
 Fan, R., & Dahnoun, N. (2018). Real-time implementation of stereo vision
based on optimised normalised cross-correlation and propagated search range
on a GPU. In 2017 IEEE International Conference on Imaging Systems and
Techniques (IST 2017) Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/IST.2017.8261486

Peer reviewed version

Link to published version (if available):
10.1109/IST.2017.8261486

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/8261486/ . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/IST.2017.8261486
https://doi.org/10.1109/IST.2017.8261486
https://research-information.bris.ac.uk/en/publications/realtime-implementation-of-stereo-vision-based-on-optimised-normalised-crosscorrelation-and-propagated-search-range-on-a-gpu(038f655b-9303-4d61-9508-60656990b86c).html
https://research-information.bris.ac.uk/en/publications/realtime-implementation-of-stereo-vision-based-on-optimised-normalised-crosscorrelation-and-propagated-search-range-on-a-gpu(038f655b-9303-4d61-9508-60656990b86c).html

Real-Time Implementation of Stereo Vision Based
on Optimised Normalised Cross-Correlation

and Propagated Search Range on a GPU
Rui Fan, Naim Dahnoun

Abstract—Due to the trade-offs between accuracy and speed,
binocular stereo vision is still a challenging task in 3D com-
puter vision research area. In this paper, an efficient stereo
matching algorithm is implemented on a state-of-the-art GPU to
achieve highly accurate disparity maps in real time for various
autonomous vehicle applications. The proposed algorithm is de-
veloped from our previous paper, where the search range at row
v is propagated from three estimated neighbourhood disparities
located at row v + 1. In order to speed up the execution, the
prevalent NCC algorithm is optimised by factorising the equation
into five independent parts. The computations of µl , µr , σl
and σr are accelerated by using the integral images Il , Ir , Il2
and Ir2 . The values of µ and σ are stored in static program
storage for indexing during the stereo matching, which further
reduces expensive calculations to help the system perform in
real time. The main purpose of this work is to accelerate the
processing speed by highly exploiting the parallel computing
architectures (OpenMP and CUDA). The performance of the
implementation on an NVIDIA GTX 970M GPU is compared
with the performance of the implementations on an Intel Core
i7-4720HQ CPU using both single thread and multiple threads.
The experimental results illustrate that the GPU implementation
yields 37 fps when processing the images (resolution: 1242 × 375)
from the KITTI database, which is between two and nine times
faster than the implementations on the CPU using a different
number of threads.

Index Terms—stereo matching, GPU, disparity map, real time,
autonomous vehicle applications, NCC, integral images, parallel
computing, OpenMP, CUDA.

I. INTRODUCTION

AUTONOMOUS vehicles have been developing rapidly
since Google launched their self-driving car project

in 2009 [1]. Recently, with a number of remarkable high-
technology breakthroughs being witnessed like science fic-
tions, the race to make the driver-less cars a reality among
many companies like Google, Tesla and BMW has also
accelerated significantly. For example, the driver-less vehicles
are able to communicate with each other via the 5G network
which offers a more powerful internet access to transfer vast
amounts of data with an approximately 50 times faster speed
than the current 4G systems. The computer binocular stereo
vision has also been prevalently used in various prototype
vehicle road tests to provide the 3D information for many

Rui Fan is with the Visual Information Laboratory, University
of Bristol, BS8 1UB, UK. Email: ranger.fan@bristol.ac.uk, URL:
http://www.ruirangerfan.com

Naim Dahnoun is with the Department of Electrical and Elec-
tronic Engineering, University of Bristol, BS8 1UB, UK. Email:
naim.dahnoun@bristol.ac.uk

autonomous vehicle applications (i.e. signage detection, acci-
dent avoidance and lane detection), which helps to enhance
the robustness of the ADAS (Advanced Driver Assistance
Systems) dramatically.

