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Abstract 

 

Objective: Insulin resistance has deleterious effects on cardiometabolic disease. We 

used Mendelian randomization analyses to clarify the causal relationships of insulin 

resistance on circulating blood-based metabolites to shed light on potential mediators 

of the insulin resistance to cardiometabolic disease relationship. 

 

Research Design and Methods: We used 53 single nucleotide polymorphisms 

associated with insulin resistance from a recent genome-wide association study to 

explore their effects on circulating lipids and metabolites. We used published 

summary-level data from two genome-wide association studies (GWASs) of 

European individuals; data on the exposure (insulin resistance) were obtained from 

meta-GWASs of 188,577 individuals and data on the outcomes (58 metabolic 

measures assessed by NMR) were taken from a GWAS of 24,925 individuals. 

 

Results: One standard deviation (SD) genetically elevated insulin resistance 

(equivalent to 55% higher geometric mean of fasting insulin, 0.89 mmol/L higher 

triglycerides and 0.46 mmol/L lower HDL-C) was associated with higher 

concentrations of all branched-chain amino acids, isoleucine (0.56 SD; 95%CI: 0.43, 

0.70), leucine (0.42 SD; 95%CI: 0.28, 0.55) and valine (0.26 SD; 95%CI: 0.12, 0.39) 

as well as with higher glycoprotein acetyls (an inflammation marker; 0.47 SD; 95%CI: 

0.32, 0.62) (P<0.0003 for each). Results were broadly consistent when using multiple 

sensitivity analyses to account for potential genetic pleiotropy. 

 

Conclusions: We provide robust evidence that insulin resistance causally impacts 

on each individual branched-chain amino acid and inflammation. Taken together with 

existing studies, this implies that branched-chain amino acid metabolism lies on a 

causal pathway from adiposity and insulin resistance to type 2 diabetes. 

 

 

Keywords: adiposity, insulin resistance, branched-chain amino acids, type 2 

diabetes 

 

Non-standard Abbreviations and Acronyms: BCAA, branched-chain amino acid; 

IR, insulin resistance; MR, Mendelian randomization; IVW, inverse variance 

weighted; GlycA, glycoprotein acetyls; BCKD, branched-chain α-ketoacid 

dehydrogenase. 
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The obesity pandemic is a public health crisis leading to a dramatic surge in the 

incidence of type 2 diabetes mellitus (T2DM) and related diseases (e.g., 

cardiovascular diseases) (1). Adiposity, particularly visceral adiposity (2), is 

associated with insulin resistance (IR) and subsequent T2DM. Recent genetic 

studies employing the Mendelian randomization approach have shown adiposity 

traits (such as general adiposity, indexed by body mass index, and central adiposity, 

indexed by waist-to-hip ratio) to show causal relationships with blood pressure, lipids, 

coronary heart disease, stroke and diabetes (3-6). Furthermore, such studies have 

demonstrated that adiposity traits causally impact on insulin resistance (3,4,6). 

Insulin resistance is the clinical state of a reduced sensitivity to insulin, typically 

manifested as elevated levels of fasting insulin and often accompanied with higher 

levels of circulating triglycerides and lower levels of high-density lipoprotein 

cholesterol (HDL-C) (7).  

Exploring the molecular mechanism by which IR leads to T2DM may help to identify 

biomarkers that could mediate the relationship, and provide novel opportunities for 

disease prevention. Recent studies have suggested that branched-chain amino acids 

(BCAAs) might play a role in the development of T2DM. Prospective observational 

studies show that higher levels of circulating BCAAs are positively associated with 

markers of insulin resistance (8) and risk of incident T2DM (9,10). Recent genetic 

studies have also implicated the metabolism of BCAAs in the development of 

diabetes (11).  

Insulin resistance is a complex trait, which can be assessed by different metrics, 

including clamp/insulin suppression test (gold standard), insulin sensitivity test 

