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Abstract 12 

The Cretaceous/Paleogene (K/Pg) boundary is well-represented across a range of 13 

depositional settings in New Zealand. Trends in fossil assemblages and marine lithofacies 14 

indicate that the K/Pg event was followed by a pronounced and long-term (~1 Myr) 15 

perturbation in climate and ocean conditions. These findings are supported by a TEX86-16 

derived sea surface temperature (SST) reconstruction across the K/Pg boundary at mid-17 

Waipara River, north Canterbury. The BAYSPAR calibration indicates that SST was very 18 

stable in the uppermost Cretaceous (~20°C), but abruptly warmed by ~4°C in a 25 cm-thick 19 

lowermost Paleocene interval. This interval is overlain by a ~2 m thick interval in which SST 20 

abruptly cooled by ~10°C and then progressively returned to ~20°C. The basal Paleocene 21 

warm interval is associated with an acme in the dinoflagellate species Trithyrodinium evittii 22 

and the succeeding cool interval is associated with an acme in Palaeoperidinium 23 

pyrophorum. Biostratigraphic correlation of the shelfal mid-Waipara section to the pelagic 24 

K/Pg sections in Marlborough reveals that a significant unconformity separates these two 25 

acme events, with the T acme event occurring in the earliest Paleocene and the P. 26 

pyrophorum acme occurring ~1 Myr later and lasting ~200 kyr. A succession of dinoflagellate 27 



acme events within the intervening interval in the Marlborough sections implies unstable 28 

climatic and environmental conditions in the lead up to the P. pyrophorum acme and cooling 29 

event at ~65 Ma. This event also coincides with a peak in biogenic silica accumulation in the 30 

Marlborough sections. We suggest that disruption to biogeochemical pathways at the K/Pg 31 

boundary caused long-term climatic cooling in the southern Pacific region.  32 
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 37 

1. Introduction 38 

The long-term consequences of the Cretaceous–Paleogene (K/Pg) boundary event on 39 

Earth’s climate remain poorly understood. Numerical models simulating the effects of the 40 

K/Pg boundary impact predict a brief (years to decades) period of global cooling induced by 41 

sulphate aerosols and dust or soot blocking out the sun’s radiation, the so-called ‘impact 42 

winter’ (Pope et al., 1994, 1997; Pierazzo et al., 2003; Schulte et al., 2010; Bardeen et al. 43 

2017; Brugger et al. 2017), followed by a longer episode of global warmth likely caused by 44 

both CO2 released by the impact and reduced CO2 uptake by plants (Pierazzo et al., 1998; 45 

Kring, 2007). This pattern of short-lived cooling followed by longer-term warming is 46 

supported by microfossil evidence in Northern Hemisphere sites (Brinkhuis et al., 1998; 47 

Galeotti et al., 2004), and has been corroborated by integrated study of the TEX86 sea 48 

surface temperature (SST) proxy and dinoflagellate assemblages (Vellekoop et al., 2014). 49 

TEX86-based temperature reconstructions from other regions (Kemp et al., 2014; Vellekoop 50 

et al., 2015; 2016; Petersen et al., 2016) provide further evidence for SST change following 51 

the K/Pg boundary. There is also some evidence that Deccan Traps volcanism affected 52 



climate through the K–Pg transition (Courtillot et al., 1988; Chenet et al., 2009; Self et al., 53 

2014; Schoene et al., 2015; Petersen et al., 2016).  54 

Longer-term climate impacts of the K/Pg event have been inferred from stable oxygen 55 

isotope records. However, poor preservation and the K/Pg extinction of planktic calcifying 56 

organisms (Zachos and Arthur, 1986; Magaritz et al., 1992) makes interpretation difficult. 57 

Ocean warming has been inferred in some studies (e.g. Douglas and Savin, 1971; 58 

Oberhänsli, 1986; Barrera and Keller, 1990; Stott and Kennett, 1990; Schmitz et al., 1992; 59 

Barrera and Keller, 1994), whereas others suggest cooling (Boersma and Shackleton, 1977; 60 

Boersma et al., 1979; 1981; Keller and Lindinger, 1989) or no significant change at all 61 

(Zachos and Arthur, 1986). Other studies have inferred climate fluctuations over the first 1-2 62 

Myrs of the Paleocene from indirect evidence, such as oscillations in magnetic susceptibility, 63 

carbonate content and grain size (D’Hondt et al., 1996; Kroon et al., 2007).  64 

For the southwest Pacific, a pattern of short-lived climate instability followed by prolonged 65 

climatic cooling over ~1 Myrs has been inferred from both marine and terrestrial K/Pg 66 

boundary records (Vajda et al., 2001; Hollis, 2003; Vajda and Raine, 2003). Prolonged 67 

cooling has been invoked to explain both a delayed recovery of calcareous plankton and the 68 

abundance of diatoms and radiolarians in the basal Paleocene pelagic sediments of 69 

northeastern South Island, New Zealand (Hollis et al., 1995, 2003a, b). Compositional shifts 70 

in the marine dinoflagellate cyst assemblages have been interpreted as alternating periods 71 

of warm and cool SSTs (Willumsen & Vajda, 2010b). However, these climate fluctuations 72 

have been inferred from changes in fossil assemblages or lithology and lack corroboration 73 

from geochemical proxies for temperature. In this study, we use the TEX86 proxy to 74 

reconstruct SST across the K/Pg boundary in the mid-Waipara section, Canterbury Basin 75 

(Fig. 1). We combine previously reported data for the early Paleocene (Taylor et al., 2013) 76 

with new analyses from the uppermost Cretaceous. We also evaluate different GDGT 77 

paleothermometers and consider how changes in thaumarchaeotal growth environment 78 

might be reflected in this record. 79 



The mid-Waipara River section (Fig. 1) contains the most complete known K/Pg transition in 80 

a neritic setting in the South Pacific region (Hollis and Strong, 2003). It provides an important 81 

link between bathyal marine and terrestrial sections in New Zealand (Hollis, 2003) and is one 82 

of only two neritic K/Pg boundary record in the Southern Hemisphere, the other being on 83 

Seymour Island, Antarctic Peninsula (Elliot et al., 1994; Bowman et al., 2012; 2014; 2015; 84 

Kemp et al., 2014; Petersen et al., 2016; Witts et al., 2016). The mid-Waipara section 85 

contains abundant and diverse palynomorphs, including dinoflagellates (Wilson, 1987; 86 

Willumsen, 2004; 2006; 2012; Ferrow et al., 2011) and terrestrial palynomorphs (Vadja et al., 87 

2001; Vadja and Raine, 2003; Ferrow et al., 2011), which provide qualitative indications of 88 

climatic and environmental variability. Importantly, the dinoflagellate succession can be 89 

correlated to two bathyal K/Pg boundary sections in eastern Marlborough, Branch and Mead 90 

Streams (Fig. 1), utilising a new Paleocene dinoflagellate zonation (Crouch et al., 2014) and 91 

a well-defined succession of early Paleocene acme events (Willumsen, 2004, 2006, 2011; 92 

Willumsen & Vajda, 2010b). Collectively, these data allow us to reconstruct climatic and 93 

oceanic changes through the K/Pg boundary transition in the mid-latitude southwest Pacific. 94 

 95 

2. Materials and Methods 96 

2.1. Location and samples 97 

The Waipara River trends northwest-southeast through a Mesozoic-Cenozoic sedimentary 98 

succession in northern Canterbury (Fig. 1).  99 



 100 

Figure 1. Location of the mid-Waipara River section and other Cretaceous-Paleogene (K/Pg) 101 

boundary sections discussed in the text: (A) present day location and (B) earliest Paleocene 102 

paleogeographic setting (adapted from Hollis et al., 2003a). 103 

The section examined is referred to as the mid-Waipara River section because it is located 104 

along the middle course of the river. The K/Pg boundary is located within Column 1 in the 105 

composite section described by Morgans et al. (2005). It lies at the base of a 4-m thick, non-106 

calcareous, glauconitic sandstone, which forms the uppermost unit of the Conway Formation 107 

(Fig. 2). The underlying Conway Formation is moderately calcareous and more mud-rich. 108 

Overlying the Conway Formation is the lower Paleocene Loburn Formation, a ~60 m-thick 109 

unit of non-calcareous to slightly calcareous sandy mudstone. These sediments were 110 

deposited in a neritic mid-shelf setting during a widespread marine transgression (Field et 111 

al., 1989). 112 

Geochemical studies (Brooks et al., 1986; Hollis and Strong, 2003; Ferrow et al., 2011) 113 

place the boundary within an irregular 2-cm thick, ‘rusty’ Fe-stained interval that includes a 114 

relatively small Ir anomaly (0.49 ng/g, ~50 x crustal average) as well as enrichment in Fe, Ni, 115 

