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The angular dependence of the transmission of sound in air through four types of 2D slit-arrays
formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwave-
length periodic slit-array, it is well known that Fabry-Perot-like wave-guide resonances, supported
by the slit-cavities, hybridising with bound acoustic surface waves, result in ‘Enhanced Acoustic
Transmission’ at frequencies determined by the length, width and separation of each slit-cavity. We
demonstrate that altering the spacing or width of some of the slits to form a compound array (i.e.
an array having a basis comprised of more than one slit) results in sharp dips in the transmission
spectra, that may have a strong angular dependence. These features correspond to ‘phase reso-
nances’, which have been studied extensively in the electromagnetic case. This geometry allows for
additional near-field configurations compared to the simple array, whereby the field in adjacent cav-
ities can be out-of-phase. Several types of compound slit-array are investigated; one such structure
is optimised to minimise the effect of boundary-layer loss mechanisms present in each slit cavity,
thereby achieving a deep, sharp transmission minimum in a broad maximum.

PACS numbers: 43.20.+g, 43.20.Mv, 43.20.Ks, 43.20.Fn

The experimental discovery of Extraordinary Opti-
cal Transmission (EOT) through subwavelength hole
arrays[1] opened a whole new area of research into how
structured resonant layers can affect the propagation of
light. This research has been extended to the acous-
tic case, where similar behaviour is observed, sometimes
termed Enhanced Acoustic Transmission (EAT) (Not ex-
traordinary, since longitudinal sound waves have no cut-
off when propagating through gaps/holes in rigid bodies
with sound hard walls)[2–7]. The observed phenomena
for both electromagnetic and acoustic cases in such struc-
tures is due to complex interplay between surface-wave
modes and wave-guide modes, the exact nature being
dependent on many structural parameters[6–8]. Other
types of transmission anomaly have been discovered in
the electromagnetic case that stem from EOT. One such
anomaly is the ‘Phase resonance’, which appears as a
sharp dip in the transmission of transverse magnetic po-
larised light through so called ‘compound grating’ struc-
tures, gratings with structure factor comprised of multi-
ple elements[9–14]. In the case of a 2D metal slit-array
this can be achieved by having unequally sized slits, or
multiple slits in each period. In a singularly periodic
grating structure, symmetry requires that the fields in
all slit-cavities are identical when excited by a normally
incident planar wave. Compound gratings introduce new
degrees of freedom to the near field configurations, and at
specific frequencies fields in adjacent cavities may be both
out-of-phase with one another and strongly enhanced[10],
leading to ‘phase-resonant’ features in their electromag-
netic response. Being simply a lattice/symmetry phe-
nomena, there is an expectation that these phase reso-

FIG. 1. Schematic of a unit cell of each array sample (not
to scale). The grey blocks represent the aluminium slats that
form the sample, of width wA = 2.9 mm, and length L = 19.8
mm. The air gaps that form the cavities are the same size
as the slats, except for the J = 3b sample, where the central
cavity wB has width 5.9 mm, and the outer two have wC = 1.5
mm. Each sample has a period D = 8wA = 23.2 mm.

nances will also exist in the acoustic case[15–17].
Here, we experimentally demonstrate the existence of

the airborne acoustic phase resonance with a compound
slit-array grating, finding good agreement with numer-
ical model predictions. We also optimise the grating
structure to achieve the strongest possible coupling to
the phase resonance, with viscous and thermal boundary



2

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

J =
 1

J =
 2

J =
 3a

J =
 3b

0.4 0.5 0.6 0.7 0.8 0.9 1.0
D l

Tr
an

sm
iss

iv
ity

, T

FIG. 2. Normal incidence transmissivity spectra as a function
of the ratio of array periodicity D to incident radiation wave-
length λ for each of the sample types illustrated in figure 1.
The solid black line is the experimental data, the short-dashed
red and long-dashed blue lines are the lossless and viscous-
thermal loss-including numerical model spectra for compari-
son. The diffraction edge for each experimental sample occurs
when D

λ
= 1. Fluctuations in the ambient temperature are

accounted for in the calculation of λ.

layer effects being accounted for.

