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INTRODUCTION

Organisms need to partition finite resources among
competing needs, such as somatic maintenance,
growth and reproduction throughout life (Gadgil &
Bossert 1970). Trade-offs occur so that fitness of any
one trait cannot be maximised without leading to a
cost in others (Stearns 1989). Sexual maturity repre-
sents the age, size or stage at which individuals can re-
produce (Bernardo 1993). As somatic maintenance has
priority over competing needs (Zera & Harshman
2001), maturation requires a change in resource allo-

cation from growth to reproduction (Bernardo 1993).
In contrast to species with determinate growth, where
growth halts at sexual maturity, growth persists
throughout life in species with indeterminate growth
(Kozłowski 1996), as demonstrated in fish (Charnov &
Berrigan 1991), clams (Heino & Kaitala 1996), fresh-
water turtles (Congdon et al. 2013) and desert tor toises
(Nafus 2015).  The Von Bertalanffy growth curve (von
Bertalanffy 1957) is believed to be the best approxima-
tion of growth, defined as the increase in skeletal size,
in indeterminate growers. It assumes that no maximum
size exists and that growth rates decay with age.
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ABSTRACT: Indeterminate growth, i.e. growth that persists throughout life, is common in long-
lived reptiles. Because fecundity and body size tend to be correlated in such species, individuals
face a life-history trade-off at sexual maturity. Saturation tagging and intensive monitoring at
nesting grounds can potentially provide opportunities to accumulate data on individual measure-
ments and reproductive output. Until recently, however, shortcomings from these methods have
prevented the testing of theories on resource allocation between growth and reproduction at sex-
ual maturity in wild populations of sea turtles. Here, we review the state of knowledge of growth
rates in adult sea turtles and potential life-history trade-offs. We found that post-maturity growth
rates varied among ocean basins. They appeared highest in the Atlantic Ocean for both green tur-
tles Chelonia mydas and hawksbill turtles Eretmochelys imbricata, and highest in the Mediterran-
ean Sea for loggerhead turtles Caretta caretta. For other species, there are too few studies at pres-
ent to allow for intraspecific comparison. Additionally, we found no significant difference in mean
female compound annual growth rates among species and ocean basins. Although captive studies
have provided great insight into changes in energy allocation at sexual maturity and life-history
trade-offs, this review highlights the lack of data on wild animals regarding changes in post-matu-
rity growth rates and reproductive output over time. Such data are desirable to further our under-
standing of energy allocation, growth and ageing in wild sea turtles. They are further required to
assess the status of species and to understand population dynamics for both conservation and
management.
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Because fecundity and body size tend to be corre-
lated in indeterminate growers (Olsson & Shine
1996), individuals face a life-history trade-off at sex-
ual maturity (Heino & Kaitala 1999). Indeed, sexual
maturity represents a balance between the benefits
and costs associated with early versus late age at
maturation and is influenced by growth rates during
development (Stearns 1989). The most common mat-
uration norm is one in which, when growth is rapid,
organisms mature early at a large size, whereas
when growth is slow, sexual maturity is delayed and
a smaller size at sexual maturity (SSM) is reached
(Stearns & Koella 1986). In contrast, a less common
maturation norm describes an inverse relationship
between growth rates during development and age
at sexual maturity (ASM; Stearns & Koella 1986, Day
& Rowe 2002), such that either: (1) when growth is
rapid, organisms mature early, benefit from in -
creased survival to first reproduction and decreased
generation time, at the cost of a smaller body size
(Bernardo 1993), which is likely to lead to a reduction
of lifetime reproductive output (Shine 1980), or (2)
when growth is slow, individuals mature late, benefit
from increased body size and competitive ability
(Bernardo 1993), at the cost of a decrease in survival
probability to first reproduction (Gadgil & Bossert
1970). Finally, a rare maturation norm is one in which
maturation is the result of a genetically determined
size or age threshold (Bernardo 1993).

Carry-over effects are considered drivers of fitness
differences (reviewed in Harrison et al. 2011). They
occur as a result of changes in extrinsic factors be -
tween 2 time periods affecting an individual’s body
condition and therefore its fitness. Capital breeders,
such as species that undergo long migrations to
breed or species that provide parental care, fuel
reproduction using resources accumulated during
non-breeding years (Jönsson 1997, Price 2017). In
such species, the cost of reproduction is high and
individuals can skip reproduction in a given year in
order to increase future reproduction (Harris & Lud-
wig 2004, Rivalan et al. 2005, Rideout & Tomkiewicz
2011). Kozłowski (1996) proposed that, in seasonal
environments, indeterminate growth is the optimal
strategy, allowing individuals to alternate allocation
of resources in excess of somatic maintenance be -
tween growth and reproduction, such that reproduc-
tion is maximised over time. Thus, post-maturity
growth phases are expected to vary temporally (e.g.
Harris & Ludwig 2004, Baron et al. 2013, Folkvord et
al. 2014), declining with age and occurring straight
after breeding events in order to increase future re -
production (Heino & Kaitala 1996, Kozłowski 1996).

