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Abstract

Meta-analysis is a common tool for synthesizing results of multiple stud-
ies. Among methods for performing meta-analysis, the approach known as
‘fixed-effects’ or ‘inverse-variance weighting’ is popular and widely-used.
A common interpretation of this method is that it assumes the underly-
ing effects in contributing studies are identical, and for this reason it is
sometimes dismissed by practitioners. However, other interpretations of
fixed-effects analyses do not make this assumption, yet appear to be lit-
tle known in the literature. In this paper, we review these alternative
interpretations, describing both their strengths and limitations. We also
describe how heterogeneity of the underlying effects can be addressed, with
the same minimal assumptions, through either testing or meta-regression.
Recommendations for the practice of meta-analysis are given; it is hoped
that these will foster more direct connection of the questions meta-analysts
wish to answer with the statistical methods they choose.

1 Introduction

Meta-analysis is used to combine results from multiple, independent, studies that
have similar aims. It is now a widely-established statistical tool (Borenstein
et al., 2009); common applications include those to randomized trials of the
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same comparison of interventions (Higgins and Green, 2011), to estimates of
correlation between two variables (Hunter and Schmidt, 2004), and to measures
of the accuracy of a diagnostic test (Leeflang et al., 2008). More sophisticated
meta-analysis methods are used to understand inter-study differences (Berkey
et al., 1995), to compare multiple treatments simultaneously (Lu and Ades, 2004)
and, more generally, to synthesize evidence from different types of studies (Ades
et al., 2008).

A common procedure in a basic meta-analysis is to calculate a weighted aver-
age of parameter estimates from different studies, where the weights are given by
the inverses of the estimated variances of these estimates. This approach is typi-
cally referred to as a ‘fixed-effects’ (or ‘fixed-effect’) meta-analysis, and its use is
standard in many fields of application. However, the approach has been criticized,
because it does not directly address between-study differences, in particular the
possibility that studies’ parameter estimates differ by more than chance alone.
Because of this, an alternative ‘random-effects’ meta-analysis is often advocated,
in which the weights in the weighted average additionally incorporate a second
component of variation that describes the differences in the studies’ underlying
parameters (DerSimonian and Laird, 1986).

There has been considerable debate over the relative merits of fixed- and
random-effects approaches to meta-analysis, without a common consensus being
reached about which should be used and when; an example of where this lack of
consensus causes real difficulty is given in Section 1.1. In the rest of the paper we
aim to inform this discussion, by providing a detailed interpretation of the fixed-
effect(s) meta-analysis approach. Section 2 describes how apparently conflicting
statistical advice can be reconciled by drawing a distinction between a fixed-effect
(singular) model and a fixed-effects (plural) model. In Section 3 we discuss in
detail what the inverse variance weighted average represents, and how it should
be interpreted under these different models. In Section 4 we show how methods
for assessing heterogeneity can be viewed as natural complements to the fixed-
effects analysis, even when they are not being used to test homogeneity. We
conclude with discussion of strengths and limitations in Section 5.

1.1 Illustrative Example

An example illustrating the major issues is given in Figure 1, which shows a meta-
analysis undertaken in a recent genetic study (Levy et al., 2009). In it, data from
the participants in six cohort studies is used to address the linear association
between an outcome of interest (the participants’ blood pressure levels) and a
covariate (the number of copies they have of the ‘A’ allele at the rs11014166
variant), which takes values between 0 and 2. Testing the null hypothesis of no
effect is one important goal here, but estimation of an overall effect size is also
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Figure 1: Data and results from a meta-analysis of the association between
diastolic blood pressure levels and number of copies of the ‘A’ allele at vari-
ant rs11014166; for details of contributing studies see Levy et al. (2009). Box
sizes are proportional to the precision of corresponding study-specific estimates.
The weights column indicates those for standard fixed- and random-effect meta-
analyses, as formally defined in Section 2. The final column is the relative size
of study-specific contributions to Cochran’s Q, as a percentage; see Section 5 for
definitions.

needed, to assess the magnitude of association and to decide upon next research
steps (Zhong and Prentice, 2010). As the figure shows, the decision to use fixed- or
random-effects meta-analysis here makes a non-trivial difference to the summary
inference; the overall precision in the estimates differs by more than a factor of
two, i.e. the difference we might expect to see by changing the sample size by a
factor of two. For another example with similar consequences, see Stephens and
Balding (2009, pg 689).

A notable feature of Figure 1 is that the effect of the genetic variant shows
heterogeneity across the studies. For this data, Cochran’s Q statistic (see Sec-
tion 5) is 10.02, which in the usual statistical test of homogeneity gives a p-value
of 0.074, below the α = 0.1 threshold for significance recommended by some au-

3



thors (Berman and Parker, 2002). Similarly, the Der-Simonian Laird estimate
of the standard deviation of the study effects is 0.23, and the I2 statistic is
50.1%, which “may represent considerable heterogeneity” (Higgins and Green,
2011, Section 9.5.2). Nevertheless, in the original publication of Figure 1’s data,
the fixed-effects meta-analysis was used, without regard to observed or actual
heterogeneity — and for meta-analysis of genomewide association studies, this
practice is standard. Using fixed-effects meta-analysis in this way has been noted
to be practically useful in this field (Pereira et al., 2009) when, as is typical, we
seek novel associations between the outcome and genetic variants. Furthermore,
de Bakker et al. (2008) note that random-effects analysis may be “too conserva-
tive”, and that in this field fixed-effects meta-analysis may be preferred.

Based on the evidence of heterogeneity across studies, many statisticians
would rule out using fixed-effects meta-analysis in Figure 1. For example Hartung
et al. (2011, pg 63) state that “It is important to make sure that the underlying
effect sizes arising out of experiments are indeed homogeneous before performing
any meta-analysis”. Other texts provide the same advice, rejecting fixed-effects
meta-analysis when heterogeneity is observed; for an example see (Lipsey and
Wilson, 2001, pg 133). Other authors (Schmidt and Hunter, 2004, pp 199, 397)
go further still, arguing for never using fixed-effects meta-analysis in practice,
regardless of the observed data, on the grounds that true homogeneity is never
plausible.

In contrast, other parts of the statistical methods literature portray the fixed-
effects meta-analysis as appropriate, when inference is sought on the average as-
sociation across the studies at hand (Fleiss, 1993, pg 124). The precise meaning
of ‘average’ here is described by Konstantopoulos and Hedges (2009), and a ratio-
nale for using fixed-effects meta-analysis even in the presence of heterogeneity is
described by Hedges and Vevea (1998). This work can be seen as a formalization
of ideas supporting fixed-effects meta-analysis set out by R. Peto (Peto, 1987),
who has also advocated for use of this analysis in practice (Early Breast Cancer
Trialists’ Collaborative Group, 1998).

