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Object exploration using vision and active touch

Chuanyu Yang, Nathan F. Lepora, Member, IEEE

Abstract— Achieving object exploration with passive vision
and active touch has been under investigation for thirty years.
We build upon recent progress in biomimetic active touch that
combines perception via Bayesian evidence accumulation with
controlling the tactile sensor using perceived stimulus location.
Here, passive vision is combined with active touch by providing
a visual prior for each perceptual decision, with the precision
of this prior setting the relative contribution of each modality.
The performance is examined on an edge following task using a
tactile fingertip (the TacTip) mounted on a robot arm. We find
that the quality of exploration is a U-shaped function of the
relative contribution of vision and touch; moreover, multi-modal
performance is more robust, completing the contour when
touch alone fails. The overall system has several parallels with
biological theories of perception, and thus plausibly represents
a robot model of visuo-tactile exploration in humans.

I. INTRODUCTION
Thirty years after seminal work on integrating vision and

touch for object recognition [1]–[3], how much progress
has been made? Work from 1988 used passive stereo-
vision and a tactile probe (with 128 taxels) to refine sparse
3D visual contours by actively exploring the surface with
touch for objects such as disks and cups [2]. Considering a
snapshot of progress from a recent 2015 workshop on ‘See
and Touch’ [4], the focus has maybe shifted to interacting
physically with objects, yet the general problem of how to
combine 3D vision and touch still remains unsolved.

So why has progress been slow on using vision and
touch to explore and recognize objects? It seems unlikely
that limitations in computer vision and AI is the cause,
as both fields have expanded enormously; similarly, the
development of tactile and 3D vision sensors has received
an enormous amount of attention. In our view, the likely
cause is that active touch (i.e. combining tactile sensing and
sensor control) has been hard to implement in practice, as
rather presciently said back in 1988: ‘Active touch sensing
provides accurate and robust shape information, but it exacts
its price for this information by demanding powerful control
of the medium, which makes it difficult to use’ [2, Sec. 4].

The aim of this paper is to investigate how passive 3D
vision can combine with and benefit active tactile exploration
of an object contour. We build upon recent progress in tactile
exploration [5], [6] based on biomimetic active touch [7]–[9]
that combines perception via Bayesian evidence accumula-
tion with controlling the tactile sensor via perceived stimulus
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Fig. 1. Tactile robotic system, comprising a tactile fingertip (the TacTip)
mounted as an end effector on a 6-dof ABB robot arm, and a 3D-vision
system comprising a Kinect V2 camera. The aim is to explore the object.

location. Robust exploratory behaviour then emerges from a
control policy that maintains the sensor on the contour while
moving along it [5], [6]. Here, passive vision is combined
with active touch by giving a visual prior for each perceptual
decision that is updated with evidence from tactile sensing.
The precision of the prior then sets the relative contribution
of vision and touch to the overall exploration of the object.

For validation, we consider contour following around a
circular disk with a biomimetic tactile fingertip mounted on
a robot arm, using a Kinect V2 camera for 3D vision (Fig. 1).
Being situated away from the arm (on a safety barrier), the
camera images the object at low resolution and an oblique
angle, resulting in an inaccurate contour. However, we show
it provides a good visual prior for tactile exploration, since:
(i) the quality of contour following is a U-shaped function
of the relative contribution of vision and touch; and (ii) the
robustness is better with touch and vision, completing the
entire contour when touch alone fails due to becoming lost.

II. BACKGROUND AND RELATED WORK

As covered in the introduction, seminal work in the 1980s
first combined vision and robot touch for 3D object explo-
ration and recognition [1], [2]. The area has since diversified,
which we survey briefly by separating into various tasks:

1) Perception/classification: Some surface features are
difficult to classify using vision or touch alone, and so both
modalities must be combined. Visuo-tactile methods have
attained attributes such as elasticity, mass and relational



Fig. 2. Left: The tactile fingertip (TacTip) comprising a compliant sensitive
tip and a housing for the electronics and internal camera. Right: image from
internal camera showing the array of sensing elements.

constraints [10] and object pose [11], [12]. Shape has been
determined with methods such as tactile glances at discrete
points on the object [13], visual and tactile feedback from
grasping [14], combining visual and tactile exploratory pro-
cedures [15] and visuo-tactile fusion [16].