The experimental samples are illustrated in figure 1.
J denotes the number of slits per grating period, with
J = 3a and J = 3b having the same number of slits
but with different slit-width ratios. Such gratings are
formed of aluminium slats of size 600 mm × 2.9 mm
× 19.8 mm, stacked in a wooden sample holder, with
small polyester spacers used to create the appropriately
sized air gaps. The total sample area is 560 mm × 400
mm, and it is placed with the slats vertical, on a rotat-
ing table, symmetrically situated between two spherical
mirrors 3 m apart, of radius 220 mm and focal length 1
m. One mirror collimates the sound of a speaker placed
at its focal point, directed so that the beam is normal
to the face of the slit cavities when the rotating table is
set to θ = 0°(normal incidence) producing a beam width
smaller than the sample face to approximate an infinite
sample size. The other mirror focuses the beam trans-
mitted through the sample on to a Brüel and Kjær 4190
microphone. The speaker is driven by a signal generator
producing a Gaussian pulse centred on 8 kHz, containing
a broad range of audible frequencies. The sample is ro-
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FIG. 3. FEM simulations of the instantaneous pressure fields
∆p corresponding to the three available Eigenmodes ‘+ + +’,
‘+−+’, and ‘+ 0 −’, of the J = 3a system, exited at normal
incidence (θ = 0), shown at a temporal phase corresponding
to maximum field amplitude. The colour scales have been
normalised with normalisation constants 2.19, 4.01 and 3.39
respectively. The three Eigenmodes have resonant frequencies
which correspond to D

λ
values of 0.54, 0.5 and 0.48 respec-

tively. These were calculated using a loss-free FEM model.
The grey blocks represent the aluminium slats, in the same
orientation as illustrated in figure 1.

.

tated between −2.5°≤ θ ≤ 65°(limited by the sample size
and frame), and the averaged time-domain signal from
multiple pulses of the speaker for each angle is recorded
by a PC-based oscilloscope. To account for small leak-
age of the signal around the sample, a large sound opaque
slab with anti-reflection absorber foam attached is placed
on the incident side of the source. Transmission mea-
surements are then repeated for all angles, and the re-
sulting data subtracted from the original sample data in
the time-domain spectra, leaving only the signal trans-
mitted through the sample holder. This is then Fourier
analysed to obtain the angular dependent frequency re-
sponse of the sample. A reference spectrum for each an-
gle is obtained by repeating the experiment with only the
wooden sample frame in place, and used to normalise the
transmitted signal in the frequency domain.

Figure 2 shows the transmissivity spectra for each sam-
ple when probed at normal incidence, as a function of
the ratio of array periodicity D to incident wavelength of
radiation λ. Also included are the predicted spectra cal-
culated using a Finite-Element-Method (FEM). The red
dashed line is the result obtained from the model solv-
ing the lossless acoustic wave equation, while the blue
long-dashed line comes from a model which solves the
linearised Navier-Stokes equation, accounting for viscous
and thermal boundary layer effects at each rigid, sound-
hard wall[18]. The position of the onset of diffraction
corresponds to D

λ = 1. The calculated incident wave-
length for each sample takes into account changes in am-
bient temperature between measurements, acting to vary
the speed of sound in air c. Atmospheric pressure and
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FIG. 4. Lossless (dotted red line) and viscous-thermal
(solid blue line) FEM models of the difference in the phase
|∆φInner, Outer| of the tangential particle velocity Vx of the
central and outer cavities, for the J = 3a and J = 3b sam-
ples, plotted as a function of the ratio of array periodicity to
incident wavelength D

λ
. The predicted diffraction edge is at

D
λ

= 1. Phases were evaluated in the centre of each cavity on
the transmitting side of the grating.

humidity changes have negligible effect[19].

It is well known that sound incident on an air cavity
bounded by two parallel, infinitely wide, rigid-solid walls
of length L will have a broad transmission peak at a fre-
quency näıvely predicted by the Fabry-Perot condition,
fFP = nc

2L , where c is the speed of sound and n is an in-
teger. There is a correction ∆L, that takes into account
end effects at the exit/entrance of each cavity, which to
first order is approximated by ∆L = 8w

3π , w being the
width of the slit[20]. When such cavities are placed in
an equally spaced array of period D, such as in sample
J = 1, the coherent effect of these diffractive waves along
the surface of the grating results in a collective resonance,
labelled a ‘Spoof-Acoustic-Surface-Wave’ (SASW). The
enhanced fields associated with the SASW on each face
of the array couple together via the FP like modes in the
slit-cavities. This is the mechanism by which EAT can
occur at specific frequencies, resulting in large peaks in
the transmission spectrum of such a grating. Indeed, fig-
ure 2 shows two broad peaks in the J = 1 spectrum, at
D
λ = 0.5 and 0.92. These correspond to the first and sec-
ond order FP like modes, with the frequency of the n = 2
mode perturbed by the strong evanescent diffracted fields
near the onset of diffraction. This mechanism has been
studied extensively in the past decade[5–7].