Situations like those in Figure 1 therefore place applied statisticians in a
difficult position. If you, as the statistician for such a study, recommend a
random-effects meta-analysis for this data, you must explain to co-authors and
peer reviewers why the standard approach in the genetics field is being passed
over. Alternatively, if you suggest a fixed-effects meta-analysis, other co-authors
and reviewers have ample reason for concern that your analysis is founded on
unrealistic assumptions of homogeneity. As the results of the two analyses are
importantly different, and only one can be the primary results, one group of
co-authors/reviewers must end up dissatisfied.

This incongruous and unattractive situation is not restricted to genetics; the
conflicting statistical advice above would apply meta-analyzing data of any form.
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Moreover, the lack of a coherent statistical framework, that might be used to
decide between fixed- and random-effects meta-analysis in a more satisfactory
way, makes it difficult for students to learn the relevant statistical methods —
and to understand what the methods can and cannot provide.

2 The inverse-variance weighted average

2.1 Calculations

In this section we review procedures for meta-analysis using inverse-variance
weights. Suppose we have k distinct studies, and each supplies its independent
estimate β̂i of study-specific parameter βi, where 1 ≤ i ≤ k. Study parameter
βi reflects the true state of nature in population i, from which the data in study
i is sampled. Reflecting this sampling uncertainty, each study also supplies σ̂i,
an estimate of the standard error of β̂i. A meta-analysis is to be performed in
order to summarize these studies’ data, and the summary produced should be
interpretable, relevant to the scientific question at hand, and statistically well-
calibrated. Typically, the summary comprises a point estimate and confidence
interval for some overall measure of effect. (We consider testing null hypotheses
of no effect in Section 4.1.)

The inverse-variance weighted average is given by

β̂ =

∑k
i=1wiβ̂i∑k
i′=1wi′

, (1)

where wi = 1/σ̂2
i (Whitehead and Whitehead, 1991). If each study is large and

has implemented a valid analysis, then approximate Normality of the estimates
β̂i will hold and each σ̂i will estimate the standard deviation of β̂i with error that
is negligible compared to the true standard deviation of β̂i. For brevity, we shall
refer to these conditions as ‘standard’ throughout, and we note that they are
often assumed implicitly. In meta-analysis, the standard conditions ensure that,
to a good approximation, β̂ is also Normal, and that its standard error may be
estimated by

SE
(
β̂
)

=

√
1∑k
i=1 wi

(2)

with negligible error, compared to the true standard deviation of β̂ (Whitehead
and Whitehead, 1991). That these estimates have the statistical properties we
have described is well-known and is not debated, regardless of whether the βi are
all identical, all different, or anything in between. The controversial issue we aim
to clarify is whether β̂ in (1) estimates a parameter of scientific relevance.
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(a) Common effect model (b) Fixed effects model (c) Random-effects model

Figure 2: Illustration of three different assumptions possibly relevant to meta-
analysis

2.2 Possible assumptions about similarity of effects in dif-
ferent studies

To determine whether the estimate β̂ in (1) is relevant, we need to consider the
modeling assumptions that underlie the meta-analysis. We follow Spiegelhalter
et al. (2004, Chapter 3) and distinguish between three assumptions that can be
made about the true effects, βi, across studies. For now, we restrict ourselves
to the situation of a collection of studies with similar aims and designs, free of
important flaws in their implementation or analysis. (See Section 6 for further
discussion.) We illustrate the three assumptions relevant to such a situation in
Figure 2.

First, the identical parameters (Figure 2a) assumption asserts that all of the
βi are identical, say to β. In other words, exactly the same true effect underlies
each and every study. In the genetic example of Figure 1, the statement would be
that the association between blood pressure and genotype is equal across all study
populations. Some authors refer to this assumption as the fixed-effect model, in
the singular, although in this paper we use common-effect model for clarity. This
model is often presented in the literature as the basis for estimation using the
weighted average in (1), for example by Hartung et al. (2011, Chapter 4).

Second, the independent parameters assumption (Figure 2b) asserts that the
βi are unrelated. In the genetic example of Figure 1, we see how this is a minimal
assumption; it would state only that there is an effect of genotype in each study
population, with no regard as to whether these effects are similar, or not. We
will refer to this assumption as the fixed-effects model, in the plural. This model
underlies the fixed-effects meta-analyses presented by, for example, Hedges and
Vevea (1998).

Third, the exchangeable parameters (Figure 2c) assumption treats the βi as
independent identically-distributed draws from a single ‘mixing’ distribution. In
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the genetic example, this means that the sizes of the genotype’s effect in different
populations, while not necessarily identical, will be somewhat similar; the degree
of similarity is governed by the parameters of the mixing distribution, which are
fit by the available data. This approach can also be motivated without the i.i.d.
assumption; use of a mixing distribution is equivalent to a statement of a priori
exchangeability (Bernardo and Smith, 2003, Chapter 4.2); in the genetic example,
this means only that knowledge of the genotype’s effects in different population
can not be distinguished a priori. Interpreted this way, assuming exchangeable
parameters is in between the assumption that all βi are common, versus all un-
related. However it is motivated, assuming that the βi represent samples from a
mixing distribution is known as the random-effects model in meta-analysis. The
random-effects model is discussed at length elsewhere (Higgins et al., 2009); we
particularly note here that its assumptions are, in general, different from both
the common-effect and fixed-effects model.

We have stated these assumptions at length because, in discussing fixed- ver-
sus random effects, confusion often arises about the motivation for the weighted
average in (1), and its estimated standard error given in (2). As we shall see
in the next section, these estimates can be reasonably motivated under both the
common-effect and fixed-effects models.

3 Interpretation of β̂ under common-effect and

fixed-effects models

As stated in Section 2.1, in meta-analysis of large studies that all report valid
analyses, it is not debated that β̂ in (1) and SE(β̂) in (2) respectively define
an estimate and its variability, under the standard conditions. But exactly what
parameter is β̂ estimating?

Under the common-effect model, the answer is simple: all studies use data
from their respective populations to estimate the same common effect, which we
denote as β; we note that β reflects the effect in any combination of the individual
study populations. Estimator β̂ in (1) can be interpreted as a weighted average
of several estimates of β, and it has several good statistical properties. It is
consistent for the common effect, i.e. with large samples the weighted average
β̂ will approach the true value β, and if each β̂i is unbiased for the common
effect, it also follows that β̂ is unbiased for β. Furthermore, from the Crámer-
Rao lower bound (Schervish, 1995, Chapter 5), it follows that the inverse-variance
weighted estimate will be efficient (i.e. has minimum variance) amongst the class
of estimates that are unbiased for β.

Under the fixed-effects model, β̂ also estimates a population parameter, for
the population formed by amalgamating the study populations at hand. The
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parameter can be described in terms of three components. First, let βi denote
the effect in study population i, as before. Second, let φi denote the rate at
which (under the standard conditions) statistical information accrues about βi,
per observation from study population i; this quantity is also known as the Fisher
information (Casella and Berger, 2001, pg 115) and we note it would be equivalent
to define φi = 1/(niσ

2
i ), where σi denotes the standard error of β̂i and ni is the

sample size in study i. (We note φi is, in general, an average rate of information
accrual, averaging over the observations from study population i.) Finally, in the
overall population that amalgamates all k individual study populations, define ηi
as the proportion of the population that comes from study population i.

