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Abstract Aerodynamic shape optimization of a transonic wing using mathemati-

cally-extracted modal design variables is presented. A novel approach is used for

deriving design variables using a singular value decomposition of a set of training

aerofoils to obtain an efficient, reduced set of orthogonal ‘modes’ that represent

typical aerodynamic design parameters. These design parameters have previously

been tested on geometric shape recovery problems and aerodynamic shape opti-

mization in two dimensions, and shown to be efficient at covering a large portion of

the design space; the work is extended here to consider their use in three dimen-

sions. Wing shape optimization in transonic flow is performed using an upwind

flow-solver and parallel gradient-based optimizer, and a small number of global

deformation modes are compared to a section-based local application of these

modes and to a previously-used section-based domain element approach to defor-

mations. An effective geometric deformation localization method is also presented,

to ensure global modes can be reconstructed exactly by superposition of local

modes. The modal approach is shown to be particularly efficient, with improved

convergence over the domain element method, and only 10 modal design variables

result in a 28% drag reduction.
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1 Introduction

Numerical simulation methods to model fluid flows are used routinely in industrial

design, and increasing computer power has resulted in their integration into the

optimization process to produce the aerodynamic shape optimization (ASO)

framework. The aerodynamic model is used to evaluate some metric against which

to optimize, which in the case of ASO is an aerodynamic quantity, most commonly

drag or range, subject to a set of constraints which are usually aerodynamic or

geometric. Along with the fluid flow model, the ASO framework requires a surface

parameterization scheme, which describes mathematically the aerodynamic shape

being optimized by a series of design variables; changes in the design variables,

which are made by a numerical optimization algorithm, result in changes in the

aerodynamic surface. Numerous advanced optimizations using compressible

computational fluid dynamics (CFD) as the aerodynamic model have previously

been performed (Hicks and Henne 1978; Qin et al. 2004; Nielsen et al. 2010; Lyu

et al. 2015; Choi et al. 2014). The authors have also presented work in this area,

having developed a modularised, generic optimization tool, that is flow-solver and

mesh-type independent, and applicable to any aerodynamic problem (Morris et al.

2008, 2009; Allen and Rendall 2013).

The fidelity of results obtained by the optimization process are dependent on the

fidelity and quality of each of the three individual components of the ASO process;

optimization algorithm, shape parameterization and aerodynamic model. To

facilitate optimum compatibility between these components, each is often designed

in a modular manner such that, for example, the aerodynamic model is independent

of the parameterization scheme used. A high-fidelity numerical aerodynamic model

with good capture of the true physics is important in producing optimum

aerodynamic designs, particularly at transonic conditions. The aerodynamic model

also defines the parameter space of the problem, which is the definition of the

aerodynamic outputs based on flow field inputs such as Mach number and angle of

attack.

The quality of the optimization result obtained is driven, primarily, by the quality

and type of numerical optimization algorithm used in the ASO framework, and the

two primary types of optimization algorithms are local methods and global methods.

The local methods are usually built around the gradient-based approach, which uses

the local gradient of the design space as a basis around which to construct a search

direction. The optimization algorithm therefore traces a movement path through the

design space until the gradient values become very small where the result has

converged. These approaches are the most common methods used in the ASO

framework (e.g., Imiela 2012; Hicken and Zingg 2010; Lyu et al. 2015), driven

primarily by the low cost associated with them compared to global methods

(Chernukhin and Zingg 2013), and an efficient gradient-based optimizer is used

here.

The aerodynamic model defines the parameter space of the problem, but the

problem design space, which the optimization algorithm interrogates, is constructed

by the definition of a surface parameterization scheme. The ability of the optimizer
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to fully interrogate the true design space (which contains every possible design) is

driven by the ability of the degrees of freedom of the parameterization scheme to

represent any shape within the design space, and so this is a critical aspect of any

optimization scheme. The level of flexibility generally increases with the number of

design variables, but the use of a low number of design variables is advantageous,

since good convergence of optimization algorithms tends to correlate with small

numbers of design variables, and so there is a definite requirement for an efficient

parameterization scheme.

The work presented in this paper considers aerodynamic shape optimization

using a novel method of deriving design variables. The design variables used here

are derived by a mathematical technique that is based on singular value

decomposition (SVD), that extracts an orthogonal set of geometric ‘modes’. The

method itself has been presented recently by the authors (Poole et al. 2015), and has

been shown to outperform other commonly-used parameterization schemes

(Masters et al. 2017b) when considering geometric inverse design in two

dimensions, often requiring fewer than a dozen variables to represent a large

design space (Poole et al. 2017).

1.1 Shape parameterization

A surface parameterization scheme defines a design space by a number of design

variables. A separate problem to this, though often considered alongside, is the

deformation of the subsequent surface during the optimization process, which is

required to allow deformation of a body-fitted CFD mesh. An effective parame-

terization method is (i) flexible and robust enough to cover the design space, and (ii)

efficient enough to represent a given shape with as few design variables as possible.