Zn and Cr (Fig. 2). As discussed by Hollis and Strong (2003), an irregular distribution of 116 

these elements is probably due to intense bioturbation in these sediments (See S1 for cross-117 

plotted trace metal concentrations) 118 



 119 

 120 

Figure 2. Stratigraphy and geochemical profiles for the uppermost Cretaceous and lower 121 

Paleocene succession at mid-Waipara River.  Foraminiferal and radiolarian datums are from 122 

Hollis and Strong (2003). Dinoflagellate datums are from Willumsen (2004, 2011, 2012) and 123 

Crouch et al. (2014). Geochemical profiles include calcium carbonate concentration (A) and 124 

concentrations of Ni (B), Zn (C), Cr and Fe (D) normalised to Ti to account for terrigenous 125 

sources. 126 

 127 

Willumsen (2006) and Ferrow et al. (2011) also noted downward displacement and mixing of 128 

dinoflagellate cyst assemblages. A prominent dark, irregular band in the middle of this zone 129 

is chosen as the stratigraphic position of the K/Pg boundary (zero datum) but elemental 130 

anomalies suggest boundary components have been mixed by bioturbation into sediments 5 131 

cm above and below this datum (Fig. 2A-D). The boundary also coincides with a marked 132 

decrease in CaCO3 concentration (Fig. 2A) from ~30 wt% in the Cretaceous to <5 wt% over 133 

the lower 5 m of Paleocene strata (Hollis and Strong, 2003). In contrast to the sudden 134 



decrease recorded in the bathyal Marlborough sections (Hollis et al., 2003a; b), CaCO3 135 

concentration begins to decrease c. 0.3 m below the boundary, also likely due to 136 

bioturbation. A second “rusty” zone ~20-22 cm above the K/Pg boundary is also associated 137 

with Fe and Cr enrichments that extend to at least 1.2 m above the boundary (Fig. 2). The 138 

combined enrichment of these elements over an extended interval may indicate dysoxic 139 

conditions (Calvert and Pedersen, 1993). 140 

Our TEX86 study is based on 26 samples that extend from 1.15 m below to 20 m above the 141 

K/Pg boundary, including a suite of 15 closely spaced samples that span the boundary 142 

(Supplementary materials S2). The same sample set was utilised for earlier geochemical, 143 

micropaleontological, palynological and geochemical studies of this section (Hollis and 144 

Strong, 2003; Vajda and Raine, 2003; Willumsen, 2006; 2012; Crouch et al., 2014). In 145 

Ferrow et al. (2011), a new sample suite of 17 samples from a slabbed section through the 146 

mid-Waipara River K/Pg boundary interval, from 0.24 m below to 0.26 m above the 147 

boundary, was examined for Mössbauer spectroscopy, mineralogy, osmium isotopes, 148 

dinoflagellate cysts, spores and pollen. These samples are not utilised in the present study 149 

because they do not provide a longer term record of environmental change and are difficult 150 

the correlate confidently with the previously collected sample suite.  151 

 152 

2.2. Biostratigraphy and palynology  153 

Despite the scarcity of calcareous microfossils and radiolarians in the mid-Waipara section,  154 

Hollis and Strong (2003) were able to identify planktic foraminiferal zones P0, P and P1a-c 155 

and radiolarian zones RP1 to RP3. In contrast, dinoflagellates are abundant and well-156 

preserved throughout the section (Wilson, 1987; Willumsen, 2004; 2006, 2012) and 157 

dinoflagellate biostratigraphy provides the primary age control and to correlate with the 158 

bathyal sections in Marlborough (Willumsen, 2011; Crouch et al., 2014), complemented by 159 

planktic foraminiferal and radiolarian bioevents (Fig. 2). Processing methods for 160 



micropaleontology and palynology are described elsewhere (Hollis and Strong, 2003; Vajda 161 

and Raine, 2003; Willumsen, 2003; 2004; 2006; 2011; 2012). Dinoflagellate census data are 162 

based on counts of ~300 specimens (Willumsen, 2003). Data for selected taxa from the 163 

uppermost Cretaceous and lower 5 m of Paleocene strata at mid-Waipara have been 164 

previously reported by Willumsen (2004; 2006; 2012). Data for additional taxa from this 165 

interval and an additional 5 samples from the overlying Paleocene interval are from 166 

Willumsen (2003). Data for the basal 9 samples from the Loburn Formation in mid-Waipara 167 

Column 4 (Morgans et al., 2005) are from Crouch et al. (2014). Data for Columns 1 and 4 168 

sets are combined by approximate correlation of the top of column 1 with the base of column 169 

4, which is consistent with the dinoflagellate biostratigraphy (Supplementary materials S3) 170 

although a small overlap between the two sections is possible. Dinoflagellate census data for 171 

the Mead and Branch sections were reported by Willumsen (2003; 2011). 172 

  173 

2.3. Glycerol Dialkyl Glycerol Tetraether (GDGT) analysis, calibration and indices 174 

 175 

Glycerol dialkyl glycerol tetreathers (GDGTs) were extracted from sediments and analysed 176 

by liquid chromatography mass spectrometer (LC-MS) as per methods described in the 177 

supplementary information in Taylor et al. (2013) (Supplementary materials S4).  178 

 179 

The original TEX86 core-top calibration to SST was linear (Schouten et al., 2002; Kim et al., 180 

2008), with two complementary logarithmic indices introduced by Kim et al. (2010). TEX86
H 181 

was recommended for use in sites or sections where SST is expected to be greater than 182 

15°C and TEX86
L was recommend for sites where SST is expected to span 15°C.  TEX86

H 183 

utilises the same combination of GDGTs as in the original linear TEX86 relationship 184 

(Schouten et al., 2002; Kim et al., 2008):  185 

 186 

TEX86 = (GDGT-2 + GDGT-3 + cren’)/ (GDGT-1+ GDGT-2 + GDGT-3 + cren’) 187 



 188 

where for GDGT-n, n denotes the number of cyclopentyl moieties present and cren’ denotes 189 

the crenarchaeol region-isomer (4 cyclopentyl rings, plus the cyclohexyl moiety).See 190 

Schouten et al. (2012) for GDGT structures as per this nomenclature. However TEX86
H, 191 

when described as an index (rather than when referring to calibration-derived SST – see 192 

below), specifically refers to the logarithmic transformation of the original TEX8: 193 

 194 

TEX86
H = log TEX86 195 

 196 

TEX86
L comprises a combination of GDGTs that is different from TEX86

H and all other TEX86 197 

equations, and is again a logarithmic transformation of the ratio of certain GDGTs: 198 

 199 

TEX86
L = log GDGT-2/(GDGT-1 + GDGT-2 + GDGT-3) 200 

 201 

The TEX86
H and TEX86

L indices are subsequently used to derive SST (in degrees Celsius) 202 

using the following equations: 203 

 204 

TEX86 [linear]: SST = 81.5 x TEX86 − 26.6 (calibration error, ±5.2°C) 205 

TEX86
H:  SST = 68.4 x log TEX86 + 38.6 (calibration error, ±2.5°C) 206 

TEX86
L: SST = 67.5 x log TEX86

L + 46.9 (calibration error, ±4°C) 207 

 208 

The TEX86 [linear] and TEX86
H calibrations are based on modern core-top data from only 209 

settings where SST >15°C, whereas TEX86
L is based on the entire global core-top sediment 210 

dataset (Kim et al., 2010). Recent papers (Taylor et al., 2013; Hernandez-Sanchez et al., 211 

2014; Inglis et al., 2015) have noted that the TEX86
L calibration yields spurious SST values 212 

under certain conditions where unusual variations in GDGT distributions occur .  213 



A fourth core-top calibration, BAYSPAR, is a spatially-varying, Bayesian regression model 214 

for TEX86 that assumes a linear relationship between TEX86 and SST (Tierney and Tingley, 215 

2015). For pre-Quaternary studies, a ‘Deeptime’ approach is recommended in which 216 

Bayesian statistics is used to identify the modern core-top samples that are closest to the 217 

measured TEX86 value and a linear regression is applied to these modern locations. 218 

Temperatures are calculated using www.whoi.edu/bayspar and can be reported as surface 219 

(BAYSPARSST) or subsurface (BAYSPARSubT) temperature; the latter is the weighted 220 

average of the temperature range over 0–200 m water depth.  221 

GDGT distributions in suspended particulate material (SPM) have also been calibrated to in 222 

situ weighted-average water temperatures over a depth range of 0–100 m  (Schouten et al., 223 

2013).   224 

 225 

SPM-TEX86: Temperature (°C) = 59.6 x TEX86
H + 32 (r2 = 0.78, n = 88) 226 

 227 

As expected, this equation yields temperatures similar to the depth-integrated 0–200 m 228 

TEX86
H calibration and the BAYSPARSubT calibration.  229 

 230 

To examine further the applicability of the TEX86 paleothermometer in the Paleogene, Hollis 231 

et al. (2012) compiled data from four Paleogene studies (Zachos et al., 2006; Pearson et al., 232 