The transmission spectrum of the J = 2 sample is little
different, except for a slight broadening of the FP modes
and a small upward frequency shift due to a reduction in
the strength of the Fourier amplitude component of the
grating profile that causes first order scattering. For the
J = 3 samples, as well as further broadening of the FP

like modes, a new feature, the ‘phase-resonance’, appears
in the low frequency wing of each primary resonance.
As described in the electromagnetic case by both Skigin
et al.[10] and Hibbins et al.[12], this is because there is
a new degree of freedom in the system. In the J = 1
and J = 2 cases, the fields in each adjacent cavity must
have identical phase at normal incidence, hence an inci-
dent planar wave cannot excite a phase resonance. How-
ever, with three cavities per period, the outer two slits
have different surroundings to the central one. Hence, by
symmetry, two field configurations can now be excited at
normal incidence; all of the fields in-phase (labelled the
‘+ + +’ mode), and the central and outer cavity fields
out-of-phase (the ‘+ − +’ mode, where ‘−’ corresponds
to a phase shift of π relative to ‘+’). This is illustrated
in both figures 3 and 4.

Figure 3 shows the instantaneous pressure field of the
Eigenmodes of the J = 3a system at normal incidence,
calculated with the lossless FEM model, and normalised
to their maximum amplitude of ∆p, different for each
mode. The mode labelled ‘+ + +’ corresponds to the
primary resonance at D

λ = 0.53, where all of the cavities
are resonating in-phase, with similar amplitude. This
mode is highly radiative and results in the broad trans-
mission peak, with the maximum absolute pressure am-
plitude within the slits being 3.1 greater than in the in-
cident wave. The second panel, with the mode labelled
‘+−+’, illustrates the phase resonance Eigenmode that
is excitable at normal incidence. The outer two cavities
are oscillating exactly π out of phase with the central
one, which, as the colour scale shows, has a greater field
amplitude. Note, the maximum absolute pressure field
amplitude within the cavities has now become 55.7 times
greater than in the incident wave, a significant increase
compared to the ‘+ + +’ mode, indicating a stronger de-
gree of localisation. Another interesting feature is the
apparent standing wave that has formed across the x di-
rection, seen from looking at just the top or bottom of the
slits - the cavity resonances appear to be coupled with
each other. There is a third field configuration avail-
able in the form of the anti-symmetric ‘+ 0 −’ mode,
where the outer two cavities are π radians out-of-phase
with each other, and π/2 radians out-of-phase with the
central cavity, having no mode amplitude. The J = 2
configuration supports a similar ‘+−’ mode, but in nei-
ther configuration are these modes excitable at normal
incidence, as they require a phase-change along the sur-
face (Incidentally, a weak feature has appeared in the
experimental data for the J = 2 sample as the collimat-
ing mirror does not produce a perfect planar wave, and
allows weak coupling to this mode). Direct coupling to
any of the phase resonant configurations is impossible as
the pressure field within the slit cavities is out of phase
with the incident field. Hence, they can only be excited
via coupling between slits, and appear as sharp dips in
transmission, sat in the primary ‘+ + +’ resonance peak.
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FIG. 5. Transmission data illustrating mode dispersion for each sample illustrated in figure 1, labelled accordingly. The ratio
of array periodicity to incident wavelength D

λ
is plotted as a function of reduced in-plane wavevector kx

kg
, where a value of

kx
kg

= 0.5 corresponds to the first Brillouin zone boundary. The top row are the recorded experimental data, whereas the

bottom row are the numerical results calculated by the viscous-thermal loss inclusive FEM model. For reference, a solid green
line representing grazing incidence k0 is included on each plot. The onset of first order diffraction is represented by the green
dashed line. Fluctuations in ambient room temperature are accounted for in all calculations of λ.

Another way of illustrating the phase resonance is
shown in figure 4, which is a plot of the numerically cal-
culated phase difference |∆φInner, Outer| of the velocity
field Vx between the central and outer slits, evaluated at
the mid-width of the transmitting side of each slit cav-
ity. The structure was excited by a normally incident
planar wave, with varying frequency. For both J = 3a
and J = 3b samples, at frequencies corresponding to the
position of the transmission dips in figure 2, the loss-
less acoustic wave equation model (red dashed line) pre-
dicts a π phase difference between the slits, while away
from these resonances and below the onset of diffraction,
|∆φInner, Outer| is close to zero.