ASM and SSM inherently result from the interac-
tion of intrinsic and extrinsic factors influencing
somatic growth prior to sexual maturity (Bernardo
1993). Although empirical evidence (e.g. Choat et al.
2006, Armstrong & Brooks 2013, Tucek et al. 2014)
suggests that sexual maturity is frequently the result
of a genetically determined size threshold (Roff
2000), differences in growth curves, SSM and ASM
are likely to arise between individuals (Bernardo
1993). Indeed, enormous variation in both ASM and
SSM can be observed within and among species (e.g.
Miaud et al. 1999, Madsen & Shine 2006, Bjorndal et
al. 2013a, 2014, Campos et al. 2013, Folkvord et al.
2014, Avens et al. 2015, 2017). As males are less
readily accessible to study, knowledge of reproduc-
tive biology in sea turtles remains highly female-
biased (Rees et al. 2016). Whilst little is known about
the maturation process of males (Blanvillain et al.
2008, Ishihara & Kamezaki 2011, Arendt et al. 2012,
Avens et al. 2015), post-maturity growth rates (Avens
et al. 2015), estimates of ASM (Schwanz et al. 2016;
however, see Avens et al. 2017 for absence of a differ-
ence in ASM) and life-history trade-offs, as a conse-
quence of sexual selection (Adler & Bonduriansky
2014), are likely to be sex specific.

ASM and SSM are fundamental life-history para -
meters needed to assess the status of species and to
understand population dynamics for both conserva-
tion and management (Chaloupka & Musick 1997,
Heppell et al. 2003). Sea turtles are an excellent
study system in which to investigate post-maturity
growth rates and life-history trade-offs, being slow-
growing with a ‘bet-hedging’ life-history strategy
(Avens et al. 2015) and delaying sexual maturity for
decades (Van Houtan et al. 2014, 2016). However,
most work investigating growth rates in sea turtles
has focused on early life stages prior to sexual matu-
rity (Bjorndal et al. 2000b, 2016, Casale et al. 2009,
Kubis et al. 2009, Sampson et al. 2015). Estimates of
ASM have been generated by parametric growth
curves (e.g. von Bertalanffy, logistic and Gompertz)
using juvenile and sub-adult somatic growth data
and estimates of SSM derived from mean female size
at nesting grounds (reviewed in Avens & Snover
2013). Sea turtles, however, exhibit sex-specific
growth functions as a result of sexual dimorphism,
with males showing slower growth rates than fe -
males, resulting in differences in SSM, with mature
males being on average smaller (Chaloupka & Lim-
pus 1997, Limpus & Chaloupka 1997, Diez & van
Dam 2002, Godley et al. 2002a, Chaloupka et al.
2004; Table 1; but see Dodd 1988 and Kamezaki 2003
for larger SSM of males; see Avens et al. 2015 for
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faster growth in sub-adult and adult male logger-
head turtles and larger SSM; see Avens et al. 2017 for
absence of a difference in SSM).

Sea turtle research has primarily been focused at
nesting beaches (Schroeder & Murphy 1999). Al -
though saturation tagging and intensive monitoring
at nesting grounds provide the perfect opportunity to
accumulate data on individual measurements and
reproductive output, such methods have shortcom-
ings which, until recently, have prevented testing, for
example, of theories on resource allocation between
growth and reproduction at the onset of sexual matu-
rity in wild populations of sea turtles (Bjorndal et al.
2013a, Avens et al. 2015, 2017). Indeed, despite
being relatively inexpensive compared to in-water
surveys, such programmes remain costly, labour
intensive, logistically challenging and difficult to
maintain for sufficiently long periods of time to be
able to follow individuals throughout their reproduc-
tive lifespans (Sims et al. 2008). In addition, their
effectiveness decreases as population size increases
unless the study area ranges widely (Witt et al. 2009)
to encompass flexibility in natal homing (Lee et al.
2007, Ni shizawa et al. 2011, Lohmann et al. 2013,
Brothers & Lohmann 2015) and nest site fidelity
(Tucker 2010, Weber et al. 2013). Although some
populations are recovering (da Silva et al. 2007,
Bellini et al. 2013, Weber et al. 2014, García-cruz et
al. 2015), sea turtles remain conservation-dependent
and require intensive management (Wallace et al.
2011, Casale & Heppell 2016). Hamann et al. (2010)
highlight that reproductive biology and population
ecology are 2 priority research categories for sea tur-
tles, and these require methods to accurately age
individuals and determine ASM. Additionally, Rees
et al. (2016) reiterate that there is still much to be
done in this regard.

