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Dynamic Energy Management of FPGA Accelerators in
Embedded Systems

MOHAMMAD HOSSEINABADY, University of Bristol
JOSE LUIS NUNEZ-YANEZ, University of Bristol

In this paper, we investigate how to utilise an FPGA in an embedded system to save energy. For this purpose,
we study the energy efficiency of a hybrid FPGA-CPU device that can switch task execution between hardware
and software with focus on periodic tasks. To increase the applicability of this task switching, we also consider
the voltage and frequency scaling (VFS) applied to the FPGA to reduce the system energy consumption. We
show that in some cases, if the task’s period is higher than a specific level, the FPGA accelerator cannot reduce
the energy consumption associated to the task and the software version is the most energy efficient option.
We have applied the proposed techniques to a robot map creation algorithm as a case study which shows up
to 38% energy reduction compared to the FPGA implementation. Overall, experimental results show up to 48%
energy reduction by applying the proposed techniques at runtime on thirteen individual tasks.
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power issues;

Additional Key Words and Phrases: FPGA, Dynamic Voltage and Frequency Scaling, Dynamic Power Manage-
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1 INTRODUCTION
Embedded systems consisting of computation, communication and memory cores are used exten-
sively in different devices such as mobile phones, smart cards, satellites, robots, medical monitoring
devices, home appliances and so on. Most of these embedded systems perform periodic tasks during
their life-time. For example, an autonomous mobile robot periodically monitors the environment
by using different types of sensors to build a map of an unknown environment or to detect objects.
In addition, most mobile embedded systems draw their power from batteries and utilise small
computational resources. The limited computational resources and energy budgets require the con-
sideration of specific design techniques for portable embedded systems. Therefore, researchers
have proposed using FPGA fabrics along with main processors in such systems. Examples are
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Fig. 1. DEM general view

Internet of Things (IoTs) devices and robots that usually utilise small FPGAs thanks to their size
constraints. Because of limited resources available on these FPGAs, they can host a single task at a
time. Consequently, when the FPGA is idle, especially in periodic tasks, its energy consumption to
maintain the configuration can be significant. Addressing this issue is the main concern of this
paper.

Traditionally, FPGAs are used as accelerators to improve the computational power by implement-
ing compute-intensive tasks. Previous research has also reported the high performance/Watt factor
of FPGAs compared to processors and GPUs. However, if energy is the optimization objective and
not just power, it is not clear how FPGAs can be used to save energy in an embedded system. In
this paper, we try to answer this question: "How can an FPGA added to an embedded system save
energy when running a single periodic task?" In this context a periodic task is a task that executes
repeatedly with a specific rate. For this purpose, we show that the FPGA idle energy consumption
which is required for holding its configuration can increase the total energy consumption which in
turn decreases the FPGA effectiveness. Therefore, we utilise three techniques to reduce the total
energy consumption of a periodic task. For a short FPGA idle time, the first technique which is
based on voltage and frequency scaling on the FPGA tries to increase the task execution time to
reduce the idle time in favor of energy reduction [1]. If the idle time is still dominant then the
second technique considers switching the task from FPGA to the CPU and completely shutting
down the FPGA to reduce the energy. If the switching to the software version cannot reduce the
energy consumption, then the third technique considers turning off the FPGA during the idle time.
A Dynamic Energy Management (DEM), depicted in Fig. 1, is proposed to implement these

three techniques. It consists of three phases and the last two phases are the main focus of this
paper. Using High-Level Synthesis (HLS) tools, the first phase of this flow, i.e., Accelerator Design
(AD), provides a hardware implementation for a given task. The second phase is Energy Model
Generation (EMG) during which numerous empirical measurements for different values of FPGA’s
voltage and frequency take place to be used for training regression models that represent the task
execution time and energy consumption. Using these models, Phase 3 predicts the most energy
efficient implementation of the task along with the power mode of the FPGA at runtime.

The novel contributions of this research are as follows:
• Focusing on periodic tasks, we will discuss the difficulties of utilising FPGAs to reduce the
energy consumption in embedded system
• Considering the memory energy consumption as well as the FPGA and processors
• Proposing a linear model to describe the relation between the system energy consumption
and the FPGA voltage to be used in a DVFS scheme
• Coupling DPM with DVFS to evaluate the proposed models and techniques
• Considering a wide range of tasks synthesized by an HLS tool to evaluate the proposed
methodology
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We have applied the proposed techniques to a robot map creation algorithm which shows up to 38%
energy reduction compared to using only the FPGA implementation. Experimental results show up
to 48% energy reduction by applying the proposed DEM at runtime on thirteen individual tasks.
The rest of this paper is organized as follows: The next section explains some definitions and

assumptions required by the rest of this paper. Using a simple example, Section 3 explains the
motivations behind this research. Section 4 reviews the previous work. Phase 2 of Fig. 1 is explained
in Section 5 . Section 6 discusses Phase 3 of Fig. 1. Section 7 considers a robot map creation algorithm
as a case study to apply the proposed technique on a practical situation. Section 8 shows the results
of applying the proposed techniques to 13 micro-benchmarks. Finally, Section 9 concludes the
paper.

2 PRELIMINARIES
Before delving into the details of the proposed techniques, this section briefly explains a few
concepts, definitions and assumptions considered in the rest of this paper.

A typical embedded system consists of computation, communication and memory cores as shown
in Fig. 2. The processors usually run an operating system orchestrating all activities in the system.
As mentioned before, our goal is adding an FPGA and its required cores to the system to be used as
an accelerator and also save energy for some computations. Fig. 2b shows the modified system with
the additional FPGA. The timeline of Fig. 3 shows a simplified model of the power consumption of
different components during the life-time of the system. The power consumption of the processors
and memory with only the operating system running, without any specific application, is called
baseline power, denoted by the green colour in Fig 3. The power consumption of a software task
running on the processors are added to the baseline power and is called background power from
the point of view of other tasks running on the FPGA or CPU. This power is represented by blue
colour in Fig 3.

Note that before assigning a task to the FPGA, the processor sends a few data values to the FPGA
registers as the task arguments (denoted by te in Fig. 3) and after finishing the task the processor
may receive a few data items as the return arguments (denoted by tp in Fig. 3). Therefore, the
FPGA task power consumption, indicated by red colour in Fig 3, consists of the power of all cores
incorporating the task execution which mainly includes the FPGA, the processor during tp and te
and the main memory corresponding to the task memory access.

Modern commercial embedded FPGAs such as Xilinx Zynq SoC/MPSoC and Intel Cyclone V [2],
utilise separate voltage rails for different sections in the FPGA, CPU and memory subsystems.
These voltage rails can be set through regulators at the board level. The Intel Stratix 10 FPGA
provides SmartVoltage ID control over VCC as its standard option that enables a smart voltage
regulator to operate the device at lower VCC while maintaining performance [3]. Using these
features, system level DVFS techniques are proposed for FPGAs [1, 4–7]. Hosseinabady et al. [8]
explain how to scale the voltage of the core logic in the Xilinx Zynq SoC. They also calculate the
timing overhead of scaling the voltage to shut down the FPGA core logic. A MicroBlaze-based
light-weight soft-core IP is proposed by [4] to read and set the voltage lanes on the Zynq SoC
through on-board voltage regulators supporting the PMBus protocol [9]. Using this IP, Nunez-Yanez
et al. [1] propose a dynamic voltage and frequency scaling technique on the Xilinx Zynq to reduce
the energy consumption of the motion estimation task.
Throughout this paper, we use the Xilinx Zynq ZC702 evaluation board and the DVFS library

provided at [10]. The Xilinx Zynq SoC is a hybrid FPGA-CPU embedded systems based on the
architecture shown in Fig 2b. This SoC consists of three main parts: Processing System (PS),
Programmable Logic (PL) and Memory subsystem (MEM). The PS consists of a dual-core Cortex-A9
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(a) Embedded system architecture without
FPGA

(b) Embedded system architecture with
FPGA

Fig. 2. Simplified embedded system architecture

Fig. 3. Power consumption timeline

processor and NEON coprocessors associated to each core. The PL is an FPGA communicating to
the PS and MEM using low performance and four non-cached and one cached high-performance
ports, respectively. The MEM consists of off-chip DDR3 memory and on-chip memory controllers.
Power consumptions of these three parts are measurable and changeable thanks to their separate
voltage rails. The Xilinx Zynq ZC702 features XC7Z020 FPGA which is one the smallest FPGA in
its family. This justifies its usage under single task accelerator assumption.
The Xilinx Vivado-HLS as a high-level synthesis tool which transforms a C/C++ code into the

equivalent HDL code is used in this paper to implement FPGA-based accelerators. To get a high-
performance from the accelerators, tasks transfer their data between the main memory and the
FPGA internal memory (BRAM) using a burst data transfer mechanism that can be automatically
generated by the Xilinx Vivado-HLS. The task may first transfer the data into the FPGA and then
perform the computation or transfer the data while the computation performs in a streaming
manner [11].