(based on OGTT), HOMA-IR and fasting insulin. The GENESIS consortium has 

published a GWAS of insulin sensitivity measured by clamp/insulin suppression test 

in a modest number of subjects (N = 5624) (12). However, the statistical power limits 

the findings of this study. Other metrics which can be more easily measured, such as 

fasting insulin or HOMA-IR, are often used in large-scale genetic and epidemiological 

studies. In the GWAS of fasting insulin conducted by Scott et al (up to 108,557 

individuals) (13), they also tested the associations of insulin-associated SNPs with 

lipid traits. They found that majority of the insulin-associated SNPs were associated 

with HDL-C and/or TG and this pattern was not observed for those SNPs associated 

with fasting glucose or 2hour glucose. Subsequently, a genetic instrument was built 

for insulin resistance that used the 19 SNPs associated with fasting insulin, and 

restricted the instrument to those SNPs that were also associated with triglycerides 

and HDL-C (14). This instrument was recently adopted by Mahendran et al, and the 

results suggest that insulin resistance might be causal for circulating concentrations 

of BCAAs (15). More recently, Lotta et al considerably expanded the set of SNPs 

associated with three components of insulin resistance (higher fasting insulin, higher 

triglycerides and lower HDL-cholesterol), identifying 53 such SNPs and found that the 

SNPs in aggregate also associated with risks of CHD and T2DM (7).  

Here we aim to: 1) assess the causal effects of insulin resistance employing these 53 

SNPs recently identified from across the genome that associated with higher fasting 
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insulin, higher triglycerides and lower HDL-C (7); 2) use multiple instruments and 

multiple sensitivity analysis as a means to detect and correct for potential genetic 

pleiotropy in order to ensure reliable findings; 3) expand the outcome measures from 

BCAAs to a comprehensive panel of amino acids (including alanine, glutamine, 

tyrosine and phenylalanine), lipoprotein subclasses, fatty acids, glycolysis-related 

measures and one inflammatory marker, which are established or emerging 

biomarkers for T2DM and cardiovascular diseases; 4) provide an overview of the 

potential causal pathways and mediator roles that insulin resistance places in the 

underlying association of adiposity with T2DM, by incorporating our findings into 

multiple strands of genetic evidence. 

 

Research Design and Methods 

We used published summary-level data from two GWA studies of European 

individuals (7,16). Data on the exposure (insulin resistance) were obtained from a 

meta-GWASs (meta-analysis of genome-wide association studies) of up to 188,577 

individuals (7) and data on the outcome (58 circulating metabolic measures) were 

taken from a GWAS of up to 24,925 individuals (16). Characteristics of these GWASs 

are reported in Supplemental Tables 1 & 2.  

 

Generation of Genetic Instruments 

We used the 53 SNPs associated with an insulin resistance phenotype from Lotta et 

al (7). In brief, Lotta et al. conducted a meta-GWAS to identify SNPs that associated 

with an insulin resistance phenotype of: (i) higher fasting insulin adjusted for BMI; (ii) 

higher triglycerides; and, (iii) lower HDL-C at P<0.005 for each trait. The combined 

association with the triad of phenotypes have been proposed as a means to 

characterising the genetic architecture of insulin resistance (7). This meta-GWAS 

identified 53 SNPs, of which a subset of 25 loci had been previously associated with 

triglycerides or HDL-C at genome-wide significance, whereas the remaining 28 had 

not. 

We used the 53 SNPs to generate a genetic instrument for IR. To conduct the 

Mendelian randomization (MR) analyses (17), we needed to obtain the association of 

SNPs with the exposure (insulin resistance) and also the associations with outcomes 

(metabolic measures). Lotta et al. (7) did not provide beta or SE for the associations 

of individual SNPs with the insulin resistance phenotype. To generate our own SNP 

to exposure estimate, we took the absolute value of the standardized beta coefficient 

for each of the 53 SNP associations with the individual components of the composite 

IR phenotype (i.e. fasting insulin adjusted for BMI, triglycerides and HDL-C) and 

meta-analysed the estimates together using a fixed-effect inverse-variance weighted 

method (data sources provided in Supplemental Table 3). We used this meta-

analysed value as the SNP-exposure estimate for the summary-level MR analyses. 

Supplemental Fig. 1 shows the associations of the 53 individual SNPs for our insulin 
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resistance trait with the three individual components. Most of the SNPs fell in a 

straight line (with a slope equal to 1), suggesting a similar contribution of the three 

traits to the ‘composite’ insulin resistance phenotype with the exception of rs1011685 

(near LPL), which had a much weaker effect on insulin adjusted for BMI. We 

therefore conducted sensitivity analyses in which rs1011685 was excluded from the 

instrument. 