2) Exploration/mapping: Another application of com-
bined vision and and touch is exploring the environment
to build a surface map or model. Early work in the field
focussed on using passive stereo vision and active touch to
explore object contours and features [1]–[3]. Following work
has combined touch and 3D vision to rapidly label surface
features [17], map object surfaces [18], match tactile features
to visual maps [19] and nest visual and tactile control loops
to improve surface exploration [20], [21].

3) Grasping/manipulation: An important problem is for
a robot to grasp and/or manipulate an object using fingertip
tactile sensing and a camera. Early work focussed on the
complementarity of vision and touch for grasping, either
using vision to estimate the large-scale shape and touch
for small-scale geometric and force information [22], or
using touch to solve the occlusion problem for estimating
contact location when calculating grasp forces from joint
encoders [23]. Recent research has focussed more on in-hand
object manipulation, with some of the above-mentioned work
using pose-estimation [12] or visuo-tactile control [20], [21].

In this paper, we consider how to combine vision and
touch to perform exploratory contour following around edges
of unknown objects. This work is based on previous studies
of active touch for tactile exploration [5], [6], here extended
to introducing visual sensing into the robotic system.

III. METHODS

A. Robotic system

The robotic system comprises a tactile fingertip (TacTip)
mounted on a robot arm, with a Kinect V2 vision sensor
mounted nearby to image the task space (Fig. 1). Individual
components are described below.

Fig. 3. Active exploration algorithm using vision and touch. During each
perceptual decision, sensory data from discrete tactile contacts feeds into
a likelihood model that updates evidence for radial displacement and edge
angle, which is used to move the sensor radially to maintain edge contact.
After the evidence crosses a threshold, the exploration direction is reoriented
to the perceived edge angle and the evidence initialized to the visual priors.

1) The Tactile fingerTip (TacTip): In this study, we use a
soft biomimetic optical tactile sensor known as the TacTip
(Fig. 2, left). It is a biologically-inspired device based
upon the deformation of the epidermal layers of the human
glabrous skin [24]. The TacTip consists of several compo-
nents. The tip comprises a black flexible outer skin (tango
black) containing a clear gelatinous polymer held with a
3 mm thick transparent acrylic window; on the inside of the
skin are 127 pins tipped by white markers, which transduce
deformation of the membrane into visible movement of
pins. The 3D-printed body of the sensor holds internal LED
lighting and a Microsoft Cinema HD webcam (resolution
640×480 pixels, sampled at ∼20 fps).

The particular design of the TacTip used here has a
40 mm diameter hemispherical sensing pad with 127 tactile
pins arranged in a hexagonal lattice with pin-to-pin spacing
∼3 mm (Fig. 2, right). Deformation of the sensing pad is
transduced into pin movements, which are tracked optically
using the webcam (details below).

2) Robot arm: The TacTip is mounted as an end-effector
on an IRB 120 robotic arm (ABB Robotics). It is a compact
and relatively lightweight (25 kg), 6 degree-of-freedom robot
arm, with maximum horizontal reach 580 mm and maximum
payload 3 kg. The robot can precisely and repeatedly position
its end effector with an absolute repeatability of 0.01 mm.

3) 3D-vision system: The workspace is imaged with a
Kinect V2 (Microsoft) RGB-D sensor. This Kinect includes a
1080p resolution video camera and a 512x424 pixel monovi-
sion infrared camera (plus emitter) with maximum detection
range 8 m, allowing it to capture both a colored 2D image
and a depth image of the scene at 30 fps.

4) Software architecture: A modular software framework
is deployed whereby the main control and perception algo-



rithms are implemented in MATLAB. The framework runs
on a standard Windows 8 or 10 PC, for compatibility with
the Kinect V2 SDK released by Microsoft.