3 MOTIVATIONS AND PROBLEM FORMULATION
It is a general consensus that using FPGA as a computational resource can reduce the system energy
consumption. Previous research [12, 13] has reported the FPGA energy efficiency considering one
or more specific tasks under predefined situations. However, this could be incorrect especially for
periodic tasks. This section first explains four pitfalls in measuring a task energy consumption

ACM Transactions on the Web, Vol. 9, No. 4, Article 39. Publication date: March 2017.



Dynamic Energy Management of FPGA Accelerators 39:5

which can affect the energy reduction techniques. Then using the matrix-vector multiplication as an
illustrative example, we show the impact of these pitfalls on the total energy consumption. Finally,
these pitfalls motivate us to define potential opportunities to save energy in an FPGA-CPU hybrid
embedded system, which leads us to propose a series of techniques to realise these potentials.

3.1 Pitfalls
The energy consumption of a task running on an embedded system is defined as the amount of
energy that the task adds to the system. Whereas, software-implemented tasks increase the energy
consumption on processors and memory subsystem (the corresponding power consumptions are
shown in blue colour in Fig. 3), the task running on the FPGA increases the energy consumption
on the FPGA, memory subsystem and processors (the corresponding power consumptions are
shown in red colour in Fig. 3). Any misconception in measuring the task energy consumption can
misdirect energy reduction techniques such as voltage and frequency scaling or dynamic power
management. Focusing on the FPGA, we categorise the misconceptions into four pitfalls that are
explained below.

Pitfall 1: The first pitfall is considering the baseline or background power as a part of the task
power consumption. As the software tasks are running on the processing subsystem, one may
include the PS or MEM baseline power or other task (i.e., background power) in the task power.
This happens when only one application is considered for comparison between two different FPGA
and CPU implementations such as [14] that has considered the CPU background power as the
task power. Although, this may be acceptable for platforms dedicated to run a single application,
it may lead to a miss-energy-management in platforms which tend to run multiple applications,
simultaneously. Considering the baseline or background power in the software task increases its
power consumption compared to the FPGA and makes the FPGA implementation the low power
option in most cases which may not be true.

Pitfall 2: The second pitfall consists of ignoring the power added to memory subsystem (or other
cores involved in the task execution) due to running the task. This is common in literature [1, 14, 15]
and it can be true when different implantations read the same amount of data with the same access
pattern from the memory. However, it can mislead the energy evaluation process, if different
implantations have different cache mechanism or storing local data which is the case in FPGA.
Ignoring this power component underestimates the task power and exaggerates the impact of
energy reduction techniques such as FPGA voltage and frequency scaling which does not have an
impact on the memory subsystem. This can be clarified by extending the Amdahl’s law to energy
consumption by which the part of the task energy consumption that does not change by the FPGA
voltage and frequency scaling diminish the total task energy reduction.

Pitfall 3: Ignoring the FPGA idle power is the third pitfall. This happens when only one iteration
of a periodic task is used for energy evaluation or when it is assumed that FPGA always runs a
task without idle time which may not be true in real cases, such as in [14]. As the FPGA-based
accelerator power cannot be a part of the baseline power, we should consider the FPGA energy
consumption while it is idle as the hardware task power. Otherwise, the measured hardware task
power can be much less than the real power which may misconduct the selection process between
hardware and software tasks to reduce the energy consumption. Studying the FPGA idle power
requires more reasoning as the FPGA idle time can be changed by VFS and makes the FPGA energy
efficient in some cases. In addition, this idle energy can be reduced by putting the PL in sleep mode
in which the clock is gated and the FPGA voltage is reduced to a level higher than the data retention
voltage [8] below which the FPGA loses its configuration.
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Pitfall 4: The last pitfall is ignoring the runtime system behaviour which may impose significant
overhead on the accelerator energy consumption. This mainly happens when the overheads of
switching between different implementations are ignored such as in [15]. Note that, the runtime
behaviour of the workload and the variable performance required by the system to run multiple
tasks can have a negative impact on energy saving techniques. Two practical cases will be explained
briefly in the sequel.

Case 1: In this case, the task deadline or period reduces. The task deadline reduction may
eliminate some of the software implementations due to the timing constraints, and leave the FPGA
implementation the only option which dictates the energy consumption. In addition, the task period
reduction, may prevent putting the idle FPGA into the sleep mode as switching between sleep
mode and active mode is associated with some timing overhead that may be longer than the FPGA
idle time.

Case 2: In this case, the task period and deadline increases. This case increases the FPGA idle
time and consequently FPGA energy consumption. One option to reduce the FPGA energy is
shutting down the FPGA if the idle time is long enough to cover the timing and energy overhead
caused by FPGA reconfiguration.

3.2 Motivation example
Considering an instructive task example, this subsection quantitatively shows the impact of each
pitfall. Let’s consider an application (called A) which contains the matrix-vector multiplication
(mxv) as a periodic task which in each iteration multiplies a 2000 × 2000 matrix by a vector of
length 2000. For the sake of simplicity, other tasks in the application A are modelled by a task
called S. The processor runs task S, however, task mxv can be run on the FPGA or the processing
system. In addition, a data dependency is assumed between mxv and S that dictates a sequential
execution between them as shown in the timing diagram of Fig. 4. Columns 2-7 of Table 1 show
the execution time, power and energy consumption of one iteration of task mxv running on the
single-core, dual-core, dual-core+NEON and the FPGA in the Zynq SoC. According to Fig 3, the
software tasks cause power consumption on the PS and MEM subsystem and the task running on
the FPGA adds power on the PL, MEM and PS. For the purpose of comparison, the FPGA power in
Column 6 represents its active energy while running the task, and the total FPGA energy including
active and idle period is shown in Column 7. Note that the power in this table is the power of
running tasks added to the system and does not include the baseline power. The baseline power,
which is shown in the last line of this table, are about 0.318W and 0.575W for the PS and memory
subsystem in the Zync SoC running Ubuntu Linux, respectively.

Pitfall 1: The eighth column in Table 1 shows the energy consumption resulting from the first
pitfall in which the task power measurements include the PS and MEM baseline power which is
about 0.318 + 0.575 = 0.893W . As can be seen, in this case there is a big difference between the
hardware and software tasks energy consumption which is not correct. Note that one may not
include the processor baseline power in the FPGA task power which makes the situation even
worse.

Pitfall 2: The second pitfall is ignoring the memory (or other cores) power consumption in
computing the task energy consumption. As shown in Column 9 of Table 1, this pitfall makes the
FPGA implementation more energy efficient while it is not true based on Columns 6 and 7.