This comprehensive review explores the state of
knowledge of growth rates in adult sea turtles from
the onset of sexual maturity as well as potential life-
history trade-offs. Although some resear chers con-
sider ASM, age at first mating and age at first repro-
duction identical, it is possible for fe males to start
reproducing 2−4 yr after reaching sexual maturity
(Limpus 1990, Rostal 2005, Caillouet et al. 2011; some
individuals in Bjorndal et al. 2013a, 2014). However,
for the purpose of this review, ASM and age at first
observed nesting are considered to be the same.

We searched for peer-reviewed literature on ISI
Web of Knowledge and Google Scholar for the terms
growth, growth rates, maturity, age, adult, survival,
survivorship, nesting, reproductive output and trade-
off. Along with each search term was included the

word ‘turtle’. Additionally, we searched for publica-
tions in the Marine Turtle Newsletter (www.seatur-
tle.org/mtn/, last accessed January 2016), Synopses
of Biological Data for marine turtles (www.fao.org/
fishery/org/fishfinder/3,5/en) and Proceedings of the
Annual Symposia on Sea Turtle Biology and Conser-
vation (www.internationalseaturtlesociety.org/#/Pro-
ceedings, last accessed January 2016). This review is
structured in 6 major sections: life-history dicho -
tomies, age−size trade-off, energy allocation shift,
post-maturity growth rates, breeding frequency and
population recovery.

LIFE-HISTORY DICHOTOMIES

Sea turtles are highly mobile and juveniles may
move among multiple foraging habitats before rea -
ching sexual maturity (Bolten 2003b, McClellan &
Read 2007, Fukuoka et al. 2015). Environmental dif-
ferences between foraging habitats will influence
habitat use and foraging strategies of individuals and
may, in turn, result in differential growth, survival,
SSM and ASM (Peckham et al. 2011). While move-
ment between alternative habitats may incur physio-
logical, morphological and behavioural costs as indi-
viduals adapt to their new environment, these may
be outweighed by the benefits associated with more
suitable environmental conditions (Werner & Gilliam
1984, Bolten 2003b). Juveniles that move between
habitats might benefit from higher growth rates due
to higher food availability and quality and thus larger
SSM (Werner & Gilliam 1984, Bolten 2003a, Snover
et al. 2010). Although Gross (1984) argued that, for
evolutionary strategies to be stable, fitness of alterna-
tive strategies should be equivalent, with reproduc-
tive output being positively correlated with SSM in
sea turtles (Van Buskirk & Crowder 1994), life-his-
tory dichotomies may ultimately result in differential
fecundity both within and between populations and
species (Hatase et al. 2013, Ceriani et al. 2015).

Inter-specific differences in developmental life-
 history patterns exist within the sea turtles (reviewed
in Bolten 2003b). Whereas flatback turtles (Natator
de pressus) develop entirely in neritic waters (Walker
& Parmenter 1990), leatherback (Dermochelys coria -
cea) and many populations of olive ridley (Lepi-
dochelys olivacea) turtles complete their develop-
ment entirely in oceanic waters (Bolten 2003b). In
contrast, green (Chelonia mydas), loggerhead (Ca -
retta caretta), hawksbill (Eretmochelys imbricata),
Kemp’s ridley (Lepidochelys kempii) and remaining
populations of olive ridley turtles generally exhibit
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an intermediate life-history pattern (Bolten 2003b).
Hatchlings and small juveniles from the latter species
inhabit oceanic waters for an undetermined period of
time, feeding on nutrient-poor epipelagic prey and
experiencing relatively slow growth (Bjorndal et al.
2000b, Bolten 2003a). Upon reaching a size threshold
(Bjorndal et al. 2000b, Bolten 2003b), large juveniles
undergo what was long thought to be a marked, non-
reversible ontogenetic shift to neritic waters, feeding
on more abundant, nutrient-rich benthic prey (Haw -
kes et al. 2006, Snover et al. 2010). Although this
change of environment may come at the cost of an
increase in predation risk (Bolten 2003b), it could
result in as much as a 30% increase in juvenile
growth rates (Snover et al. 2010), thus appearing
highly advantageous. Recent studies, however, sug-
gest that the ontogenetic shift is both facultative,
with some individuals remaining in oceanic waters
throughout their life cycle (Hatase et al. 2002,
Hawkes et al. 2006, Ramirez et al. 2015), and re -
versible, with some individuals returning to oceanic
waters (McClellan & Read 2007, McClellan et al.
2010, Ramirez et al. 2015).