To obtain the strongest possible reduction in trans-
mission at the phase resonant frequency, there must be
perfect balance between the radiative and non-radiative
losses in the system. This is the well known ‘critical
coupling condition’. Non-radiative thermodynamic loss
effects form a part of this balance and thus must be
accounted for. With sample J = 3a, the ‘+ − +’ res-
onance is a weak feature in the experiment, only re-
ducing transmission by 15% at D

λ = 0.49, being much

stronger in the second order mode (Dλ = 0.94), reaching
a reduction of ∼ 50%. The lossless FEM model, solv-
ing the acoustic wave equation, predicts a very sharp,

100% deep resonance at D
λ = 0.49 in the transmission

spectrum. However, when viscous-thermal contributions
are included (via solving of the linearised Navier-Stokes
equation) - which results in a much better agreement
with the experimental data - this resonance is signifi-
cantly more damped. The effect stems from the viscous-
thermal boundary layers at the rigid, sound-hard walls,
that cause significant attenuation of the fields within the
slit-cavities[18]. Note, we have checked that a simpler
model that includes only a bulk loss term added to the
free space acoustic wave equation does not predict the
increased damping effect.

Sample J = 3b is optimised geometrically to balance
the radiative and non-radiative loss effects as close to
critical coupling as possible while keeping periodicity and
slat size constant. This grating is a simple modification of
the J = 3a sample, with an inner-cavity-to-outer-cavity
ratio of around four-to-one. As figure 2 shows, the exper-
imental data exhibits a much deeper, broader phase reso-
nance in both the fundamental and second order modes.
Figure 4 gives extra insight into this phenomenon, show-
ing that the loss inclusive model for the J = 3a sample
predicts a maximum |∆φInner, Outer| of∼ 0.75π radians at
the occurrence of the phase resonance, while it reaches
∼ 0.9π radians for the optimised J = 3b sample, thus
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FIG. 6. Dispersion diagrams showing the extended zone
scheme representation of the Eigenmodes of the J = 1, J
= 2 and J = 3a systems (all labelled), plotted as a function
of the ratio of array periodicity to incident wavelength D

λ
vs

reduced in-plane wave vector kx
kg

. Individual Eigenfrequen-

cies were calculated using loss-free FEM models. The sound
line k0 is represented by the black dashed line. Integer and
half integer values of kx

kg
correspond to different Brillouin zone

boundaries, which have been marked with vertical black dot-
ted lines. The solid lines represent the different Eigenmodes
supported by each grating structure, with colours signifying
different field configurations. Blue is the naturally radiative
Fabry-Perot like mode, with pink being it’s band split pair.
Orange is the non-radiative low frequency SASW, green is the
SASW coupled to the low energy phase resonance, and cyan
is the SASW coupled to the high energy phase resonance.

displaying stronger coupling to the ‘+−+’ Eigenmode.

By recording angle (θ) dependent data, we map the
dispersion and attain a greater understanding of the ori-
gin of these modes. Figure 5 shows the transmissivity of
each grating as a function of the ratio of incident wave-
length to array periodicity, and reduced in-plane wave
vector kx

kg
, where kx = k0 sin θ and kg = 2π

D .

The simple J = 1 grating exhibits a fundamental mode
that is largely flat-banded, being strongly localized in the
slit-cavity with FP-like fields, where the cavity’s length L
and width wA are the dominant variables in determining
the resonance position. This mode starts from the FP
frequency at kx = 0, and only becomes perturbed as
the diffracted sound line from kx = kg is approached.
There is similar perturbation of the second order mode

(Dλ = 0.9).

Additional transmission dips become apparent in the
response of the J = 2, 3a and 3b samples at D

λ = 0.5 and

0.1 ≤ kx
kg
≤ 0.4. These are the anti-symmetric phase res-

onances that can now be excited with the addition of a
phase difference along the grating surface[11, 12], associ-
ated with θ 6= 0. For J = 2, at high kx it is now possible
to excite the ‘+ −’ mode, were the two cavities are π ra-
dians out-of-phase. The J = 3a and J = 3b samples also
exhibit the additional feature, which has appeared on
the low frequency wing of the FP resonance at D

λ = 0.5.
This corresponds to the anti-symmetric ‘+ 0 −’ phase
resonance shown in figure 3. In all cases, one can see
that at least one of the phase resonances has a strong kx
dependence, indicating that they are surface-wave-like in
character. It is possible to deploy a surface-wave band-
folding picture to explain the dispersion relations in fig-
ure 5. To understand this it is helpful to plot the band-
structure of each sample using the extended zone scheme
representation, i.e., by drawing the band-structure with-
out band-folding present. This is illustrated in figure 6.