Pitfall 3: If we consider the FPGA’s idle state, then the energy consumption of the task mapped
on the FPGA increases, significantly. In the diagram of Fig. 4, the total period is 50ms of which
10ms is assigned to task S and 40ms is left for mxv. Therefore, the dual-core, dual-core+NEON
and the FPGA version of the task mxv meet the time constraint and can be used for the execution.
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Fig. 4. Motivation example timing diagram

Table 1. Different versions of mxv in active model

resources exe.
(ms)

power (W) task energy (mJ) energy (mJ)

PS MEM PL PL_idle=0 PL_idle=10 Pitfall 1 Pitfall 2 Pitfall 3 Pitfall 4

Single core 53.32 0.08 0.07 0 8.0 8.0 55.61 4.27 8.0 8.0
Dual core 37.31 0.17 0.13 0 11.2 11.2 44.51 6.34 11.2 11.2

dual core+NEON 24.54 0.22 0.21 0 10.6 10.6 32.51 5.40 10.6 10.6
FPGA 6.76 0.07 0.73 active=0.53

idle=0.27
9.0 20.7 15.03 4.06 9.0 11.6

baseline power — 0.318 0.575 — — — — — — —

Fig. 5. Energy consumption (mJ )

However, choosing the proper version for reducing the energy consumption requires more analysis.
Fig. 5 compares the FPGA implementation with the fastest software version satisfying the timing
constraint, which is the dual-core+NEON version. The PS and MEM consume 5.5mJ and 5.1mJ ,
respectively, to perform the software version. On the other hand, the FPGA implementation energy
consumption has four sources: the PL when it is active, the PL when it is idle, the PS and MEM.
Therefore, the total energy consumption added to the system by the hardware implementation
is about 20.7mJ which is much higher than that of the corresponding software implementation
(i.e., 10.6mJ ). Note that, in this case, the idle energy consumption is the dominant part in the
FPGA implementation. This part can be reduced by clock gating the PL. The energy consumption
of the task mxv considering PL clock gating during the idle time is denoted by FPGA+clkg in
Fig. 5. The PL idle energy can be reduced further by putting the PL in sleep mode in which the
clock is gated and the PL voltage is reduced to 0.6 V that is slightly higher than the data retention
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Fig. 6. Energy versus period (mxv)

voltage below which the FPGA loses its configuration. This case is denoted by FPGA+slp in Fig. 5.
Putting the FPGA in sleep mode reduces the total energy consumption of the task to 10.3mJ
which is slightly less than that of the software implementation. However, in this case there is
40 − 6.76 = 33.24ms slack in the task mxv timing, so scaling down the PL voltage while it is
active further reduces the total energy consumption. Reducing the PL voltage to 0.69mv increases
the mxv execution time to 21.01ms and reduces the PL and MEM average powers to 0.10W and
0.2W , respectively. Note that, whereas voltage scaling directly reduces the PL power consumption,
frequency scaling reduces the MEM power consumption because of the reduction in memory access
frequency. The FPGA idle power in this case is equal to 0.0216W , therefore the energy consumption
to (0.07 + 0.2 + 0.1) ∗ 21.01 + 0.0216 ∗ (50 − 21.01) = 8.4mJ which is about 20.75% more efficient
than the software implementation. This case is denoted by FPGA+vs+slp in Fig. 5

Pitfall 4: As an example of this case, if the mxv task period increases to 200ms because of some
changes in the required input performance, the energy consumption of the hardware implementa-
tion with voltage scaling and sleep mode increases to (0.07+0.2+0.1)∗21.01+0.0216∗(200−21.01) =
11.6mJ which is higher than the energy consumption of the software implementation. Therefore,
without considering dynamic workload, choosing the FPGA as the task implementation platform
leads to a higher energy consumption.

To summarise the above discussion, Fig. 6 shows the energy consumption of different implemen-
tations versus period to clarify the trade-off between the energy consumption and performance.
Note that as mentioned before, this paper only considers the VFS in the FPGA. However, considering
the VFS in processing system or even the main memory complements this research and all methods
presented in this paper are still applicable. For the period between τ1 and τ3 in Fig. 6, only the FPGA
implementation is acceptable due to the timing constraint. During τ1 to τ2 the voltage and frequency
scaling can be applied to the FPGA to reduce the energy consumption. Beyond the τ2 time instance
the VFS cannot scale down the FPGA’s voltage further, as it reaches its minimum value. Therefore,
after this point the FPGA idle energy increases the task energy consumption with a constant rate.
At the τ3, the dual-core+NEON implementation can satisfy the timing constant and it would be
one of the options for executing the task mxv, however its energy consumption is higher than that
of the FPGA. At the time instance τ4 the dual-core implementation can be another choice but its
energy consumption is quite high. The single-core implementation can be used beyond τ5 point,
which also provides the minimum energy consumption.
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3.3 Definitions and problem formulation
We assume an embedded system consists of processors, main-memory and an FPGA. The processors
run an operating system managing the whole system and running applications. Let’s assume
application A contains a periodic task s which has a period and a deadline denoted by τ and δ ,
respectively, such that τ > δ . The period and deadline of a task is called its state denoted by S.
The amount of time that the task s stays in its state, which is called state life-time and denoted by
T (S), is another factor that characterises the task. Task s has at least two software and hardware
implementations with different speed and energy characteristics. Our main goal is finding the best
task implementation that satisfies deadline constraints and minimizes the consumed energy. For
this purpose, two problems , denoted by P1 and P2, are addressed in this paper. Note that, these two
problems complement each other, hence, studying one without another reduces their application
in real systems.

P1: The first problem is finding the best implementation for a periodic task with a known state S
to minimise the energy consumption considering VFS in the FPGA as well as the FPGA shut-down.
The outcome of solving this problem can be one of these three cases:

• Using the FPGA implementation with VFS and putting it into the sleep mode for the rest of
the period
• Using the FPGA implementation with VFS and then turning it off for the rest of the period
• Using a software implementation

Note that because the first three pitfalls deal with the energy measurement, this problem will
address them in its solution.

P2: Considering the dynamic behaviour of task state, the result of P1 and the overhead of
switching between the two different implementations, the second problem determines when
switching between two implementations saves energy. This problem copes with the last pitfall in
which the state of a task may change during its execution.

Table 2 formally defines the first problem. The first line says that task s has n different software
(represented by so f ti ) and anm FPGA-based (denoted by acceli ) implementations. Line 2 determines
the task state. Lines 3 and 4 consider that the execution time and energy consumption of software
versions are known and do not change. Lines 6-9 show the relation among energy, frequency, voltage
of the FPGA implementations under VFS scenario. The functions hi , ei and дi will be determined
in the rest of this paper. Lines 10 and 11 represents the timing and energy overheads associated
with the FPGA turn-on/off which mainly comprise of the amount of time and energy required for
the FPGA full reconfiguration. We assume that the deadline is the only timing constraint which
is denoted in Line 12. Eventually, Line 13 clarifies that the goal of the problem is task energy
optimisation. Corresponding to the single core, dual-core, vector processor and FPGA in the Zynq-
SoC, throughout this paper we consider three software and one hardware implementations, that is
n = 3,m = 1.

If the period and deadline are constant during the task execution, then the problem shown in
Table 2 can be used alone to optimise the task energy consumption. However, the task deadline
and period can change dynamically at runtime because of changes in the workload and the frame
rate of the input. Therefore, dynamically utilising the problem in Table 2 would be the goal of P2
shown in Table 3. The assumptions of this problem are the new state of the task s (Line 1), the
function q which determines the life-time of the new state (Line 2), the current implementation
corresponding to the previous state of s (Line 3), the new and energy efficient implementation of
the task corresponding to its new state resulted from P1 (Line 4) and the overhead caused by the
switching between the two implementations (Line 5).
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Table 2. P1 formulation

Assumptions:
1 s ∈ {sof t1, ..., sof tn, accel1, ..., accelm }
2 τ and δ : period and deadline of task s
3 for all sof ti implementations
4 ttask and Etask are constant
5 for each acceli implementation
6 Etask = hi (Vf pдa )
7 ttask = ei (ff pдa )
8 Vmin < Vf pдa < Vmax
9 Vf pдa = дi (ff pдa )
10 ton/of f : FPGA on/off timing overhead
11 Eon/of f : FPGA on/off energy overhead