The decision to transition from oceanic to neritic
waters is likely to result from a combination of body
size, metabolic rate and density-dependent effects on
food availability and growth rates (Olsson et al.
2006). Smaller individuals experiencing higher
growth rates in oceanic waters are believed to re -
main there until they reach sexual maturity, whereas
larger individuals with higher metabolic rates and
low growth rates would disperse to neritic water in
search of better growth conditions (Bjorndal et al.
2000a, Hawkes et al. 2006, Hatase et al. 2010). In
turn, these individuals would compensate for previ-
ously low growth conditions by performing catch-up
growth (Bjorndal et al. 2003, Roark et al. 2009, Bjorn-
dal & Bolten 2010; but see Snover et al. 2007b for
absence of compensatory growth). Smaller individu-
als, however, are potentially constrained to oceanic
waters due to their size, which limits their diving
capacity (Mori 2002, Hawkes et al. 2006). Thus, life-
history dichotomies are maintained through differ-
ences in body size, which, in turn, influence habitat
use and foraging strategy, leading to differences in
SSM (e.g. Hatase et al. 2010, 2013, Peckham et al.
2011).

AGE−SIZE TRADE-OFF

Rare are the studies that observe wild individuals
of known age due to the challenges associated with

studying sea turtles throughout their life cycle and
ageing individuals (e.g. Bell et al. 2005, Caillouet et
al. 2011, Tucek et al. 2014, Rees et al. 2016). To over-
come this problem, a number of studies have investi-
gated growth rates using captive individuals of
known age (e.g. Jones et al. 2011, Bjorndal et al.
2013a, 2014). Unlike wild individuals, captive indi-
viduals can be measured at regular time intervals
both before and after sexual maturity. Such studies
have investigated how growth rates vary over the
course of an individual’s lifetime, providing great
insight into life-history trade-offs and the shape of
growth curves (e.g. Bjorndal et al. 2013a, 2014).

Captive individuals reared under similar condi-
tions exhibit a wide range of age, size, mass and body
condition at sexual maturity (Bjorndal et al. 2013a,
2014). Whilst a study of 47 captive green turtles Che-
lonia mydas found no evidence for an age−size trade-
off, as the 2 individuals that matured at the greatest
age had both the largest and second to smallest SSM
(Bjorndal et al. 2013a), this trade-off was observed in
a study of 14 captive Kemp’s ridley turtles Lepi-
dochelys kempii, potentially as a result of a greater
variation in ASM in the latter species (Bjorndal et al.
2014). Additionally, the detection of an age−size
trade-off in green turtles could have been hampered
by the mixed genetic origin of individuals (Bjorndal
et al. 2013a) and group feeding of a high quality diet
(Bjorndal et al. 2013a, 2014).

Within-species variation in SSM in wild individuals
is greater than that observed in captive species
(Witzell 1983, Dodd 1988, Marquez 1994, Hirth 1997,
Tiwari & Bjorndal 2000, Caillouet et al. 2011, Avens
et al. 2015, 2017; see Table 2), potentially due to
greater variation in juvenile growth rates within and
between populations and species (Chaloupka & Lim-
pus 1997, Kubis et al. 2009, Bell & Pike 2012, Avens
et al. 2017). Carry-over effects resulting from early
environmental conditions, such as those associated
with differences in habitat use or productivity at for-
aging grounds, have been speculated to be linked to
differences in juvenile growth rates within and
among populations and thus differences in SSM
(Eder et al. 2012).

In contrast, data on variation in ASM in wild pop-
ulations are scarce (Caillouet et al. 2011, Avens et
al. 2015, 2017) and whether an age−size trade-off
would be observed remains to be shown. The
authors are aware of only one study in a wild popu-
lation of loggerhead turtles Caretta caretta (Tucek
et al. 2014) which found no evidence for such a
trade-off. Variation in juvenile growth rates could
be dampened if individuals performed compensa-
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tory growth — which in some cases they appear to
do (e.g. Bjorndal et al. 2003, Roark et al. 2009, but
see Snover et al. 2007b) —or if slow-growing indi-
viduals experienced increased mortality pressures
as they remain in the vulnerable size classes for
longer (Bjorndal et al. 2013a, 2014). This, in turn,
would reduce the variation in ASM and SSM, which
could hamper the detection of an age−size trade-off
in wild populations.

