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cies distribution models (SDMs), and the reasons why they 
may have limited success in predicting range shifts under 
climate change (Pearman et al. 2008, Dobrowski et al. 2011, 
Rapacciuolo et al. 2012, Blois et al. 2013, Smith et al. 2013). 
Quantifying transferability is important because SDMs are 
already being used to guide conservation policy.

Some apparent inconsistencies between predicted and 
observed range shifts could be resolved by examining both 
the environment and species’ responses at a finer spatial reso-
lution (Randin et al. 2009, Engler et al. 2011, Suggitt et al. 
2011). In particular, populations near their high latitude/
altitude geographic range margin often inhabit a very small 
proportion of the landscape (Cowley et  al. 2001), partly 
because of habitat specialization (Oliver et  al. 2009), and 
partly because populations can only persist in the warm-
est of the local microclimates (Thomas et al. 1999). One of  
the first impacts of climate change may be that a greater  
proportion of the local landscape is suitable, and this can 
soon lead to larger and better connected populations, as has 
been shown for the butterfly Hesperia comma (Davies et al. 
2006). This increased landscape carrying capacity could 
accelerate range expansion (Pateman et  al. 2012), but for 
some species it still might not cause sufficient expansion to 
be detected in coarse scale records.
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Under climate change, many species are expected (Engler 
et  al. 2011) and have been observed (Chen et  al. 2011) 
to shift their geographic ranges. Most observational stud-
ies have measured latitudinal and altitudinal shifts at fairly 
coarse spatial resolution, and these give compelling evidence 
of a widespread response to climate warming. However, 
there are significant numbers of species that do not seem to 
be shifting in the direction expected by climate change, if at 
all (Lenoir et al. 2010, Angert et al. 2011, Chen et al. 2011, 
Tingley et al. 2012, Zhu et al. 2012). Reasons for the lack 
of expansion at cool range margins could be that suitable 
habitat around the range margin is not available or is exces-
sively fragmented (Warren et al. 2001, McInerny et al. 2007, 
Melles et al. 2011, Hodgson et al. 2012), or that additional 
constraints are imposed by interactions with other species 
(Gutiérrez and Thomas 2000, Merrill et al. 2008). A small 
but growing number of studies have focused on the issue 
of predictive power, or ‘transferability’ of correlative spe-
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In recent years, tools to model microclimate have  
progressed rapidly and can give detailed downscalings of near 
ground temperature at high resolution for large landscapes 
(Bennie et  al. 2008). Several studies have linked species’ 
distribution changes to more realistic assessments of their 
thermal tolerances (Wethey and Woodin 2008, Beever et al. 
2010, Buckley et  al. 2010, Kearney et  al. 2010), and one 
has tested model predictions against independent data from 
another time period (Buckley et al. 2010), although this was 
not done at a fine spatial resolution. We have found that 
models incorporating even a simple relationship between 
microclimate and population growth rate can lead to more 
accurate predictions of patch-scale dynamics into the future 
for the butterfly H. comma, which has been expanding its 
distribution in southern England (Bennie et al. 2013).

In the present study, we investigate the relationship 
between fine resolution distribution and microclimate for 
the butterfly Plebejus argus, which has not shown a large scale 
range expansion in the UK (Fox et al. 2006), even though it 
would be expected to have benefitted from regional warm-
ing (Thomas et al. 1999). This butterfly’s growth is likely to 
be strongly dependent on temperatures close to the ground, 
similarly to many small bodied animals with limited powers 
of dispersal, and many plants. Butterflies make convenient 
subjects for this kind of study mainly because of the wealth 
of background information on their distribution and their 
ecology. Plebejus argus in Britain is restricted to seminatural 
habitats (unimproved calcareous grassland and heathland) 
which have become very scarce and fragmented in the last 
century. We statistically link the contemporary distribution 
of this species in the north Wales region to microclimate 
and other factors at 100 m resolution, and use this model to 
hindcast the distribution 30 and 40 yr ago, given the cooler  
regional climate then. We compare these predictions to  
historical colony maps at 100 m resolution or better. We 
show that, though the distribution has not changed very 
much, changes are consistent with a response to climate 
change at fine scales.

Methods

A flow diagram of all described analyses is provided in 
Supplementary material Appendix 1, Fig. A1.