2007; Burgess et al., 2008; Hollis et al., 2009) in which a representative range of TEX86 233 

values could be compared to SST estimates derived from δ18O values or Mg/Ca ratios in 234 

well-preserved, mixed-layer planktic foraminifera from the same samples. A strong 235 

correlation was observed between TEX86 values with SSTs derived from these inorganic 236 

proxies, but SSTs calculated with the TEX86
H calibration were typically 3 to 6°C higher than 237 

foraminifera-based SSTs. Hollis et al. (2012) used a logarithmic regression to derive a paleo-238 

calibration to SST (pTEX86):  239 

 240 

http://www.whoi.edu/bayspar


pTEX86:  SST = 39.036 x ln(TEX86) + 36.455 (r2 = 0.87, n = 42) 241 

 242 

The pTEX86 approach assumes that SST derived from well-preserved foraminiferal calcite 243 

has greater fidelity in the Paleogene than TEX86 calibrations based on modern sediments. 244 

The reasons for the offset between TEX86 and foraminiferal proxies for SSTS have been 245 

widely discussed but with no consensus reached (Taylor et al., 2013; Inglis et al., 2015; Ho 246 

and Laepple, 2016; Zhang et al., 2016). The issue has not been resolved with the 247 

introduction of the BAYSPAR calibration, which results in an offset similar to that observed 248 

for TEX86
H. 249 

 250 

A further way that GDGT distributions have been related to temperature is by calculating the 251 

isoprenoidal GDGT ‘degree of cyclisation’, or RingAV (e.g. Shimada et al., 2002, Schouten et 252 

al., 2007, Pearson et al., 2008, Pitcher et al., 2009):   253 

 254 

RingAV = (1 x GDGT-1) + (2 x GDGT-2) + (3 x GDGT-3) + (4 x cren’) / (GDGT-1 + 255 

GDGT-2 + GDGT-3 + cren’)  256 

 257 

This proxy is based on the physiological relationship in which the degree of cyclisation in 258 

GDGTs is correlated to temperature (De Rosa et al., 1980; Gliozzi et al., 1983; Uda et al., 259 

2001). RingAV is a normalised form of the Ring Index proposed by Zhang et al (2016) as a 260 

guide to situations where TEX86 has been influenced by non-thermal factors or deviates from 261 

modern analogue relationships. Other potential  sources of bias related to physiology, 262 

seasonality and water depth have been widely discussed (e.g., Turich et al., 2007; Kim et al., 263 

2008; Huber and Caballero, 2011; Hollis et al., 2012; Taylor et al., 2013; Hernandez-264 

Sanchez et al., 2014; Ho and Laepple, 2016). TEX86 values can also be biased by the input 265 

of terrestrial GDGTs but this bias is considered to be negligible when the branched vs. 266 

isoprenoid (BIT) index is lower than 0.3 (Weijers et al., 2006). The BIT index is also a useful 267 

proxy from terrestrial input.  268 



 269 

BIT = (bGDGT-I + bGDGT-II + bGDGT-III) / (bGDGT-I + bGDGT-II + bGDGT-III + 270 

crenarchaeol), 271 

 272 

where I, II and III refer to brGDGTs with no rings and 4, 5 or 6 methyl groups, respectively 273 

(Schouten et al., 2012).  274 

 275 

3. Results and Discussion 276 

In this section, we outline the biostratigraphic basis for age control in the mid-Waipara 277 

section. We describe the trends in GDGT and interpret the trends in relation to SST 278 

reconstructions and changes in dinoflagellate assemblages. We compare the mid-Waipara 279 

section to the more complete Branch and Mead stream sections in Marlborough. We 280 

conclude the section by discussing the nature and possible causes on long-term trends 281 

climatic and environmental conditions the followed the K/Pg boundary event. 282 

 283 

3.1. Biostratigraphy of the mid-Waipara section 284 

The primary age control for the mid-Waipara section is provided by dinoflagellates 285 

(Willumsen,2003;  2004; 2006; 2012). Age control for dinoflagellate events is based primarily 286 

on correlation with foraminiferal and radiolarian biostratigraphy in the Branch and Mead 287 

stream sections in southeastern Marlborough (Hollis et al., 2003a; Willumsen, 2003; 2011; 288 

2012; Crouch et al., 2014). The co-occurrence of all three fossil groups in these sections has 289 

been utilised to develop a well-resolved event stratigraphy (Supplementary materials S5).  290 

Despite the evidence for bioturbation across the K/Pg boundary at mid-Waipara, several 291 

lines of evidence suggest that the boundary is intact and earliest Paleocene sediments are 292 

preserved. Geochemical studies indicate that the boundary is enriched in Ir and other 293 

siderophiles (Fig. 2; Brooks et al., 1986; Hollis and Strong, 2003; Ferrow et al., 2011). 294 



Foraminiferal assemblages also indicate that the lowermost Paleocene sample can be 295 

correlated to earliest Paleocene zone P0 and the overlying sample can be correlated with 296 

zone P (Hollis and Strong, 2003). Dinoflagellate biostratigraphy indicates that the basal 297 

Paleocene (0-22 cm above the K/Pg boundary) can be correlated with lower NZDP1, based 298 

on the co-occurrence of Trithyrodinium evittii, Senoniosphaera inornata, and Manumiella 299 

druggii. The first two species have lowest occurrences (LOs) at the K/Pg boundary in New 300 

Zealand whereas the highest occurrence (HO) of M. druggii occurs within the lower part of 301 

zone NZDP1, coincident with the base of radiolarian zone RP2 in the Branch and Mead 302 

Stream sections. At mid-Waipara, bioturbation is inferred to have resulted in the occurrence 303 

of T. evittii in the uppermost Cretaceous, an inference supported by Ferrow et al. (2011). 304 

Ferrow et al. (2011) also reported the LOs of Damassadinium californicum and 305 

Membranilarnica? tenella directly above the K/Pg boundary. The LO of D. californicum is a 306 

global marker for the earliest Paleocene. The LO of M.? tenella was initially thought to occur 307 

later, close to the top of foraminiferal zone P0 according to Brinkhuis and Zachariasse (1988; 308 

see also Habib et al., 1996). However, more recent studies have established that the 309 

species is present in small numbers from the base of the Paleocene (Vellekoop et al., 2015).  310 

Furthermore, several latest Maastrichtian to earliest Paleocene species (Carpatella 311 

septatum, C. truncata, Impagidnium cavea, I. agremon, Pyxidiniopisis epakros and P. 312 

everriculum) have their HO between 0.16 and 0.325 above the K/Pg boundary.  313 

Crouch et al. (2014) provide an age estimate of ~65.4 Ma (earliest zone RP2) for the HO of 314 

Manumiella druggii. In this section, we place this event at the rapid decrease in the 315 

abundance of M. druggii between 0.20 and 0.225m. We interpret rare occurrences and 316 

isolated occurrence above this level as being due to reworking. This interpretation is 317 

consistent with the HO of Trichodinium hirsutum at 0.475 m. This event occurs above the 318 

HO of M. druggii in the Mead and Branch sections and is dated at ~65.1 Ma by Crouch et al. 319 

(2014). Consequently, the interval from 0.475 to 0.725 m is correlated with uppermost zone 320 

NZDP1 based on the absence of M. druggii and HO T. hirsutum in the basal sample. The 321 



interval from 0.725 m to the top of the studied section is correlated with zone NZDP2 based 322 

on the co-occurrence of Cerodinium striatum and Trithyrodinium evittii.  323 

An age depth plot for the section (Supplementary materials S6, S7) indicates that there is a 324 

significant unconformity at the level of the second Fe-stained layer (0.23 m). A sample 325 

directly above the unconformity (M34/f124; Hollis and Strong, 2003) contains the LO of 326 

foraminifer Parvulorugoglobigerina eugubina, which marks the base of foraminiferal zone P 327 

(66 Ma). This implies that the interval below the unconformity lies within zone P0 and 328 

represents no more than 40 kyrs. Because two dinoflagellate events occur at the same 329 

stratigraphic level as this foraminiferal event but have significantly younger ages (HO M. 330 

druggii, ~65.4 Ma; HO T. hirsutum ~65.1 Ma), this unconformity is inferred to represent a 331 

hiatus of ~1 Myr (Fig. 2). As noted above, the HOs of several other dinoflagellate species 332 

have been noted at the level of this unconformity. The unconformity also marks the top of the 333 

K/Pg fern spike (Vajda et al., 2001; Vajda and Raine, 2003; Ferrow et al., 2011), with the 334 

abundance of fern spores decreasing from 66 to 22% of the total miospore assemblage. 335 