The PC sends control commands to the robot arm via
TCP/IP ports and receives the TacTip data via USB. We
used an IronPython client to convert MATLAB outputs into
variables to interface with the robot controller (a RAPID
API) that commands the arm movements. Simultaneously,
a python server on the PC implements image capture and
preprocessing to quantify surface deformation of the TacTip
by tracking the internal pins with opencv (http://opencv.org/).
Similar methods are used in other recent papers [6], [7].

B. Algorithmic methods: Biomimetic active touch

Biomimetic active touch is defined by three principles
based on biological perception (Fig 3): (i) an underlying
evidence accumulation part for decision making; (ii) an
action selection part enacted during the decision making; and
(iii) sensory encoding of how percepts relate to stimuli. A
summary is given here; for more details we refer to ref. [7].

In the following we will use measurement model of the
tactile data to give likelihoods for discrete angle θi and
radial displacement rl classes from the contact data, with i ∈
[1, Nid] and l ∈ [1, Nloc]. The model inputs the tactile sensor
values sk(j) for data dimension k ∈ [1, Ndims] and time-
sample j ∈ [1, Nsamples]. Typically, we use Ndims = 127×2
data dimensions (127 pins with x- and y-components), and
Nsamples ranging from 20-25 for a single tap zt (about 1 sec
of data). We also use Nid = 18 angle classes spanning
360 degs and Nloc = 20 radial displacement classes spanning
20 mm from free-space to completely on the object. These
values were chosen to give a reasonable amount of data for
training the classifier, and are consistent with related studies.

1) Perceptual evidence accumulation: Bayes’ rule is ap-
plied recursively after each contact zt (t = 1, 2, 3...) to
update the posterior beliefs for each perceptual class, using
the likelihoods P (zt|rl, θi) of the contact data

P (rl, θi|z1:t) =
P (zt|rl, θi)P (rl, θi|z1:t−1)

P (zt|z1:t−1)
, (1)

with the normalization term from the marginal probabilities
P (zt|zt−1) of the current contact given prior contacts

P (zt|z1:t−1) =

Nr∑
l=1

Nθ∑
i=1

P (zt|rl, θi)P (rl, θi|z1:t−1). (2)

A key aspect of the formalism here is that the evidence
accumulation from touch can begin from a prior P (rl, θi|z0)
set from the passive vision (defined below in Sec. III-C.3).

The perception is complete when a marginal belief for
edge orientation reaches a decision threshold pdec, when the
maximal a posteriori estimate of the angular class is taken:

if any P (θi|z1:tdec
) =

Nr∑
l=1

P (rl, θi|z1:tdec
) > pdec

then θdec = arg max
θi

P (θi|z1:tdec
). (3)

The decision threshold is a free parameter that trades off the
number of contacts tdec to make a decision against decision
accuracy (here set at pdec = 2/Nθ to give tdec ∼ 3 taps).

During the perception, an intermediate estimate of the
radial displacement will be used for active perception

rest(t) = arg max
rl

Nθ∑
i=1

P (rl, θi|z1:t), (4)

which feeds into the action selection described below.
2) Action selection: These actions are selected with a

control policy that inputs the last perceived angle and current
estimates of radial displacement, with output action compo-
nents comprising a tangential exploratory move and a radial
corrective move.

The exploratory component of the action moves the sensor
tangentially along the edge by a fixed amount ∆e (here set
to a gain g times 3 mm) along the last perceived angle θdec.

The corrective component of the action moves the sensor
radially towards a pre-set displacement rfix from the edge.
Its direction of movement θdec +90◦ is orthogonal to the last
complete angle decision and its magnitude is proportional to
the currently estimated radial displacement

∆r(t) = πr [P (rl, θn|z1:t)] = [ g (rfix − rest(t)) ]l . (5)

Here the sensor is fixated to the middle of the perceptual
range rfix = 0 mm, which is aligned to centre on the edge.
The notation [·]l represents rounding down to the nearest
class rl. The same gain g applies both action components.

Following previous work on biomimetic active touch [7],
after every action for active perception (radially along the
normal), a compensatory transformation of the perceptual
beliefs is made to maintain an allocentric belief frame

P (rl, θi|z1:t)← P ([r −∆r(t)]l, θi|z1:t). (6)

For simplicity, the (undetermined) beliefs shifted from out-
side the location range are assumed uniformly distributed.