Field survey

The northern coastal region of Wales is near the north-
western range limit for the butterfly Plebejus argus.  
We studied two main concentrations of populations on  
calcareous grassland (henceforth termed localities): a coastal 
limestone headland called the Great Orme (53.33°N, 
–3.86°E), and limestone outcrops on either side of the 
Dulas Valley (53.28°N, –3.63°E), about 15 km away, where 
the species was introduced in the 1940s (Marchant 1956). 
Plebejus argus is univoltine in the UK and flies from late May 
to early July in our study region.

Between 27 May and 28 June 2011 we surveyed the 
entire distribution of adult P. argus on calcareous grassland 
in north Wales, and nearby unoccupied habitat, defined as 

calcareous grassland containing one or more of the butter-
fly’s host plants. In every 100 m square containing suitable 
vegetation, a transect walk of 300 m was taken according 
to standard methodology (Pollard 1977) (between 10 am 
and 5 pm, at minimum air temperature of 17°C if sunny 
or 19°C if cloudy, when wind speed less than Beaufort 4), 
counting all individuals within 2.5 m of the walker. Transect 
length was reduced proportionally if habitat did not cover 
the whole square, down to a minimum of 100 m. Average 
vegetation height and bare ground cover were recorded from 
a 25  25 m quadrat in the centre of the 100 m square (or, 
if the centre was not habitat, from the centre of a randomly 
chosen quadrant of the square which was habitat).

Historical P. argus occupancy

Surveys of the occurrence of adult P. argus were carried out 
by C. D. Thomas in 1983 (Thomas 1985) and by R. L. H. 
Dennis in 1971–1972 (Dennis 1977), and these authors 
hand drew colony outlines on 1:25 000 Ordnance Survey 
maps. We geo-referenced and traced copies of the maps from 
these surveys using ArcGIS 9.3 (ESRI, Redlands, CA) (there 
is essentially no loss of precision in this procedure, because 
the maps are easy to align with the latest digital OS map).  
To compare previously mapped patches with our model  
predictions for 100 m squares in this study (see hindcasting 
section, below), we regarded a square to be occupied if its 
centre fell within the digitized shape outline.

Microclimate

We used the mechanistic microclimate model of Bennie et al 
(2008) to predict vegetation surface-level temperatures in 
the limestone grassland for the months April–July at 5 m 
resolution for the years 1983–2009. The inputs to the model 
were a DEM (at 5 m horizontal resolution with a nomi-
nal vertical accuracy of /– 60 cm), interpolated monthly 
mean temperature surfaces at 5 km resolution from the Met 
Office, and hourly wind speed and cloud cover data from 
RAF Valley airfield weather station (53.25°N, –4.53°E).

To summarize model outputs in a manner relevant to 
butterfly physiology, we summed degree-hours above 15°C 
for the months of April and May, the period when caterpil-
lars are developing fastest, and hours above 15°C for June 
and July, when adults are active. Each 2011 P. argus transect 
and its associated vegetation quadrat was linked to the spatial 
average of microclimate within 50 m of the quadrat centre.

There was high year-to-year variability in temperature 
(SD ∼0.9°C for mean daily maximum temperature of April 
and May, slightly less for June and July; Fig. 1a) around the 
long-term warming trend in this region. Given this vari-
ability, and given that we were most interested in predicting  
P. argus’ response to the long-term trend, we decided a priori 
to correlate P. argus abundances in 2011 to each square’s 
average microclimate between 1997 and 2009 for each given 
month (e.g. coloured circles in Fig. 2). This temporal averag-
ing makes very little difference to the fit of the 2011 model 
(see next section) because the spatial pattern of microclimate 
(which squares are warmer than others) remains very simi-
lar from year to year. However using microclimate averaged  
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Figure 1. Regional climate and microclimate data used in this study. 
(a) Time series of Met Office UKCIP09 data for our study areas in 
north Wales: mean daily maximum air temperature for each month. 
Thin lines show the raw data, and thick lines show a running  
average of the previous 13 yr. (b) Microclimate conditions (degree-
hours above 15°C in May), calculated for individual 50 m squares 
from the physically based model of Bennie et  al. (2008) for the 
years 1983–2009 (vertical axis). We illustrate that this specific 
microclimate can be fairly well predicted from the Met office May 
temperature of the particular year (lower-right axis) and the average 
microclimate of the square throughout 1997–2009 (an indicator of 
the relative warmth of the square; lower-left axis). This correlative 
model was used to hindcast microclimate before 1983. For clarity 
of this plot only 11 squares are shown, every 10th percentile from 
the coolest to the warmest, but 7000 squares were used in fitting.

over 13 yr inevitably affects model predictions for past  
years (see hindcasting section below and Supplementary 
material Appendix 1, Fig. A1). Unfortunately, without  
further years of detailed population density data, it is not 
possible to test whether 13 yr, or some other time window, 
is most appropriate. Figure 1a shows that a 13-yr running 
average reveals a consistent warming trend in this region, 
especially for April and May.