There are no indications of other significant unconformities in the section, with a modest 336 

sedimentation rate of 5.75 m/Ma estimated for the K/Pg boundary transition and a higher 337 

rate of 14.63 m/Ma determined for the interval above the unconformity.  338 

 339 

3.2. Organic Geochemistry 340 

Total organic carbon (TOC; Fig. 4A) is generally low (< 0.5 wt %) through the K/Pg transition 341 

and falls to a minimum between 0.22 and 2 m above the boundary (<0.3 wt %). Biomarker 342 

distributions across throughout the section indicate both terrestrial and marine sources for 343 

organic matter (OM), with high-molecular-weight (C27-C31; HMW) n-alkanes with a relatively 344 

strong odd-over-even predominance and HMW (C28-C32) n-alkanoic acids with a strong 345 

even-over-odd predominance indicating a significant terrigenous contribution 346 

(Supplementary materials S4; Eglinton and Hamilton, 1963, 1967; Cranwell et al., 1987). 347 



The presence of branched GDGTs (bGDGTs) indicates fluvially transported soil organic 348 

matter input (Fig. 3; Hopmans et al., 2004; Weijers et al., 2006). However, BIT indices are 349 

relatively low (< 0.11; see Supplementary materials S8) throughout, indicating a relatively 350 

small terrestrial component of OM relative to marine (Hopmans et al., 2004, Weijers et al., 351 

2006). Marine contributions are evident not only from the low BIT indices but also abundant 352 

low molecular weight (C14 – C20; LMW) n-alkanoic acids with an even-over-odd 353 

predominance (Supplementary materials S4; e.g. Volkman et al., 1980; Claustre et al., 1989; 354 

Carrie et al., 1998) and relatively high concentrations of pristane and phytane (e.g. Dean and 355 

Whitehead, 1961; Rontani and Volkman, 2003). 356 

 357 

 358 

Figure 3. Organic geochemical profiles through the K/Pg transition at mid-Waipara River: (A) 359 

total organic carbon (TOC); semi-quantitative concentrations of GDGTs in bulk sediment and 360 



organic matter, including (B) [1-3 & cren’],  (C) crenarchaeol and GDGT-0, and  (D) 361 

branched GDGTs; (E) fractional abundance of GDGT-0, crenarchaeol and [1-3 + cren’]. Note 362 

the scale change above 1.5 m sample depth. 363 

 364 

3.3 GDGT concentrations and distributions 365 

We previously reported the distributions of GDGTs in the Paleocene at mid-Waipara River in 366 

terms of Ringav and tetraether indices (TEX86
H and TEX86

L and their respective SSTs), as 367 

well as the offset between those two SST proxies (ΔH-L) as a function of [2]/[3] ratios 368 

(Taylor et al., 2013). Here, we expand those analyses and further interrogate variation in 369 

GDGT distributions and concentrations across the K/Pg boundary. In addition to these two 370 

SST proxies, we consider TEX86[linear], pTEX86, BAYSPARSST, BAYSPARSubT and SPM-371 

TEX86.  372 

Branched and isoprenoidal GDGT concentrations exhibit similar trends to those described 373 

for TOC (Fig. 3B-D). Isoprenoidal GDGT concentrations are generally an order of magnitude 374 

higher than those of branched GDGTs and crenarchaeol is the dominant GDGT (Fig. 4E). 375 

Concentrations of all GDGTs are low in the uppermost Cretaceous and exhibit fluctuations 376 

across the K/Pg boundary. Summed GDGTs 1, 2, 3, and cren’ (herein denoted as [1-3 + 377 

cren’]) concentrations (Fig. 4B), GDGT-0 and crenarchaeol (Fig. 3C) have small peaks at or 378 

directly above the K/Pg boundary. Above the unconformity at 0.23 m, there is a sharp 379 

increase in the concentration of GDGT-0 (Fig. 3C), concomitant with a decrease in 380 

concentrations of all other isoprenoidal and branched GDGTs (Fig. 3B-E). Concentrations of 381 

GDGT-0 remain high and dominate the GDGT distribution from 23 cm to 1.15 m (Fig. 3E). 382 

Concentrations of crenarchaeol and brGDGTs increase from ~2 m above the K/Pg boundary 383 

as GDGT-0 decreases (Fig. 3C-E) and the proportions of GDGT-[1-3 + cren’], GDGT-0 and 384 

crenarcheol return to values similar to those recorded in the uppermost Cretaceous (Fig. 385 

3E). Maximum concentrations of all GDGTs other than GDGT-0 occur in the lower Loburn 386 



Formation (4−12 m), before gradually decreasing in the upper part of the section. These 387 

trends persist even when concentrations are normalised to TOC content (Fig. 3B-D; also see 388 

Supplementary materials S4).  389 

 390 

Based on these trends, as well as distributions of the TEX86-related GDGTs, four distinct 391 

intervals are evident in the K/Pg section (Fig. 4, 5, 6A):  392 

(I) Upper Cretaceous (-1.2 to -0.18 m): moderate TOC, low GDGT concentrations, 393 

dominated by crenarchaeol. 394 

(II) Uppermost Cretaceous and basal Paleocene (-0.07 to 0.22 m): fluctuating TOC 395 

and GDGT concentrations, also dominated by crenarchaeol but with higher 396 

abundance of GDGT-2. 397 

(III) Lower Paleocene (0.22 to ~2 m): minimum TOC contents and GDGT 398 

concentrations, but high fractional abundance of GDGT-0, GDGT-1 and GDGT-2 399 

(IV) Lower Paleocene (~2 to 20 m): maximum TOC contents and GDGT  400 

concentrations, dominated by crenarchaeol. 401 

 402 



 403 

 404 

Figure 4. GDGT-based indicators of sea temperature change through the K/Pg transition at 405 

mid-Waipara River: (A) fractional abundance for GDGT-1 , -2, -3 and cren’; (B) RingAV; (C) 406 

TEX86 and TEX86L indices, with TEX86
H and TEX86

L-reconstructed SSTs (calibration error of 407 

+/-4°C is shaded); (D) SST offset between TEX86
L and TEX86

H calibrations (ΔH-L) and [2]/[3] 408 

ratio, highlighting unusual behaviour in Interval III; (E) Sea surface  and subsurface 409 

temperature profiles based on TEX86
H, pTEX86, BAYSPARSST, BAYSPARsubT and SPM-410 

TEX86, the pink shaded interval is  the 95th confidence interval based on BAYSPAR. Note 411 

the scale change above 1.5 m sample depth. 412 

 413 

 414 

3.4 Sea surface temperature reconstructions 415 

The fractional abundance of the GDGTs that are used for temperature reconstructions are 416 

relatively consistent for Intervals I, II and IV.  However, the abundance of GDGT-1 and 417 



GDGT-2 are significantly elevated relative to GDGT-3 and cren’ in Interval III (Fig. 4A). As 418 

previously noted, the proportion of GDGT-0 is also markedly higher in Interval III. These 419 

relationships are captured in RingAV (Fig. 4B), which increases slightly from Interval I to 420 

Interval II but then decreases markedly across the unconformity at 23 cm from Interval II to 421 

Interval III. The parameter increases in the upper part of Interval III and then is stable 422 

through Interval IV with values similar to Interval I.  423 

 424 

Trends in TEX86 typically parallel trends in RingAV because both indices are based on the 425 

number of cyclopentane moieties. In the mid-Waipawa section, TEX86 also has a maximum 426 

within Interval II and a minimum within Interval III (Fig. 4C), which is interpreted to indicate 427 

an interval of warmer conditions directly above the K/Pg boundary (Interval II) followed by 428 

cooling in Interval III (Fig. 4D). However, the same correlation is not observed between 429 

RingAV and TEX86
L. Relationships between the two indices are consistent for Intervals I, II 430 

and IV but for Interval III, TEX86
L increases, which implies higher rather than lower SSTs 431 

(Fig. 4C). This anomaly is explained by the unusually high abundance of GDGT-2 relative to 432 

GDGT-3 in this interval. Because GDGT-2 is the sole numerator in the TEX86
L equation, any 433 

increase in its concentration will shift the proxy to warmer temperatures.  434 

 435 

Taylor et al. (2013) showed that these unusual variations in the relative abundance of 436 

GDGT-2 and GDGT-3 (expressed as the [2]/[3] ratio) can invert the normal relationship 437 

between the TEX86
L and TEX86

H proxies in which the latter tends to yield warmer SSTs   than 438 

the former (i.e. positive ΔH-L). Interval III at mid-Waipara is a striking example of this 439 

situation, in which an increase in the [2]/[3] ratio results in the negative ΔH-L (Fig. 4D). 440 

Taylor et al. (2013) found that the [2]/[3] ratio appeared to increase with water depth both in 441 

sediments and suspended particulate matter (in both core and intact lipids with respect to 442 

the latter), a finding that has since been corroborated in other studies (e.g. Hernandez-443 

Sanchez, 2014; Kim et al., 2015), including within intact polar lipids (Lengger et al., 2012; 444 