3) Sensory encoding: Given a test tap z with samples
sk(j) discretized into bins bk(j), the measurement model is
built from the mean likelihood:

log(P (z|rl, θi)) =

Nsamples∑
j=1

Ndims∑
k=1

log(P (bk(j)|rl, θi))
NsamplesNdims

, (7)

assuming statistical independence between all data dimen-
sions k and time samples j. The sensor values sk for data
dimension k, which are then binned into 100 equal inter-
vals Ib with sampling distribution given by the normalized
histogram counts over all training data for each class.

C. Algorithmic methods: Visual perception

Vision here provides supplementary information to active
touch. The imaged contour is encoded as probability distri-
bution over the radial displacement r and edge angle θ that
can be then fused with the likelihoods for tactile perception.

While the focus of this paper is on the fusion of vision with
touch, the extraction of the contour is a non-trivial vision



surface

free
space

r=0mm
θ=0 deg

∆ r=0mm
∆θ=0 deg
∆ e = 6mm

Decision:
P(rl,θn)>

Pthresh

r=0mm

∆ r=0mm
∆ e=6mm

Decision:

r=1mm
θ=20 deg

∆ r=0mm
∆θ=20 deg
∆ e=6mm

Decision:

r=1mm
θ=20 deg

∆ r=1mm
∆ e=6mm

No decision:
P(rl,θn)<

Pthresh

r=1mm

∆ r=1mm
∆ e=6mm

No decision:

Fig. 4. Exploratory tactile servoing, shown over a few steps of the control
loop from Fig. 3 (with unit gain for the exploration step size in this example).

Fig. 5. A. Truncated depth image of the workspace obtained from the
Kinect. B. Zoomed in depth image of the target object. C. Calculated surface
normals of the object. D. Calculated surface curvatures of the object.

problem and our approach is detailed here. Other vision-
base methods for contour extraction exist, but are outside the
scope of this study which focuses on visuo-tactile fusion.

1) Surface normal and curvature: Following [25], [26],
the surface normals and curvatures are found by applying
PlanePCA to the Kinect depth image (Fig. 5). The method
considers a query point ~q, and then applies Principal Com-
ponent Analysis (PCA) to the covariance matrix C from the
k nearest neighboring points ~pi in the point cloud,

C(~q) =

k∑
i=1

(~pi − ~p0)T (~pi − ~p0), C · ~vj = λj · ~vj , (8)

where ~p0 represents the centroid of the neighborhood, and
λj and ~vj are the three eigenvalues and eigenvectors of the
matrix C. These eigenvalues are used to estimate the princi-

Fig. 6. Representation of 3 data points and their estimated tangent planes.
The red and blue points lie within each others’ tangent planes, and are
considered connected. The green point is not connected to either point.

Fig. 7. A. Segmented Region. B. The perimeter of the segmented region.
C. Top view of the perceived contour points of the object in 3D space

Fig. 8. Determination of visual prior. The edge orientation is estimated
from the fitted tangent (red line) and the radial position from the centroid,
from the k nearest neighbour points to the tactile sensor location.

ple surface curvatures, with the least significant eigenvector
(minimum eigenvalue) the estimated surface normal.

Note that as the signs of the normals computed via PCA
is ambiguous to ±~ni, to ensure consistent orientation over
the entire point cloud they are reoriented ~ni ·(~pview−~pi) > 0
to point towards a single viewpoint ~pview.

2) Contour estimation: The point cloud, normals and
curvatures found above are then ‘organized’ so that each
point corresponds to one pixel in the 2D color image. This or-
ganized point cloud allows estimation of the surface bounded
by the contour via region-growing segmentation [27].