For various computer stereo vision systems, matching speed
and disparity accuracy are two key components [2]. The stereo
matching algorithms can be classified as local algorithms,
semi-global algorithms and global algorithms [3]. Although
the global algorithms can provide a more accurate disparity
map by minimising the global cost with the assistance of more
sophisticated and computationally intensive optimisation ap-
proaches such as BP (Belief Propagation), GC (Graph Cut) and
DP (Dynamic Programming), they are significantly challenged
to achieve real-time performance without specialised hardware
accelerators [4]. Although the performance of the systems can
be improved with future advances in computational power in
hardware techniques, it is shown that the optimisations on the
algorithm side can also result in a lot of impressive increases
in the stereo matching speed [2]. For example, authors in
[5] proposed a quasi-dense stereo matching algorithm named
GCS which propagates the search range from a collection
of estimated confidential disparities to their neighbours in
order to save redundant computations in block matching as
well as to improve the accuracy of the estimated disparity
map. Similarly, our previous work [6] presented an efficient
disparity estimation algorithm where the search range at row
v is propagated from three estimated neighbouring disparities
located at row v + 1, which is more suitable for various
autonomous vehicle applications with its higher accuracy and
lower computational complexities [7]. After that, an optimised
version was presented in our previous paper [8] with the
consideration of the search range suggested by a horizontal
neighbouring disparity, which further enhances the disparity
map precision but is difficult to implement on various parallel
computing architectures for real-time purposes. Recently, Lin
et al. proposed an optimisation methodology for the NCC
(Normalised Cross-Correlation) computation by dividing the
standard equation into four independent parts to reduce the
computational complexities [9]. However, instead of using
sliding windows to accelerate the calculations of µ and σ,
the integral image is a more efficient algorithm that can be
used in block matching to save redundant computations by
calculating the sum of pixel intensities over a rectangular
region of the image with only four operations [10]. Therefore,
we developed our previous algorithm [6] by factorising the
NCC cost function as five independent parts and accelerating

their computations using the integral images. The proposed
algorithm in this paper is based on three parts: µ and σ
memorisation accelerated by integral images, row vmax stereo
matching with a full search range, and the rest of the disparity
map estimation based upon search range propagation. The
disparities on the occlusion areas are removed with the left-
right consistency (LRC) check to further refine the estimated
disparity map. The main purpose of this paper is to ac-
celerate the algorithm implementation by highly exploiting
the parallel computing architectures. The performance of the
GPU (Graphics Processing Unit) implementation is evaluated
and compared with the performance of the CPU (Central
Processing Unit) implementations using a different number of
threads.

The remainder of this paper is organised as follows: Section
II describes the proposed disparity estimation algorithm. Sec-
tion III discusses the implementations on both CPU and GPU.
Section IV presents the elimination of the occlusions with LRC
check. Section V illustrates the experimental results. Section
VI concludes the paper and proposes possible future work.

II. ALGORITHM DESCRIPTION

A. Block matching and memorisation

In this paper, the input stereo image pairs are assumed to be
well calibrated. An example of block matching is illustrated
in Fig. 1, where the disparity costs are calculated by shifting
a series of square blocks whose side length is 2ρ+1 (ρ ∈ Z+)
from the right image between dmin and dmax and matching
them with a constant square block from the left image. n is the
number of pixels within a square block and it is usually an
odd number because of n = (2ρ + 1)2. The disparity with
the lowest cost or the highest correlation is then selected
as the correspondence. This optimisation is also known as
winner-take-all (WTA), where dmin and dmax are decided by
the furthest or the closest objects to be detected. With the
consideration of the trade-offs between accuracy and speed,
the block size is proposed to be 7 × 7 (ρ = 3 and n = 49) in
this system. Due to its insensitivity to the intensity difference
during the block matching, the NCC is chosen as the proposed
correlation measurement approach which is depicted as:

c(u, v, d) =
1

nσlσr

∑
(u,v)∈W

(il(u, v) − µl)(ir (u − d, v) − µr) (1)

where c(u, v, d) is defined as the cost (correlation), u and v

are the horizontal and vertical coordinates of a pixel, il(u, v)

Fig. 1. Stereo block matching.