Schouten et al., 2012). The shift in ratio has been ascribed to changes in subsurface 445 

thaumarchaeal ecology (Villaneuva et al., 2015) and may indicate a greater proportion of 446 

GDGT export from subsurface waters (e.g. Taylor et al., 2013; Hernandez-Sanchez, 2014; 447 

Ho and Laepple, 2016).  448 

 449 

Further evidence for unusual environmental or ecological conditions in Interval III comes 450 

from the increase in concentration of GDGT-0 and the marked decrease in other GDGT 451 

concentrations (Fig. 3B-E). GDGT-0 is not used in GDGT temperature calculations because 452 

it can be derived from multiple sources, including not only Thaumarchaeota but also 453 

sedimentary Archaea (Schouten et al., 2002). In modern and Paleogene sediments it is very 454 

uncommon to find GDGT-0 relative abundances as high as those observed in Interval III 455 

(Inglis et al., 2015). It is most abundant in cool polar settings (although rarely >60% of the 456 

GDGT assemblage; Schouten et al., 2002) and in anoxic lacustrine settings (Blaga et al., 457 

2009). Although low TOC and extensive bioturbation suggest relatively oxic sea-floor 458 

conditions during Interval III, the enrichment in Cr noted above (Fig. 2) is consistent with 459 

some degree of dysoxia (Calvert and Pedersen, 1993).   460 

 461 

In summary, a greater proportion of export from the subsurface relative to surface waters 462 

could account for the high abundance of GDGT-2 and the unusual temperature trend derived 463 

from TEX86
L within Interval III. Moreover, the high abundance of GDGT-2 and GDGT-0 in this 464 

interval suggests an environment in which sub-surface or sedimentary Archaea are major 465 

contributors to the GDGT assemblage (Fig. 3E, 4A) and in which there is an overall 466 

decrease in the export of GDGTs from the surface waters (i.e. GDGT-3, cren’ and 467 

crenarchaeol).   468 

 469 

These factors have little impact on TEX86
H because GDGT-2, GDGT-3 and cren’ are 470 

incorporated into both the numerator and denominator in the equation. As all other GDGT-471 

based temperature calibrations are based on this index, they are considered to reliably 472 



record the general temperature trend through the mid-Waipara K/Pg section (Fig. 4E). To 473 

examine this in more detail, we have calculated temperatures using six calibrations based on 474 

TEX86
H. For SSTs, we have used TEX86

H, TEX86[linear], pTEX86 and BAYSPARSST. We have 475 

also calculated subsurface temperatures using BAYSPARSubT and SPM-TEX86. As expected, 476 

all calibrations yield very similar trends but differ considerably in absolute values, although 477 

all values lie within the uncertainty bounds of BAYSPARSST. Absolute SSTs are similar for 478 

TEX86
H and BAYSPARSST whereas pTEX86 yields SSTs that are ~7°C cooler and align 479 

closely with the lower limit for  BAYSPARSST. SPM-TEX86 and BAYSPARSubT are in close 480 

agreement and yield values that are intermediate between pTEX86 and TEX86
H.   481 

 482 

Figure 5. Comparison of the relative SST profile with the floral and microfloral turnover 483 

events through the KPB transition at mid-Waipara River: (A) Variation in SST relative to 484 

mean SST for Interval I (Cretaceous) for TEX86
H, pTEX86, BAYSPARSST, and TEX86[linear]; 485 

(B) relative abundance of ferns, gymnosperms and angiosperms (from Vajda and Raine, 486 



2003); (C) relative abundance of two dinoflagellate species Trithyrodinium evittii and 487 

Palaeoperidinium pyrophorum. Note the scale change above 1.5 m sample depth. 488 

 489 

Because of this wide variation in absolute temperatures, we outline the primary features of 490 

the record in terms of variation in temperature from average Cretaceous values (Δ SST) 491 

(Fig. 5A). A weak cooling trend of ~2°C is evident in the upper Cretaceous (Interval I). This 492 

trend is reversed in the uppermost Cretaceous where temperatures warm abruptly by ~3-493 

4°C. SST is variable within Interval II, ranging from 2 to 4°C warmer than average 494 

Cretaceous values and with an SST peak directly above the K/Pg boundary. The warming in 495 

the uppermost Cretaceous could be interpreted as warming preceding the K/Pg event, but 496 

dinoflagellates and inorganic geochemistry indicate that basal Paleocene sediments have 497 

been worked down into the uppermost few centimetres of Cretaceous strata by bioturbation.    498 

 499 

SSTs within Interval III exhibit a clear trend: pronounced cooling at the base is  500 

followed by progressive warming. Depending on the calibration, the initial decrease in 501 

temperature is between 7 and 11°C and the overall decrease from the maximum in Interval II 502 

to the minimum in Interval III is between 10 and 15°C. Minimum SSTs in Interval III are 8-503 

11°C cooler than the average for the Cretaceous. This is very clear evidence for an episode 504 

of pronounced cooling at the base of Interval III. SST warms in the upper part of Interval III 505 

and into Interval IV, returning to Cretaceous levels ~15 m above the K/Pg boundary.  506 

 507 

3.5. Palynological indications of environmental change 508 

A dramatic turnover in vegetation is recorded in the pollen and spore assemblages that span 509 

the K/Pg boundary transition at mid-Waipara River (Vajda et al., 2001; Vajda and Raine 510 

2003; Ferrow et al., 2011). A mixed forest assemblage in the uppermost Cretaceous is 511 

replaced by an assemblage dominated by fern spores in the basal Paleocene (Fig. 5B). 512 

Ferns dominate assemblages up to the unconformity at 0.22 m above the boundary. 513 



Assemblages are dominated by gymnosperms above the unconformity and to the top of the 514 

examined section (30 m above the K/Pg boundary). An equivalent record of floral turnover is 515 

found in a non-marine K/Pg boundary record on the west coast of the South Island (Vajda et 516 

al., 2001). In both sections, the fern spike comprises a floral succession with ground ferns at 517 

the base giving way to tree ferns. Vajda et al. (2001) interpreted this succession as signifying 518 

(i) devastation of forests at the K/Pg boundary, (ii) colonisation of open areas by ground 519 

ferns, (iii) expansion of tree ferns under warm temperate conditions, and (iv) expansion of 520 

gymnosperms under cooler conditions, as evident from the abundance of Phyllocladidites 521 

mawsonii, a pollen species thought to be closely related to the cool-temperate rain forest 522 

conifer Lagarostrobos franklinii (Huon Pine).Our temperature record supports this 523 

interpretation. The fern spike is correlated with Interval II and the lower part of the conifer 524 

interval corresponds with Interval III. However, given that conifers continue to dominate 525 

Interval IV, other factors appear to be implicated in the delayed recovery of a mixed 526 

angiosperm-gymnosperm forest.  527 

 528 

In addition to the terrestrial palynomorph record, the mid-Waipara section is rich in marine 529 

palynomorphs, primarily dinoflagellate cysts. The dinoflagellate record provides a valuable 530 

means to correlate with other K/Pg boundary sections in New Zealand and also provides 531 

further insights into environmental changes during this time period. The K/Pg transition is 532 

distinguished by a succession of assemblages, including the alternating abundance of two 533 

dominant species, Trithyridinium evittii and Palaeoperidinium pyrophorum (Fig. 5C). Both 534 

species are inferred to be heterotrophic peridinioids, which have been associated with 535 

various types of nutrient-rich settings and salinities (Dale, 1996; Askin, 1988; Habib et al., 536 

1994; Evitt et al., 1998; Sluijs et al., 2005). 537 

Interval II corresponds with an acme in Trithyrodinium evittii, which is inferred to be a warm-538 

water species (Brinkhuis et al., 1998; Nøhr-Hansen and Dam, 1997; 1999; Willumsen, 2003; 539 

Willumsen and Vajda, 2010b; Vellekoop et al., 2015). As noted above, the initial increase in 540 



T. evittii is observed directly below the K/Pg boundary where the species makes up > 6% of 541 

the assemblage. It increases to 18% of the assemblage directly above the boundary. Interval 542 

III corresponds with an acme in Palaeoperidinium pyrophorum, a species that is abundant in 543 

lowermost Paleocene marginal marine sediments on Seymour Island (Askin, 1988) and the 544 

southwest Tasman Sea (Brinkhuis et al., 2003) as well as the pelagic bathyal sequence in 545 

eastern Marlborough (Willumsen, 2003; 2006; 2011; Willumsen and Vajda, 2010a; 2010b). 546 

These two acmes appear to agree well with the TEX86 record, with abundant T. evittii  in the 547 

warm basal Paleocene interval and the high-latitude species, P. pyrophorum, dominating  in 548 

the overlying cool interval.  549 

 550 

4. Correlation and comparison with other New Zealand records 551 

4.1. Biostratigraphic correlation 552 

The TEX86 warming event (Interval II) occurs within foraminiferal zone P0 and the TEX86 553 

cooling event (Interval III) occurs within upper dinoflagellate zone NZDP1 to lower NZDP2 554 