Methods are classified as either constructive, deformative or unified. In-depth

reviews have been presented by Samareh (2001b), Castonguay and Nadarajah

(2007), Mousavi et al. (2007) and Masters et al. (2017b).

Constructive methods consider the definition of the surface and the deformation

of the surface separately. Examples of these methods are CST (Kulfan 2008),

PARSEC (Sobieczky 1998), PDEs (Bloor and Wilson 1997) and splines (Braibant

and Fleury 1984). Other approaches that combine various parameterizations in a

hybrid approach, such as that of Zhu and Qin (2014), can also be found. Because of

the constructive nature of these approaches, perturbation of the base geometry

through the optimization process requires that the new surface be reconstructed,

which subsequently requires automatic mesh generation tools for production of a

new surface and volume mesh. This extra difficulty can make it advantageous to

consider approaches that manipulate an existing mesh.

An alternative to constructive methods are deformative methods which unify the

geometry creation and perturbation. This tends to make them simpler to integrate

with mesh deformation tools and allows the use of previously generated meshes; a

considerably cheaper alternative to regeneration, although the mesh deformation

scheme is a separate algorithm. Analytic (Hicks and Henne 1978) and discrete

(Jameson 1988) methods are examples of deformative approaches.
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A further refinement of unifying geometry creation and perturbation is the

integration with a mesh deformation algorithm. Methods of this type typically have

some interpolation that describes a link between the surface and volume, often via a

set of control points that are independent of both, such that deformation of the

control points results in deformation of the surface and CFD mesh. These

approaches are commonly used in ASO, and the methods included in this unified

category are free-form deformation (Samareh 2001a), domain elements (Morris

et al. 2008) and direct manipulation (Yamazaki et al. 2010).

Surface parameterizations developed around the FFD and domain element

approach are very popular in wing optimization as this type of approach allows the

design space to be reduced from thousands of design parameters to hundreds of

design parameters. Such techniques have been developed by Zingg and colleagues

(Hicken and Zingg 2010; Leung and Zingg 2012), and have shown that these types

of methods can be flexible enough to allow the moulding of a sphere into an aircraft-

like shape under certain optimization conditions (Gagnon and Zingg 2012). Further

work has been performed by Martins and others (Mader and Martins 2013; Lyu and

Martins 2014) who showed results for blended-wing-body optimizations, and

Yamazaki et al. (2010) who further reduced the number of design variables by

considering the direct manipulation method for wing optimization.

A novel method, recently developed by the authors, is to extract aerofoil design

variables using a mathematical approach. The approach utilises singular value

decomposition in a manner that analyses an initial library of aerofoils and

decomposes that library into a reduced set of optimum variables that are

geometrically orthogonal to each another. The method is based on perturbations,

so is independent of the initial geometry and can fit into any of the three categories

outlined above; the deformative formulation is used in this work, to allow a unified

application of the design variables to control both the surface and volume mesh

within the ASO framework. Previous work has considered the method’s ability to

represent a wide-range of aerofoil shapes (Poole et al. 2015; Masters et al. 2017b),

and their effectiveness in aerofoil optimisation (Poole et al. 2017; Masters et al.

2017a), wherein the efficiency of this modal approach was clearly demonstrated.

Hence, the aim of the work presented here is to develop an effective method to

apply these novel mathematically-extracted design variables, which have been

extracted as two-dimensional quantities, in three dimensions, and determine their

effectiveness when applied to aerodynamic optimization, in particular drag

minimisation of wings in transonic flow.

2 Shape deformations by singular value decomposition

The derivation of aerofoil perturbation modes come from a singular value

decomposition of a training library of aerofoils. The resulting modes, which form

aerofoil design variables used in this work for ASO, are guaranteed to be orthogonal

(scalar product of any two modes is zero), meaning a given aerofoil shape is

described uniquely by a given set of input parameters. This alleviates some

multimodality that can be introduced numerically by the given parameterization
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scheme, and expands design space coverage (Castonguay and Nadarajah 2007). An

alternative to deriving design variables by a direct decomposition approach is to

manipulate already existing ones by Gram–Schmidt orthogonalisation. This can be

used to force orthogonality (Chang et al. 1995; Robinson and Keane 2001),

however, it is ideal to use the SVD method to guarantee orthogonal modes and

provide a low-dimensional approximation (modal parameters) to a high-dimen-

sional design space (full training library). Initial studies of using the SVD method to

derive design variables were performed by Toal et al. (2010) and Ghoman et al.

(2012), and further studies were carried out by the authors for geometric shape

recovery (Poole et al. 2015; Masters et al. 2017b) and aerofoil optimisation (Poole

et al. 2017; Masters et al. 2017a). The work presented here develops more fully the

use of mathematically-derived modes for performing aerodynamic shape optimiza-

tion in three dimensions.