 

Two-Sample Mendelian Randomization Analysis 

We used data from Kettunen et al. (16) to obtain SNP-associations with metabolic 

measures. Summary data for 58 measures were used in this study, including 14 

lipoprotein subclasses, 3 lipoprotein size measures, 9 total lipids, ApoA1, ApoB, 10 

fatty acids related measures, 9 amino acids, one inflammation marker - glycoprotein 

acetyls and several other measures. These metabolic measures were quantified by a 

high-throughput NMR metabolomics platform using primarily fasting serum samples 

with an approximately 1:1 male-to-female ratio and age span of 20-60 years 

(Supplemental Table 2). We used a conventional inverse variance weighted (IVW) 

MR analysis, in which the SNP to outcome estimate is regressed on the SNP to 

exposure, with the y-axis intercept forced through the origin. The data used for the 

MR analyses are presented in Supplemental Tables 3 & 4. 

 

Sensitivity Analyses 

As the conventional IVW MR approach can be vulnerable to unbalanced horizontal 

pleiotropy (18), we conducted MR-Egger, weighted median and weighted mode-

based MR analyses, which allow relaxation of some of the instrumental variable 

assumptions. The characteristics of these different MR methods are summarized in 

Supplemental Table 5. Overall, use of several MR methods that each makes different 

assumptions on the amount and type of genetic confounding is a useful strategy to 

assess the robustness of findings to potential violations of the instrumental variable 

assumptions (19).  

In addition to the 53 SNP instrument, we: (i) removed the rs1011685 (near LPL), 

which, as described above, did not show consistent associations across individual 

phenotypes of insulin resistance; (ii) used the 28 SNPs reported in Lotta et al. (7) that 

were not in loci previously associated with triglycerides or HDL-C at genome-wide 

significance, and (iii) used 12 SNPs associated with fasting insulin (BMI adjusted) 

reported by MAGIC consortium (13). As fasting insulin is another marker of insulin 

resistance, consistent results of the primary analysis and sensitivity analysis (iii) 

would provide further confidence in concluding the causal role of insulin resistance 

on the circulating metabolites. Further, sensitivity analysis (ii & iii) are helpful in 

assessing the contribution of primarily lipid-associated SNPs on the casual effect 

estimates. In addition, to quantify whether the genetic instruments for IR associated 

with BMI, we regressed the associations of SNPs with insulin resistance against the 
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associations of SNPs with BMI using summary-level data from GIANT consortium 

(20). A final step was to remove SNPs from the 53 SNP instrument that individually 

associated with BMI at P<0.001 using GIANT summary statistics (20) in order to 

clarify whether this materially altered the MR effect estimates. 

Genetic effect estimates are presented as standard deviation (SD) differences in 

metabolite concentrations per 1-SD genetically higher insulin resistance. To gain 

insight into the association of the genetic instrument with its individual components, 

we quantified the association of a 1-SD higher genetically higher insulin resistance 

on fasting insulin from the MAGIC consortium (13), and the blood lipids HDL-C and 

triglycerides from the Global Lipids Genetics Consortium (21). We used a two-sided 

P<0.001 (= 0.05/58; multiple testing correction) to denote evidence of an association. 

All analyses were conducted in R.  

 

Results 

The associations of the 53 SNPs with each of the metabolic measures are shown in 

Figure 1. As expected, all the SNPs associated with higher BMI-adjusted insulin and 

triglycerides and lower HDL-C. There were also general trends of the SNPs to 

associate with higher VLDL and lower HDL traits. 

Causal effect estimates of insulin resistance, proxied by the 53-SNP instrument, on 

the individual metabolic traits are illustrated in Figure 2. The association magnitudes 

(betas), standard errors and corresponding P-values are reported in Supplemental 

Table 6. A one-SD genetically higher insulin resistance was associated with 55% 

(95%CI: 50%, 60%) higher fasting insulin adjusted for BMI, 0.89 mmol/l (95%CI: 

0.85, 0.93) higher triglycerides and 0.46 mmol/l (95%CI: 0.44, 0.48) lower HDL-C. In 

addition, there were clear associations of the genetic instrument for insulin resistance 

with higher concentrations of all VLDL subclasses with more moderate associations 

with IDL and LDL subclasses. In contrast, the associations were inverse for most 

HDL subclasses. The genetic instrument was positively associated with VLDL and 

negatively with HDL particle size. These findings corroborate the characteristics of 

the instrument as devised by Lotta et al (7). Similarly, we identified positive 

associations of the genetic instrument with circulating fatty acids, including 

monounsaturated and omega-3 fatty acids. Interestingly, the genetic instrument only 

weakly associated with an increase in NMR-quantified glucose, a finding in keeping 

with the observation by Lotta et al. using the MAGIC consortium data (7). As reported 

in the original study (7), the genetic instruments were negatively associated with BMI 

(Supplemental Table 7). 