(Fig 6). Additional dinoflagellate and radiolarian bioevents allow us to correlate these 555 

intervals with coeval sedimentary successions in the Mead and Branch Stream K/Pg 556 

boundary sections (Fig. 6). As noted above, these two climate events are correlated with 557 

distinct dinoflagellate acmes: the T. evittii acme (Te1) and the overlying P. pyrophorum acme 558 

(Pp1). At mid-Waipara, Te1 is very condensed and the Te1/Pp1 transition is only 23 cm 559 

above the boundary, coinciding with the unconformity. However in the Mead and Branch 560 

sections the Te1/Pp1 transition is 2.35 and ~12 m above the K/Pg boundary, respectively. 561 

Correlation lines based on the primary dinoflagellate and radiolarian bioevents in the three 562 

sections show that the two dinoflagellate acme intervals, Te1 and Pp1, are separated by ~1 563 

Myr. Interval II is correlated with foraminiferal zone P0, which encompasses the first 40 kyrs 564 

of the Paleocene. We cannot determine if Interval II spans this entire time period or 565 

represents a short-lived event within it. Interval III is dated at ~65 Ma based on two well-566 



defined datums, the base of Cerodinium striatum near the base of Pp1 and the base of 567 

Buryella granulata in the upper part (Fig. 6). It is possible that the unconformity at mid-568 

Waipara corresponds with the Da2 sequence boundary of Hardenbol et al. (1998).  569 

 570 

Figure 6. Correlation of GDGT Intervals I to IV in the mid-Waipara section to the Mead and 571 

Branch Stream sections based on bioevents and acmes in the dinoflagellate species 572 

Trithyrodinium evittii (Te1 and TE2) and Palaeoperidinium pyrophorum (Pp1 and Pp2). 573 

Lithology and selected index taxon FODs and LODs are indicated on the figure. Blue = 574 

radiolarian; Red = dinoflagellates. Note the scale change above 1.5 m sample depth. 575 

 576 



Correlation also shows that the Te1 acme is diachronous, occurring in the earliest 577 

Paleocene at mid-Waipara, but almost 1 Myr later at Mead and Branch Stream. We suspect 578 

that this diachroneity reflects the deeper water and possibly cooler oceanic setting of the 579 

Marlborough sections. The implication that other dinoflagellate taxa occupied the warm-580 

water niche in these deep-water sites prior to the expansion of T. evittii is explored below.  581 

 582 

4.2 Paleoenvironmental significance of dinoflagellate cyst acmes  583 

Variations in the abundance of some dinoflagellate cyst taxa can be used to refine 584 

interpretation of environmental changes in these sections. In particular, changes in 585 

assemblages through the expanded Branch section provide context for the truncated climate 586 

record at mid-Waipara.  We have reviewed what is known of the environmental preferences 587 

of eight dinoflagellate taxa and apply this information to the three sections (Fig.  7-9). 588 

Trithyrodinium evittii is considered to be a warm-water indicator, being common in low 589 

latitudes in the latest Cretaceous and migrating to high latitudes during an interval of global 590 

warming in the earliest Paleocene (Nøhr-Hansen and Dam, 1997, 1999; Brinkhuis et al., 591 

1998; Willumsen, 2003; Vellekoop et al., 2015). This is consistent with the first T. evittii acme 592 

at mid-Waipara (Te1) occurring within Interval II and the second (Te2) being associated with 593 

warm SSTs within Interval IV. The large spikes in T. evittii abundance in Branch and Mead 594 

Stream sections that occur directly below the Pp1 acme may reflect post-depositional 595 

transport of an earlier Paleocene assemblage dominated by T. evittii, perhaps as part of the 596 

shelfal erosional event that caused the unconformity at mid-Waipara.  597 



 598 

Figure 7. Relative abundance of selected dinoflagellate taxa in the uppermost Cretaceous 599 

and lower Paleocene at mid-Waipara River, north Canterbury. The intervals correlated with 600 

the Trithyrodinium evittii (Te1 and TE2) and Palaeoperidinium pyrophorum (Pp1) acmes are 601 

shaded. 602 



 603 

Figure 8.  Relative abundance of selected dinoflagellate taxa in the uppermost Cretaceous 604 

and lower Paleocene at Branch Stream, eastern Marlborough. The intervals correlated with 605 

the Trithyrodinium evittii (Te1 and Te2) and Palaeoperidinium pyrophorum (Pp1 and Pp2) 606 

acmes and a basal Paleocene interval with abundant Manumiella druggii (Md) are shaded. 607 

Note the scale change above 1.5 m sample depth. 608 

 609 



610 

Figure 9. Relative abundance of selected dinoflagellate taxa in the uppermost Cretaceous 611 

and lower Paleocene at Mead Stream, eastern Marlborough. The intervals correlated with 612 

the Trithyrodinium evittii (Te1 and Te2) and Palaeoperidinium pyrophorum (Pp1 and Pp2) 613 

acmes and a basal Paleocene interval with abundant Manumiella druggii (Md) are shaded. 614 

Note the scale change above 1.5 m sample depth. 615 

 616 

 617 

Abundant Palaeoperidinium pyrophorum has been interpreted to represent a wide range 618 

of environments from fully marine to restricted marine stressed conditions with low salinity 619 

and extreme pH-values (Evitt et al., 1998; Askin, 1988; Habib et al., 1994). Acmes have 620 

been reported in a neritic setting of Seymour Island (Askin, 1988) as well as in pelagic 621 

sediments from the Viborg-1 corehole, onshore Denmark (Heilmann-Clausen, 1985). We 622 

also find that both P. pyrophorum acmes (Pp1 and Pp2) occur in three sections representing 623 



a transect from shelf to upper slope (Fig. 8B).  Both the Danish and New Zealand studies 624 

report high absolute abundance of cysts in the Pp acme intervals with up to 770,000 625 

specimens per gram of sediment ( Heilmann-Clausen, 1985; Willumsen, 2006; 2011). It 626 

appears that Pp acme intervals are either restricted to high latitudes or associated with 627 

siliceous microfossils, as is seen in Seymour Island (Askin, 1988; Harwood, 1988), California 628 

(Drugg, 1967; Foreman, 1968) and New Zealand. The Pp1 and Pp2 acmes span the main 629 

interval of siliceous microfossil-rich sediments in the early Paleocene of the Mead Hill 630 

Formation in Marlborough (upper radiolarian zone RP2 to upper RP3, 65-64 Ma) (Willumsen, 631 

2006; 2011) (Fig. 6). We infer that the Pp acmes in the New Zealand sections reflect cooling 632 

or coastal upwelling of cool, nutrient rich waters, consistent with the correlation between Pp1 633 

and TEX86 cooling in Interval III.   634 

Manumiella druggii has been interpreted as representing restricted shallow marine 635 

conditions (Hultberg, 1987; Firth, 1987; Askin and Jacobsen, 1996). Brinkhuis et al. (1998) 636 

interpreted increases in abundance in the earliest Paleocene in high latitudes to be an 637 

indication of warming. However, Habib and Saeedi (2007) found a spike in abundance 638 

coincident with latest Cretaceous cooling inferred from planktic δ18O in the Brazos River 639 

K/Pg section. This appears to be supported by subsequent assemblage analysis by 640 

Vellekoop et al. (2015). However, both these records are from low latitude sites. We observe 641 

a small increase in abundance in the basal Paleocene within the Te1 acme at mid-Waipara 642 

(Fig. 7), and a slightly larger increase in abundance at Branch Stream in the interval 643 

correlated with the warming event (Fig. 8). The species is very rare at Mead Stream, but has 644 

a brief acme (~2%) directly above the K/Pg (Fig. 9). In line with the interpretation of 645 

Brinkhuis et al. (1998), we interpret this pattern of Manumiella occurrence to indicate that M. 646 

druggii is a temperate-water species that increases in abundance in high-latitudes during 647 

times of relative warmth but in low latitudes may increase during times of relative cooling.  648 

Diconodinium and Palaeocystodinium are considered to be warm-water indicators 649 

(Fensome et al., 1993; Brinkhuis et al., 1998; Vellekoop et al., 2015). However, neither 650 



genus is common during GDGT Interval II at mid-Waipara. Diconodinium martianium is 651 

common in the uppermost Cretaceous in all sites but becomes very rare in the Paleocene at 652 

mid-Waipara and Mead (Fig. 7, 9) and represents a latest Maastrichtian marine floral 653 

element.  At Branch Stream, however, a significant peak in abundance occurs directly above 654 

the K/Pg boundary. Palaeocystodinium is rare in the uppermost Cretaceous, exhibits a small 655 

increase in the basal Paleocene and is common to abundant in the interval between 656 