Adding structure factor to each grating periodicity
opens up new degrees of freedom to the system, and al-
lows coupling of the phase-resonant near-field configura-
tions to diffracted fields (SASWs) that originate from the
diffractive end effects. Figure 6 is a plot of the underlying
band structure of the Eigenmodes of the J = 1, J = 2
and J = 3a samples, in the form of a dispersion diagram
with the same axes as those in figure 5. The Eigenfre-
quencies were calculated using the loss-free FEM model.

With one cavity per unit cell, the J = 1 configura-
tion has only two modes available (considering only first
order harmonics); the naturally radiative primary FP-
like resonance (denoted by the solid blue line) and the
low frequency SASW (denoted by the solid orange line)
that is only accessible in the non radiative regime as it
has in-plane-wavevector kx > k0. Here, k0 is represented
by the black dashed line, i.e. the ‘sound line’. This is
the wavevector that a grazing incidence pressure wave
would possess. Since this structure only has one cavity
per unit cell, and the sample walls can be treated as per-
fectly rigid, the only degree of freedom available to the
near-field is the cavity being either a positive or nega-
tive anti-node. This means that any mode which has a
shorter surface wavelength than the spacing of the cavi-
ties D cannot exist, as they must require a pressure field
maximum within the rigid walls. Thus, beyond the first
Brillouin zone at kx =

kg
2 , the SASW ceases to exist - at

normal incidence, with band-folding (where the grating
periodicity kg can be added or subtracted to any mode,
thereby scattering non-radiative modes into the radiative
regime), we will only see the primary FP-like mode.

When there are two cavities per unit cell (sample J =
2), there is another possible field configuration apart from
the FP like ‘+ +’ mode. The adjacent cavities can now
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FIG. 7. Dispersion diagram showing the experimental trans-
missivity T data for the J = 3a sample, with its numerically
calculated Eigenfrequencies overlaid, plotted as a function of
the ratio of array periodicity to incident wavelength D

λ
vs

reduced in-plane wave vector kx
kg

. The value of kx
kg

= 0.5

corresponds to the first Brillouin zone boundary. The solid
black line represents the wavevector k0 of a grazing incidence
pressure wave. The onset of first order diffraction is rep-
resented by the black dashed line, being D

λ
= 1 at normal

incidence ( kx
kg

= 0). The hollow points represent the different

Eigenmodes supported by the J = 3a grating structure, with
shapes signifying different field configurations. The triangles
are the naturally radiative Fabry-Perot like mode, circles are
the SASW coupled to the ‘+ − +’ phase resonance and the di-
amonds are the SASW coupled to the ‘+ 0−’ phase resonance.
The squares are the non-radiative low frequency SASW which
cannot be seen in this transmission experiment.

oscillate π radians out of phase with each other, creating
the anti-symmetric ‘+ −’ phase resonance. Now, it is
possible for a SASW with a shorter wavelength than D
to exist, since the extra anti-node per unit cell it requires
can now be satisfied. Thus, the low frequency SASW
which previously vanished above kx =

kg
2 now band-splits

at this first Brillouin zone, and continues up to the next
at kx = kg. This mode is represented by the green line in
figure 6, and is band-folded back into the radiative regime
by first order scattering from kg, forming the deep, sharp
resonance in our experimental data for the J = 2 sample
at high kx. Above kx = kg, the SASW again ceases to
exist; as before, it requires another anti-node per unit
cell, and this is forbidden by the lack of a possible near
field configuration.