ENERGY ALLOCATION SHIFT

The onset of vitellogenesis occurs a few years prior
to reaching sexual maturity (Saka et al. 2014) and re -
quires some energy to be diverted away from somatic
growth towards follicular development until breed-
ing occurs (Kawazu et al. 2015). Using ultrasonogra-
phy, Kawazu et al. (2015) observed a reduction of
growth just after the onset of vitellogenesis in captive
hawksbill turtles Eretmochelys imbricata. Similarly,
pre-maturity growth rates were negatively corre-
lated with ASM in both captive green (Chelonia
mydas) and Kemp’s ridley (Lepidochelys kempii) tur-
tles (Bjorndal et al. 2013a, 2014). In both species,
whereas one group of individuals shifted to negligi-
ble growth the same year as they reached sexual
maturity, the other group shifted to negligible growth
at least 2 yr prior to laying their first clutch (Bjorndal
et al. 2013a, 2014). This, coupled with changes in
pre-maturity growth rates, suggests that the shift in
energy allocation occurs a few years prior to reaching
sexual maturity.

The delay observed when captive individuals shift
to negligible growth and first reproduction could
result from turtles being less efficient at shifting
resources away from skeletal and mass growth
towards reproduction (Bjorndal et al. 2013a) or could
result from individuals in poorer condition delaying
reproduction to accumulate sufficient resources to
exceed a certain threshold (Kwan 1994). The deci-
sion to nest in a given year is likely to result from the
combination of an assessment of body condition and
favourable environmental conditions (e.g. Baron et
al. 2013). For example, annual breeding probability
is correlated with sea surface temperatures (Cha -
loupka 2001, Saba et al. 2007, Mazaris et al. 2009, del
Monte-Luna et al. 2012), which may correlate with
favourable conditions.

Whilst the shift in energy allocation starts a few
years prior to sexual maturity, it persists for an un -
known number of years after. Changes in energy
allocation can be inferred from changes in post-
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maturity growth rates. In both Bjorndal et al. studies
(2013a, 2014), growth rates in the first 3 to 4 yr after
sexual maturity were higher than those averaged
throughout post-maturity years, regardless of SSM.
This, coupled with the abrupt decrease in spacing of
lines of arrested growth (LAG) in bone cross-sections
in females of known history (Avens et al. 2015), sup-
ports the idea that, once females reach sexual matu-
rity, resources are gradually diverted from growth
towards reproduction (Hatase et al. 2004).

POST-MATURITY GROWTH

Skeletochronology and capture-mark-recapture
(CMR) studies have provided estimates of post-matu-
rity growth rates for wild populations, which are
summarised in Table 1. Although skeletochronology
derives growth rates from estimates of female length
from humerus diameter (reviewed in Avens & Snover
2013), comparison of lengths and growth rates ob -
tained from such a technique and those collected and
calculated at nesting beaches proves skeletochronol-
ogy to be a powerful technique to estimate growth
rates (Snover et al. 2007a, Goshe et al. 2010, Avens et
al. 2015, 2017).

Growth rates (Table 1) ranged from 0.20 to 0.42 cm
yr−1 for green turtles Chelonia mydas and appeared
higher in the Atlantic Ocean than in the Mediterran-
ean Sea and Pacific Ocean. Similarly, growth rates
appeared higher in the Atlantic Ocean than in the
Pacific Ocean for hawksbill turtles Eretmochelys im -
bricata, ranging from 0.17 to 0.30 cm yr−1. For logger-
head turtles Caretta caretta, growth rates ranged
from 0.20 to 0.47 cm yr−1 and appeared higher in the
Mediterranean Sea than in the Atlantic Ocean and
Pacific Ocean. It should be noted, however, that
growth rates for the Atlantic Ocean (0.20 cm yr−1 in
Bjorndal et al. 2013b; 0.47 cm yr−1 in Avens et al.
2015) are not included in Table 1 and Fig. 1 because
they are averages from 10 cm bins which can include
both large juveniles and adults, assuming that
females are sexually mature at >80 cm straight cara-
pace length (SCL). Data are lacking altogether for
olive ridley turtles Lepidochelys olivacea and only
one growth measurement was available for leather-
back (Dermochelys coriacea; 0.20 cm yr−1), flatback
(Natator depressus; 0.012 cm yr−1) and Kemp’s ridley
turtles (Lepidochelys kempii; 0.6 cm yr−1; Avens et al.
2017). Again, it should be noted that the value for
Kemp’s ridley turtles is not included in Table 1 and
Fig. 1 as it is an average from 10 cm bins, which can
include both large juveniles and adults, assuming

that females are sexually mature at >60 cm SCL
(Caillouet et al. 2011).