Fig. 2. Integral image.

or ir (u, v) is the intensity of the pixel located at (u, v) in the
left or right image. W represents the reference domain of the
block. µl and µr denote the means of the intensities within the
left and right blocks, respectively. σl and σr represent their
corresponding standard deviations [3]:

σl =

√ ∑
(u,v)∈W

(il(u, v) − µl)2/n (2)

σr =

√ ∑
(u,v)∈W

(ir (u − d, v) − µr)2/n (3)

When the left block is selected, the calculation of µl and
σl are always repeated because d is only used to select the
position of the right blocks for stereo matching. Therefore, the
four independent parts µl , µr , σl and σr can be pre-calculated
and stored in static program storage for direct indexing. The
integral image algorithm can be used to compute µl and µr
efficiently [11], which is illustrated in Fig. 2. The algorithm
has two steps: integral image initialisation and values indexing
from the initialised reference. In the first step, for a discrete
image i whose pixel intensity at (u, v) is i(u, v), its integral
image intensity I(u, v) at the position of (u, v) is defined as:

I(u, v) =
∑

i≤u, j≤v

i(i, j) (4)

Algorithm 1 details the implementation of the integral image
initialisation, where I is calculated serially based on its pre-
vious neighbouring results to save unnecessary computations.

Algorithm 1: Integral image initialisation
Data: Original image of size m × n: i
Result: Integral image of size m × n: I

1 I(0, 0) ← i(0, 0);
2 for u← 1 to n − 1 do
3 I(u, 0) ← I(u − 1, 0) + i(u, 0);
4 for v ← 1 to m − 1 do
5 I(0, v) ← I(0, v − 1) + i(0, v);
6 for u← 1 to n − 1 do
7 for v ← 1 to m − 1 do
8 I(u, v) ← I(u, v − 1) + I(u − 1, v)
9 −I(u − 1, v − 1) + i(u, v);

With a given integral image, the sum (s) of pixel intensities
within a square block whose ρ = (

√
n− 1)/2 and the centre is

Fig. 3. Search range propagation.

(u, v) can be computed with four references r1 = I(u+ρ, v+ρ),
r2 = I(u − ρ − 1, v − ρ − 1), r3 = I(u − ρ − 1, v + ρ), r4 =
I(u + ρ, v − ρ − 1), which is illustrated in equation 5. The
corresponding mean µ(u, v) of the intensities within the block
is s(u, v)/n which is then stored in static program storage for
the computation of σ and c.

s(u, v) = r1 + r2 − r3 − r4 (5)

In addition, equations 2 and 3 can be rearranged as equa-
tions 6 and 7 to compute σl and σr more efficiently.

σl =

√ ∑
(u,v)∈W

i2
l
(u, v)/n − µ2

l
(6)

σr =

√ ∑
(u,v)∈W

i2r (u − d, v)/n − µ2
r (7)

where
∑

i2
l
(u, v) and

∑
i2r (u−d, v) are dot products. Similarly,

the computations of
∑

i2
l
(u, v) and

∑
i2r (u − d, v) can also be

accelerated by initialising two integral images Il2 and Ir2 as
references for indexing. Therefore, the standard deviations σl

and σr are also calculated and stored in static program storage
for the efficient computation of c, and equation 8 is obtained.

c(u, v, d) =
1

nσlσr

∑
(u,v)∈W

il(u, v)ir (u − d, v) − nµlµr

 (8)

From equation 8, only
∑

il(u, v)ir (u − d, v) needs to be
calculated during stereo matching. Hence, with the values of
µl , µr , σl and σr able to be indexed directly, equation 1
is simplified as a dot product. In practical experiments, the
factorisation of the NCC equation and the independent parts
memorisation make the speed of stereo matching increase by
about 36% when the block size is 7 × 7.

B. Search Range Propagation

The disparity is estimated iteratively row by row from row
vmax to row vmin. Row vmax = m − ρ − 2 (Due to the
utilisation of integral images, row vmax = m − ρ − 2 instead
of vmax = m − ρ − 1) is processed with a full search range
from dmin to dmax , where dmin is 0 and dmax is 70 for
the KITTI datasets [12]–[15]. After that, the search range for
stereo matching at row v is propagated from three neighbours’
disparities on row v + 1, which is illustrated in Fig. 3. For
a pixel at the position of (u, v), its neighbouring disparities
d1 = l(u − 1, v + 1), d2 = l(u, v + 1) and d3 = l(u + 1, v + 1)
have been estimated in the previous iteration, where l is the
disparity map. Hence, the search range SR for the position
of (u, v) is restricted by equation 9 [6], [8], where τ is the
bound of the search range and it is usually selected as 1 or
2 in our proposed system. Algorithm 2 presents the details of

the disparity map estimation, and the implementations will be
discussed in Section III.