Using this notation, we can define β as

β =

∑k
i=1 ηiφiβi∑k
i′=1 ηi′φi′

. (3)

Parameter β and the population it describes are discussed further in Section 3.1.
For now, we see that under the fixed-effects model β is a parameter describing
the overall population; specifically, β is a weighted average of the study-specific
effects βi seen in the individual study populations, where the weight for study
population i is proportional to both the number of subjects selected (ηi) and to
how much information is contributed per subject (φi). (We note this definition
would also hold under the common-effect model, although there the choice of
weights is redundant, as all βi are assumed equal.)

The close connection between (3) and the estimator β̂ is emphasized if we
re-write (1) as

β̂ =

∑k
i=1

ni∑k
j=1 nj

1
niσ̂2

i
β̂i∑k

i′=1
n′
i∑k

j=1 nj

1
n′
iσ̂

′2
i

.

Comparing each term to its equivalent in (3), we see that ni∑k
j=1 nj

is consistent

for ηi,
1

niσ̂2
i

is consistent for φi, and β̂i is consistent for βi, making β̂ consistent

for β, under the fixed-effects model. As already noted, under the standard con-
ditions (2) provides an appropriate standard error, thus validating use of β̂ and
SE(β̂) under the fixed-effects model. Furthermore, under this model β̂ has good
statistical properties; under the standard conditions, the σ2

i and proportions ηi
are known with negligible error, and so if each βi is unbiased, so is β̂. Further-
more, β̂ is efficient among estimates that are unbiased for β.

These results directly contradict statements prevalent in both the statistical
literature and in advice to non-statisticians, that β̂ and SE(β̂) are only valid when
the βi (or β̂i) are homogeneous. Under standard conditions, we have derived them
for inference on β, a weighted average of the βi. No assumption of homogeneity
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was made, or is required. It remains to discuss the scientific relevance of β;
the use of this specific weighted average is described in many common settings
in Sections 3.1 and 3.2 below, with more general results given in Section 3.3.
Analysis using other weighted averages in considered in Appendix C.

3.1 Inverse-variance weighted average in the linear regres-
sion context

We consider the relevance of the parameter β defined by (3), in situations where
it may be possible to pool all the data and perform a comprehensive one-stage
analysis, or ‘individual participant data meta-analysis’ (Higgins et al., 2001).
Here, we assume that interest lies in the linear association between outcome
Y and a single covariate X, and that the variance of Y is constant across all
observations within all studies.

In this setting, a natural and common ‘one-stage’ analysis performs multi-
ple linear regression of Y on X adjusting for study, i.e. fitting study-specific
intercepts. As shown in Appendix A, this regression’s X coefficient is consistent
for β as defined in (3). Even though the one-stage analysis does not explic-
itly compute different estimates from each study, it estimates exactly the same
quantity as combining study-specific estimates in a fixed-effects meta-analysis.
This equivalence holds regardless of whether the true βi are heterogeneous or
not. Interpreting β through the one-stage approach is therefore just as valid as
through meta-analysis, which may be helpful in practice for audiences more used
to regression analyses than weighting or stratification.

For example, in Figure 1’s genetic meta-analysis, we may interpret β as the
average difference in blood pressure (Y ) per additional copy of the ‘A’ allele
(X) in subjects the same (unspecified) study population. This is a reasonable
summary measure – and is the default in practice – but caveats familiar from
linear regression also suggest its limitations.

First, β is an average effect, averaging over the whole population contribut-
ing to the analysis, and therefore may not capture the association in any sub-
groups (Berrington de González and Cox, 2007). Even assuming homogeneity,
i.e. that the effects are identical in each study population, there is no guarantee
that effects are identical within any of those study populations. (See e.g. Berman
(1988) and Buja et al. (2016) for the interpretation of linear regression as an
‘average slope’.)

Second, β averages difference in blood pressure per unit difference in the
covariate of interest. In this example no distinction is made between having, say,
0 vs 1 or 1 vs 2 copies of the ‘A’ allele – nor is any assumption needed that
the effects of these differences are identical. But consequently inference on β
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alone says nothing about whether the mean outcome is linear in this covariate
(an ‘additive’ effect) or follows ‘dominant’ or ‘recessive’ patterns (Brooker, 1999,
Chapter 2).

3.2 Inverse-variance weighted average and the Mantel-
Haenszel method

The behavior demonstrated in Section 3.1 is not limited to continuous outcomes,
as we now illustrate by considering meta-analysis of data from 2×2 tables. We
use standard notation for binary covariate X and binary outcome Y , with cell
counts for each study i denoted as in Table 1. In this notation, the classical
Mantel-Haenszel estimator (Mantel and Haenszel, 1959; Kuritz et al., 1988) is

ψ̂ =

∑k
i=1

AiDi

ni∑k
i′=1

Bi′Ci′
ni′

.

It provides a measure of the observed association between the ‘row’ and ‘column’
variables, across a series of 2×2 tables. It can also be written in the form of
equation (1), as

ψ̂ =

∑k
i=1 Ωi

AiDi

BiCi∑k
i′=1 Ωi′

,

where Ωi =
ni∑k
i′=1 ni′

Bi

ni

Ci
ni
.

Written this way, we see that ψ̂ is a weighted average of odds ratio estimates
specific to each population i, i.e. a form of meta-analysis, and that it is consistent
for

ψ =

∑k
i=1 ηiφ

′
iψi∑k

i′=1 ηiφ
′
i

,

where φ′i denotes the odds ratio of association in subpopulation i, ηi is again the
proportion of the population that comes from study population i, and φ′i, the
product of the limiting values of Bi/ni and Ci/ni, the proportion of observations
in each subpopulation that lie in each off-diagonal position.

As in Section 3.1, the definitions of ψ and ψ̂ upweight populations where a
greater proportion of the data would lie in the off-diagonal positions (i.e. greater
Bi/ni and Ci/ni), and for larger populations (i.e. greater ηi); re-weighting the es-
timate to reflect other populations is straightforward (Greenland, 1982). As well
as being robust to assumptions of homogeneity – a property not shared by com-
peting methods such as conditional logistic regression – the Mantel-Haenszel es-
timate is generally efficient under homogeneity (Donner and Hauck, 1986; Hauck
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Outcome, Y Total
0 1

Covariate, X 0 Ai Bi Ai +Bi

1 Ci Di Ci +Di

Total Ai + Ci Bi +Di ni

Table 1: Notation for study i, when combining multiple 2×2 tables

and Donner, 1988; Yanagimoto, 1990), and compared to other estimates has
a more stable target of inference under heterogeneity (McKinlay, 1978). As a
default method, giving a summary of the association across the population, it
therefore has much to recommend it (Breslow, 1996).