Post-maturity growth rates in sea turtles are low
regardless of ocean basin or species in both captive
and wild populations (Table 1) and were correlated
with neither SSM, ASM nor body condition in captive
species (Bjorndal et al. 2013a, 2014). As expected
under indeterminate growth, in the first 3 to 4 yr fol-
lowing sexual maturity, individuals grew more rap-
idly before growth decreased and became negligible
(Bjorndal et al. 2013a, 2014; Table 1). Similar tempo-
ral analyses of post-maturity growth rates are needed
in wild populations, as all studies reporting post-
maturity growth rates have averaged values across
years without taking into account factors such as
years since first reproduction. Additionally, differ-
ences in resource use between oceanic and neritic
foragers are likely to lead to foraging-ground-
 specific growth curves and post-maturity growth
rates.

In order to be better able to compare growth rates
across populations and species and to account for
individuals maturing at different sizes, female com-
pound annual growth rates were calculated from
Table 1 for wild populations and for each species as a
percentage of body size per year. When comparing
hawksbill, green and loggerhead turtles for which
there are more than one data point, there is no signif-
icant difference in mean female compound annual
growth rates among species (Kruskal-Wallis, H10 =

363

Fig. 1. Female compound annual growth rates (CAGR) for
wild populations. Dashed lines represent the mean for each
species. CAGR were calculated from values presented in
Table 1. The arithmetic mean of range values was used when
mean CCL was not available. CMR: capture-mark-recapture. 

See Table 1 for genus names
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10, p > 0.05) or ocean basins (Kruskal-Wallis, H2 =
1.35, p > 0.05). Regardless of the large variation in
SSM at nesting beaches, post-maturity growth rates
appear to follow a similar pattern among species
(Fig. 1). This would support findings from both cap-
tive and wild studies that suggest that post-maturity
growth rates are correlated neither with SSM, ASM
nor body condition (Bjorndal et al. 2013a, 2014,
Avens et al. 2015). However, Avens et al. (2015)
found lifetime mean growth rates to be correlated
with both ASM and SSM in wild loggerhead turtles.
Additionally, although sample size is very small, like
juvenile growth rates, post-maturity growth rates
appear to be sex specific in green turtles, with males
exhibiting lower growth rates than females (Table 1;
but see Avens et al. 2015 for faster growth in sub-
adult and adult male loggerhead turtles). More data
for wild individuals, however, are needed, across
both species and sex, to further investigate both of
these emerging trends.

Inter-individual differences in responses to season-
ality play a role in the duration of both nesting sea-
sons and time spent at foraging grounds (Chaloupka
2001). Vitellogenesis and follicular development are
seasonal, occurring around 8−10 mo prior to the
breeding season (Rostal et al. 1998) and happen in
parallel with lipid deposition (reviewed in Hamann
et al. 2003). With reproduction occurring every 2−4 yr
(Miller 1997), individuals that remigrate sooner
would have a shorter interval to partition resources
be tween growth and restoring body condition. Al -
though delaying reproduction in a given year to
invest in growth should be advantageous and indi-
viduals with longer remigration intervals should
exhibit higher growth rates, data from leatherback
turtles Dermochelys coriacea show no such trade-off
(Price et al. 2004). Changes in energy allocation
appear independent of reproduction.

Seasonality might also help explain some of the
variation in post-maturity growth rates. Whereas
some individuals remain in colder waters throughout
colder months, others migrate into warmer waters
(Hawkes et al. 2007). At temperatures below 15°C,
individuals in some populations have been observed
to rest on the sea floor for extended periods of time,
increasing their dive duration as sea surface temper-
atures decrease (Godley et al. 2002b, Hochscheid et
al. 2005, Broderick et al. 2007). Resting dives allow
individuals to conserve large amounts of energy
(Hays et al. 2000), which could then be partitioned
between growth and restoring body condition. In
contrast, individuals that migrate out of colder waters
might incur greater energetic costs, which could lead

to reduced energy available for growth and restoring
body condition. However, Hawkes et al. (2007) sug-
gest that those individuals acquire sufficient energy
to counteract such costs and that neither strategy
confers a significant advantage with regards to
reproduction. Nevertheless, as growth and tempera-
ture are inversely correlated (Balazs & Chaloupka
2004, Richard et al. 2014), individuals that do not
migrate during colder months and reside in highly
seasonal environments would be expected to exhibit
lower post-maturity growth rates.