Statistical fitting of 2011 P. argus abundance

We fit generalized linear models with negative binomial 
error structure to explain variation in P. argus transect 
counts observed in 2011, using R 2.13.0 (R Development 
Core Team) (Supplementary material Appendix 1, Fig. A1).  
We used log length of the transect in m as an offset term, 
meaning that counts were forced to be directly propor-
tional to this, for any given combination of other variables. 
Therefore this can be understood as a model of population 
density, or abundance per m of transect, henceforth termed 
‘abundance’. The explanatory variables tested were: vegetation 
height; bare ground cover; elevation; aspect; slope; locality; 
date of survey and microclimate variables from April, May, 
June and July as described above. Non-significant variables 
were removed in a backwards stepwise manner from the full 
model. After examining plots of residuals we introduced a 
quadratic function of elevation because the relationship was 
clearly non-linear. Additional procedures such as model aver-
aging did not seem warranted because firstly, the dropped 
variables all had very weak support (p  0.14) when we re-
tested them by addition to the minimum adequate model, 
secondly all but one of the retained variables had very strong 
support, and thirdly the inclusion or exclusion of the one 
marginal variable (vegetation height) made no difference to 
the other model coefficients.

We examined the residuals of our minimum adequate 
model for spatial autocorrelation, which could affect  
the model’s inferences and predictions. There was weak 
(maximum 0.15) but significant positive autocorrelation 
between neighbouring points (Supplementary material 
Appendix 1, Fig. A2a). However, when we fitted a general-
ized linear mixed model that included spatial autocorrelation  
in residuals (using function glmmPQL in R package  
MASS (Venables and Ripley 2002)), this did not materially 
change the model’s predictions (Supplementary material 
Appendix 1, Fig. A2b). Therefore, for simplicity, we hence-
forth report the results of the generalized linear model.

Hindcasting

Plebejus argus abundance in 2011 was found (Results) to 
be a function of the local microclimate in May, for which  
we had taken the1997–2009 average. Therefore, to hindcast 
the distribution in 1983 we required May microclimate from 
1969–1981, and for 1972 we required May microclimate 
from 1958–1970 (Supplementary material Appendix 1,  
Fig. A1). The hourly weather data from Valley which under-
pin the microclimate calculations were not available pre-
1983. Therefore, to hindcast the P. argus distribution, we had 
to build a correlative model predicting microclimate based 
on a monthly temperature record (Fig. 1a) that extends back 
to the 1950s. We used a generalized additive mixed model 
(Wood 2004) with identity of year as a random factor, and 
a two-dimensional smooth term including the regional May 
air temperature of the year of observation, and the long-term 
average May microclimate of the particular 100 m square. 
The data used for this model are summarised in Fig. 1b. 
The fitted model explained 70% of the variation in micro-
climate for individual squares and years during the period 
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(a)

(b)

Figure 2. Plebejus argus distribution in 2011 and 1983 at the Great Orme (a) and the Dulas Valley (b) with underlying colours showing the 
May microclimate (degree-hours above 15°C per 50  50 m cell, averaged over 1997–2009) and 5 m contours showing the topography. 
Coordinates of the British National Grid are shown in metres (grid lines every km).
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1983–2009. The regional May temperatures for 1969–1981 
were 1.44°C cooler than 1997–2009, and those for 1958–
1970 were 1.15°C cooler than 1997–2009 (Fig. 1a). We  
used the GAMM to predict each square’s average may  
microclimate for these past periods. As mentioned above, we 
cannot be sure that the P. argus distribution responds to the 
13-yr average as opposed to some other function of the recent  
climate. However, one advantage of using this metric is that 
we can be more confident of the 13-yr mean microclimate 
of historic periods, based on our GAMM, than we could be 
of the prediction for any single year, because of the random 
inter-year variability.