Timing constraint:
12 ttask < δ

Goal:
13 minimize Etask
Output:
14 implopt (s) the best implementation of s

Table 3. P2 formulation

Assumptions:
1 S: new state of task s
2 T (S) = q(S)
3 implcurr (s) current implementation of s
4 implopt (s) the output of P1
5 swto, sweo : timing and energy overhead

of switching between implcurr (s) and implopt (s)
Goal:
6 minimize Esystem

4 PREVIOUS WORK
Considering the define problems, firstly, this section concisely reviews the related research in the
literature and then it points out the contributions of this paper and its differentiation from other
research. Whereas, DVFS and DPM are well known techniques in processor-based computing
systems, there are only a few research attempts to study their behaviour applied to FPGA [1,
6–8, 16, 17]. Among them, [1, 6, 7] study DVFS applied to the FPGA. However, they have not
considered the energy consumption caused by the FPGA idle time as well as the main memory
energy consumption. This restricts their studies and the applicability of their results. In contrast,
we will consider the FPGA idle periods as well as the memory subsystem energy consumption
and will show that for some tasks the main memory can drastically restrict the applicability of
DVFS on the FPGA. A run-time power gating technique for embedded FPGA is presented by [8].
The paper shows that although FPGA power gating causes timing and energy overheads, it can be
used under some conditions to save energy. A utilisation of the FPGA power gating is presented
in [17] for streaming applications. Yang et. al [14] compare the FPGA with the processing system
energy consumption for two image processing applications. They also propose a regression based
energy model for the system to be used at runtime for implementing the DVFS on the FPGA and
the processing system. However, they have not considered the memory energy consumption for
the edge detection and blurring, the two image processing tasks considered in their research, which
are traditionally memory-intensive applications. In contrast to their approach, our energy model in
this paper includes the memory energy consumption.

5 ENERGY MODEL GENERATION
This section explains Phase 2 of the dynamic energy management flow shown in Fig. 1 which is
the energy model generation. Considering three examples with different burst memory access
patterns, this subsection empirically studies the relation between the task energy consumption
and the FPGA voltage. The three tasks considered in this section are an edge detection algorithm
called Sobel filter (sobel), Black-Scholes (bs) option pricing and n-body problem (nb) [10], which
their burst memory access patterns are shown in Fig. 7.
The sobel task detects edges in an HD image of size 1920 × 1080. Using four non-cached high-

performance memory ports with separate read and write channels available in the Zynq, the design
reads four image pixels per clock in a streaming manner, applies the computation to the received
pixels and writes back the four result pixels in the memory. This read/write pattern is shown in
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Fig. 7a inwhich thememory is accessed along the task execution. Thememory controllermultiplexes
all the eight read and write channels into one high-speed channel to access the main memory [18].
This causes high switching activities on the data and address buses which increases the power
and energy consumptions. In each clock cycle it reads/writes four pixels from/into memory which
results in 1.3GByte/sec bandwidth utilisation at f = 100MHz. As the total bandwidth provided by
four 32-bit memory port considered in this design is 4∗4∗(100MHz) = 1.6GBte/sec , the bandwidth
utilisation performance in this design is 1.3/1.6 = 81.25%.

The bs task applies the Black-Scholes model to a group of options. The implementation benefits
from data streaming and computational pipelining. However, as the task contains several complex
mathematical functions such as loд and exp, the resulted implementation reads/writes data from/to
memory in every other clock cycle. Fig, 7b shows the corresponding burst memory access pattern
during which the accelerator reads three floating point data and writes two floating point data,
alternatively. The experimental bandwidth utilisation of this design is 0.749GByte/sec at 100MHz
frequency, therefore, its bandwidth utilisation performance is 46.8%.
The last task is the n-body problem (nb) with 4096 particles that consists of two nested loops.

The inner-loop requires to have access to all input data to generate one output. Therefore, the
accelerator reads all the required data into the FPGA internal memory and after performing the
computation the results are written into the memory. Fig. 7c depicts this burst memory access
pattern. The experimental bandwidth utilisation of this design is 0.0028GByte/sec at 100MHz
frequency, therefore, its bandwidth utilisation performance is 0.175%. The main reason of this low
memory utilisation is that the task is compute-intensive.
Considering the three aforementioned tasks. Fig. 8a, Fig. 8b and Fig. 8c show the task energy

consumption versus the FPGA voltage levels for different components involved in the execution
which are the PS, PL and MEM. As can be seen, the MEM energy consumption is dominant in the
sobel filter as its pipelined streaming implementation accesses the memory in each clock cycle for
reading and writing data. The MEM energy consumption in the bs has a great contribution to the
total energy consumption as the memory is accessed for reading and writing data in every other
clock cycle. The nb task shows a negligible MEM energy consumption as it is compute-intensive
and has limited amount of memory transaction at the start and end of task execution. The FPGA
energy consumption is mainly varied with the voltage. However, negligible changes in MEM and
PS energy consumptions can be seen in diagrams in Fig. 8. This is the impact of the small logic
circuit interfaces that exist between different domains. The PS domain has a small logic circuit that
generates the PL frequency. Any changes in the generated frequency, will change the switching
speed on part of this circuit which results in changes in energy. Similar reasoning can be done
for the memory subsystem. As mentioned before in this section, a logic circuit in the memory
controller multiplexes separate read/write channels of the FPGA into a single read/write channel
of the external memory. Any changes on the FPGA memory access speed, via FPGA frequency, has
a slight impact on the memory subsystem energy consumption.
As the total task energy consumption is the sum of three energy components, i.e., Etotal =

Epl + Emem + Eps , and only Epl is a function of the FPGA voltage, then the sensitivity of the total
energy to the FPGA voltage i.e., ∂Etotal/∂V is equal to ρ = ∂Epl/∂V . This factor represents the
rate of saving energy by reducing the FPGA voltage. Based on Figs. 8a, 8b and 8c, these sensitivities
are 3, 107.9 and 29.7 for sobel, bs and nb, respectively.
The memory energy consumption has negative impact on the VFS efficiency which is defined

as the percentage of the task energy saving by applying VFS. As the task energy is equal to
Etask = Epl + Emem + Eps , and applying the VFS to the FPGA reduces the Epl by a factor of ρ then
the new energy would be E′task = ρEpl + Emem + Eps . According to this equation, the amount of
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(a) sobel

(b) bs

(c) nbody

Fig. 7. Burst memory access pattern

(a) sobel
(b) bs

(c) nbody

Fig. 8. Tasks energy consumption

memory and CPU energy consumptions restrict the percentage of the total energy saving. This
is similar to Amdahl’s law in which the sequential part of a program diminishes the total speed
off obtained by the parallel part. Therefore, high memory energy consumption can reduce the
impact of VFS efficiency i.e., (Etask − E ′task )/Etask . This is the reason that the sensitivity of energy
consumption in the bs task to the voltage is 107.9 which is more than that of the nb task (i.e., 29.7),
but its VFS efficiency is 26.2% which is less than that of nb (that is 42.3%).

According to Figs. 8a, 8b and 8c, there is a linear relation between the energy of the task running
on the FPGA and the voltage. Equ. 1 models this linear relation in which α1 and α2 are constant
that can be obtained by applying a linear regression technique on a set of empirical data for a given
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task.
EtaskF PGAact ive (V ) = α1V + α2 (1)

This relation can also be justified, analytically, with the following simplified discussion. The active
power of the task running on the FPGA consists of three main components: FPGA, memory
and processor powers as formulated in Equ. 2. The FPGA power consists of dymaic and static
components and are functions of frequency and voltage. The task memory power is a function of
frequency as a design with higher frequency performs the read and write operation with higher
speed which increases the memory dynamic power. Finally, the processor power is constant as
it just sends or receives a few arguments to the design before or after task execution. As shown
before, the PS power is negligible and if we ignore the FPGA static power compared to its dynamic,
then Equ. 3 approximates the power consumption. Considering the relation between frequency
and the execution time in FPGA as Equ. 4, then Equ. 5 approximates the energy consumption. As
in new silicon technologies the range of voltage scaling (i.e., (Vmax ,Vmin)) is small, EtaskF PGAact ive
versus voltage can be approximated by a linear relation using the Taylor series expansion [19]
as shown in Equ. 6 in which Vmin < b < Vmax . Equ. 7 shows the amount of error caused by this
approximation in which Vmin < ξ < Vmax . Subsection 8.3 demonstrates the error of the energy
model based on this approximation and compares that with the models derived from the analytical
formulation of Equ. 2 for thirteen different benchmarks.