BREEDING FREQUENCY

The amount of resources invested in post-maturity
growth decreases over time after sexual maturity,
freeing increasing proportions of surplus energy
available to maximise lifetime reproductive output
(Kozłowski 1996, Rideout & Tomkiewicz 2011, Bjorn-
dal et al. 2013a, 2014). Changes in reproductive effi-
ciency or capacity with age have often been used to
explain the difference in reproductive output
between new and returning females (Stokes et al.
2014) and have been reported in multiple popula-
tions (e.g. Tucker & Frazer 1991, Hawkes et al. 2005,
Beggs et al. 2007). Satellite tracking of both new and
returning females, however, suggests that low site
fidelity of new females is more likely to explain this
pattern (Tucker 2010).

With migration being costly, females that delay
reproduction should accumulate larger fat stores
than females that remigrate sooner. In turn, those
females would use a smaller proportion of their fat
stores while migrating, which could result in in -
creased clutch size or frequency (number of clutches
per season) (Price et al. 2004). While data from leath-
erback turtles Dermochelys coriacea showed that
females with longer remigration intervals do not
have a greater reproductive output in a given season
(Price et al. 2004), Stokes et al. (2014) found that
female green turtles Chelonia mydas in Cyprus with
remigration intervals of less than 3 yr laid 25% fewer
clutches in a given season. These contradictory find-
ings could result from variation in how clutch fre-
quency was estimated or from geographical differ-
ences in resource availability (Tucker 2010, Weber et
al. 2013). Indeed, the Mediterranean Sea is charac-
terised by low levels of nutrients (Sarà 1985), which
may constrain clutch frequencies when remigration
intervals are shorter. Similarly, climatic variability is
likely to dramatically change resources availability
from year to year (Barber et al. 1996, Hays et al.
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2005), resulting in changes in both remigration inter-
val and clutch frequency (Broderick et al. 2001, Saba
et al. 2007, Neeman et al. 2015).

While changes in energy allocation could help
explain the variation in reproductive output over
time, individual physiological differences and envi-
ronmental factors might play a larger role. Indeed,
increased energy assimilation efficiency, coupled
with increased food availability and quality at forag-
ing grounds, should result in a decrease in remigra-
tion interval (Hays 2000, Price et al. 2004, Ceriani et
al. 2015). Similarly, should all foraging grounds be of
equal quality, females with a shorter migration
between foraging and breeding grounds will require
shorter periods to acquire sufficient energy (Price et
al. 2004).

Body size can influence foraging habitat use, which
in turn influences remigration intervals and breeding
frequency (Hawkes et al. 2006, Ceriani et al. 2015;
Fig. 2). Adult female loggerhead turtles in Japan
exhibit size-related differences in foraging habitat
use, with smaller females foraging on nutrient-poor
planktonic items in oceanic waters, requiring more

time to accumulate sufficient resources (Hatase et al.
2004). In contrast, not only do larger females have a
shorter interbreeding interval, they also lay a greater
number of larger clutches (Hatase et al. 2013). Al -
though similar foraging dichotomies have been doc-
umented in other populations and species (Hawkes
et al. 2006, Hatase et al. 2006, Seminoff et al. 2008,
Reich et al. 2010, Watanabe et al. 2011), they appear
to be facultative. For example, telemetry studies in
Cyprus showed that nearly all loggerhead turtles are
neritic foragers despite their unusual small size
(Snape et al. 2016).

Exactly why life-history dichotomies have evolved
in sea turtles remains unclear, as they do not appear
to be evolutionary stable. Indeed, settling in oceanic,
rather than in neritic, waters appears to be subopti-
mal for reproducing females as explained above.
Eder et al. (2012) speculated that life-history dicho -
tomies have arisen because of immature juveniles
settling opportunistically in previously encountered
foraging grounds close to their natal beaches (Bowen
et al. 2005, Casale et al. 2008), rather than in the best
available ones, maturing there and returning to these
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same foraging grounds with high fidelity as adults
(Broderick et al. 2007, Marcovaldi et al. 2010). In
turn, differences in settlement locations would lead
to differences in growth rates and thus differences in
SSM and, ultimately, fitness between oceanic and
neritic foragers.