We predicted P. argus abundance for a nominal 100 m 
transect in each survey square in 1983 and 1972 by substitut-
ing historical May microclimate values for the ones on which 
the abundance GLM was fitted. To quantify how much 
fit was improved, we also generated predictions without 
changing May microclimate. We used the GLM-predicted 
mean abundance (a) and the negative binomial dispersion 
parameter (q) to calculate the probability of seeing at least 

one individual as 1− 





θ
θ

θ

a
, and hence the likelihood of 

the actual historical observations of presence/absence given 
the model. We report differences between models in terms 
of AIC, which is simply calculated from the log likelihood,  
and in terms of a more intuitive percentage of predictions 
matching observations when we score a   1 as presence.

Results

We walked transects in two hundred and ninety four 100 m 
squares containing potential P. argus habitat between 27 May 
and 28 June 2011. Of these, 224 squares were found to be 
occupied (Fig. 2). The abundance of adult P. argus on these 
transects was best explained by a combination of vegetation 
height (negative effect), elevation (non-linear negative effect 
captured by a two degree polynomial) and near-ground tem-
peratures in May (positive effect) (Table 1; Fig. 2). There were 
also significant differences among survey days (due probably 
to a combination of weather and phenology) and between 
the Great Orme and the Dulas Valley localities (Table 1).

Hindcasting the 1983 distribution based on the model 
for 2011 (reducing May temperature but keeping all other 
variables the same) gave results that agreed well with the 
mapped occupied patches in 1983. The occupancy of 230 
comparable squares in 1983 was correctly predicted in 67% 
of squares (assuming that predicted abundance  1 corre-
sponds to presence). Without changing May temperature in 
the model, 56% of squares were predicted correctly and the 

Table 1. Best fitting model of P. argus abundance in 2011 at 100 m resolution, and significance of individual terms according to likelihood 
ratio tests. Model structure was a generalized linear model with negative binomial errors and a log link, appropriate for over-dispersed count 
data; n  230.

Term(s) Coefficients (not standardized) DF Likelihood ratio stat. p-value

Elevation, m 0.039 E – 0.00029 E2 2 60.7  0.00001
Day of survey as factor Vary by up to 3.5 17 81.6  0.00001
Locality as factor (Dulas Valley vs Great Orme) 1.6 1 39.6  0.00001
May degree-hours above 15°C 0.0049 1 22.9  0.00001
Vegetation height, cm –0.016 1 3.6 0.058

difference in AIC obtained from these two alternative pre-
dictions was 116. This very large difference in AIC means 
that we can be very confident that the predictions were 
changing in the right direction, even allowing for some AIC 
inflation due to spatial autocorrelation. The distribution of 
micro-sites that was occupied was predicted very accurately 
(Fig. 3a).

Hindcasting the 1972 distribution based on the model 
for 2011 gave equivocal results. On one hand, the distri-
bution of micro-sites that were occupied was predicted well  
(Fig. 3b). On the other hand, overall occupancy was substan-
tially over-estimated (Fig. 3b). The model predicted 50% of 
218 comparable 1972 observations correctly. Without chang-
ing May temperature, the model only predicted 38% correctly, 
accompanied by a substantial worsening in AIC of 194.

We can use our fitted relationship between regional May 
temperature and the microclimate of 100 m squares to illus-
trate how the landscape would change with further climate 
warming (Fig. 3c–d). There is no sharp cut-off in terms of the 
May microclimate which seems to be ‘suitable’ for P. argus, 
but most occupied sites have  1000 degree-hours above 
15°C in May, on the 13-yr average (Fig. 3c). The availability 
of habitat above this microclimate threshold, which we could 
regard as ‘highly suitable’, has increased substantially in the  
period covered by this study, but is expected to increase  
even more steeply with any further regional climate warming 
(Fig. 3d), e.g. warming by a further 1°C would result in high 
suitability in more than 80% of squares.