SR =
u+1⋃

k=u−1
{sr |sr ∈ [l(k, v + 1) − τ, l(k, v + 1) + τ]} (9)

Algorithm 2: Left disparity map estimation
Data: left image of size m × n: il
right image of size m × n: ir
left mean map of size m × n: µl
right mean map of size m × n: µr
left standard deviation map of size m × n: σl

right standard deviation map of size m × n: σr

Result: left disparity map of size m × n: ll f

1 v ← m − ρ − 2;
2 for ul ← ρ + dmax + 1 to n − ρ − dmax − 2 do
3 di ∈ [dmin, dmax];
4 ur ← ul − di;
5 if σl(ul, v)σr (ur, v) , 0 then
6 σlr ← σl(ul, v)σr (ur, v);
7 c(ul, v, di) ←

(
∑

Il(ul, v)Ir (ur, v) − nµl(ul, v)µr (ur, v))/nσlr ;
8 ll f (ul, v) ← arg max(c(ul, v, di));
9 for v ← m − ρ − 3 to ρ + 1 do

10 for ul ← ρ + dmax + 1 to n − ρ − dmax − 2 do
11 SR(ul, v) =

⋃ul+1
k=ul−1{sr |sr ∈

[l(k, v + 1) − τ, l(k, v + 1) + τ]};
12 di ∈ SR(ul, v);
13 ur ← ul − di;
14 if σl(ul, v)σr (ur, v) , 0 then
15 σlr ← σl(ul, v)σr (ur, v);
16 c(ul, v, di) ←

(
∑

Il(ul, v)Ir (ur, v) − nµl(ul, v)µr (ur, v))/nσlr ;
17 ll f (ul, v) ← arg max(c(ul, v, di));

III. IMPLEMENTATIONS

The main purpose of this paper is to accelerate the algo-
rithm execution and further achieve real-time performance by
exploiting the parallel computing architectures. In this section,
the performance of the implementations on an Intel Core i7-
4720HQ CPU using both single thread and multiple threads
are compared with the performance of the implementation on
an NVIDIA GTX 970M GPU. The results illustrate that the
performance on GPU is approximately nine times faster than
a single-threading CPU implementation and about two times
faster than the implementation on the CPU using eight threads.

A. CPU implementation

In order to speed up the execution, OpenMP is used to
break a serial code into independent chunks to process it in
parallel [16]. OpenMP mainly has three components: work-
sharing, data sharing and synchronisation. Work-sharing spec-
ifies a part of the serial code to be parallelised, data sharing
specifies an appropriate scheduling model, and synchronisation

Fig. 4. OpenMP structure.

determinates how data is shared [17]. The fork-join model
is utilised in the implementation, which is shown in Fig. 4.
In this section, we only discuss the implementation on CPU
using eight threads. The integral images Il , Ir , Il2 and Ir2

are initialised serially using one thread. After that, the for
loops in the µl , µr , σl and σr computation stage are divided
among eight threads with omp for clause. dynamic is selected
as the scheduling model because of its better performance
with unequal subtasks distributed to each thread. When a
thread finishes a chunk of data, it retrieves the next chunk.
Meanwhile, µl , µr , σl and σr are declared as private variables
to make each thread have its own copy. For synchronisation,
the nowait clause is utilised to ignore the implicit barrier of the
for pragma. The rest of the algorithm is parallelised with omp
sections, and the serial code is equally divided into eight sub-
blocks to execute concurrently. The results from each thread
join together and the disparity map is obtained.

B. GPU Implementation

Graphic processors have been widely used to accelerate
various 3D computer vision applications which are compu-
tationally intensive but able to be implemented in parallel to
achieve the real-time performance. A brief overview of their

Fig. 5. Brief overview of general GPU architecture [18].

general architecture is shown in Fig. 5. Compared with a CPU
which consists of a low number of cores optimised for se-
quentially serial processing, the GPU has a massively parallel
architecture which is composed of hundreds or thousands of
lighter cores to handle multiple tasks concurrently.