In the absence of additional covariates, and under the standard conditions,
Wald tests based on the Mantel-Haenszel estimate are asymptotically equivalent
to those from logistic regression analysis of the row variable on the column vari-
able which adjusts for study, i.e. fits study-specific intercepts, and are similarly
asymptotically equivalent to those from conditional logistic regression, stratifying
on study (Breslow, 1981). The equivalence is not just asymptotic; the Mantel-
Haenszel test for zero average effect is in fact identical to the score test in the
conditional logistic regression model, at any sample size (Day and Byar, 1979),
and the Mantel-Haenszel effect estimate is a one-step approximation to the logis-
tic regression odds ratio (Breslow, 1981). We see that, as in the linear regression
setting, meta-analysis of data from 2×2 tables estimates the same parameter as
a combined-data analysis.

3.3 Inverse-variance weighted average for general regres-
sion

The results in Sections 3.1 and 3.2 in fact hold, in large samples, in many regres-
sion settings including generalized linear models, the Cox proportional hazards
model, and linear mixed models for longitudinal data. Formal proofs, regularity
conditions and illustrative simulations, given by Lin and Zeng (2010), are beyond
the scope of this paper, but their two main results are as follows;

First, the parameter estimated by a combined-data regression analysis, that
adjusts for study, can also be estimated by fixed-effects meta-analysis, under the
standard conditions. This follows because the parameter is a weighted average of
the true effects in the separate studies, with weights proportional to the precision
provided by each study’s data. The equivalence holds even when each study
adjusts for covariates, and even if the covariates differ between studies.

Second, without further assumptions, the meta-analysis and combined-data
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estimates of the parameter have similar asymptotic efficiency, i.e. essentially no
information about parameter β is lost by using meta-analysis instead of combined-
data analysis. The asymptotic efficiency is identical under homogeneity, and sim-
ilar under heterogeneity unless the values of βi differ drastically. When stronger
assumptions can be made, for example that any additional covariate effects are
identical in all studies, there is potential for a gain in efficiency by combined-data
analysis, albeit a gain which is small in most situations. In particular, when the
studies are randomized trials the gain is zero, since the additional covariates will
be independent of randomized treatment.

4 Fixed-effect(s) meta-analysis and the goals of

the inference

In Section 3, we saw that without any assumptions of homogeneity, the fixed-
effects meta-analysis estimates a well-defined population parameter, of general
relevance in realistic settings. Consequently, assessing the appropriateness of
fixed-effects analyses by checking homogeneity is without foundation — yet ex-
actly this argument appears throughout the literature, resulting in the difficulties
described in Section 1.1. Both in theory and in practice, the argument is not ten-
able and should not be made.

However, if we erase this argument from the statistical lexicon, the question
remains of how to decide whether to use fixed-effects meta-analysis. Of course,
there is no single universally-correct answer, but to aid meta-analysts as they
address this question for their analyses, in Sections 4.1, 4.2 and 4.3 we consider
inferential goals in three practical situations: testing, estimation and prediction.

4.1 Testing

First we consider testing, and in particular tests of the so-called ‘strong’ null
hypothesis, that all parameters βi are exactly zero. This test would be of interest,
say, if an exposure was hypothesized to have no effect in any of the populations
under study, for example in clinical trials of a new drug treatment. Under the
strong null hypothesis, the common-effect and fixed-effects models are both valid.
Furthermore, we might note that a special case of the random-effects model also
holds, where both the underlying mean and the between-study heterogeneity
are zero. Under the strong null, it follows straightforwardly that parameter β
from equation (3) is zero, and hence that Wald tests using β̂ and SE(β̂) from the
fixed-effects analysis are appropriate, under the standard conditions (Senn, 2007).
Moreover, due to the efficiency of β̂, among linear estimates, these particular tests
will have good power compared to a wide range of competitors.
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A second testing-based inference asks “is the effect size ‘on average’ different
from zero, in the study populations at hand?” The weighted average we use in (3)
specifies precisely what ‘average’ we mean, and the ‘weak’ null hypothesis being
tested is that this β is zero – which happens under the strong null, but also in
some situations where individual βi are non-zero. Under the standard conditions,
valid tests of the weak null are given by Wald tests that compare Z = β̂/SE(β̂)
to a standard Normal distribution. The genetic setting of Figure 1 provides a
practical example where tests are commonly used in this way, whether or not
heterogeneity is observed (Gögele et al., 2012). Not only is power to reject the
strong null relevant, but the average effect size (in particular its direction) is used
in planning replication analyses, performed in similar populations where similar
average effects are plausible.

In settings where the weak null’s β = 0 hypothesis is not of interest, and if
the strong null that all βi ≡ 0 is known not to hold, then tests based on inverse-
variance weighted averages are not appropriate, under either the common-effect
or fixed-effects model. It is possible that tests based on random-effects analyses
would still be appropriate, assessing the weak null where the distribution of effect
sizes has mean zero — but this subtle distinction between different weak nulls
seems seldom likely to be useful in practice.

4.2 Estimation

When the goal is estimation, the relevance of common-effect and fixed-effects
models will depend on the nature of the studies in the meta-analysis. Common-
effect models can be justified only when the studies are near replicates of each
other, so that is it reasonable to assume an identical parameter underlying every
study. This is possible, for example when repeating carefully-controlled experi-
ments, where the impact of e.g. ‘batch effects’ can be ignored, but is rare in less
well-controlled forms of study.

When between-study differences are believed to exist, the fixed-effects param-
eter β as defined in (3) may be a useful parameter to estimate. For example, if the
subjects in the studies contributing to the meta-analysis are representative of an
overall population of interest, the fixed-effects estimate is directly relevant to that
overall population — as would be the case in Figure 1. If, however, the sample
sizes across studies vary so greatly that the combined population is unrepresenta-
tive of any plausible overall population, then the fixed-effects parameter will not
be as useful. For example, clinical trials of the effect of intravenous magnesium
for acute myocardial infarction include several small studies and two very large
studies (the ISIS-4 trial randomized 58,050 participants and the MAGIC trial
randomized 6213; see Li et al. (2007) for details). The observed effects in smaller
trials indicated a benefit of magnesium, in contrast to the strongly null findings of
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the two large trials. The usefulness of the fixed-effects parameter then depends on
a judgment about whether the combined population across trials represents the
population of interest, or whether populations under study in the smaller trials
were under-represented and therefore deserve to be ‘upweighted’ in the analysis.

The natural estimation in random-effects analysis is of the mean of the random-
effects distribution; when the samples are considered a simple-random sample
from a population of possible studies, this mean represents the effect size we
would expect to see in a new study, sampled in the same way (Higgins et al.,
2009). However, if the random-effects assumption is motivated through exchange-
ability alone, there is no direct motivation of this mean parameter as the target
of inference, beyond computational convenience, and further clarification should
be sought regarding what constitutes a good or bad estimate.

4.3 Prediction

Using summary statistics β̂i and σ̂i alone, it is generally not possible to make
well-calibrated predictions of new subject-level data, under any of the models
discussed here. However, for some analyses we may want use the existing data
to predict the parameter value a new study might estimate. For example, to
estimate the power of a proposed new study, we would estimate the effect size
of a new β∗i . Estimates of the generalizability of a meta-analysis’ findings would
use typical values of new β∗i , but also their spread.