First, a set of seed points are chosen from which to grow
regions that encompass adjacent points if they satisfy the
region membership criteria given below (Algorithm 1). These
added points serve as new seeds for the next region-growing
process, iterating until no more new neighboring points can



Algorithm 1 Surface Segmentation Algorithm
input: point cloud P , normals N , curvatures C
variable: available point list A, available seed list S
A← P , R← ∅, S ← ∅
Select an initial seed point pseed

A← A− pseed, R← R ∪ pseed, S ← S ∪ pseed

for i = 1 to size(S) do
Select a new seed point pi from the seed list S
for j = 1 to size(A) do

Select point pj ∈ A from neighborhood of point pi
if ||~pi − ~pj || > d0 & λ(~pi) > λ0 & ϑ(~ni, ~nj) > ϑ0

then
break

end if
A← A− pj , R← R ∪ pj , S ← S ∪ pj

end for
end for
return Region R

be found. The three criteria for region membership are:
a) Distance-based criterion: The Euclidean distance between
the seed point ~pi and a selected neighbour point ~pi must be
below an allowed maximum ||~pi − ~pj || > d.
b) Curvature-based criterion: Only points with low curvature
are included λ(~pi) < λ0, to terminate on the surface edge.
c) Normal-based criterion: Neighbouring surface normals
define tangent planes that must lie within an angle range
of each other ϑ(~ni, ~nj) < ϑ0 (Fig. 6) [28].

Here we used values d0 = 0.5, λ0 = 0.1 and ϑ0 = 8◦,
which capture most points by the curvature and normal
criteria, with distance-based criterion for outliers.

The algorithm output is the segmented region of interest
R (Fig. 7). The perimeter of the 2D region is extracted
and mapped to the 3D point cloud to obtain the 3D spatial
coordinates of the surface contour.

3) Sensory encoding: The visual data is then re-encoded
as a prior to be fused with the likelihood model of the tactile
data, to perceive edge radial displacement and angle (r, θ).

We take the k-nearest neighbor points on the estimated
contour from the tactile sensor position ~p (Fig. 8). A tangent
line with unit direction ~d is fitted to these k = 5 points using
linear regression (with sign ±~d constrained to ~pcenter ·~d > 0).
Then the edge angle is given by ~d = (cos θ, sin θ, 0) and
radial distance taken from the sensor to the tangent line.

The visual prior over positions and orientations of the edge
is estimated from a Gaussian model over the 20 location
classes rl and the 18 orientation classes θi

P (rl, θi|z0) =
1

2πσ2
exp

[
− (rl − r)2

2σ2κ2
r

− (θi − θ)2

2σ2κ2
θ

]
, (9)

with standard deviation σ adjusted to change the precision of
the visual prior and hence its influence when fused with the
tactile sensory input. Parameters κr = 20 mm and κθ = 360◦

are normalization factors given by their ranges.

TABLE I
AVERAGE ANGULAR AND POSITIONAL ERROR AROUND A CONTOUR

Perceptual error
uni-modal multi-modal uni-modal
vision touch and vision touch

Angular, ēθ 16.1◦ 5.8◦ (σ = 0.30) 13.4◦

Positional, ēr 6.9 mm 2.1 mm (σ = 0.18) 3.4 mm

IV. RESULTS

A. Edge following with uni-modal vision or touch

First, we verify that the tactile perception method (Sec. III-
B) and the visual perception method (Sec. III-C) are indi-
vidually able to follow the edge of the circular test object.

Using vision alone, the perceived edge using the Kinect
camera gives a contour that roughly approximates the circular
edge (Fig. 9A). This contour could be used to guide the
sensor around the object edge with vision alone. Calculating
the mean square error of perceived edge orientation relative
to that of the actual edge around the entire loop gives an
error eθ = 16.1◦ (shown to left of Fig. 10).

Using touch alone, the tactile sensor is able to successfully
complete an entire circuit of the object edge (Fig. 9E; tactile
gain g = 1), as observed previously in other work [6]. The
mean square error of perceived edge orientation relative to
that of the actual edge around the entire loop is eθ = 13.4◦

(shown to right of Fig. 10).
Therefore both vision and touch alone are able to suc-

cessfully follow the contour, but each is not very accurate
(angle errors > 10◦). Also touch can be unreliable in some
situations, in that sensor noise can cause the edge following
to fail, as revealed by doubling the tactile gain to g = 2: after
about 10 contacts, the sensor loses contact with the edge and
becomes lost (Fig. 11D).