As shown in Fig. 5, a GPU consists of N streaming
multiprocessors (SMs) with M streaming processors (SPs)
on each of them. The SIMD (Single Instruction Multiple
Data) architecture allows the SPs on the same SM to execute
the same instruction but operate different data at each clock
cycle [19]. The device has its own Dynamic Random Access
Memory (DRAM) which consists of global memory, constant
memory and texture memory that can communicate with the
host memory via the GMCH (graphical/memory controller
hub) and the ICH (I/O controller hub) which are also known
as the Intel northbridge and the Intel southbridge, respectively.
Each SM has four types of on-chip memories: register, shared
memory, constant cache and texture cache. Since they are
on-chip memories, the constant cache and texture cache are
utilised to speed up the data fetching from the constant
memory and texture memory, respectively. Due to the fact
that the shared memory is small, it is used for the duration
of processing a block, while the register is only visible to
the thread. The details of different types of memories are
illustrated in Table I.

Memory Location Cached Access Scope
Register On-chip N/A R/W one thread
Shared On-chip N/A R/W All threads in a block
Global Off-chip No R/W All threads + host

Constant Off-chip Yes R All threads + host
Texture Off-chip Yes R All threads + host

TABLE I
GPU MEMORY ARCHITECTURE.

In CUDA C programming, the threads are grouped into a set
of three-dimensional thread blocks which are also organised
as a three-dimensional grid. A kernel is launched as a grid of
thread blocks and only one kernel can be executed at one time.
Once a thread block is distributed to an SM, the threads are
divided into groups of 32 parallel threads which are executed
by SPs; each group with 32 parallel threads is called a warp.
Therefore, the block size is usually chosen as a multiple of 32
to keep the efficiency of data processing.

The NVIDIA GTX 970M GPU has 10 SMs with 128 SPs
on each of them. The maximal dimension size of a thread
block is (x : 1024, y : 1024, z : 64) and the maximum
number of threads per block is 1024. The integral images Il ,
Ir , Il2 and Ir2 are initialised serially on the CPU and their
data is then transferred to the global memory. In the GPU
architecture, a thread is more likely to fetch the memory from
the closest addresses that its nearby threads fetched. However,
the addresses they accessed are usually not consecutive, which
makes the use of the cache not possible. Therefore, the texture
memory is utilised to optimise the caching for 2D spatial
locality. From Fig. 5, the texture memory is read-only and
cached on-chip to provide a higher effective bandwidth by
reducing the memory requests from the global memory. First
of all, two 2D texture reference objects are created. Then,

Fig. 6. Experimental results. ρ = 3 and τ = 1. The first and third columns are the left frames. The second and fourth columns are the left disparity maps.

the texture objects are bound directly to the address of the
global memory. In the µl , µr , σl and σr computation stage,
the images are divided into a group of 32 × 8 thread blocks,
and each of them are divided into eight warps in one SM
to be processed by a set of SPs in parallel. After that, the
disparities on row vmax are estimated in parallel using a set of
64 × 1 thread blocks. The image intensities il and ir are also
fetched from the texture references for

∑
il(u, v)ir (u − d, v)

calculation, whereas the values of µl , µr , σl and σr are
indexed directly from the global memory to avoid unnecessary
repeated computations. As for the disparity estimation for the
rest of the map, the search range at the position of (u, v)
is independent to their horizontal neighbouring disparities at
(u − 1, v) and (u + 1, v), and only relies on the previously
estimated disparities located on row v + 1. Therefore, the
proposed algorithm is performed iteratively from row vmax to
row vmin of the image, and each row is processed in parallel
with the strategy in algorithm 2.

IV. POST PROCESSING

For various disparity map estimation algorithms, the pixels
that are only visible in one disparity map are a major source
of the matching errors. Due to the uniqueness constraint of
the correspondence, for an arbitrary pixel (ui, vi) in the left
disparity map ll f , there exists at most one correspondence in
the right disparity map lrt , namely [20]:

ll f (ui, vi) = lrt (ui − ll f (ui, vi), vi) (10)

The LRC check is performed to remove half-occluded areas
from the disparity map. Although the LRC check doubles

the computational complexity by re-projecting the computed
disparity values from one image to the other one, most of the
incorrect half-occluded pixels can be eliminated and an outlier
can be found [21]. For lrt estimation, the memorisation of µl ,
µr , σl and σr is unnecessary because they have already been
calculated when estimating ll f . The LRC check is detailed in
algorithm 3 and the results can be seen in Fig. 6.