It is worth considering the result of an SVD decomposition. A matrix is

decomposed into constituent matrices where the dominant features of the input

matrix are ordered. Hence, the SVD can be used to project a reduced-order basis

approximation to produce a low-rank approximation to the original matrix. Eckart

and Young (1936) showed that, given a low rank approximation found through

SVD, MðkÞ, of a full rank input matrix, M, the following is true:

kM�MðkÞkF �kM�mkF ð1Þ

wherem is any matrix of rank k and k � kF is the Frobenius norm. Hence, the error in

the low rank approximation (found from SVD) will always be at least as good as the

error between any other rank k matrix and the full rank matrix. The SVD thus

produces an optimal low order projection of the higher dimensional space into the

lower dimensional one, which is significant for optimisation parameters.

The SVD method first requires a training library of Na aerofoils to be collated

from which the aerofoil deformation modes are extracted. Each aerofoil surface is

parameterized by N surface points, where the ith surface point has a position in the

space ðxi; ziÞ. To ensure consistency of the surface description of the training data all
aerofoils are parameterised with the same parametric distribution. The x distribution

is often defined as the controlling parameterisation, with zi ¼ f ðxiÞ, but this is not
the most flexible approach; instead all aerofoil surfaces are parameterised in terms

of peripheral distance s 2 ½0; 1�, and then exactly the same si distribution is defined

for all aerofoils. Following the surface point distribution, each aerofoil has a rigid

body translation, scaling and then rotation applied to it to map the geometry into a

consistent form where each section has unit chord and zð0Þ ¼ zð1Þ ¼ 0: A matrix is

built from which SVD is performed, by evaluating the vector difference of the ith

surface point between all aerofoils, producing Ndef ¼ NaðNa � 1Þ=2 aerofoil

deformations. The x and z deformations are stacked into a single vector of length

2N, for each aerofoil deformation, so a matrix is built of the aerofoil deformations

which has 2N rows and Ndef columns:
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M ¼

Dx1;1 � � � Dx1;Ndef

..

. . .
. ..

.

DxN;1 � � � DxN;Ndef

Dz1;1 � � � Dz1;Ndef

..

. . .
. ..

.

DzN;1 � � � DzN;Ndef

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð2Þ

Performing a SVD decomposes the matrix into three constituent matrices:

M ¼ URVT ð3Þ

where U is a matrix of vectors, each of length 2N. The structure is analogous to the

decomposed matrix, so the columns of this matrix are the aerofoil mode shapes. R is

a diagonal matrix of the singular values, arranged in descending order. These can be

considered the ‘relative energy’ of the modes, and represent the ‘importance’ of the

mode shapes in the original library. The total number of possible mode shapes is

governed by the number of singular values, which is the minimum of the number of

columns and rows of the decomposed matrix. A truncation of the U matrix, based on

a certain total energy required, then gives the number of design variables used in the

optimization. The training library is based on deformations, and this is an important

choice such that design variables that result from the decomposition are also

deformations, ensuring they are independent of the topology of the aerofoils that are

used. This allows direct insertion into an aerodynamic shape optimization frame-

work where deformation of the surface and mesh is important. If the constructive

formulation is used, however, then the columns of the training matrix, M, are

absolute positions of the aerofoil surface points as opposed to deformations between

surface points.

In this work, a generic, nonsymmetric training library is considered based on the

optimization being performed. The library contains 100 different aerofoils,

extracted from a larger library by quantifying their performances in the transonic

regime using the Korn technology factor (Poole et al. 2015). The first six modes of

the library are shown in Fig. 1; all modes are scaled up for illustration purposes, and

have been added to a NACA0012 section. Also shown, in Fig. 2, is the relative

(a) (b) (c)

(d) (e) (f)

Fig. 1 Generic nonsymmetric aerofoil modes. a Mode 1. b Mode 2. c Mode 3. d Mode 4. e Mode 5.
f Mode 6
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‘energy’ of the first 20 modes, i.e. the singular values of each mode normalised by

the sum of all singular values.

Once the design variables have been extracted and the total number of modes has

been truncated, a new aerofoil can be formed by a weighted combination of m

modal parameters, as shown in Eq. (4). The weighting vector, b, represents the

magnitude of the modal deformations which are then the design variable values that

the optimizer works with. The truncation of the total number of modes, which is

often very large, down to a number which is useful for the optimization can either be

user-specified or based on the requirement for a total amount of energy to be

preserved, e.g., if 99.0% of the energy of the original library is required to be

preserved then the first, say, six modes may cumulatively have 99.1% of the energy

so six modes would be used. In this work, a number of modes is specified and those

modes with the highest amount of energy are taken.

Xnew ¼ Xold þ
Xm
n¼1

bnUn ð4Þ

The modes extracted here are two-dimensional deformations, based on a large

database of aerodynamic surfaces, and so are effective in two dimensions, and this

has been proven previously (Poole et al. 2017). Hence, it would make sense to

consider a similar approach in three dimensions. However, this would require a

database of wings, something that would not be easy to create, and with variable

parameters such as taper and sweep, and surface discontinuities such as crank

locations, would also require a complex parametric transformation to a normalised

space. Furthermore, this would still not contain global variables, and so it is more

sensible and flexible to consider a more local sectional approach. This is the

approach considered here.