We identified strong positive associations of genetically higher insulin resistance with 

the BCAAs, isoleucine, leucine and valine. These estimates correspond to a 0.56 SD 

(95%CI: 0.43, 0.70) higher isoleucine, 0.42 SD (95%CI: 0.28, 0.55) higher leucine 

and 0.26 SD (95%CI: 0.12, 0.39) higher valine per 1-SD higher insulin resistance. 

Weaker associations were noticed with the other amino acids. In addition, genetically 
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higher insulin resistance was positively associated with glycoprotein acetyls, an 

inflammation marker (0.47 SD; 95%CI: 0.32, 0.62).  

 

Sensitivity Analyses 

Most of the associations identified for the 53-SNP instrument were replicated with the 

28-SNP instrument (limited to those SNPs that were not in loci of prior GWAS hits for 

triglycerides or HDL-C; Figure 2) as well as the 12-SNP instrument (identified in a 

GWAS of fasting insulin adjusted for BMI; Supplemental Fig. 2). The associations 

were also consistent when rs1011685 near LPL was removed from the 53-SNP 

instrument (Figure 2). Removal of 6 SNPs associated with BMI (P<0.001) had no 

material effect on the MR estimates (data not shown). 

To investigate the robustness of these MR estimates to potential confounding by 

genetic pleiotropy, we also investigated the association of the 53-SNP instrument 

with the BCAAs and glycoprotein acetyls (GlycA) using MR-Egger, weighted median 

and weighted mode-based estimators. Discordance of the point estimates was 

noticed across the methods, predominantly due to the inclusion of the rs1011685 

variant that had minimal effects on insulin adjusted for BMI (Supplemental Table 8). 

Since MR approaches can be vulnerable to the inclusion of such outliers, we 

repeated the sensitivity analyses excluding rs1011685, which led to estimates across 

all MR methods that were comparable to the IVW approach (Figure 3 and 

Supplemental Table 8). 

The intercepts of MR Egger were of generally small magnitude (absolute values ≤ 

0.01, far smaller than the corresponding beta coefficients) with little or no evidence 

that they departed from zero, providing little evidence for the presence of genetic 

pleiotropy (Supplemental Table 9). Because the MR-Egger estimate of the causal 

effect (obtained from the slope of the regression line) can be underestimated when 

the assumption of no measurement error of the exposure (NOME) is violated, the 

heterogeneity index (I2) was used to detect the extent of this potential violation (22). 

Results remained consistent when SIMEX-adjusted MR-Egger was used to correct 

potential errors of the SNP to exposure estimates (Supplemental Table 8). 

 

Pathways 

Figure 4 and Supplemental Table 10 illustrates the current evidence base for various 

pathways leading from adiposity to T2DM. Prior MR studies have shown that general 

adiposity (measured by BMI) and central adiposity (measured by waist-to-hip ratio 

adjusted for BMI) causally influence fasting insulin, HDL-C and triglycerides (4). BMI 

has been previously shown to influence BCAAs (23) and in this study we show that 

both BMI and waist-to-hip ratio (adjusted for BMI) impact these traits (Supplemental 

Fig. 3 & 4). Both BMI and waist-to-hip ratio causally affect diabetes (4). Our study 

shows that insulin resistance impacts on BCAAs, and together with a prior study 

providing genetic support of BCAAs metabolism in T2DM (11), the various sources of 
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data support a causal pathway that is from adiposity to insulin resistance to BCAAs 

to diabetes. 

 

Conclusions 

Our study provides genetic evidence in support of higher levels of insulin resistance 

leading to an elevation in circulating branched-chain amino acids. Within the context 

of other studies, our findings support the hypothesis that the metabolism of BCAAs 

may be a mediator that is downstream of adiposity and insulin resistance on the 

causal pathway to T2DM. If true, then this not only has important aetiological 

relevance, but also could point towards potential novel opportunities for disease 

treatment and prevention.  