The FPGA idle energy is equal to multiplication of FPGA idle time and power as shown in Equ. 9,
in which T represents the task’s period.

P taskF PGAact ive =

F PGA power︷                             ︸︸                             ︷
a1. f .V

2︸   ︷︷   ︸
dynamic power

+ a2.V︸︷︷︸
static power

+

MEM power︷︸︸︷
a3. f +

PS power︷︸︸︷
a4 (2)

P taskF PGAact ive ≈ a1. f .V
2 + a3. f (3)

ttask = e(f ) = θ/f (4)
Substituting Equ. 1 and Equ. 9 into Equ. 8, Equation 10 represents the FPGA energy model. This
model can be further simplified by considering the relation between the execution time and
frequency shown in Equ. 4 and the linear relation between the FPGA voltage and frequency under
VFS [20] which is represented as Equ. 12. Equ. 13 represents the FPGA energy model versus voltage
after substituting teh frequency f from Equ. 12 into Equ. 13. Note that α1, α2, β1, β2 and θ can be
found by using linear regression which then they will determine the coefficients in Equ. 13. In
summary, the proposed DEM approach uses the three equations e(f ), g(f ) and h(V ). As the linear
regression learning technique is the main approach to find coefficients of these equations, a set
of experimental measurements by running each task and changing f and V as two independent
variables is required. The measurement process monitors the power consumption of PS, MEM
and FPGA as well as the execution time of the task running on the FPGA. The e(f ) and g(f ) are
determined by directly learning the coefficients θ , β1 and β2 from the data set. The coefficients
α1 and α2 in Equ. 1 are also determined by regression algorithm, then they are used in Equ. 13.
Note that, P F PGAsleep is also a constant value which is the FPGA power when it is in the sleep mode.
Subsection 8.3 evaluates the accuracy of this modelling technique considering different benchmarks.
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EtaskF PGAact ive ≈ a1.θ .V
2 + a3.θ = u(V ) (5)

EtaskF PGAact ive ≈ u(b) +
∂u

∂V
(b).(V − b) (6)

R =
1
2!
∂2u

∂V 2 (ξ ).(V − b)
2 (7)

Etask = EtaskF PGAact ive + EF PGAidle (8)

EF PGAidle = (T − ttask ).P
F PGA
sleep (9)

Etask = α1V + α2 + (T − ttask ).P
F PGA
sleep (10)

Etask = α1V + α2 + P
F PGA
sleep .T − θ .P

F PGA
sleep /f (11)

V = g(f ) = β1. f + β2;Vmin < V < Vmax (12)

Etask (V ,T ) = h(v) = α1V + α2 + P
F PGA
sleep .T − θ .P

F PGA
sleep .β1/(V − β2) (13)

6 DYNAMIC ENERGY MANAGEMENT
Phase 3 of the dynamic energy management flow, shown in Fig. 1, is explained in this section. An
overview of the whole system structure is shown in Fig. 9a. It consists of two main parts, the runtime
system that monitors the system energy and finds the best implementation for a given task and the
controller APIs library which consists of a few functions for synchronisation between the application
and the runtime system, performing the voltage/frequency scaling and FPGA configuration. The
flowchart of the runtime system and its interaction with thr application is shown in Fig. 9b. The
runtime system is invoked by the application and performs all the configuration with the permission
of the application as the periodic task should be in a proper state in order to prevent malfunctions.
In our implementation, when an application starts, it creates a thread running the runtime-DEM
which gets the task states and finds the best implementation for the given task using two algorithms
to cope with the two problems introduced in Subsection 3.3. Note that, the runtime system calls
the algorithm that solves the P2 problem which it in turn calls the algorithm dealing with the P1
problem. These algorithms are explained in the sequel.

6.1 Problem P1 algorithm
As mentioned in Subsection 3.3, the main goal of Problem P1, shown in Table 2, is finding the most
energy efficient implementation for a given periodic task. Equs. 4 to 13 provide all the models we
need to solve this problem. Using these models, we calculate two factors that will be used to find
the best implementation. The first factor which is called transition point factor (ttp ) determines
the minimum period at which the FPGA implementation (with VFS) consumes less energy than a
software version. This can be obtained by solving Inequ. 14, in which Etask (V ,τtp ) is based on the
Equ. 13 and Esof tware is the minimum energy of the software implementation that satisfies the
timing constraints.

Etask (V ,τtp ) ≤ Esof tware (14)
There can be one τtp for each software implementation. In this case, τtp factors that can be listed
in an ascending order whose corresponding energy consumptions are in a descending order are
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(a) Component overview (b) DEM flowchart

Fig. 9. Dynamic Energy Management (DEM)

considered. This justifies that by increasing the task period there exists a different energy efficient
implementation. For the sake of simplicity, in our discussion, we consider the minimum τtp in this
list.

The second factor which is called on-off point factor (τof p ) determines the point at which switching
off the FPGA during its idle time helps the FPGA implementation consumes less energy than the
software version. This factor can be obtained by solving Inequ. 15 and 16, in which EtaskF PGAact ive

(V )
and ttask are based on Equ. 1 and Equ. 4, respectively, and the energy and timing switching
overheads are denoted by Eon/of f and tof p , respectively.

EtaskF PGAact ive (V ) + Eon/of f ≤ Esof tware (15)
ttask + tof p ≤ τof p (16)

Note that if these inequalities do not have a solution, for example, if the FPGA on/off energy
overhead (which mainly caused by the FPGA reconfiguration and is about 9.4mJ [8]) is greater
than the software energy consumption, that is, Esof tware < Eon/of f , then we assume τof p = ∞.
Corresponding to each software implementation there can be a τof p . For the sake of brevity, we
just consider one τof p factor in the following discussion.
Considering one τtp and τof p , two cases can happen which are explained in the sequel.
Case 1: τtp < τof p : In this case, based on the current task period (i.e., τ ), three options are

possible that are shown in Expression 17. The first option in which τ < τtp denotes that the
FPGA implementation along with VFS can consume the minimum energy. If the task period is less
than the on-off point factor but greater than the transition point factor (i.e., the second option in
Expression 17) then the software implementation consumes less energy. Finally, if the task period
is greater than the on-off point factor, then the FPGA implementation along with VFS and on/off
would be the best choice for reducing the energy.
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τtp < τof p :


FPGA +VFS i f τ < τtp

So f tware i f τtp < τ < τof p

FPGA +VFS + on/o f f i f τ > τof p

(17)

Case 2: τtp > τof p : In this case as the τof p is less than τtp , then for the task period less than
τof p the FPGA implementation with VFS is more energy efficient and for the task period greater
than τof p , switching off the FPGA is the option. After this point, the task energy does not increase
as FPGA is off, therefore the software option never gets a chance to be more energy efficient.
Expression 18 denotes this case.

τtp > τof p :
{
FPGA +VFS i f τ < τof p

FPGA +VFS + on/o f f i f τ > τof p
(18)

Algorithm 1, which receives the task state (i.e., its deadline and period), the transition point and
the on-off point factors, attempts to find the best implementation for the given task to minimise the
energy by investigating different intervals explained in Expressions 17 and 18. Line 1 represents
the ascending ordered list, denoted by τp , of all point factors (i.e., τtpi and τof pi ) whose energy
consumption are in a descending order. The for loop at Line 2 traverses over the elements in τp to
find the best interval for the input task period (i.e., τ ). The condition statement in Lines 4 to 12
selects the best FPGA implementation considering the VFS. The software implementation is chosen
if the condition statement in Lines 13 to 16 satisfies. Note that, the condition at Line 13 checks the
validity of the second condition in Exp. 17, the only case that software implementation is more
energy efficient. In this case, the task period should be greater than a transition point factor. As at
this point τ , the task period, is less than τpi and greater than τp(i−1), then τp(i−1) should be of type
software transition point factor. The execution of conditional branch in Lines 16 to 20 selects the
FPGA implementation along with turning off the FPGA during its idle time.