2.1 RBF coupling of point sets for aerofoil deformation

The aerofoil design variables must be coupled to a control point-based approach to

allow flexible deformation of the CFD mesh. The control point method links

Fig. 2 Modal energy of first 20
modes
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deformations of the CFD mesh to deformations of a small set of control points on or

near the surface. At the centre of this technique is a multivariate interpolation using

radial basis functions (RBFs), which provides a direct mapping between the control

points, the surface geometry and the locations of grid points in the CFD volume

mesh. The approach is meshless, so requires no connectivity and is applicable to any

mesh type; control points and volume mesh points are simply treated as independent

point clouds. The system is only the size of the number of control points, and so is

not related to the mesh size.

The general theory of RBFs is presented by Buhmann (2005) and Wendland

(2005), and the basis of the method used here is described in detail by Rendall and

Allen (2008). If / is the chosen basis function and k � k is used to denote the

Euclidean norm, then a general volume interpolation model s has the form

sðxÞ ¼
Xn
i¼1

ai/ðkx� xikÞ þ pðxÞ ð5Þ

where i ¼ 1; . . .; n denotes the n control points, ai; i ¼ 1; . . .; n are model coeffi-

cients, x is the vector coordinate, and pðxÞ is an optional polynomial. The coeffi-

cients are found by requiring exact recovery of the original data, sX ¼ f, for all
points in the training data set X . Hence the model is an interpolant, and all original

solution information is preserved.

Control points (sometimes named domain element points) are used here to

decouple the shape parameters from the surface mesh, and provide a flexible

framework through which to control the shape of a base geometry. Setting up a

global RBF volume interpolation for nc control points then requires a solution to a

linear system [see Morris et al. (2008)) for more details] to ensure exact recovery of

the control point data, in this case deformations:

DXc ¼ Cax ð6Þ

DYc ¼ Cay ð7Þ

DZc ¼ Caz ð8Þ

Polynomials are not included here, due to their growing radial influence, and so

(superscript c represents a control point):

DXc ¼

Dxc1

..

.

Dxcnc

0
BB@

1
CCA; ax ¼

ax1

..

.

axnc

0
BB@

1
CCA ð9Þ

(analogous definitions hold for y and z coordinates) and the control point depen-

dence matrix, C, takes the form
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C ¼

/11 � � � /1nc

..

. . .
. ..

.

/nc1
� � � /ncnc

0
BB@

1
CCA ð10Þ

where

/ij ¼ /ðkxci � xcj kÞ ð11Þ

For surface and volume mesh deformation, it is sensible to use decaying basis

functions, to give the interpolation a local character and ensure deformation is

contained in a region near the moving body, and Wendland’s C2 function (Wend-

land 2005) is used here. It is also sensible to omit polynomial terms, since these will

transfer deformation throughout the entire mesh.

Hence, in the case considered here the global influence on any point in the

aerodynamic mesh (denoted by superscript a) from the control points is determined

by Eq. (5), which is applied as

Dxa ¼
Xnc
i¼1

axi/ðkxa � xci kÞ ð12Þ

Dya ¼
Xnc
i¼1

ayi/ðkxa � xci kÞ ð13Þ

Dza ¼
Xnc
i¼1

azi/ðkxa � xci kÞ ð14Þ

Hence, the design variables are the modal deformations, which give control point

perturbations, which hence are decoupled from the surface and volume meshes.

2.2 Control point deformations

The method for deriving surface design parameters and the methods for perturbing

the CFD mesh have been presented. The derived parameters are, however, surface

deformations whereas for the aerodynamic optimization process, control point

parameters are required. Previous work has involved placing control points away

from the surface, to form off-surface domain elements, and this has proven very

effective, and is used again for the three-dimensional case later. In two dimensions,

the control points to define the modal deformations are located on the surface of the

aerofoil section. This ensures that there is direct coupling between the control point

deformations and the surface deformations that derived them.

The deformation modes derived here by SVD are extracted from a training

library of aerofoils. A complete library of aerofoils is quantified in terms of

aerodynamic performance, using the Korn technology factor, and a form of library

filtering applied to down-select the library; see Poole et al. (2015). A set of control

points is used to control the aerodynamic surface; these points are independent of a
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base geometry, and the surface deformations are defined in terms of perturbations so

the modes can be applied to any geometry. A ‘shrink-wrapping’ method is used to

map them onto the geometry being considered. Here, 24 control points are used;

more than this are not necessary unless small wavelength changes are required. The

modal deformations can be defined using a larger number of points than the N value

in Eq. (2) and projected onto these 24 points, but here N ¼ 24 is used in the SVD

extraction process. Figure 3 shows the surface control points and an example

deformation of the fourth mode for a NACA0012 mesh.