In order to make these forms of inference, we must assume some connection
between new β∗i and the βi studied in the original meta-analysis. Under the
common-effect model, where by assumption the same parameter governs associ-
ation in all studies, the connection is technically trivial; estimate β̂ and SE(β̂)
supply everything we need to predict or generalize. Conversely the assumptions
of the fixed-effects model, by themselves, say nothing about studies except those
in the meta-analysis, and so offer no obvious means of predicting or generalizing
the results. Additional assumptions could be added, about how different new ef-
fects β̂∗i might be to the βi in the original analysis, but the arbitrariness of doing
so is a notable limitation. Between these two extremes lies the random-effects
model, where under the assumption of effects being drawn randomly from a mix-
ing distribution, we can naturally model future effects β̂∗i as new draws from a
population, the parameters of which are informed by the original β̂i and σ̂i. For
examples and further discussion see Higgins et al. (2009).
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5 Dealing with heterogeneity alongside a fixed-

effects meta-analysis

In Section 4, we described how fixed-effects analysis may be appropriate with or
without assumptions that all effect sizes βi are identical. However, evaluating
the similarity of the βi may still be desirable, when there is interest in parame-
ters beyond the precision-weighted average effect β. For example, in the setting
of Figure 1, while the contributing populations are broadly similar (e.g. all of
European ancestry) they also differ by design in e.g. average age, proportion
male/female, and other characteristics, and any genetic effect of the ‘A’ allele
may differ between populations because of this. Testing homogeneity of the βi
allows us to detect these differences, and thus to reject the null hypothesis that
the ‘A’ allele has zero effect in all populations; implementation of such tests is
described in Section 5.1. Methods that quantify how the effect sizes βi differ with
regard to particular population characteristics are described in Section 5.2. All
these methods are derived, as before, under the fixed-effects model, and the infer-
ence they provide is a complement to the fixed-effects analysis seen in Section 3.

5.1 Fixed-effects tests of homogeneity

Cochran’s Q statistic is a well-known measure of heterogeneity in meta-analyses.
In our notation, it is defined as

Q =
k∑
i=1

wi(β̂i − β̂)2.

We see that Q sums the squared deviation of each β̂i from β̂, weighting these
summands by wi. This choice of weights can be motivated informally; any con-
tribution to Q that tells us more about β should also tell us more about how the
βi vary around β, and hence we should give it more weight. The form of weights
can also be motivated by noting that it results in a statistic that is invariant to
scale and location transformations of the β̂i. A less well-known way to motivate
Q is by writing it as

Q =

(
k∑
i=1

Z2
i

)
− Z2, (4)

where Zi = β̂i/σ̂i and Z = β̂/SE(β̂). Here we obtain Q by subtraction, taking
away the test statistic for assessing the ‘weak’ null from the test statistic assess-
ing the strong null. Equivalently, we see that Q is measuring how significantly
the study effects differ from zero, over and above how significantly their overall
average differs from zero.
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Several distributional properties of Q are known, all of which are stated here
under the standard conditions. As shown in Appendix B, Q and Z are indepen-
dent. Under the null hypothesis of homogeneity, including the ‘strong’ null of no
effect in any study, Q has a χ2 distribution with k − 1 degrees of freedom; com-
paring Q to this reference distribution gives a well-known test of homogeneity.
The Q statistic can be used as the basis for other ways to quantify similarity of
effects across studies, for example using the I2 statistic (Higgins and Thompson,
2002) or a straightforward method-of-moments estimate of the between-study
variance (DerSimonian and Laird, 1986). Under heterogeneity Q has a non-
central χ2

k−1 distribution with non-centrality parameter
∑k

i=1wi(βi−β)2 (Hedges
and Pigott, 2001); in many practical settings this value will be small (Higgins
et al., 2003) so the power of the test will be small. For more detailed discus-
sion of this test see Hoaglin (2016). The distribution of Q when the standard
conditions do not hold is explored by Kulinskaya et al. (2011a,b).

For our discussion, independence of Q and Z is the most important property.
It re-emphasizes that testing for homogeneity and testing for no overall main
effect are distinct goals, which may or may not be relevant to any specific meta-
analysis. When testing is appropriate, this independence property also makes it
straightforward to control Type I error rates, although what constitutes a Type I
error will depend on one’s scientific goals, and deserves careful prior consideration.
To emphasize the variety of possible goals, we consider when six distinct testing
approaches would be appropriate;

• Test only the weak null, of zero average effect, in a fixed effects analysis.
As discussed in Section 3, this would be appropriate if the meta-analysis
substitutes for combined analysis of the original datasets.

• Perform only the test of homogeneity. This would be appropriate if the
presence or absence of an overall main effect was uninteresting. It would be
a reasonable first step if, say, an established treatment with a known overall
main effect was to be assessed for efficacy across a range of subpopulations.

• Perform tests of the weak null and of homogeneity. This would be appropri-
ate if any deviation from the strong null is of interest and if we additionally
want to distinguish between the alternatives of an overall main effect or
homogeneity of effect between the subpopulations. To preserve the Type I
error rate across both tests, significance levels of the individual tests would
have to be adjusted, relative to their use as stand-alone tests. However, as
the individual tests are independent, Bonferroni correction makes this ad-
justment simple, without unduly conservative inference. Other corrections
could be used if we wish to ‘spend’ more of the Type I error rate on the
test of overall main effect, rather than on the homogeneity test.
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• Follow a rejection of the weak null with a test of homogeneity. This would
be appropriate if our primary interest is the presence/absence of an overall
main effect, but we secondarily want to assess homogeneity of effect across
subpopulations. This would be reasonable if the subpopulations had some
a priori distinction, such as sex or age, which was plausibly relevant to the
effect size. (See also Section 5.2.) To preserve the Type I error across both
tests, significance levels would have to be adjusted in some way (Siegmund,
1985), but with only two independent tests this is typically straightforward.

• Perform a single test of the strong null. This would be appropriate if any
deviation from the strong null is of interest, but where we do not want to
distinguish between the alternatives of an overall main effect and/or homo-
geneity of effect between the subpopulations. The test could be performed
using the individual tests’ results alone (as when we perform both tests), or
by comparing a test statistic of the form (1−λ)Q+λZ2 to the convolution
of (1 − λ)χ2

k−1 and λχ2
1 , for some pre-specified constant λ. The values of

λ that lead to good power will depend on plausible alternative hypotheses,
i.e. good choices of λ will be context-specific. However, if it is plausible
that the βi are all similar, setting λ = 1 and testing the strong null using
Z2 alone will provide close to optimal power.