Algorithm 3: Left-right consistency check

Data: left disparity map of size m × n: ll f

right disparity map of size m × n: lrt

Result: disparity map of size m × n: l
1 for v ← ρ + 1 to m − ρ − 2 do
2 for u← ρ + dmax + 1 to n − ρ − dmax − 2 do
3 dl ← ll f (u, v);
4 dr ← lrt (u − dl, v);
5 if abs(dl − dr) > threshold then
6 l(u, v) ← 0;
7 else
8 l(u, v) ← ll f (u, v);

V. EXPERIMENTAL RESULTS

In our previous publication [6], the performance of the
proposed algorithm has already been evaluated by comparing
the estimated disparity map with the ground truth from the
KITTI database [12]–[15], where its overall percentage of the

error pixels is approximately half of the rate obtained from
GCS (When ρ = 3 and τ = 1, the percentage of the absolute
disparity error is 6.82%).

Platform CPU threads τ ρ fps
CPU 8 2 2 25
CPU 8 1 2 31
CPU 8 1 3 18
CPU 4 1 3 13
CPU 1 1 3 4
GPU N/A 1 3 37

TABLE II
RUNTIME OF THE SYSTEM.

In this section, the performance of the implementation with
different ρ and τ on Intel Core i7-4720HQ CPU and NVIDIA
GTX 970M GPU is illustrated in Table II. When τ = 2, the
execution speed decreases by about 19% compared with the
execution when τ = 1; also, the runtime goes up with the
increase of ρ. In addition, the performance of the implemen-
tation on the CPU with a single thread is about 4.9 times
slower than the performance with eight threads processing the
algorithm in parallel. Compared with the performance of the
single-threading CPU, the GPU implementation is about nine
times faster with 1280 CUDA cores estimating the disparities
row by row from row vmax to row vmin of the image.

VI. CONCLUSION AND FUTURE WORK

This paper presented an efficient stereo matching algorithm
and its real-time implementations on both i7-4720HQ CPU
and GTX 970M GPU. The implementation was optimised on
both algorithm level (NCC factorisation, integral images and
search range propagation) and the parallel programming level
(OpenMP and CUDA) to reduce the computational complex-
ity, improve the accuracy of the disparity map estimation,
and speed up the algorithm execution. The prevalent NCC
algorithm was simplified as a dot product by factorising it
as five independent parts where µl , µr , σl and σr are pre-
calculated with the references from four integral images Il , Ir ,
Il2 and Ir2 , and their values are stored in static program storage
for indexing. In addition, the search range at the position
of (u, v) was propagated from three estimated neighbouring
disparities l(u − 1, v + 1), l(u, v + 1) and l(u + 1, v + 1), which
not only helps to minimise the ambiguities during the stereo
matching and improve the accuracy of the disparity estimation,
but also speeds up the execution by reducing the complicated
and repeated computations of µl , µr , σl and σr . Also, the
infeasible occlusions that are only visible in one disparity
map were removed by conducting LRC check, which further
improves the accuracy of the existing disparity map. The
experimental results are better than what were obtained from
the GCS. The implementations highly exploited the parallel
computing architecture of OpenMP and CUDA to achieve
real-time performance on both multi-threading CPU and GPU
when processing the images with a resolution of 1242 × 375
from the KITTI database.

Our possible future work will focus on both accuracy and
speed improvements of 3D information extraction for various
autonomous vehicle applications. For instance, the subpixel

resolution is planned to be achieved via a local quadratic
polynomial interpolation. In addition, the shared memory on
the GPU is planned to be used to speed up the stereo matching
by sharing the data among threads within the same thread
block instead of fetching them from the global memory.

REFERENCES

[1] James A Brink, Ronald L Arenson, Thomas M Grist, Jonathan S Lewin,
and Dieter Enzmann, “Bits and bytes: the future of radiology lies in
informatics and information technology,” European Radiology, pp. 1–5,
2017.