2.3 Computation of deformation field in two dimensions

The modal deformations can be applied to any geometry, and are extracted using a

training library wherein all aerofoils have been normalised to unit chord and all

have leading and trailing edges at zð0Þ ¼ zð1Þ ¼ 0. Hence, the modal perturbations

are all extracted from these geometries, but since the surface that the modes are

added to will not have leading and trailing edges at z ¼ 0, each mode needs to be

transformed to the local aerofoil axis system. A local rotation matrix is thus used to

rotate each mode. All deformations are computed for the 24 control points, and

added to the initial aerofoil defined at zero incidence, so there is a deformation due

to rigid rotation and that due to the modal parameters. In two dimensions,

deformation is computed at each control point, i, by:

Dxci ¼ ðDxci ; 0;Dzci Þ
T ¼ ðR� IÞðxci � xrÞ þ R

Xm
n¼1

bnDxni ð15Þ

where R is the rotation matrix which is computed using the total incidence,

including the initial section incidence and any incidence change due to the pitch

design variable, atotal ¼ a0 þ apitch, xr is the rotation centre, m is the number of

modal design parameters, i.e. modes, bn are the design parameters, and Dxni is the

modal deformation of point i for mode n. Once the deformation vector has been

evaluated for every control, the DX and DZ vectors are known (DY ¼ 0 in two

dimensions), Eqs. (6) and (8) can be solved, and the deformation of all mesh nodes,

including those on the surface, is evaluated using Eqs. (12) and (14).

Fig. 3 Surface-based control points and example deformation. a Control points. b Example deformation
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2.4 Computation of deformation field in three dimensions

In three dimensions, a set of ns sectional slices of control points are applied to the

surface at regular intervals. However, when these are deformed, the variation of the

deformation field between the sections can either be defined explicitly or left to the

global interpolation field. The latter is normally used, but this means that

interpolation properties, for example the basis function chosen and the support

radius set, will influence the deformed surface. That effect is undesirable, so it is

eliminated here, as it can result in a more global influence of an effectively local

deformation. Intermediate sections are thus defined between each deformed slice,

and the deformation of these is controlled analytically. The spanwise region

between each section is split into nint intermediate regions, and so the total number

of sections becomes 1þ ðns � 1Þnint.
The geometry considered here is the MDO wing (Allwright 1996; Haase et al.

2002) (see later). The surface is preprocessed to compute the local chord length at

each section, i.e. cj, and the initial rotation angle of each section, a0j , where j is the
section location. The control point sections are then applied to the surface by scaling

by local chord, rotating by local incidence, and shrink-wrapping to the exact

geometry using a local geometric intersection algorithm. Figure 4 shows the control

points resulting from using ns ¼ 10 and nint ¼ 4, for the surface mesh used later.

This means there are 37 control point sections but only 10 are deformed by the

design parameters. The deformed points are shown in green, and the controlled

points in black.

Consider first the deformation field for global application of the modal

parameters. In this case the modal deformations are applied using a single global

weighting, i.e. one design variable for each mode. As with the two-dimensional

approach, all deformations are computed at each sectional set of 24 control points

defined at zero incidence, and so there is deformation due to rigid rotation and that

due to modal parameters. Global pitch and twist variables are used later. In three

dimensions the modal deformations must be scaled by the local chord as well as

being rotated by local section incidence, and so to compute the deformation field at

the 24 control points, i, at section j:

Fig. 4 Surface mesh and control points.
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Dxcij ¼ ðRj � IÞ xcij � xrj

� �
þ cjRj

Xm
n¼1

bnDxni ð16Þ

where Rj ¼ Rða0j þ atwistj þ apitchÞ and xrj is the local rotation centre. Hence, in this

case there are m design parameters.

For local deformations, i.e. one design variable for each mode at each of the ns
sections, this can be formulated as:

Dxcij ¼ ðRj � IÞ xcij � xrj

� �
þ cjRj

Xns
s¼1

/ðj; sÞ
Xm
n¼1

bnj Dx
n
i ð17Þ

where /ðj; sÞ is a basis function. In this case there are m� ns design parameters.

Hence, this basis function can be used to determine how the deformation of each

of the ns sections affects the other sections, i.e. controls the zone of influence. This

can be left to the global interpolation, but is defined here to allow control of the

decay. A basis function can be defined such that if the effect of the sectional

deformation decays to zero at the neighbouring sections each side, a global modal

deformation can be recovered exactly. In this case bn would have a single value for

all sections, and so it can be shown that if

Xns
s¼1

/ðj; sÞ ¼ 1 ð18Þ

at any spanwise point, Eqs. (15) and (16) are equivalent. Hence, a trigonometric

function of (j, s) is used.

Figure 5 shows the control locations and resulting surface mesh for deformations

using the first, third, and fifth modes; the upper row shows a global modal

deformation, and the lower row shows local modal deformations of the fifth control

point section. The modal deformation magnitude is exaggerated to 10% local chord

for illustration purposes.

This improved localisation process is also adopted to improve the application of

off-surface domain element perturbations, used previously by the authors. Figure 6

shows two views of the surface and domain element points, again using ns ¼ 10 and

nint ¼ 4. An exaggerated movement of all the points on the fifth section is shown;

magnitude 20% local chord. Figure 7 shows the resulting control points and surfaces

with and without the intermediate points and basis function decay control; the initial

surface is also shown in red, demonstrating clearly how the deformation has been

localised by the improved method. Again this means global deformations can be

recovered by a combination of local deformations.