6.2 Problem P2 algorithm
This subsection explains a solution to the P2 problem shown in Table 3 that uses Algorithm 1 to
optimise the total energy consumption in a system by selecting either the hardware or software
implementation of a periodic task in a given application. As assumed in this paper, the processors
are running different tasks and should be always alive. Hence, if the hardware implementation
is chosen, processors are allowed to spend more time executing other tasks assigned to them.
However, if the software implementation is chosen, there are two cases that can be considered for
the FPGA.

Case 1: If there is another task eligible for running on the hardware or FPGA hosts multiple
tasks, then the FPGA cannot be shut down and should be active running the task. Note that if the
new task uses the same FPGA configuration, then the overhead is negligible, otherwise the timing
and energy overheads associated with the FPGA reconfiguration should be taken into account.
Since, we consider the periodic task, this case leads to interleaving two periodic tasks on the same
FPGA which is beyond the scope of this paper and requires a separate articles.

Case 2: If the FPGA does not host a new task, then it would be idle, which means it can be in the
sleep mode or can be shut down. Leaving the FPGA in the sleep mode causes energy leak, which
can be significant in case of long idle intervals. To tackle this energy leak, turning off the FPGA
could be a solution. However, shutting down the FPGA means that the configuration is lost and a
full reconfiguration is required for running its task later. This case is considered and explained in
the sequel.
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ALGORITHM 1: Energy optimization under timing constraint
Data: S = {δ ,T }
Data: {(τtpi ,Etpi )}
Data: {(τof pi ,Eof pi )}
Result: implopt : minimum energy implementation

1 τp = (τp0,τp1, ...τpn ),τpi ∈ {τtpi } ∪ {τof pi } | τpi <
τp(i+1) ∧ Epi > Ep(i+1)

2 for i ← 0 to n do
3 if (τ < τpi ) then
4 if (i == 0) then
5 ff pдa =

θ
δ

6 if (ff pдa < fmin ) then
7 ff pдa = fmin

8 end
9 Vf pдa = β1. ff pдa + β2

10 implopt = 0
11 break
12 else
13 if (τp(i−1) == τtpj ∈ {(τtpi ,Etpi )}) then
14 implopt = j

15 break
16 else
17 ff pдa = fmin

18 Vf pдa = Vmin

19 implopt = −1
20 break
21 end
22 end
23 end
24 end

ALGORITHM 2: Dynamic Energy
Management
Result: implcurr : current

implementation of task s
Data: S = {δ ,T }
Data: Tt ime_out : time out policy

parameter
Result: swimpl

1 swimpl = 0
2 implopt ← Alдorithm 1
3 if implopt is hardware AND implcurr is
software then

4 if f pдaO f f Flaд == 1 then
5 Turn on and reconfigure the

FPGA
6 end
7 swimpl = switch to hardware
8 end
9 if implopt is software AND implcurr is
hardware then

10 swimpl = switch to software
11 fpgaOffFlag = 0;
12 Start the timer;
13 end
14 if implcurr is software and the timer is

greater than Tt ime_out then
15 Shut down the FPGA;
16 fpgaOffFlag = 1;
17 end

Considering the latter case, Fig. 10 illustrates the timing diagram of the switching between
hardware and software implementations. Whereas the upper part of this figure shows the host of
the task in each timing interval, the lower part illustrates the state of the FPGA in terms of different
energy consumption modes. Before time instance t1 the FPGA is performing the task, however
assume that at t1, the software implementation is more energy efficient because of changes in
the task period. This transition from hardware to software occurs at t2 after the current iteration
completed, that is t2 − t1 < τ . At this time the process of shutting down the FPGA starts which
takes t3 − t2. The FPGA is off during the time instance t3 to t4. Let’s assume at time instance t4 the
FPGA is more energy efficient or it is the only option that meets the timing constraint, hence, the
task should go back to the FPGA. Consequently, FPGA is turned-on and reconfigured. It is fully
operational at t5 that can execute the task after the current iteration completed in software at time
t6. In summary, during t1 → t6 the FPGA is not running the task and only for the t3 → t4 period, it
is shut down; hence, t1 → t3 and t4 → t6 intervals represent the overheads of the DEM.

These overheads restrict the switching between hardware and software implementations and it
should take place if the amount of saved energy justifies the overhead. The minimum interval of the
idle period to save energy by shutting down the FPGA is called break-even time, Tbe . It depends on
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Fig. 10. DEM timing diagram

the FPGA power consumption during the sleep mode and the energy overhead caused by transition
from hardware to software implementations and vice versa. Equ. 19 shows the equality of saving
energy by turning off the FPGA and the energy required to configure the FPGA.

Psleep .Tbe = Eswitchinд (19)

According to [8] the timing and energy overhead related to the Zynq SoC reconfiguration are
48msec and 9.4mJ , respectively. In addition, the PL energy power consumption in sleep mode is
0.0293W . Therefore the break-even point of the Zynq SoC satisfies 0.0293 ∗ Tbe = 9.4mJ and is
Tbe = 320.8ms .

Changing the power state of a hardware module at runtime while it is in the idle mode is a well-
known technique in Dynamic Power Management (DPM) that reduces the energy in computing
systems. In general case, it is not easy to predict how long an FPGA stays in the idle mode in
order to predict the potential energy saving resulted from shutting down the FPGA. There are
different techniques, known as policies, in the literature that cope with this problem and determine
whether to shut down the device (here the FPGA) or put it into a sleep mode. These policies can be
categorised as: time-out, stochastic, and predictive [20]. This paper considers the time-out policy
which is also widely implemented in commercial products[21]. According to this policy, if the FPGA
stays for Tt ime_out time in idle mode then it will remain idle at least for Tbe [20].
Considering the time-out policy, Algorithm 2 shows the implementation of DEM policy. It

receives the new task state (i.e., S), the current implementation (i.e., implcurr ) and the delay (i.e.,
Tt ime_out ) corresponding the time out policy, then, using Algorithm 1 at Line 2, it makes the decision
for possible changes in the task implementation. Lines 3 to 8 determine a switch from software to
hardware in which based on the value of f pдaO f f Flaд, the FPGA is reconfigured if it is required.
The switching from hardware to software take place in Lines 9 to 13. A timer is activated during
this process which will be checked in Lines 14 to 17 to implement the time-out policy. If the timer
is greater than the Tt ime_out , then the FPGA is turned off.

7 CASE STUDY: ROBOT MAP CREATION
Map creation is one of the periodic tasks in autonomous robots in which a group of sensors regularly
senses the environment and then the robot’s map creation algorithm builds a map incrementally
based on this information. Regularly monitoring the environment with a fixed-period may waste
energy especially when the environment does not change rapidly as the robot moves slowly due to
obstacles or other events. Therefore, using variable period for scanning the environment can save
the energy on sensors and processing systems.