[2] Beau Tippetts, Dah Jye Lee, Kirt Lillywhite, and James Archibald,
“Review of stereo vision algorithms and their suitability for resource-
limited systems,” Journal of Real-Time Image Processing, vol. 11, no.
1, pp. 5–25, 2016.

[3] Zhen Zhang, Advanced stereo vision disparity calculation and obstacle
analysis for intelligent vehicles, Ph.D. thesis, University of Bristol, 2013.

[4] Umar Ozgunalp, Vision based lane detection for intelligent vehicles,
Ph.D. thesis, University of Bristol, 2016.

[5] Jan Cech and Radim Sara, “Efficient sampling of disparity space for fast
and accurate matching,” in Computer Vision and Pattern Recognition,
2007. CVPR’07. IEEE Conference on. IEEE, 2007, pp. 1–8.

[6] Zhen Zhang, Xiao Ai, and Naim Dahnoun, “Efficient disparity calcula-
tion based on stereo vision with ground obstacle assumption,” in 21st
European Signal Processing Conference (EUSIPCO 2013). IEEE, 2013,
pp. 1–5.

[7] Umar Ozgunalp, Rui Fan, Xiao Ai, and Naim Dahnoun, “Multiple lane
detection algorithm based on novel dense vanishing point estimation,”
IEEE Transactions on Intelligent Transportation Systems, vol. PP, pp.
1–12, 2016.

[8] U Ozgunalp, X Ai, Z Zhang, G Koc, and N Dahnoun, “Block-matching
disparity map estimation using controlled search range,” in Computer
Science and Electronic Engineering Conference (CEEC), 2015 7th.
IEEE, 2015, pp. 35–40.

[9] Chuan Lin, Ya Li, Guili Xu, and Yijun Cao, “Optimizing zncc
calculation in binocular stereo matching,” Signal Processing: Image
Communication, vol. 52, pp. 64–73, 2017.

[10] Gabriele Facciolo, Nicolas Limare, and Enric Meinhardt-Llopis, “Inte-
gral images for block matching,” Image Processing On Line, vol. 4, pp.
344–369, 2014.

[11] John P Lewis, “Fast template matching,” in Vision interface, 1995,
vol. 95, pp. 15–19.

[12] Moritz Menze and Andreas Geiger, “Object scene flow for autonomous
vehicles,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 3061–3070.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun, “Are we ready for
autonomous driving? the kitti vision benchmark suite,” in Computer
Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on.
IEEE, 2012, pp. 3354–3361.

[14] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun,
“Vision meets robotics: The kitti dataset,” The International Journal
of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[15] Jannik Fritsch, Tobias Kuhnl, and Andreas Geiger, “A new performance
measure and evaluation benchmark for road detection algorithms,” in
Intelligent Transportation Systems-(ITSC), 2013 16th International IEEE
Conference on. IEEE, 2013, pp. 1693–1700.

[16] Rui Fan, Victor Prokhorov, and Naim Dahnoun, “Faster-than-real-
time linear lane detection implementation using soc dsp tms320c6678,”
in Imaging Systems and Techniques (IST), 2016 IEEE International
Conference on. IEEE, 2016, pp. 306–311.

[17] Rohit Chandra, Parallel programming in OpenMP, Morgan kaufmann,
2001.

[18] Caio César Teodoro Mendes, Fernando Santos Osório, and Denis Fer-
nando Wolf, “Real-time obstacle detection using range images: process-
ing dynamically-sized sliding windows on a gpu,” Robotica, pp. 1–16,
2015.

[19] CUDA Nvidia, “C programming guide version 4.0,” Nvidia Corporation,
2011.

[20] Mikhail G Mozerov and Joost van de Weijer, “Accurate stereo match-
ing by two-step energy minimization,” IEEE Transactions on Image
Processing, vol. 24, no. 3, pp. 1153–1163, 2015.

[21] Andrea Fusiello, Vito Roberto, and Emanuele Trucco, “Efficient stereo
with multiple windowing,” in Computer Vision and Pattern Recognition,
1997. Proceedings., 1997 IEEE Computer Society Conference on. IEEE,
1997, pp. 858–863.