Intervals II and III (Fig. 8). As such, these taxa are interpreted as warm-water indicators, but 657 

perhaps not as warm as indicated by T. evittii.  658 

The gonyaulacoid genera Impagidinium and Pyxidinopsis are considered to be more 659 

common in more oceanic settings (Dale, 1996; Willumsen, 2003; Crouch and Brinkhuis, 660 

2005; Vellekoop et al., 2015) and as such are proxies for oceanicity or proximity to shoreline. 661 

This agrees with the observations made here, with both taxa more common at the pelagic 662 

Branch and Mead sections compared with assemblages from the siliciclastic mid-Waipara 663 

River section. Significantly, the abundance of Impagidinium decreases across the K/Pg 664 

boundary at mid-Waipara and Branch (Willumsen 2003; 2011). This could reflect a fall in sea 665 

level because this decrease is not observed at the Mead section, which represents the 666 

deepest depositional setting (Hollis et al., 2003a). 667 

Pyxidinopsis exhibits an interesting pattern in the expanded Branch section: decreasing 668 

across the K/Pg boundary, followed by a rapid increase, followed by a gradual decrease 669 

leading up to the Pp1 acme, very rare in the acme, and sporadically reoccurring in Pp2 (Fig. 670 

8). A very similar trend is observed at Mead, except that there is also a peak in abundance 671 

directly above the K/Pg boundary (Fig. 9). A more patchy record at mid-Waipara is 672 

consistent with the neritic setting, but here too the genus is common in the uppermost 673 

Cretaceous, declines in the basal Paleocene, and is very rare through Pp1 (Fig. 7). To 674 

explain these trends, we invoke a fall in sea level close to the K/Pg boundary, followed by a 675 

transgressive-regressive cycle that culminates in a larger fall in sea level at the time of the 676 

Pp1 acme. 677 



Glaphyrocysta is interpreted to be an indicator of nearshore, high-energy conditions (Stover 678 

et al., 1996; Sluijs et al., 2005; Crouch and Brinkhuis, 2005; Willumsen and Vajda, 2010a; 679 

Vellekoop et al., 2015). An acme directly above the K/Pg boundary at mid-Waipara (Fig. 7) is 680 

consistent with the decline in abundance of Impagidinium, suggesting either significant 681 

shallowing or increased transport and redeposition of nearshore particles and microfossils 682 

following directly after the K/Pg boundary event.  683 

4.3. Integrating temperature and environmental reconstructions  684 

The TEX86-SST record from mid-Waipara River has been tied to dinoflagellate acme events 685 

that can be traced from the shelf setting at mid-Waipara to the pelagic upper slope sections 686 

at Branch and Mead streams (Fig. 10A-E). The cooling event (Interval III) corresponds with 687 

an acme in P. pyrophorum that occurs at ~65.0-64.8 Ma in all three sections (Fig. 10B). The 688 

underlying warming event (Interval II) is associated with a T. evittii acme at mid-Waipara, 689 

which appears to occur directly above the K/Pg within foraminiferal zone P0. Although there 690 

is no T. evittii acme directly above the K/Pg at Branch and Mead sections, there is and 691 

increase in Palaeocystodinium that is consistent with warming. If these two taxa are 692 

combined as a guide to warm conditions (Fig. 10C), they are in close agreement with the 693 

TEX86 record: peaking in the earliest Paleocene, absent during the cooling event at ~65 Ma, 694 

and then increasing again above this event. These taxa also provide insight into temperature 695 

variation within the interval not preserved at mid-Waipara. At Branch and Mead, there is a 696 

general decline in the abundance of warm-water taxa, reaching a minimum between 65.9 697 

and 65.7 Ma, followed by a gradual increase and peak in T. evittii at ~65.2 Ma. Above this 698 

peak there is a rapid decline concomitant with the increase in P. pyrophorum. 699 

Similar trends have been observed in lithofacies changes in the pelagic K/Pg sections in 700 

Marlborough (Hollis et al., 1995; 2003a, b; Hollis, 2003). In these sections, the K/Pg 701 

coincides with a change from siliceous limestone to calcareous porcellanite or mudstone. 702 

Within ~50 cm of the boundary, the lithology changes to chert or carbonate-poor 703 



porcellanite. Carbonate concentration only returns to Cretaceous levels at ~64.2 Ma. 704 

Because the trend in silica is correlated with trends in siliceous microfossil abundance, both 705 

diatoms and radiolarians, the trend was interpreted as a localised response to the climate 706 

perturbations that followed the K/Pg event (Hollis, 2003; Hollis et al. 2003a, b). 707 

A detailed record of these lithofacies changes was obtained from the Flaxbourne River and 708 

Branch Stream K/Pg boundary sections (Hollis et al., 2003a, b; Fig. 10D-E). The Flaxbourne 709 

section is the most complete K/Pg section in the South Pacific region. In addition to a well-710 

defined iridium anomaly, it contains a full succession of foraminiferal zones from P0 to P1b 711 

(Strong et al., 1987; Strong, 2000). Unfortunately, dinoflagellates have not been recovered 712 

from this section despite extensive sampling (Willumsen, 2003). The highly siliceous Branch 713 

Stream section lacks the age control provided by foraminifera, but the expanded succession 714 

of radiolarian and dinoflagellates suggests that it is similarly complete and much more 715 

expanded, e.g. the interval to the top of radiolarian zone RP3 is ~10 m thick at Flaxbourne 716 

River but at least 55 m thick at Branch Stream.  717 

A comparison of the lithofacies trends at the two sections with the dinoflagellate records 718 

supports inferences drawn from the lithofacies. Carbonate content decreases across the 719 

boundary at Branch Stream, recovers slightly in the earliest Paleocene and then decreases 720 

to very low levels until above the P. pyrophorum event. Silica content exhibits an opposite 721 

trend, except that in two intervals there is a marked increase in clay. The lower of these 722 

coincides with the T. evittii acme at this section and may signal increased sediment input 723 

during an interval of relative warmth.  The second interval occurs within the P. pyrophorum 724 

acme and here may be a response to a fall in base level, linked to cooling and the 725 

unconformity at mid-Waipara. The Flaxbourne section was situated in a more distal and 726 

deeper-water setting, as evident from the weaker fluctuation in clay content. Here too, 727 

carbonate content decreases across the boundary, but remains moderately high through the 728 

earliest Paleocene before a stepped decrease at ~65 Ma. The remarkable agreement 729 

between the silica-carbonate ratio at this mid-bathyal site and the interval correlated to the P. 730 



pyrophorum acme and the TEX86 SST minimum at mid-Waipara is compelling evidence for 731 

pronounced regional cooling in the seas offshore eastern New Zealand at this time.  732 

 733 

4.3. Comparison with global records 734 

Previous studies have identified a transient episode of pronounced cooling immediately 735 

following the K/Pg boundary event (Brinkhuis et al., 1998; Galleotti et al., 2004, Vellekoop et 736 

al., 2014; 2015; 2016). The lack of evidence for such a cooling event in the mid-Waipara 737 

River section is likely due to bioturbation across the boundary, which would have diluted the 738 

expression of a transient climate perturbation.  739 

The 2.5 to 4°C warming that occurs across the K/Pg boundary at mid-Waipara represents a 740 

shift to either warm subtropical (pTEX86) or to near tropical conditions (TEX86
H and 741 

BAYSPARSST). The transient cold interval at Brazos River is followed by a similar episode of 742 

warming that spans foraminiferal zone P0 and part of P (Vellekoop et al., 2014). However, 743 

warming is not observed in other K/Pg boundary sections in the western Atlantic or in 744 

Tunisia (Vellekoop et al., 2015; 2016). Short-lived recovery of planktic foraminifera over an 745 

equivalent time interval at the Flaxbourne River section in Marlborough has also been cited 746 

as evidence for warming following the K/Pg event (Hollis, 2003; Hollis et al., 2003b).  747 

The pronounced cooling within Interval III at mid-Waipara has parallels with the K/Pg 748 

boundary record on Seymour Island where cool temperatures are indicated by plant proxies 749 

(Poole et al., 2005) and clumped isotope data (Petersen et al., 2016) although the evidence 750 

from GDGT-based proxies is equivocal (Kemp et al., 2014). A weak cooling trend is also 751 

evident in TEX86 records from the western Atlantic K/Pg boundary sections (Vellekoop et al., 752 

2014; 2016). Notably, these cooler temperatures span an unconformity at Brazos River, 753 

Meirs Farm and Bass River, the timing of which compares well with the unconformity at the 754 

base of Interval III at mid-Waipara. An unconformity at about this level also marks the base 755 

of the Sobral Formation on Seymour Island (Kemp et al., 2014; Witts et al., 2016). 756 



