiB TalB
UbiD ThyA
UbiE TktA
UbiF TktB
UbiG TpiA
MoaB YccX
MoeA YdbK
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
UbiJ YeaD

DNA replication YtjC
DnaA Zwf
DnaN IscU
DnaX YeeX
GyrA HinT
GyrB YdgH
IhfA YdhR
IhfB YgiN
LigA ErpA
PolA Ivy

Purine metabolism GstB
Pyrimidine metabolism Fdx

Rob ElbB
SeqA YdjN
Ssb SgcQ

TopA AzoR
YbaB MioC
GreA NagD
YdaM MenI

Fatty acid biosynthesis RcnB
Cfa IscA

GnsB Dtd
Glutamate biosynthesis FdhE

GdhA UcpA
Glutamine biosynthesis YgiF

GlnA EutL
GltB YcbX
GltD FrsA

Glutathione biosynthesis CsdE
GshB MpaA

Protein biosynthesis CpdA
Def PaaY

FolX GutQ
PncC Pka

Protoporphyrin biosynthesis Repair
HemL Dut
HemY HelD

Selenophosphate biosynthesis Mfd
SelD MsrA

Spermidine biosynthesis MsrB
SpeE Mug

Sulfide biosynthesis MutL
CysH NrdA
CysI NrdB
CysJ RdgC

RecA
UvrA
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
UvrB
UvrD
XseB
XthA

RNA degradation
Pnp
Ppk

RhlB
Rho
Rnb
Rne
Rnr

RraB
Ydfg
Orn

RNA modification
Tgt

TrmJ
Secretion

AcrA
CopA
CusB
CusC
CusF
SecA
SecD
SecG
SecY
TolC
YajC
YebF
MsyB
AcrB

Storage-related
CsrA
GlgA
GlgB
GlgC
GlgP
MalP
Bfr

Transcriptional repressors
BaeR
BasR
CpxR
Hns

OmpR
RcsB
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
RcsD
RstA
StpA
SuhB
UvrY
NusA
NusB
Rof
Rsd

RcnR
YjdC
FrmR
MtfA
ExuR
FabR
LrhA

Defence
UspA
OsmY
YajQ
OsmC
YifE
HdeA
SspA
YggX
UspG
YfbU
YggE
ElaB
PspA
IbaG
ChrR
UspE
AhpF
UspF
Tas

YbgI
CueO
Slp

SspB
YiiM
MscL
SlyX
UspD
SbmC
TehB

YmdB
YfcF
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Table A.2: Assignment of E. coli proteins to macro-chemical compo-
nents

Synthetic M0 Uptake M1, . . . ,Mn Growth MG Structural W
CstA

MobA
PspB
Blc

Cell envelope
Lpp

YbaY
YhcB

Pal
Redox reactions

MsrC
CyaY
MdaB
FldA
YgjR
YdgJ
QorB

Based on data reported by Valgepea et al. (2013) using the proteomaps data visualisation tool by Liebermeister et al. (2014) .
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