• Do no tests. Testing hypotheses need not be part of statistical inference.
If we have no interest in whether the true values of βi or β can be dis-
tinguished from pre-specified null values, or expect to have little power to
make such distinctions, then motivation for statistical testing is weak. Many
recent texts on meta-analysis have been particularly dismissive of testing
for heterogeneity, instead favoring attempts to quantify heterogeneity (See
Section 4.2). More straightforwardly, if we wish to know the range of pa-
rameter values that are plausible in particular populations, then confidence
intervals provide more useful inference than tests (Borenstein et al., 2009;
Higgins et al., 2003).

Whenever heterogeneity is of interest, it is natural and reasonable to ex-
amine which studies’ effects are furthest from the others. Measuring distance in
terms of statistical significance, the studies may be ordered by their contributions
wi(β̂i − β̂)2 (Thompson, 1993) although the random variation in this observed
ordering may be substantial. As shown in Figures 1 ‘forest plots’ of the β̂i and
corresponding confidence intervals are a less formal approach that can identify
outlying study results; for further plotting recommendations see Anzures-Cabrera
and Higgins (2010).
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5.2 Fixed-effects meta-regression

In Section 5.1, we addressed the presence of heterogeneity, as a secondary step in
a fixed-effects analysis. When study-specific covariates are available, we can also
extend the fixed-effects analysis to describe how the underlying effects βi differ,
among studies with different covariates; meta-regression is the general term for
methods that do this. We note this option is not available under common-effect
assumptions, as these have no heterogeneity to explain.

Figure 3 illustrates a linear meta-regression of the data in Figure 1, where we
assess how the genetic effect of the ‘A’ allele differs among study populations with
different mean ages. We see that, based on this data, the genetic effect appears
not to be uniform but trends upwards as we consider studies with older average
age – and in studies of complex disease outcomes like blood pressure this form of
‘gene-environment interaction’ is highly biologically plausible (Caspi and Moffitt,
2006), even in situations where the overall average effect is close to zero. We see
that the size of the observed trend can be a useful summary of available data.

To formally justify the analysis in Figure 3 under the fixed-effects model, we
assume (for simplicity) that a single univariate covariate xi is available, known
with negligible error in each study population. In a fixed-effects linear meta-
regression, using the same notation as before, we estimate the linear trend by

β̂MR =

∑k
i=1 wi(β̂i − β̂)(xi − x̂)∑k

i′=1wi′(xi′ − x̂)2
.

where x̂ =

∑k
i=1 wixi∑k
i′=1wi′

.

One way to motivate β̂MR is through weighted linear regression of the β̂i on the
xi (Van Houwelingen et al., 2002), with weights wi. In doing so, derivations
typically assume that the underlying βi are truly linear in xi – implying that any
two studies with the same xi would have identical βi. However, much like the
assumption of homogeneity in Section 3 this is not actually required. Following
Berman (1988), we can instead view β̂MR as just a weighted average of observed

‘pairwise slopes’ of the form
β̂i−β̂j
xi−xj , for i 6= j. The weight is larger for studies that

are more precise, and also where the difference between xi and xj is greater.

As with the discussion of fixed-effects estimate β̂ in Section 3, β̂MR estimates
a population parameter; this parameter can be formally defined as

βMR =

∑k
i=1 ηiφi(βi − β)(xi − x)∑k

i′=1 ηi′φi′(xi′ − x)2
=

∑k
i=1 ηiφ

2
i (xi − x)2 βi−β

xi−x∑k
i′=1 ηi′φi′(xi′ − x)2

, (5)

where x =

∑k
i=1 ηiφixi∑k
i′=1 ηi′φi

.
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Figure 3: Meta regression, using data from Levy et al. (2009). The individual
study effects from Figure 1 are plotted against their corresponding average age
(xi). The overall main effect is plotted at x̂, the weighted average mean age.
Box sizes are proportional to the precision of corresponding effect estimates. The
dashed line indicates the fitted slope β̂MR from meta-regression of the βi on xi.
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The parameter βMR is a slope, describing an average difference in βi (measured
relative to β) per unit differences in xi (measured relative to x). The average is
weighted; as with overall effect β we upweight contributions with greater ηi and
greater φi, but here contributions with more extreme xi are also upweighted –
just as in simple linear regression.

To describe the uncertainty in β̂MR, the usual estimate of the standard error
is obtained through weighted linear regression, and is

SE
(
β̂MR

)
=

√
1∑k

i=1wi(xi − x̂)2
. (6)

When true linearity of the βi with xi does not hold, this is not in general a valid
estimate of the variability of β̂MR, and statistical inference based on it will not
be valid (Higgins and Thompson, 2004). However, use of a heteroskedasticity-
consistent or ‘robust’ estimate of standard error corrects this problem (Huber,
1967; White, 1980; Hedges et al., 2010).

We emphasize that in practice the estimation of this trend and its standard
error will often be sufficient for inference based on the available data. However,
if hypothesis tests are required, we can define

ZMR =
β̂MR

SE
(
β̂MR

) =

∑k
i=1wi(β̂i − β̂)(xi − x̂)√∑k

i′=1wi′(xi′ − x̂)2

,

a natural test statistic for the null hypothesis that average study effect, averaging
over studies with the same value of xi, is the same at all levels of xi – or less
formally, that there is no trend of the βi with xi. This is a weaker null hypothesis
than stating that all the βi are zero, i.e. the ‘strong’ null, and in fact the test
statistic for the strong null can be decomposed as

k∑
i=1

Z2
i = Z2 + Z2

MR +QMR, (7)

where QMR =
k∑
i=1

wi

(
β̂i − β̂ − β̂MR(xi − x̂)

)2

.

This decomposition, in which the three terms are independent (see Appendix B)
extends that seen in (4). Here, we see that QMR quantifies the significance of
the variability in the βi around zero that is not explained by the average effect
(Z2) or the trend with the xi (Z2

MR). Assuming that the βi are truly linear in
the xi, and under the standard conditions, ZMR has a N(0, 1) distribution, and
QMR has a χ2

k−2 distribution.
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As with the discussion of average effect β in Section 3.1, it makes sense to ask
whether the linear trend βMR is of substantive scientific interest. Linearity must
hold under the strong null, when all βi are zero, and so for tests of this null it seems
uncontroversial that the answer has to be ‘Yes’. In the presence of a truly non-
linear but increasing trend, βMR will usually capture most of variability in the βi
around their overall mean β, but use of one-dimensional summary measure β̂MR

may be inefficient compared to more flexible approaches. An extreme example of
inefficiency comes when a symmetric U-shaped relationship truly holds between
βi and xi, where the zero slope we estimate using meta-regression is not a helpful
summary, and does not provide power to detect heterogeneity. In such settings
the more general goal of estimating the ‘response surface’ may be appropriate, i.e.
characterizing how βi differs between many different populations (Rubin, 1992).

The results above follow from well-known properties of ‘simple’ linear regres-
sion, involving only one covariate. While not pursued here, analogous results hold
for multiple regression, with more covariates. (For estimation of high-dimensional
response surfaces see Ritz et al. (2008).) A more fundamental point is that
meta-regression can be viewed as a natural extension of the fixed-effects analysis
discussed in Section 2, which in many applications will be the primary focus.
Meta-regression can be seen as a natural way to explore heterogeneity of the βi
around β, orthogonal to the inference on β itself, but using the same fixed-effects
assumptions specified in Section 2.2.