Listing 1 shows the pseudo-code of the simultaneous localization and mapping (SLAM) algorithm
based on the genetic algorithms explained in [22]. This code consists of a loop, from Line 3 to
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Fig. 11. SMG-SLAM maps examples

Listing 1. SMG-SLAM map creation pseudo-code

1 main ( ) {
2 i n i t i a l i z e ( ) ;
3 while ( s t a t u s = scan ( ) ) {
4 / /−−−−−−Gen e t i c A lgor i thm −−−−−−−−−−
5 i n i t i a l i s e _ p o p u l a t i o n ( ) ;
6 for ( in t i = 0 ; i < G ; i ++) {
7 u p d a t e _ f i t n e s s ( ) ;
8 f i x e d _ n e x t _ g e n e r a t i o n ( ) ;
9 }
10 / /−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
11 update_map ( )
12 }
13 }

Line 12, that gets the sensor information through scan() function and updates the map using a
genetic algorithm which is an iterative algorithm represented in Line 5 to Line 9. This algorithm
tries to find the best match between the scanned information and the current state of the generated
map. After finding the best match, the function update_map() at Line 11 updates the map. Fig. 12a
depicts the timing diagram of the sequential execution of this application which shows a periodic
behaviour. As shown in this figure, the software implementation, using a single core on Zynq,
spends 235msec , 12msec and 10msec on iterative genetic algorithm, map update and sensor scan
parts, respectively. As the iterative genetic algorithm is compute-intensive, we have implemented it
on the Zynq FPGA using the Xilinx Vivado-HLS tool [10]. Table 4 shows the execution time, power
and energy consumptions of the genetic algorithm implemented on the FPGA and processors in
the Zynq SoC. This table shows that the active energy of the FPGA running the genetic algorithms
is less than that of software implementations. However, considering the FPGA idle time and power
which are 22msec and 0.146W , respectively, before applying the VFS, the FPGA energy consumption
increases to (6.54 + 22 ∗ 0.146) = 9.75mJ which is higher than that of the single core software
implementation.
The timing diagram of Fig. 12b shows the execution of the genetic algorithm on an FPGA, the

update_map() on the processor and the scan on sensors. We assume that the sensors can scan the
environment while the processor is updating the map. The timing distance between two consecutive
scan defines the task period which should encompass the FPGA task and update_map function. A
map created by this application is shown in Fig. 11 as examples.

Using the techniques andmodels presented in Section 5, Equ. 20 to Equ. 23 represent all themodels
we need for performing the DEM. To demonstrate the effectiveness of the proposed techniques,
we divide Path 1 shown in Fig. 11 into three sections. In section A, the robot walks in a straight
line with no bend or obstacles and it senses the environment every 200msec . Because of a bend
along the section B, the robot senses the environment every 50msec to quickly detect any possible
objects coming from the other side. During section C, it senses the environment every 300msec as
it realises that this section is the end of the path so it walks slowly which requires less scans. In the
sequel, the best implementation for each section will be found.
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(a) Sequential timing diagram

(b) FPGA+CPU timing diagram

Fig. 12. SMG-SLAM timing diagram

Table 4. Genetic Algorithm statistics

design exe. time (msec) power (W) Energy (mJ)
PL PS MEM PL PS MEM total

FPGA (active) 21.24 0.30 0.006 0.004 6.33 0.116 0.088 6.54
single core 235.94 0 0.037 0.0014 0 8.73 0.336 9.06
Dual core 194.42 0 0.066 0.0019 0 12.8 0.374 13.2

Dual core+NEON 166.45 0 0.072 0.0028 0 11.98 0.457 12.44

Fig. 13. Energy comparison for different sections

EtaskF PGAact ive = 12.3V − 5.02 (20)
ttask = e(f ) = 2118/f (21)

V = g(f ) = 0.0031f + 0.58; 0.7 < V < 1
(22)

Etask = h(v) = 12.3V − 5.02+
0.0293.T − 0.19/(V − 0.58) (23)

Section A: In this section T = 200msec therefore FPGA task has TGA < T − tUM = 200 − 12 =
188msec time to finish its task. However, the lowest value for FPGA voltage is 0.7v which in this case
f = 38.7MHz. Considering this frequency and Equ. 21, the task execution time is t = 54.73msec .
Equ. 23 predicts 12.3 ∗ 0.7 − 5.02 + 0.0293200 − 0.19/(0.7 − 0.58) = 7.9mJ energy consumption for
one scan in the task, which is less than that of the software implementations. Therefore, FPGA is
the best option during this section. Note that, considering the FPGA implementation without DVFS
consumes (200 − 21.24) ∗ 0.0293 + 6.54 = 11.77mJ energy.
Section B: During this interval, because of the low period (i.e., 50msec), the FPGA is the only

option that satisfies the timing constraint. In this case, the FPGA has at most 50 − 12 = 38msec to
finish its task. According to Equ. 21 and Equ. 22 the scaled frequency and voltage are 55.73MHz and
0.75v , respectively. Finally, Equ. 23 predicts the energy consumption which is 4.5mJ . In this case,
considering the FPGA implementation without DVFS consumes (50−21.24)∗0.0293+6.54 = 7.38mJ
energy.
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Section C: In this period which T = 300msec , similar to the first case, if the FPGA executes
the task then f = 38.7MHz and V = 0.7v , consequently according to Equ. 23 E = 10.8mJ . As
can be seen, the FPGA implementation consumes more energy than the single processor software
version (which is 9.06mJ as shown in Table 4). Therefore, switching from FPGA implementation to
the software implementation can save energy. Note that, considering the FPGA implementation
without DVFS consumes (300 − 21.24) ∗ 0.0293 + 6.54 = 14.71mJ energy. In summary, Fig. 13
compares the energy consumption in different sections considering two implementations with and
without DEM.

If the robot spends 10sec , 15sec , and 20sec in sections A, B and C, respectively. Then the number
of scans in these three sections are 50, 300 and 50, respectively. Considering the energy efficient
implementations in each section, explained before, the total energy consumption is (7.8∗50)+ (4.5∗
300)+(9.06∗50) = 2193mJ . However, if the FPGA implementationwithout considering the DVFS and
DEM considered then the total energy consumption would be (11.77∗50)+(7.38∗300)+(14.71∗50) =
3538mJ . Therefore, using the proposed techniques in this paper can save 38.0% of energy.
In the above discussion, we have considered that the FPGA is shut down during Section C.

However, if we consider a DPM time-out policy in which the FPGA is turned off after a delay, for
example Tt ime−out = 200msec , then 400 ∗ 0.0293 = 11.72mJ energy overhead should be added to
the energy consumption during Section C. This reduces the energy efficiency to 37.7%.

8 EXPERIMENTAL RESULTS
Considering several common tasks [10] as our benchmarks and the Xilinx Zynq SoC platform,
this section, organised in four subsections, evaluates the proposed techniques. Whereas the first
subsection explains the experimental setup, Subsection 8.2 reports the statistics, performance and
energy consumption of the tasks. Phase 2 and Phase 3 of the proposed DEM flow shown in Fig. 1
are evaluated in Subsection 8.3.

8.1 Experimental setup
As mentioned throughout this paper, we have used the Xilinx Zynq SoC as a hybrid FPGA-ARM
embedded platform. Fig. 5 shows the diagram of our experimental setup. The Xilinx Vivado-HLS
and Vivado tool sets are used to synthesise the C++ description of the tasks in our benchmarks.
The processor communicates with the task on the FPGA through a few registers to read or write
the task arguments. In addition, the FPGA utilises four HP ports for memory transactions. A start
and an interrupt signals are used for handshaking between the task in the FPGA and the processor.
An on-board voltage regulator provides all the voltage rails required by the Zynq SoC. This voltage
regulator is controlled by the processor thorough the PMBUS protocol. We measured the power
consumption of different voltage rails by changing the frequency and voltage of the FPGA for each
tasks. A set of MATLAB functions is provided which receives these empirical data to create the
proposed energy models using the linear regression algorithm. In addition, we have provided a set
of MATLAB functions to implement Algorithms 1 and 2 for evaluation and to compare the results
with real measurements in the system. All the codes, libraries and designs used in this paper are
open-source and are available at [10].