Finally, by increasing the number of cavities per unit
cell to three (sample J = 3a), yet another degree of free-
dom is available to the near field. There is now the pri-
mary ‘+ + +’ configuration, the ‘+ − +’ π mode, and
the ‘+ 0 −’ anti-symmetric mode. Thus, the three-anti-
nodes-per-unit-cell condition required for wave-vectors
larger than kx = kg is satisfied, the SASW band-splits

at kx = kg and extends to the next Brillouin zone at

kx =
3kg
2 , where the same pattern repeats, and beyond

this the mode ceases to exist. The second order scat-
tering at kx = 2kg band-folds this SASW back into the
radiative regime, resulting in the two sharp dips seen in
the experimental dispersion data for the J = 3a sam-
ple (the band structure for the J = 3b sample is iden-
tical in shape since it has the same number of cavities
per unit cell, only the coupling strengths and frequen-
cies have changed). This is illustrated in figure 7, where
the band-folded Eigenmodes calculated using the loss free
FEM model are overlaid onto the J = 3a experimental
transmission data. One can see that the dips in trans-
missivity correspond to the diffracted SASWs. Using this
band-folding picture it is easy to see that every time one
adds an air cavity to the unit cell, a new degree of freedom
is available to the near field, hence a shorter wavelength
SASW is able to be band-folded back into the radiative
regime, resulting in the appearance of a sharp dip in the
transmission spectrum.

It is important to note that the frequency ordering
of the modes is not fixed at normal incidence. This is
demonstrated by a further change in behaviour visible
between the J = 3a and J = 3b samples in figure 5.
For the identical width cavity J = 3a case, one can see
that the ‘+ 0 −’ mode that is not excitable at normal
incidence is occupied by the low energy band with high
curvature, while the ‘+ − +’ configuration is coupled to
the high energy flat-banded mode. When the central slit
is widened to create the J = 3b sample, this behaviour
is reversed, and now the low energy band is excitable
at normal incidence. This is because widening the cen-
tral cavity has redistributed the energies of the SASWs
coupling to the ‘+−+’ configuration and the ‘+ 0 −’ con-
figuration, where the ‘+ 0 −’ SASW now has the greater
energy of the two, and is at a higher frequency. Note
that at the first Brillouin zone, the π phase shift between
unit cells requires that the ‘+−+’ configuration always
occurs at a higher frequency than the ‘+ 0 −’ configura-
tion. Also note that in the J = 3b sample, the ‘+ 0 −’
mode is significantly weaker than it was for the J = 3a
configuration; narrowing the cavities to 1.5 mm has both
increased the quality factor of the mode and increased the
relative size of the viscous and thermal boundary layers,
leading to significant attenuation[18].

We have checked that it is possible to pull the fre-
quency of the primary ‘+ + +’ mode down below the
‘+ − +’ and ‘+ 0 −’ phase resonances by heavily per-
turbing the grating structure, so that the two inner rigid
slats are very thin and thus the three cavities are very
closely spaced (with periodicity constant). This increases
the coupling strength between cavities, so that they be-
gin to behave as a single wide cavity, thus increasing
length correction ∆L, thereby reducing the resonant fre-
quency. This also increases the strength of the first order
scattering Foruier component, again acting to reduce the
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resonant frequency. The phase resonances are simulta-
neously pushed to a higher frequency; the phase shift
between cavities has to occur over a shorter distance in
x, increasing their energy as before.

In conclusion, we have experimentally and numeri-
cally demonstrated the existence of the acoustic phase
resonance phenomenon, by studying the transmission of
sound through a 2D array of airborne metal slits arranged
in four separate configurations. We find that increasing
the number of cavity slits per array period, while keeping
that period constant, opens up new degrees of freedom
to the near field. As well as the standard hybridisation
of the Fabry-Perot modes with spoof-acoustic-surface-
waves that result in broad transmission peaks, we find
dips in the normal incidence transmission spectra that
appear when there are three cavities per grating period,
being the ‘phase-resonant’ modes. We also map out the
transmission of these structures as a function of incident
angle θ, and find that extra field configurations can be
excited with the addition of a phase change across the
grating surface, for any sample that has more than one
slit per period. With this information we describe the ori-
gin of each feature with a surface-wave band-folding pic-
ture; each mode is a diffractively coupled spoof-acoustic-
surface-wave which can be excited via the new field con-
figurations. Finally, we demonstrate the importance of
including thermodynamic loss effects when modelling this
sort of structure. We optimize one of our samples taking
attenuation by viscous and thermal boundary layer ef-
fects into account, resulting in measured broad and deep
phase resonances that could be useful for the design of
acoustic filters.

The authors would like to thank DSTL for their fi-
nancial support. ©Crown Copyright 2013. This was
published with the permission of DSTL on behalf of the
controller of HMSO.
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