One important difference between meta-regression and estimation of an overall
main-effect is that the meta-regression does not, in general, estimate the same
parameter we would estimate if individual level data were available. Due to
the well-known ecological bias, the relationship between studies’ point estimates
and their study-wide average covariate level xi need not reflect the relationship
between individual outcomes and covariates (Berlin et al., 2002). The differences
can be stark; sign-reversals can be plausible (Teramukai et al., 2004). While no
meta-regression method that uses study-specific average covariates can eliminate
all risk of ecological bias (a form of confounding) the problem can be reduced by
introducing measures of within-study variability of covariate xi into the analysis.
An important special case when this is not required is testing the strong null, of
no association between outcome and covariate, or between β̂i and xi.

6 Discussion and Limitations

Fixed-effects meta-analysis is a fundamental analytic tool for evidence synthesis,
and confusion about it is therefore a fundamental obstacle to successful evidence
synthesis. As we have described, the fixed-effect(s) analysis has various interpre-
tations, but can be simply and robustly motivated via consideration of an overall
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average effect parameter, where the weighting in this average reflects what an
analyst might use were it possible to combine individual-level data.

The average effect discussed here (i.e. parameter β defined in Equation (3))
can be estimated using straightforward methods, which have good statistical
properties under the standard conditions. These methods extend naturally, and
without restrictive modeling assumptions, to descriptions of variability around
the overall average effect (i.e. Q as defined in Equation (4)) and to trends in
effects seen across studies (i.e. βMR as defined in Equation (5)).

When the standard conditions do not hold, caution about the validity of
these methods and their applied results is merited. One plausible violation oc-
curs when combining results from small studies, when the statistical imprecision
in the study’s estimated standard errors is not negligible. In this situation, the
estimates and test statistics described here will typically be heavier-tailed than
the approximations given here. Subject to more assumptions, better approxima-
tions to the true distributions are available in the literature (Brazzale et al., 2007;
Brazzale, 2005) but are not yet fully-integrated into software dedicated to meta-
analysis. With small studies, a similar concern is that the study estimates are not
close to Normal, particularly when obtained from non-linear forms of regression,
or other more complex methods. In both situations, default frequentist infer-
ences may be poorly calibrated; see e.g. Hoaglin (2015) for a recent discussion.
Furthermore, for some effect measures (including log odds ratios) the statistical
correlation between estimated standard errors and estimated effect sizes is par-
ticularly problematic in small studies (Shuster, 2010). In some relatively simple
setting where only statistical tests are required, all of these small-sample issues
can be addressed by permutation methods, see e.g. Hong et al. (2006). For other
goals, bootstrap, parametric bootstrap and more sophisticated likelihood meth-
ods may be helpful (Van Den Noortgate and Onghena, 2005; Guolo, 2012), and
realistic simulation studies may help the user identify which methods plausibly
work well for their situation (Hoaglin, 2015).

Another important violation of the standard conditions occurs when studies
do not provide valid analyses, either because of limitations in the design and
conduct of the study, or because, after data collection, post hoc changes are made
to the analysis, but reported analyses do not take these steps into account. In
a single analysis such procedures may bias effect estimates, and seriously under-
estimate standard errors (Leeb and Pötscher, 2005); they can similarly invali-
date inference from any meta-analysis. If in practice these procedures cannot be
avoided, accounting for the biases they induce is known to be difficult, not least
because the biases are difficult to identify in the first place.

A final consideration is less directly statistical; is the population represented
by the amalgamation of the k contributing studies of interest? Analytic tech-
niques for re-weighting may adjust the standard fixed-effects analysis accord-
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ingly, but the same concerns are addressed when we select which studies (and
thus which study populations) will be included in the meta-analysis, or excluded.
This step is stressed by, for example, Higgins and Green (2011, Chap 5,6,7), but
inherently offers each study’s data an all-or-nothing option. When a re-weighting
scheme can be established, we may instead retain some contribution from studies
which would otherwise be excluded; further discussion is given in Appendix C.

To conclude, when synthesizing evidence on a univariate effect, fixed-effects
meta-analysis is a simple method that provides useful well-calibrated inference
about an average effect, under mild conditions. Fixed-effects meta-analysis can
and often should be used in situations where effects differ between studies. This
recommendation in no way rules out statistical analyses of heterogeneity, and
fixed-effects meta-analysis has natural complements (Cochran’sQ, meta-regression)
that provide them. Measures of heterogeneity should not be used to determine
whether fixed-effects analysis is appropriate, but users should instead make this
decision by deciding whether fixed-effects analysis — or some variant of it —
answers a question that is relevant to the scientific situation at hand.
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7 Appendices

7.1 Appendix A: Estimation of fixed-effects β via one-
stage analysis

To illustrate how the definition (3) relates to standard methods, we consider a
comprehensive, one-stage analysis, or ‘individual participant data meta-analysis’ (Hig-
gins et al., 2001); similar arguments are presented by Olkin and Sampson (1998).
We assume that the β̂i and σ̂i are in each study obtained from simple linear re-
gression analyses, from regression of length ni vectors Y i on Zi, where covariate
z is measured on all subjects. Adjusting for study, the coefficient of z in a pooled
linear regression is obtained as the last element of

β̂ = (XTX)−1XTY

where

X =


1n1 0n1 · · · 0n1 z1

0n1 1n2 · · · 0n2 z2
...

...
. . .

...
0nk

0nk
· · · 1nk

zk
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and Y denotes the length
∑k

i=1 nk vector of outcomes, i.e.

Y T = {Y T
1 ,Y

T
2 , ...,Y

T
k }.

By the Frisch-Waugh-Lovell theorem, this coefficient can also be written as

Cov(Ỹ , Z̃)

V ar(Z̃)

where Cov() and V ar() denote sample covariance and variance of vectors

Ỹ
T

=
{
Y T

1 − Ȳ 11
T
n1
,Y T

2 − Ȳ 21
T
n2
, . . . ,Y T

k − Ȳ k1
T
nk

}
Z̃
T

=
{
ZT

1 − Z̄11
T
n1
,ZT

2 − Z̄21
T
n2
, . . . ,ZT

k − Z̄k1
T
nk

}
,

and where Ȳ i = Y T
i 1ni

/ni and Ȳ i = Y T
i 1ni

/ni denote the study-specific mean
outcomes and mean covariates. The vectors Ỹ and Z̃ contain outcomes and
covariates residuals, obtained after regressing out study-specific intercepts.

The coefficient of z is therefore

∑
i(Y i − Ȳ i1ni

)T (Zi − Z̄i1ni
)∑

i′(Zi′ − Z̄i′1ni′
)T (Zi′ − Z̄i′1ni′

)
=

∑
i

(Y i−
¯Y i1ni )

T (Z i−
¯Z i1ni )

(Z i−
¯Z i1ni )

T (Z i−
¯Z i1ni )

(Zi − Z̄i1ni
)T (Zi − Z̄i1ni

)∑
i(Zi − Z̄i1ni

)T (Zi − Z̄i1ni
)

=

∑
i β̂iniV ar(Zi)∑
i′ ni′V ar(Zi′)

=
∑
i

β̂i
niV ar(Zi)∑
i′ ni′V ar(Zi′)

.