In New Zealand, the associated acme in P. pyrophorum can be used to correlated Interval III  757 

at mid-Waipara to the Branch and Mead Stream sections in Marlborough (Fig. 10). The 758 

interval is centred at 65 Ma, persists for ~200 kyrs and correlates with a peak in silica 759 

concentration in the pelagic succession at Flaxbourne River (Fig. 10). This provides the first 760 

direct evidence that the marked increase in biogenic silica accumulation (diatoms and 761 

radiolarians) in these Marlborough sections during the early Paleocene was linked to 762 

pronounced cooling of surface waters and, potentially, enhanced upwelling offshore eastern 763 

New Zealand. Temperature cooled by 10-13°C between Intervals II and III and SSTs within 764 

Interval III are ~5 to 6°C cooler than average Cretaceous values. For even the warmest 765 

calibrations, SST for Interval III dropped to a minimum of ~12-14°C, which is comparable to 766 

present day temperatures for offshore southern New Zealand and implies remarkable 767 

cooling. The association of pronounced cooling and a major unconformity in a shelfal setting 768 

implies a glacio-eustatic event and the timing is consistent with the Da2 sequence boundary 769 

reported by Hardenbol et al. (1998). It is possible that the unconformity represents an 770 

amalgamation of the Da1-Da2 sequence boundary (Fig. 10).  771 

The marine lithofacies and pollen records from New Zealand suggests the entire interval 772 

represented by the unconformity (i.e. ~66 to ~65 Ma) was cooler than the latest 773 

Maastrichtian. The interval is characterised by high silica content and abundant diatoms in 774 

the Marlborough sections (Fig. 10; Hollis et al., 1995; 2003a, b; Hollis, 2003) and in the 775 

terrestrial Moody Creek Mine section, cool temperate conifers are abundant in the pollen and 776 

spore record above the tree fern-dominated interval (Vajda et al., 2001).  A recent 777 

reconstruction of pCO2 from New Zealand Cretaceous and Paleocene sections records a fall 778 

in pCO2 across the K/Pg boundary (Steinthorsdottir et al., 2016). The interval with low pCO2 779 

values is associated with early Paleocene pollen assemblages dominated by gymnosperms 780 

and with abundant Phyllocladidites mawsonii (Pole and Vajda, 2009) suggesting a 781 

correlation with Interval III at mid-Waipara. 782 

 783 



 784 

Figure 10. Variation in climate and environmental indicators through the K/Pg transition at 785 

mid-Waipara River (A-C), Mead Stream (B-C), Branch Stream (B-D) and Flaxbourne River 786 

(E), together with corresponding global δ18O record adapted from Zachos et al., (2008) (F). 787 

SST estimates are derived from TEX86H, pTEX86 and BAYSPARSST calibrations, with 788 

upper and lower 95% confidence limits for BAYSPAR also shown (grey lines). Abbreviations: 789 

Da1, Da2 = sequence boundaries (Hardenbol et al., 1998); SA, CS, WS, Trop. = 790 

Subantarctic, Cool Subtropical, Warm Subtropical and Tropical biogeographic zones (Nelson 791 

and Cooke, 2001); Ca*, Si*, TRG = excess or biogenic CaCO3 and SiO2 and terrigenous 792 

sediment, based on XRF data and the normative equations of Hollis et al. (2003a, b). 793 

 794 

Counter to this, pronounced early Paleocene cooling is not evident in benthic oxygen isotope 795 

compilations (Zachos et al, 2008; Cramer et al. 2009, 2011), nor in a moderately high 796 

resolution record from the north Pacific (Westerhold et al., 2011). We suggest that cooling 797 

may have been restricted to southern high latitudes. This region is poorly represented in the 798 

global compilations (Fig. 12F) and more recent datasets indicate temperatures some ~2°C 799 

cooler than previously indicated (Alegret and Thomas, 2013).    800 



 801 

4.4. Mechanisms for long-term climate impacts 802 

Several studies have modelled the potential impacts of the K/Pg bolide impact and or 803 

Deccan Traps volcanism on the carbon cycle and climate (Caldeira and Rampino, 1990; 804 

1993; Caldeira et al. 1990; Henehan et al. 2016; Bardeen et al. 2017; Brugger et al. 2017). 805 

The relative importance of soot, other forms of particulate dust, sulphate aerosols, CO2 and 806 

primary production varies between these models, but all point to significant climate shifts 807 

associated with the event. The most recent modelling studies (Bardeen et al. 2017; Brugger 808 

et al. 2017) that combine the effects of soot and/or aerosols with CO2 indicate that 809 

pronounced but short-lived cooling would have been followed by longer-lived warming. 810 

Earlier modelling experiments (Caldeira and Rampino, 1990; 1993; Caldeira et al. 1990) 811 

showed how extinctions of calcareous plankton coupled with continued supply of carbonate 812 

to the oceans would have resulted in CO2 drawdown, climatic cooling and rapid deepening 813 

of the carbonate compensation depth (CCD). All these experiments have been based on one 814 

or at most three (where Deccan volcanism was considered) fixed-point perturbations and 815 

have not considered how the effects might be modulated by background climatic and 816 

ecological processes, such as Milankovitch cycles and post-extinction re-establishment on 817 

ecological niches. D’Hondt et al. (1996a, b; 1998) highlighted the significance of these 818 

factors by describing the dramatic change from low-amplitude precession to high-amplitude 819 

eccentricity cycles across the K/Pg boundary in addition to the delayed recovery of the 820 

pelagic ecosystem. Coxall et al. (2006) argued that full recovery of the pelagic ecosystem 821 

may have taken ~4 Myrs although a more recent study (Birch et al., 2016) suggests it may 822 

have been only 1.8 Myrs.  Over approximately the same time interval, high-amplitude 823 

eccentricity cycles in carbonate flux and grain size in Walvis Ridge ODP Site 1262 indicates 824 

orbital pacing of CCD depth (Kroon et al. 2007); the inference being that each pulse of 825 

deepening is linked to CO2 drawdown and climatic cooling. Eccentricity cycles have also 826 

been reported in the lower Paleocene sequence in Marlborough (Field and Hollis, 2003) 827 



although the coeval interval in North Pacific ODP site 1209 is described as “strange interval” 828 

by Westerhold et al. (2008) because it lacks coherent cycles.  829 

In summary, the evidence from these modelling and proxy studies allows us to conclude that 830 

a major extinction event and disruption to biogeochemical pathways plausibly explains the 831 

type of long-term disruption to climate that is evident in the New Zealand K/Pg boundary 832 

sections. The pronounced cooling evident in the New Zealand record has not been reported 833 

in other studies, suggesting that it may be a localised response of stronger climate 834 

oscillations and perhaps enhanced seasonality (D’Hondt et al., 1996). However, the absence 835 

of this cooling event in global compilations of ocean temperature history (Zachos et al., 836 

2008; Cramer et al., 2009, 2011) may also be due to the patchy representation of southern 837 

high-latitude climate archive (Fig. 10F). 838 

 839 

6. Conclusions  840 

A new TEX86-based SST record across the K/Pg boundary at mid-Waipara River, 841 

Canterbury Basin, New Zealand, provides long-term context for the mass extinction event 842 

and oceanographic changes in the southwest Pacific from latest Cretaceous to early 843 

Paleocene time (~66.2 to 64.2 Ma). 844 

Bioturbation complicates the SST record across the K/Pg boundary in two respects. Firstly, a 845 

down-worked GDGT assemblage is inferred to give a false indication of climatic warming 846 

before the K/Pg boundary event. This inference is supported by down-working of Paleocene 847 

microfossils (dinoflagellates) and siderophilic elements associated with the boundary.   848 

Secondly, bioturbation has blurred the GDGT signal within the boundary zone. This means 849 

that we lack a record of climatic changes precisely at the boundary. 850 

Nevertheless, two significant shifts in SST are observed that can be related to regional 851 

changes in oceanographic conditions and marine plankton communities as well as two 852 



global climatic changes.  SST warmed by ~3°C across the K/Pg boundary and then 853 

remained stable for up to 40 ka (corresponding to foraminiferal zone P0). Warming was 854 

associated with an influx of the warm-water dinoflagellate species, Trithyrodinium evittii, and 855 

the short-lived recovery of calcareous-shelled plankton.     856 

Following this episode of warm climatic conditions, our records reveal a period of prolonged 857 

environmental instability that is manifested by a succession of short-lived acmes in 858 

dinoflagellate species as well as a turnover of the assemblages from a latest Maastrichtian 859 

species to early Paleocene marine flora, and the FO of a number of global dinoflagellate cyst 860 

index taxa. This instability culminated in an episode of pronounced cooling, 10-13°C based 861 

on TEX86-based approaches, which was associated with peak biogenic silica accumulation 862 

in the paleo-upwelling setting of the Marlborough K/Pg boundary sections (Hollis 2003; Hollis 863 

et al. 2003a, b; Willumsen, 2003). These significant fluctuations in climatic and 864 

oceanographic conditions suggest a dynamic and complex recovery to the K/Pg crisis that 865 

persisted for ~1.2 Myrs in the middle to high latitude Pacific Ocean.  866 
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