Our main thesis is that combined vision and touch will
give more reliable task performance, which we examine in
the next section. Interestingly, the visual contour is biased in-
side the object (Fig. 9A) whereas the tactile contour is biased
outside (Fig. 9E), giving further support that combining these
two modalities will improve edge-following performance.

B. Edge following with multi-modal vision and touch

The next experiments consider using touch and vision
together to follow the circular edge. The control gain is kept
at g = 1 (the same as for uni-modal touch in Sec. IV-A), but
the precision σ that weights the visual and tactile information
is varied from 10−2 (mainly vision) to 102 (mainly touch).

The principal effect of combining touch and vision is that
the traced contours (Fig. 9B-D; red curves) both improve
upon and lie intermediate to the contours from uni-modal
vision (Fig. 9A; green curve) and uni-modal touch (Fig.9E;
red curve). These observations are supported quantitatively
from considering the angular and positional perceptual errors
averaged around the contour (Figs 10A,B), which both show
a continual improvement for multi-modal perception over
uni-modal vision (σ = 0) and uni-modal touch (σ =∞)

Overall, the best contour (Fig. 9C) is at an intermediate
weighting of touch and vision (σ = 0.30), when the angular
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Fig. 10. Angular perceptual error and positional perceptual error averaged
around the exploration path, plotted against the precision σ of the visual
prior. Both error plots reach a minimum (0.30,0.18) in the central range.

perception error averaged around the contour is a minimum
(Fig. 10A). At that combination of vision and touch, the
average angular error ēθ = 5.8◦ is much lower than that
for uni-modal vision (ēθ = 16.1◦) and uni-modal touch
(ēθ = 13.4◦). Similarly, the radial perceptual error ēr has
a minimum at a nearby intermediate weighting of touch and
vision (σ = 0.18). These values are summarized in Table I.

Curiously, the effect of including touch in uni-modal
vision is different from including vision in uni-modal touch.
For the edge-following task considered here, uni-modal
vision gives poorer contour tracing than uni-modal touch
(Table I). When vision is dominant, increasing the influence
of touch over uni-modal vision (10−2 ≤ σ ≤ 0.3), causes
the perceptual errors to initially change very little, but

then improve precipitously to the optimal edge-following
behaviour (Fig. 10, left-side). Meanwhile, when touch is
dominant, increasing the influence of vision over uni-modal
touch (0.3 ≤ σ ≤ 2), causes the perceptual errors to improve
gradually to that same optimum (Fig. 10, right-side). This is
likely because when σ is set too low (i.e. strong visual prior),
the belief threshold is reached too early and the decision
process terminates without gathering enough evidence.

C. Robustness of multi-modal vision and touch
Our final experiments examine if multi-modal perception

benefits the robustness of task performance. Due to the
exploratory nature of active touch, a wrong move may
result in a failed task where the robot loses the edge and
becomes ‘lost’; conversely, vision always gives a complete
(but possibly inaccurate) contour. Therefore, we compare the
performance of uni-modal touch with that of multi-modal
touch and vision to discover whether introducing visual
information into active touch improves system robustness.

Robustness is probed by varying the gain g that scales the
magnitude of the tangential exploratory moves around the
edge and the radial corrective moves during active touch. For
uni-modal touch, increasing the gain from g = 0.5, 1, 1.5, 2
results in progressively poorer edge-following performance
until task failure at g = 2 (Figs 11A-D, red curves). This
observation is supported qualitatively with an increase in
angular perception error with increased gain (Table II).

Multi-modal touch and vision improves the robustness
of task performance, in not failing to complete the task at
high gains (Figs 11E-H, red curves). In particular, for gain
g = 2, multi-modal vision and touch are able to successfully
perform a complete circuit of the circular edge (Fig. 11H),
whereas uni-modal touch then fails the task (Fig. 11D).
For these experiments the visuo-tactile weighting was set
at σ = 0.3, corresponding to the optimum of the angular
perceptual errors at gain g = 1 (Fig. 10A).