Under the assumption of constant variance of all the outcomes, we see that the
parameter estimated using individual data is a weighted average of the βi, where
the weighting is proportional to niV ar(Zi), which is in turn proportional to 1/σ2

i

under the standard conditions. The same equivalences hold if we let each ni
tend to infinity (i.e. at the population level) while keeping their relative sizes
constant – as is standard in large-sample arguments for single-study analyses.
In this limit, regardless of homogeneity, the weighting is proportional to ηiφi,
and we see that the combined one-stage data analysis consistently estimates the
same parameter of the same population as the fixed effects meta-analysis. To
generalize the argument to include study-specific covariates, 1ni

can be replaced
by the design matrix of covariates (excluding Z) for each study.

7.2 Appendix B: Properties of ZMR, QMR

Notation used in the main body of the paper is assumed throughout. We note
that, under the standard conditions, the σi are estimated by σ̂i with negligible
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error, and therefore develop arguments with σi known; in all cases, the same
results hold asymptotically when the estimation of σi is taken into account.

The components of Q and Z can be written in block matrix form as follows;[
β̂ − β̂1k

β̂

]
=

[
Ik − 1kw

T/W
wT/W

]
β̂,

where β̂ denotes the length k vector of study-specific estimtes β̂i, 1k is a length
k vector of ones, Ik denotes the k × k identity matrix, w is the length k vector
of precisions wi, 1 ≤ i ≤ k and W =

∑k
i=1wi. Hence the relevant covariances are

obtained from [
Ik − 1kw

T/W
wT/W

]
Σ
[
Ik −w1Tk /W, w/W

]
where Σ = diag ({σ2

i }), the covariance of β̂. The expression expands to[
Σ− 1k1

T
k /W 0k

0Tk 1/W

]
where 0k denotes a length k vector of zeros.

In the meta-regression setting, we similarly seek the covariance of elements of β̂ − β̂1k − β̂MR(x− x̂)

β̂

β̂MR

 ,
where x denotes the length k vector with elements xi. Hence we seek elements
of[
Ik −X(XTWX)−1XTW

(XTWX)−1XTW

]
Σ
[
Ik −WX(XTWX)−1XT , WX(XTWX)−1

]
where X denotes the k× 2 design matrix with columns 1k and x, and where W
denotes the k × k diagonal matrix with diagonal elements wi. This expression
simplifies to [

Σ−X(XTWX)−1XT 0
0 (XTWX)−1

]
where the lower right hand entry is

XTWX =

[ ∑
wi 0

0
∑

iwi(xi − x̂)2

]
.

With zero covariance again implying independence (under the Normality implicit
in the standard conditions) we find that the elements QMR, Z, and ZMR are
mutually independent.
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7.3 Appendix C: Meta-analytic analogs of alternatively-
weighted individual-data analyses

The focus of this manuscript is meta-analytic estimates (means, and regression
slopes) that are defined via weighting. In our default meta-analytic approach,
we have focused on weighting study-specific estimates so as to provide estimates
of parameters in standard unweighted individual-data analyses. However, the
same framework also supports interpreting meta-analytic approaches in terms of
individual-data analyses that use non-uniform weights. Non-uniform weighting
of this sort is standard in the statistical survey literature (Lumley, 2010), where
close analogs of the following results can be found.

We assume the same basic setup as in Appendix A, except that we now
consider weighted linear regression estimates of Y on Z, adjusting for study. For
simplicity, we consider situations where each participant in study i receives the
same weight, denoted ωi. Using the same arguments as in Appendix A, the
estimator from a one-stage analysis of individual data that adjusts for study is∑

i β̂iωiniV ar(Zi)∑
i ωiniV ar(Zi)

,

which is consistent for ∑
i βiωiηiφi∑
i ωiηiφi

. (8)

A simple first example of weights uses 1/ωi ∝ ηiφi, giving an estimate con-
sistent for the arithmetic mean

∑
i βi/k. The meta-analytic estimator

∑
i β̂i/k

in consistent for the parameter defined in (8). This estimator has been sug-
gested in practice (Shuster, 2010) – but as this argument shows, it corresponds
to upweighting data from studies which represent a smaller proportion of the
overall population (smaller ηi) or which have weaker designs (smaller φi). Hence
beyond its simplicity the method is unlikely to be a good choice in practice, and
it has attracted corresponding criticism (Laird et al., 2010; Rücker et al., 2010;
Thompson and Higgins, 2010; Waksman, 2010).

A second example considers re-weighting individuals in order to reflect a par-
ticular target population. Specifically, we consider re-weighting the individuals
contributing to the example of Figure 1 to reflect a population with some spec-
ified ratio of men to women, in which we want to estimate association between
blood pressure and rs11014166 genotype. Measures of association within each
study, and each study’s sex ratio are given in Figure 4.

Denoting the proportion female in each study as pi, the proportion of women
in the overall population which we have targeted by use of weights ωi is con-
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strained to be

pω =

∑
i piηiωi∑
i ηiωi

,

and the corresponding meta-analytic estimator is∑
i β̂iωiηiφi∑
i ωiηiφi

,

where ηiφi ∝ σ−2
i . Of course, there are many such weights ω that will achieve the

constraint on pω. Using Lagrange multipliers (details omitted) it can be shown
that the choice which minimizes the variance of the meta-analytic estimator sets

ωi ∝ (pi − pω)φ−1
i −

∑
i′

(pi′ − pω)ηi′∑
j(pj − pω)ηj

(pi′ − pω)φ−1
i .

We see that weights are higher for studies for which quantity (pi − pw)φ−1 is far
from the average such quantity, but where this average is weighted by the relative
size of (pi − pw)ηi. In this way the weights accomodate both the per-observtion
information, and the relative size of the studies, whilst satisfying the constraint
on pω.

The approach is illustrated in Figure 4, using the data from Figure 1. When pω
corresponds to the proportion in the unweighted amalgamation of all the studies,
the estimate is identical to the standard fixed-effects approach. Elsewhere the
estimate changes little, relative to its statistical uncertainty, suggesting that the
effect size differs little as we consider populations with different sex balances.

Another example of reweighting based on elicited prior opinion regarding the
relevance of each study to a particular scenario is given by Turner et al. (2009).
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Figure 4: Estimates from overall populations chosen to have specific proportion
female, using data from Levy et al. (2009). The individual study effects from
Figure 1 are plotted against their corresponding proportion female; the sample
sizes and proportions female are given above the plot. For a selected range of
proportions female, the point estimate and 95% confidence interval are shown, for
the parameter that is estimated by weighted linear regression of blood pressure
on genotype, adjusting for study.
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