Discussion

Based on a relationship between P. argus distribution and 
May microclimate, we predicted that there would have been 
small-scale but noticeable changes to the species’ distribution 
in the last 40 yr. We found that historical observations were 
consistent with our predictions. Although these distribution 
changes are consistent with a response to climate change, 
it is difficult to rule out alternative explanations. We were 
relying on the distribution of adult butterflies at 100 m reso-
lution to infer a functional relationship with microclimate 
which might be consistent over long time periods. However, 
the distribution at 100 m resolution will fluctuate to some 
extent on a year-to-year or even day-to-day basis because 
of individual movements driven by weather (Dennis and 
Sparks 2006), even though P. argus rarely disperse more than 
100 m (Lewis et al. 1997). We still expect that average abun-
dance would indicate the fundamental relationship between 
microclimate and population performance, but such short-
term fluctuations in distribution will have added noise and 
thus uncertainty to our statistical fits. Note, however, that 
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Figure 3. Microclimates predicted and observed to be occupied by P. argus. (a) The relative warmth of 100 m cells were predicted (smoothed 
density curves with dashed line at the mean) or observed (histograms with solid line at the mean) to be occupied in 1983 (pink) compared 
to 2011 (black). Warmth is measured in terms of the cell’s microclimate in the latest time period, 1997–2009, but the ordering of cells does 
not change between time periods. (b) 1972 compared to 2011 with symbols as in (a). (c) The expected relationship between the regional 
May mean temperature and the distribution of microclimates across all limestone grassland habitat squares, to illustrate what may happen 
with future warming. Black lines are shown for the overall coolest square, the warmest square, and the quartiles, with a thicker line at the 
median. A blue boxplot of microclimates of squares that were occupied in 2011 is shown to indicate roughly what is ‘suitable’. Red vertical 
lines indicate the observed temperatures of the periods used for fitting and predicting in this study. (d) Using the median microclimate  
of squares occupied in 2011 as a threshold for ‘high suitability’, the proportion of habitat squares above this threshold as regional May 
temperature increases. Red vertical lines as in (c).

the statistical relationship between 2011 distribution and 
microclimate is very strong (Table 1), even in addition to a 
relationship with elevation. It is also interesting that the May 
temperatures (when larvae and pupae are present) were most 
predictive of the adults’ distribution, rather than conditions 
during the flight period. The strongest indication that the 
model has some functional validity is its ability to predict 
independent historical data, and the fact that predictions 
are significantly better when historical rather than current 
microclimate is used. Given our results, it seems reasonable 
to predict that P. argus will continue to respond to warm-
ing climate by increasing its local distribution, in the first 
instance to more easterly and westerly slopes.

The smaller-than-predicted distribution in 1972 could be 
explained by many things, including vegetation change, bad 
weather at the particular time of survey, or differing method-
ology between Dennis (Dennis 1977) and Thomas (Thomas 
1985) (in terms of survey effort and/or what was counted as 
a colony). Roger Dennis reports that his survey of each piece 

of potential habitat was necessarily brief, and also suspects 
that changes in habitat management by grazing may also have 
affected the distribution (R. L. H Dennis pers. comm. 2013); 
unfortunately we have no directly comparable vegetation data 
to test this hypothesis. It is reassuring that, despite this differ-
ence in the total area occupied, the distribution of microcli-
mates occupied was still predicted well by the model (Fig. 3b).

Our study is unusual in being able to test predictions 
of a microclimate-based model against independent data 
separated by several decades (see also Bennie et  al. 2013). 
These tests may be seen as weak in the sense that a multi-
tude of similar models could have given similar predictions. 
However, we still believe that such tests should be employed 
whenever enough biologically relevant data are available, 
because they are the only way to gain confidence that spe-
cies’ responses to climate change can be usefully projected 
into the future. Our results give some useful insight to the 
conservation managers in north Wales, where P. argus is a 
priority species. Firstly, managers should not be concerned 
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a few selected variables based on physiology and behaviour, 
but it would be difficult to apply this approach consistently 
to many species of conservation concern. Secondly, even if 
we are quite confident of the correct climate variables to 
use, the inflection point of the non-linear relationship men-
tioned above is likely to be very sensitive to the species’ exact 
temperature response. Therefore, in many situations with 
limited data, we may have to accept that a species’ rate of 
distribution change will be highly unpredictable even if the 
direction of change is known with high confidence.

There are a variety of suggested approaches for using 
microclimate information to set conservation priorities 
under climate change, including identifying microrefugia 
and microclimate-based stepping stones (Ashcroft 2010, 
Hannah et  al. 2014). However, it is not known whether 
these approaches tend to be, or can be made to be, robust  
to uncertainty and applicable to a large enough fraction 
of species. The answer will depend on the strength of cor-
relations between climate variables and between species at  
different spatial scales, and would be an important avenue 
for future research.
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