POPULATION RECOVERY

Many maturity threshold studies have focused on
exploited fish stocks where both ASM and SSM were
observed to vary with fisheries intensity and ASM
and SSM of targeted fish (e.g. Ernande et al. 2004,
Dieckmann & Heino 2007). As fish stocks were ex -
ploited, ASM and/or SSM decreased (Folkvord et al.
2014). Overexploitation of sea turtles likely resulted
in the release of intraspecific competition pressures,
which allowed individuals to exhibit higher growth
rates and thus to mature at a larger size and poten-
tially younger age if sexual maturity resulted from a
size threshold (Bernardo 1993). However, it is un -
likely that individuals matured at a younger age, as
currently available data suggest that sexual maturity
is not the result of a size threshold (Caillouet et al.
2011, Bjorndal et al. 2013a, 2014, Avens et al. 2015,
2017).

In contrast, population recovery and its associated
density-dependent effects are likely to influence
ASM and SSM through increased intraspecific com-
petition for limited resources and habitat availability
at foraging grounds. This, in turn, would lead to
slower growth rates (Bjorndal et al. 2000a, Balazs &
Chaloupka 2004), thus decreasing both SSM and
mass at sexual maturity and increasing ASM (Hep-
pell et al. 2007, Chaloupka et al. 2008), potentially
explaining the observed decrease in mean female
size at nesting grounds in a number of recovering
populations (e.g. da Silva et al. 2007, Bellini et al.
2013, Weber et al. 2014).

Additionally, the reduction in mean SSM observed
at nesting beaches could result from selection pres-
sures on larger individuals as a result of fisheries
interactions. For example, survival probabilities of
loggerhead turtles Caretta caretta worldwide are
higher for oceanic than for neritic juveniles  (Casale
et al. 2015, Casale & Heppell 2016). This, coupled
with the higher levels of predation in neritic habitats
(Bolten 2003b), could help explain the decrease in
mean SSM observed at nesting beaches (e.g. da Silva
et al. 2007, Bellini et al. 2013, Weber et al. 2014) and
is likely to lead to a temporal variation in mean SSM.
Whether ASM would follow a similar pattern seems

unlikely as oceanic and neritic foragers appear to
reach sexual maturity at similar ages (Hatase et al.
2010).

CONCLUSIONS

Despite the need to refine population models and
the long-term emphasis on obtaining life-history
parameters for wild populations in order to assess the
conservation status of sea turtles (Rees et al. 2016),
unanswered questions remain. The cryptic life his-
tory of sea turtles makes the necessary data difficult
to obtain and most studies have therefore relied on
indirect methods to estimate these parameters.

Captive studies (e.g. Bjorndal et al. 2013a, 2014)
have provided great insight into life-history trade-
offs and the shape of growth curves of some, but not
all, individuals. They have shown changes in energy
allocation to occur a few years prior to sexual matu-
rity and to persist for an unknown number of years
after. As expected under indeterminate growth,
regardless of size at sexual maturity, captive individ-
uals grow more rapidly in the first few years follow-
ing sexual maturity before growth decreases and
becomes negligible. Similar temporal analyses of
post-maturity growth rates for wild populations and
for both sexes are needed to refine existing growth
curves, estimates of ASM and population dynamic
models.

Furthermore, life-history dichotomies have been
linked to differences in SSM as well as fitness differ-
ences in wild populations. However, it is yet to be
demonstrated why these have evolved as they do not
appear to be evolutionary stable. Additionally, mean
SSM has decreased in recovering populations poten-
tially as a result of a combination of selection pres-
sures imposed by fisheries interaction as well as den-
sity-dependent effects associated with population
recovery and habitat loss. Whether the observed de -
crease in mean SSM is due to younger and smaller
females entering an older, stable nesting female size
distribution due to population protection and recov-
ery over several decades remains to be shown.

Finally, theories on resource allocation and life-
 history trade-offs from the onset of sexual maturity
need to be tested in wild populations. Indeed, it is
unclear whether captive species exhibit an age−size
trade-off and whether such a trade-off would be
observed in wild populations. We have yet to find a
non-lethal method that can be used to accurately age
all species of sea turtles and determine ASM. Such
data are desirable to further our understanding of
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energy allocation, growth and ageing in wild sea tur-
tles. Furthermore, they are required to assess the sta-
tus of species and to understand population dynam-
ics for both conservation and management.
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