The improved robustness of touch and vision together
is related to the quality of task performance, in that the
multi-modal angular and positional perceptual errors are also
smaller (Table II) and the sensor trajectory of the visual-
tactile system is smoother than the tactile system (Fig. 11).
This behaviour is expected because improved performance



Fig. 11. Exploration trajectory for uni-modal touch (top row) and multi-modal vision and touch (bottom row). Trajectories (red curves) are considered at
different values of the gain g that scales both the exploration step (3gmm) and active perception step. While larger gains produce more variation in the
trajectory, this can be partially compensated with vision. In consequence, touch and vision together completes the contour when touch alone fails.

TABLE II
AVERAGE ANGULAR ERROR, AGAINST VALUES OF THE CONTROL GAIN g

THAT SCALES THE EXPLORATION AND ACTIVE PERCEPTION STEPS.

Method Gain
0.5 1.0 1.5 2.0

Touch and Vision
3.35 4.09 3.27 3.22

(σ = 0.30)
Touch 4.08 5.55 4.47 N/A

is accompanied by smaller corrective moves, giving greater
stability in keeping the sensor on the object.

V. DISCUSSION

This study investigated how to explore an object with
passive 3D vision and active touch, using recent progress in
tactile exploration [5], [6] and biomimetic active touch [7]–
[9]. The active touch combines a Bayesian evidence accu-
mulation model of perceptual decision making with a control
loop for regulating how the tactile sensor contacts a stimulus.
The exploration comprises a series of decision episodes, each
terminating when the evidence is sufficiently strong to decide
edge angle [5], [6], which gives the exploration direction
for the next episode. Each decision can begin from prior
evidence that biases the forthcoming perception [5] that we
take from a passive visual estimate of contour angle and
radial position relative to the tactile sensor.

A key aspect of our approach for visuo-tactile sensory
fusion is that the prior has a peak at a favoured angle-
displacement class and has a precision for how peaked it is

around that class. The computer vision approach used here
(segmentation using curvature and surface normal) estimates
edge angle and radial displacement. In our approach we
assume the precision σ is a free parameter that took on the
role of weighting vision and touch in the perceptual decision
making.

The first main result is that the quality of the exploration is
a U-shaped function of the relative contribution of vision and
touch, with an optimum at intermediate weighting (σ = 0.3,
from range 0.1-10 shown on Figs 9,10). Uni-modal vision
and touch both gave inaccurate edge following, which was
improved by combining the two modalities. In general, we
expect the weighting between touch and vision will be task
specific, depending on the quality of perception from the
two modalities. Interestingly, psychophysical experiments
reveal that humans fuse tactile (haptic) and visual sensory
information in an analogous manner [29].

The second main result is that task performance is more
robust when vision is combined with touch, completing the
contour when touch alone would fail (Fig. 11; Table II). The
tactile edge following becomes more inaccurate with increas-
ing control gain (equivalently exploration step size) until
the task fails when the sensor loses contact with the edge.
When touch is combined with vision, the edge following
is stabilized to not become lost. We attribute this improved
robustness partly to improved perceptual performance, but
also that vision gives an approximate representation of the
entire contour which is lacking from touch alone.

Generally, one would expect the reliability of visual per-
ception would determine the precision σ, depending for



example on the light conditions or the object colour and
material. We showed empirically that a particular weighting
gave optimal exploration, but this leaves open the question
of how that weighting should be determined in practise.
One possibility is that the variance is directly related to the
signal-to-noise ratio of the sensor modality; another is that
the precision σ could be learnt from trying to improve the
perception during task performance.

An related question is how does our approach relate
to human visuo-tactile perception and object exploration?
Because the underlying framework of biomimetic active
touch is based on Bayesian evidence accumulation, there are
parallels with leading models from perceptual neuroscience.
Also, object exploration via edge following represents a task
of psychophysical importance in humans as a fundamental
exploratory procedure for characterizing objects [30]. While
it is known that humans fuse simple tactile and visual
information in a Bayesian optimal fashion [29], less is known
about how the senses combine to explore objects. A robot
embodiment of this task represents a putative model for how
visuo-tactile exploration is enacted in humans.
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