3 Optimization approach

Typically, the two main types of numerical optimization algorithm that are chosen

for aerodynamic optimization are gradient-based and global search. Gradient-based

methods, such as conjugate gradient and sequential quadratic programming (SQP),
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use the local gradient as a basis from which to construct a search direction. The

algorithm starts at an initial solution and marches towards the minimum solution.

Global search methods, however, use a number of agents with different starting

positions within the search space. These agents then cooperate and move by various,

often nature-inspired, mechanisms towards the global optimum solution.

The selection of a gradient-based or global search algorithm for aerodynamic

optimization is highly dependent on the optimization case analysed, specifically the

degree of modality present in the situation. Multimodal problems are characterised

by multiple local optima, where one or more of those local optima is the globally

optimum solution. This can be particularly problematic for gradient-based

Fig. 5 Surface and control point modal deformations. a Mode 1 global. b Mode 3 global. c Mode 5
global. d Mode 1 local. e Mode 3 local. f Mode 5 local

Fig. 6 Surface mesh and off-surface control points
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optimizers due to premature convergence in a local minimum that is not necessarily

close to the global optimum. Agent-based methods can alleviate this issue

somewhat. Within the context of aerodynamic shape optimization, the presence of a

multimodal search space is highly dependent on the extent of the surface

representation and the fidelity of the flow analysis tool. The issue of degree of

multimodality in aerodynamic optimization problems is an unanswered question,

with work presented showing that multimodality exists in a number of cases, but

unimodal cases also exist (Namgoong et al. 2002; Khurana et al. 2010; Buckley

et al. 2010; Chernukhin and Zingg 2013). Chernukhin and Zingg (2013) have

considered this issue by testing a number of different optimization problems and

have shown that for a b-spline parameterization of the surface, viscous, compress-

ible drag minimization of the RAE2822 aerofoil has one global optimum. They also

showed multiple local optima for other three-dimensional problems.

For maximum flexibility and efficiency, a gradient-based method is used here,

with a second-order finite-difference approach for gradient evaluation. This

approach allows a ‘wrap-around’ approach, i.e. any flow-solver can be implemented

within the framework.

Fig. 7 Deformed and initial surface mesh and control points. a Positive dihedral mode, original.
b Positive dihedral mode, localized. c Negative dihedral mode, original. d Negative dihedral mode,
localized
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3.1 Feasible sequential quadratic programming (FSQP)

The feasible sequential quadratic programming (FSQP) algorithm is used here as

implemented in version 3.7 (Zhou et al. 1997). FSQP is based on an SQP method,

which is an approach for constrained gradient-based optimization. It is constructed

with a number of modifications to the conventional SQP method to avoid the so-

called ‘Maratos’ effect (restriction of a step size due to the requirement of

feasibility) (Maratos 1978). The modifications include a number of strategies, the

primary one being combining a search along an arc (Mayne and Polack 1982) with a

nonmonotone procedure for that search (Grippo et al. 1986). The FSQP algorithm is

briefly outlined below, and fully described and analysed in Panier and Tits (1991)

and Bonnans et al. (1992).

At every major iteration, t, the design vector, b, at the next iteration is given by:

bðt þ 1Þ ¼ bþ aDbþ a2Db ð19Þ

where a is the step length, Db is the line step direction and Db is a correction

direction used to create a search arc. To find the line step direction, FSQP solves a

quadratic programming (QP) subproblem. Considering inequality constraints only,

this QP subproblem at every major iteration is:

minimise
Dbsqp2Rn

1

2
DbTsqpHDbsqp þrJðbÞTDbsqp

rgiðbÞTDbsqp þ giðbÞ� 0i ¼ 1; . . .;G

ð20Þ

where J is the objective function and gi is the ith inequality constraint of a total of G

inequality constraints. FSQP augments the SQP descent direction by a feasible step

direction, Dbf , that is a fraction of either rJðbÞ or rgiðbÞ, depending on the

constraint value. The overall step direction is then a blend of the SQP and feasible

step directions:

Db ¼ ð1� qÞDbsqp þ qDbf ð21Þ

where q 2 ½0; 1� ¼ OðkDbsqpk2Þ such that as a solution is approached, q tends very

quickly to zero to enable the fast convergence of the pure SQP step direction to be

inherited (Bonnans et al. 1992). The correction direction is found such that both

descent and feasibility are ensured by solving a further quadratic programme while

avoiding the need for further constraint and function evaluations. The exact

implementation of the rules that govern the computation of the step size are given in

Zhou et al. (1997).

The Hessian, or an approximation to the Hessian, at every major iteration is

required, which in turn requires sensitivity of the objective function and constraints

with respect to the design variables. The Hessian is approximated by the Broyden–

Fletcher–Goldfarb–Shanno (BFGS) update scheme where the Hessian approxima-

tion is initialised as the identity matrix. The gradients are obtained by a second-
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order central-difference scheme, so the number of objective function evaluations is

proportional to the number of design variables.