8.2 Periodic tasks energy behaviour
We have provided three software and one hardware implementations for each task. The software
implementations include serial which uses only one Cortex-A9 core, parallel which uses the dual-
core and vector which uses the Neon coprocessor as well as the dual-core CPU. Table 6 shows
some of the statistics of these benchmarks. The first column represents the name of the task. The
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Table 5. Experimental setup

Table 6. Statistics of benchmarks

Name Complexity Resource Utilisation
Ops Mem Data (floating

point) size (n)
Slice LUTs % BRAM % DSP %

bs O(n) O(n) 4000000 46.13 1.79 91.36
lr O(n) O(n) 16000000 35.31 1.43 26.36
pr O(n) O(n) 32000 47.03 1.43 75
mxv O(n2) O(n2) 2000 66.97 13.21 12.27
saxp O(n) O(n) 8388608 33.50 18.57 25.45
hist O(n) O(n) 1048576 8.81 6.43 0
corr. O(n3) O(n2) 100 55.10 93.57 62.27
cov. O(n3) O(n2) 200 36.85 48.57 54.09
nbody O(n2) O(n) 4096 63.48 96.43 61.82
sharpen O(n2) O(n2) HD1 47.34 62.86 43.64
sobel O(n2) O(n2) HD1 24.42 17.14 3.64
vadd O(n) O(n) 131072 12.08 2.14 1.82
mm O(n2) O(n2) 3000 27.94 5.71 5.45

1 HD : 1080 × 1920; n ≈ 1440

(a) Execution time (b) Energy consumption

Fig. 14. Execution time and energy consumption of benchmarks

interested reader may refer to [10] for the description of each task. The operation and memory
access complexities of each task algorithm is shown in the second and third columns, respectively.
Column fourth denotes the size of the input data of type float i.e., 4 bytes. The percentage of
the hardware utilisations are shown in Columns 5-7 in which Column 5 shows the percentage
of Look-Up Table (LUT) slices in the FPGA, Column 6 represents the percentage of Block RAM
(BRAM) in the FPGA and the last column shows the utilisation of Digital Signal Processing (DSP)
units. Fig. 14a and Fig. 14b compare the execution time and energy consumption of software and
hardware implementations normalised to the ones of serial versions, respectively. The FPGA designs
provide considerably fast implementations which justifies using the FPGA accelerators under some
constraints to speed up the applications and save energy. The FPGA energy consumption in this
table is the active energy without VFS which corresponds to the minimum task period. As the
software implementations mainly optimised for speed, their energy consumptions depend on their
implementations. However, for considered periodic tasks, the serial implementation is more energy
efficient.

8.3 Dynamic energy management evaluation
This subsection evaluates Algorithms 1 and 2. Considering two analytical and linear FPGA task
energy models explained in Section 5, Fig. 15 compares the maximum percentage of the energy
deviation between the result of Algorithm 1 and the ideal minimum average energy (which the
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Fig. 15. Maximum energy deviation in Algorithm 1

Table 7. Fast and slow mode deadlines

Name τtp τof p τf ast τslow
bs 15000 384.84 – –
lr 143 ∞ 71.5 286
pr 341 ∞ 170 686
mxv 54 ∞ 27 108
saxp 781 348.25 – –
hist 407 ∞ 10 500
corr. 170 ∞ 10 200
cov. 220 ∞ 10 300
nbody 3133 344.46 – –
sharpen 143 339.5 10 200
sobel 566 326.43 – –
vadd 78 ∞ 10 100
mm 240 ∞ 20 300

algorithm should find in the case of using accurate models) obtained by the exhaustive search in
measured data. For this purpose, we considered six different periods for tasks and calculated the
average errors. As can be seen, both analytical and linear models’ errors are less than 10% while
the linear model represent less amount of error, which indicates the acceptable accuracy of the
proposed linear model for the FPGA active energy and the success of Algorithm 1 to find this
minimum.
This subsection evaluates Algorithms 1 and 2. Considering the models represented by Equ. 1

to Equ. 13, Fig. 15 shows the maximum percentage of the energy deviation between the result of
Algorithm 1 and the ideal minimum average energy (which the algorithm should find in the case
of using accurate models) obtained by the exhaustive search in measured data. For this purpose,
we considered six different periods for tasks and calculated the average errors. As can be seen,
errors are less than 10% which indicate the acceptable accuracy of the proposed linear model for
the FPGA active energy and the success of Algorithm 1 to find this minimum.

To show the effectiveness of Algorithm 2 in action, we consider the tasks for which the switching
between two software and hardware implementations is possible as shown in Expression 17. For
these tasks, we consider two different modes for the task state to be able to use the two different
hardware and software implementations. Whereas, the first mode, called fast, requires a high-speed
implementation because of the low task period, the second mode, named slow, is associated with
high task period. For this reason, the period of the fast mode is considered to be less than the
transition point factor. The slow mode is considered for the software version of the task, therefore,
the period of this mode is greater than the transition point factor and less than the on/off point
factor.
Table 7 shows the considered task periods for slow and fast modes as well as the τtp and τof p .

Note that, the hardware implementation is always energy efficient in tasks that do not have slow
mode period as these tasks satisfy Case 2 denoted by Expression 18.

We have considered three benchmarks in which the two fast and slow modes correspond to the
hardware and software implementations, respectively. Fig. 16 shows the normalised consumed
energy when these task spends 50% of its periods in the fast mode. The ideal values represent the
energy consumption without considering the switching overhead. The proposed data determines
the result of Algorithm 2 considering the switching overhead. It shows that with the time-out
DPM policy the impact of switching overhead is negligible. The other values in this figure, denoted
by Pitfalls 1 to 4, represent the results of Algorithm 2 when each of the pitfalls described in
Subsection 3.1 are not considered. In this diagram, we are studying the impact of each single pitfall
on the proposed algorithm. In these designs, as each pitfall fails, it chooses the FPGA implementation
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Fig. 16. Pitfalls’ energy comparison Fig. 17. Time-out policy with Tt ime−out = 0

instead of the software one. Therefore, we get the same results for the final energy consumption in
Fig. 16.

We have also assumed five different cases in which the switching between software and hardware
implementations (i.e., slow and fast modes, respectively) happens with the probability of 10%, 20%,
50%, 70% and 90%. In other words, the task with lower probability spends more time in the slow
mode and we expect the lower switching overhead and higher energy saving. Fig. 17 compares
the percentage of energy reduction caused by switching between the hardware and software
implementations using Algorithm 2 compared to the fully hardware implementation. As can be
seen, the amount of energy saving can be more than 48% for applications in which a given task
should spend more cycles in the fast mode. Note that, here, we have considered a time-out policy
for DPM in which Ttime_out = 0, that is, the task ran by software lasts at least for Tbe . If this
assumption is not met by the task then the switching overhead between hardware and software
implementations has negative impact on the total energy consumption. This phenomenon has
caused negative the energy reduction percentage for two tasks, i.e. mxv and vadd, shown in
Fig. 17. Note that, the switching between software and hardware implementations causes energy
overhead. Therefore, the more switching, the more energy overhead. If the proposed technique can
alleviate this energy overhead by properly switching between software and hardware, then it can
significantly save the energy. Fig. 17 directly shows this behaviour. If there is more switching, then
the algorithm has more change to save energy. This is the main reason of direct relation between
the amount of energy reduction and the switching probability.
It is worthwhile to study the scalability and expansion of the proposed energy management

technique considering a platform containing multiple CPUs and FPGAs. In this case, the list of
transition and on-off point factors increases at Line 1 of Algorithm 1, while the rest of the algorithm
remains intact. Moreover, the task transition overheads among FPGAs and CPUs should also be
calculated to be used in Algorithm 2.

9 CONCLUSIONS AND FUTUREWORK
This paper has studied the energy consumption of a task running on an FPGA-based accelerator. This
study shows that although FPGAs can traditionally provide a fast implementations for different types
of tasks, they may not be the most energy efficient solution especially for the memory-intensive
applications under a periodic execution scheme. Therefore, a decision made at runtime to run a
given task on the hardware or software can significantly save the total task energy consumption.
The open-source DVFS framework developed for this paper, benchmarks and the generated data
can be found at [10]. The research can be expanded in different ways. One possible avenue of future
work studies the energy efficiency of assigning multiple tasks to an FPGA. In addition, scaling the
proposed algorithm to cover task distribution among multiple FPGAs and CPUs can be a new line
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of research to integrate fine-grained scheduling and binding to the proposed energy management
technique.
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