These findings for insulin resistance and BCAAs are consistent with a recent paper 

by Mahendran et al. (15) in which ten IR associated SNPs were used to quantify the 

association with a composite measure of BCAAs in a one-sample MR setting of 

~1300 individuals. However, the selection of SNPs into the 10-SNP instrument may 

induce bias as the instrument was enriched for GWAS hits of fasting insulin that were 

also associated with triglycerides and HDL-C (18). In this study, a more robust 

approach was taken to instrument derivation by selecting >50 SNPs across the 

genome, which have recently been identified using a hypothesis-free approach to 

show directionally consistent associations with a triad of phenotypes that mark insulin 

resistance; this 53-SNP instrument was used to infer the causality of insulin 

resistance using a two-sample MR design with little overlap between datasets and 

with data on ~180,000 individuals for the SNP to exposure (IR) estimates and data 

on ~25,000 individuals for the SNP to outcome (metabolic markers) estimates. The 

consistent results that we report derived from multiple genetic instruments and 

multiple MR sensitivity analyses provide robust evidence that insulin resistance 

impacts on BCAAs in a cause and effect manner. Particularly, as insulin resistance 

can be measured by various metrics (e.g. a triad of the phenotypes as defined here 

and also by fasting insulin alone), the consistent results of the 53-SNP instrument (a 

genetic proxy for the insulin resistance triad) and 12-SNP instrument (a genetic proxy 

for fasting insulin alone) across the metabolic profile strengthens the evidence base 

for a causal role of insulin resistance and potentially validates the biological meaning 

of insulin resistance as defined by a complex phenotype characterised by higher 

insulin, higher triglycerides and lower HDL-C.  

Interventional studies provide orthogonal support for our findings that obesity and 

insulin resistance causally impact on circulating BCAAs. Multiple longitudinal studies 

have shown that BCAA levels were reduced after various insulin-sensitising 

interventions, including weight loss surgery through gastric bypass, pioglitazone 

therapy or physical exercise (24-26). Also, a reduction in BCAA concentrations was 

observed following the secretion of insulin during oral glucose tolerance test (OGTT), 

with individuals with insulin resistance showing less BCAA suppression (i.e. higher 

BCAA concentrations) following OGTT (27). Prospective studies have identified 
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circulating BCAAs to be predictive of incident T2DM and a recent genetic study found 

that the metabolism of BCAAs is likely causally linked to T2DM (11). Triangulating 

these sources of evidence provides support for the hypothesis that circulating BCAAs 

may mediate the relation from adiposity and insulin resistance to T2DM. On the other 

hand, observational studies have reported that higher dietary intake of BCAAs is 

associated with an improved cardiometabolic risk profile including a lower risk of 

T2DM (28,29). However, dietary BCAAs, both measured in absolute terms or as a 

percentage of total protein, are only weakly correlated with circulating concentrations 

of BCAAs (28,29). There is also evidence that the expression of enzymes involved in 

BCAA catabolism (e.g. branched-chain α-ketoacid dehydrogenase, BCKD) is 

reduced in obese and diabetic individuals (11,30). BCKD is responsible for the rate-

limiting step of BCAA catabolism and BCKD can be activated by its regulatory 

phosphatase encoded by PPM1K. Individuals with T2DM have reduced up-regulation 

of PPM1K in skeletal muscle during OGTT (11). Consistent with this, after weight 

loss surgery, BCKD concentrations are increased leading to a commensurate 

reduction in BCAAs (24,30). Thus, elevated circulating BCAA levels observed in 

obese and diabetic individuals could arise from impaired BCAA catabolism (11). 

Putting these strands of evidence together, it is plausible that pharmacotherapies to 

improve or restore the function of BCAA catabolism may represent a means to 

prevent T2DM. However, further studies are required to understand the exact role of 

BCAA metabolism in the aetiology of T2DM. 

In contrast to the strong effects of IR on the BCAAs, we noticed a generally weaker 

effect of IR on alanine, glutamine, and aromatic amino acids (phenylalanine and 

tyrosine). Each of these biomarkers has been associated with the risk of insulin 

resistance, hyperglycaemia, type 2 diabetes and cardiovascular diseases (8,10,31). 

Although imprecise estimates were observed for these measures in the MR analyses 

reported herein, the consistent results from different instruments on these traits 

merits further investigation in larger datasets to clarify whether these represent 

causal relationships. 