Once the search arc has been determined, the nonmonotone line search proceeds

(Zhou and Tits 1993). For this, the conventional backtracking line search

requirement of requiring a suitable reduction in the objective function from

iteration t to t þ 1 is relaxed, such that a reduction in the objective function to

iteration t þ 1 is required against the maximum objective function from the last four

iterations. This has been shown to be highly effective for unconstrained

optimization when compared to a conventional backtracking search (Grippo et al.

1986), and when implemented for FSQP shows similar results for constrained

optimization (Zhou and Tits 1993).

The algorithm iterates until the Kuhn–Tucker conditions are satisfied, which then

represent a converged solution using a constrained gradient-based optimizer.

For computational efficiency, the sensitivity evaluation has been parallelised

based on the number of design variables such that the evaluation of the sensitivity of

the objective function and constraints with respect to the design variables is split

between the number of CPUs available (Morris et al. 2008, 2009). This is necessary

as within the ASO environment, an objective function evaluation represents a CFD

solution, so this formulation allows parallel evaluation of the required sensitivities;

second-order finite-differences are used for the sensitivities. It is well known that

the accuracy of the gradient evaluation is a critical issue, and the authors have

performed several studies on perturbation size for finite-differences; see for example

Morris et al. (2008). A relative perturbation of 10�4 is adopted here, i.e. a

deformation magnitude of 0.01% of local chord. Constraint and step-size

evaluations and optimizer updates occur in the master process, and each CPU

controls the geometry (and CFD volume mesh) perturbations corresponding to the

different design variables, and calls the flow solver. Flow-solver results are then

returned to the master for optimizer updates.

3.2 Flow solver

The flow-solver used is a structured multiblock finite-volume code, with upwind

spatial discretisation, using the flux vector splitting of van Leer (1982), and multi-

stage Runge–Kutta time-stepping. Convergence acceleration is achieved through

multigrid (Allen 2002).

4 Application of modal design variables in three dimensions

Optimization is applied here to the MDO wing [a large modern transport aircraft

wing, the result of a previous Brite–Euram project (Allwright 1996; Haase et al.

2002)] in the economical transonic cruise condition.
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4.1 Problem definition

The economical cruise flight Mach number for the MDO wing defined by Allwright

(Allwright 1996; Haase et al. 2002) is 0.85, with the wing trimmed to obtain a lift

coefficient of 0.452. This design case is well-suited to inviscid flow analysis, since

induced and wave drag are dominant here. Compressible transonic wing optimiza-

tion for drag minimization subject to strict constraints is investigated, and so the

problem definition is:

Objective : MinimizedragðCDÞ
Constraint1ðliftÞ : CL � C0

L

Constraint2ðmomentÞ : CMx � C0
Mx

Constraint3ðmomentÞ : CMy � C0
My

Constraint4ðinternalvolumeÞ : V � V0

A 688,000 cell, eight-block structured C-mesh was generated (Allen 2008); 129�
81 surface mesh, 33 points on either side of the wake, 33 points in the tip-slit, and 33

points between inner and outer boundary. Figure 8 shows domain and boundaries

boundaries and farfield mesh, and Fig. 9 gives two views of the surface mesh and

chordwise planes.

In previous work the authors have applied a 16-point off-surface domain element

for an aerofoil, and a set of section-based domain elements for a wing, which has

been shown to be very effective (Morris et al. 2008, 2009). Hence, an improved

version of this approach, implementing the localization method, is used here as a

comparison with the new method; the 24-point on-surface set of control points used

in two dimensions is again used here. The same evenly-distributed set of slices is

used as above, but the points at each slice are ‘shrink-wrapped’ to the local surface.

Figure 6 shows two views of the located control point spanwise locations.

Optimizations of the MDO wing were run using four sets of design variables, all

with the parallel FQSP optimizer, and are detailed below. The drag comprises

pressure, induced, and wave drag components, and it has been found to be most

Fig. 8 Domain and block boundaries and farfield mesh
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efficient to address these separately since, with a gradient-based approach, the twist

variable can dominate the sensitivities. Hence, the induced drag was considered by

running a twist-only optimization first, and optimizations to minimize the remaining

drag restarted from this geometry; the restarted cases still included the two twist

variables.

1. Twist case To address the induced drag effect, a simple case was first run using

a global linear twist variable, plus a global pitch variable to allow lift balancing.

This results in two variables.

2. Individual point deformation case Conventional off-surface domain element,

with individual deformations of each point, normal to the local chord, in each of

the 10 slices, plus a global linear twist variable and a global pitch variable to

allow lift balancing. This results in 10� 16þ 2 ¼ 162 variables.

3. Global mode case Global modal deformations of all 10 sectional slices using 6,

8, and 10 modes, a global linear twist variable, plus a global pitch variable to

allow lift balancing. This results in 6þ 2; 8þ 2 or 10þ 2 ¼ 8; 10 or 12

variables. A global mode is a single deformation of all control points, with the

modes scaled and rotated according to the local geometry.

4. Local mode case Local modal deformation using 6, 8, and 10 modes at each of

the 10 sectional locations, a global linear twist variable, plus a global pitch

variable to allow lift balancing. This results in 10� 6þ 2; 10� 8þ 2 or 10�
10þ 2 ¼ 62; 82 or 102 variables. Again at each section, the local modes are

scaled and rotated according to the local geometry. Global modes are not

included, since these can be recovered exactly from a combination of the local

modes.

4.2 Results

Table 1 presents results for the four sets of variables. The twist variables are clearly

effective at reducing the induced drag, and the finer surface deformations then

Fig. 9 Surface and selected mesh planes
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reduce the pressure and wave drag. Figure 10 shows the upper surface pressure

contours for the baseline case, and optimizations using 16-point domain element

deformations at each section, 10 global modes, and 10 local modes. Sectional

pressure coefficient variations are also presented in Fig. 11 (results for 10 global and

local modes are shown). Hence, all three of the local mode cases have produced

shock-free solutions. The slight increase in drag reduction with increasing local

modes is then due to increased flexibility to improve the curvature at the leading and

trailing edge to reduce pressure drag.

The convergence histories in terms of iterations and function evaluations are

shown in Fig. 12 in terms of the objective function convergence. Figure 13 shows

the convergence of the objective function and all the constraints, so it is clear which

constraints are active through the optimization; this is the 10 local mode case, but

the other cases show similar behaviour.

Also shown in Table 1 is the total CPU time, i.e. the number of objective

evaluations (flow solutions) multiplied by run-time per solution. All cases were run

on the University of Bristol HPC cluster, comprising Intel Sandy Bridge 2.6 GHz

cores. Also shown in the table are optimization run times and the number of cores

used for each. Note that the costs presented do not include the cost of the twist-only

case run first. The optimizer adopts a second-order central finite-difference gradient

evaluation, and so each iteration requires two flow solutions per variable, and a

further one or two solutions for the step size evaluation, and the step size evaluation

is always performed in serial on the master node. All cases were run with one core

per design variable and one for the master process. Hence, the total cost scales with

the number of design variables, but the parallel framework means the optimization

run time scaling can be reduced to the number of iterations.

It is clear that the global modes are particularly efficient, requiring significantly

fewer evaluations than the off-surface domain element, for similar drag reduction.

However, neither of these approaches has eliminated the wave drag entirely,

Table 1 Optimization results (CD in counts)

Variables Parameters CL CD DCDð%Þ Iterations CPU time/

h

Run time/h

(cores)

Baseline geometry 0.452 153.8 – – – –

Twist 2 0.452 142.2 - 7.5 20 18.3 11.8 (3)

Domain

element

162 0.452 108.6 - 29.4 114 6222.0 85.5 (163)

Modes 6 global 8 0.452 112.7 - 26.7 41 119.3 23.9 (9)

Modes 8 global 10 0.452 111.3 - 27.6 43 155.5 26.5 (11)

Modes 10

global

12 0.452 110.3 - 28.3 52 222.7 32.0 (13)

Modes 6 local 62 0.452 106.9 - 30.5 75 1572.5 47.5 (63)

Modes 8 local 82 0.452 105.8 - 31.2 71 1962.0 45.0 (83)

Modes 10 local 102 0.452 104.7 - 31.9 82 2912.6 51.9 (103)
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whereas the local modes have achieved this for significantly lower cost than the

domain element approach.

Figure 14 shows the initial and optimized surface at various locations along the

span from root to tip, for 10 local modes. The chord has been normalised and the

figure shows the z coordinate scaled by two. The loading distributions are also

presented, along with the elliptical value (10 local and global modes case shown),

showing an improved distribution.

5 Conclusions

Aerodynamic shape optimization has been considered, using mathematically-

derived design variables. Orthogonal design variables have been extracted by a

singular value decomposition approach where a training library of aerofoils is

analysed and decomposed to obtain an efficient and reduced set of design variables;

Fig. 10 Upper surface pressure coefficient. a Initial geometry. b Domain element. c 10 Global modes.
d 10 Local modes
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they are geometric ‘modes’ of the original library, representing typical aerofoil

design parameters. In the aerodynamic shape optimization framework a surface and

mesh deformation algorithm is required, and a control point approach has been

adopted. This adopts a small number of control points which are linked to the

numerical mesh points by a global volume interpolation using radial basis functions

to allow large, smooth deformations of the mesh.

The performance of the mathematical design variables has been demonstrated in

three dimensions, with results of optimization of the MDO wing in transonic flow.

The modal deformations have been applied as both local and global variables, and a

Fig. 11 Sectional pressure coefficient: 10 local and 10 global mode cases shown. a y/s = 0.0. b y/s = 0.1.
c y/s = 0.3. d y/s = 0.5. e y/s = 0.7. f y/s = 0.9

Fig. 12 Convergence histories
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further case run with a previously-used off-surface domain element approach. An

important aspect of effective geometric application of these two-dimensional

variables is localization of the deformation field. A basis function deformation

control approach has been developed and presented, allowing improved local

control of deformations, and ensuring exact recovery of global modes from local

modes. It has been demonstrated that the modal approach gives better results than

the domain element approach, for significantly fewer design variables and,

furthermore, using global modes, an impressive result is achieved with only

O(10) variables.
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