The association that we identify of insulin resistance with GlycA is novel. GlycA is a 

marker of both acute phase and chronic inflammation and has been linked to 

neutrophil activity (32). GlycA reflects circulating levels of various inflammatory 

glycoproteins (primarily alpha-1-acid glycoprotein and haptoglobin), and is also 

associated with a wide range of inflammatory cytokines (32). Prospective 

observational studies have identified positive associations of GlycA with 

cardiovascular disease, T2DM and premature mortality (33,34). A role for 

inflammation in the development of T2DM has been proposed for many years on 

account of the observational associations between higher concentrations of 

biomarkers of inflammation, such as C-reactive protein, interleukin-1, interleukin-6, 

and the risk of T2DM (35,36). Although recent MR studies have so far failed to 

provide evidence in support of this hypothesis (36), it remains plausible that such 

causal pathways (from inflammation to T2DM) exist, and that larger studies and/or 

investigations of other inflammatory markers and pathways may identify a causal role 
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of inflammation in T2DM. Therefore, GlycA could represent a biomarker either 

involved in, or correlated to an inflammation pathway involved in the aetiology of 

T2DM. A causal role of inflammation in vascular disease is gaining traction given 

recent findings from genetic studies in humans of the interleukin-6 receptor and CHD 

(37), and more recently in phase III clinical trials of anti-inflammatory drugs for the 

treatment of CHD (CANTOS trial of canakinumab, a monoclonal antibody to 

interleukin-1 beta) (38). Of note, a previous study has suggested that BMI has a 

causal impact on circulating concentrations of GlycA (23) (as we also report in 

Supplemental Fig. 3 for BMI and Fig.4 for WHR) and our study here provides 

clarification on the potential causal pathway, showing that insulin resistance is also 

causal for GlycA. However, elucidating the causal role of GlycA in cardiometabolic 

disease remains challenging using an MR approach since at present the identified 

genetic variants associated with GlycA are limited in number (16), thus hindering our 

ability to answer this important question. Larger GWAS of GlycA may facilitate this 

endeavor. 

Strengths of this study include: (i) a comprehensive genetic instrument for an insulin 

resistance phenotype using findings from a recent GWAS (7); (ii) characterizing and 

validating the genetic instrument for IR with a repertoire of biomarkers of triglyceride 

and HDL-C metabolism; (iii) use of multiple sensitivity analyses (both in the derivation 

of the genetic instruments and their application to state of the art MR methodologies) 

which provided robust and consistent evidence; (iv) quantifying the causal effects of 

insulin resistance on each of the three BCAAs individually; (iv) adding important new 

information on the effect of insulin resistance on an inflammation marker; and, (v) a 

data summation that provides evidence of a causal pathway from adiposity through 

IR and BCAA to T2DM. 

Limitations include: (i) analyses were conducted at the summary level and we could 

not investigate associations by subgroups, e.g., of age or sex, meaning that it is not 

possible to test whether these associations are modified by age; (ii) our analyses 

were conducted using European datasets which may hamper their translational 

relevance to non-Europeans, however risk factors for disease tend to show similar 

relationships across geographical regions (39) and emerging studies are providing 

evidence that shows the genetic architecture for common diseases is likely similar 

across ethnic groups (40) (iii) a meta-GWAS of 3 traits was used to proxy IR, which 

may not include other traits related to IR and may have limited clinical relevance, 

although in the original paper by Lotta et al. (7), associations were identified for 

diabetes and heart disease; (iv) meta-GWAS may select SNPs on the basis of 

pleiotropy (i.e., by their very selection, they associate with higher fasting insulin, 

higher triglycerides and lower HDL-C) and thus SNPs may tag heterogeneous 

pathways, some of which may result in unbalanced horizontal pleiotropy (18). Against 

this are the consistent associations across the different genetic instruments, their 

stability to various MR sensitivity analyses (with each MR approach having its own 

assumptions on the amount and type of genetic pleiotropy, see Supplemental Table 

5), and the general consistency with a prior study that used a weaker instrument in a 
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much smaller dataset (15). Finally, the instruments were derived from a meta-GWAS 

that included fasting insulin adjusted for BMI; conditioning on a trait in discovery 

GWAS can induce collider bias, as evidenced by the negative association of the 

instruments with BMI. However, this negative association with BMI would be 

expected to diminish the association of the genetic instruments with BCAA that we 

report (and also diminish the association with T2DM and CHD reported by Lotta et al. 

(7) rather than augment it, and therefore is unlikely to result in major bias in the MR 

estimates we report. Further, removal of six SNPs that were associated with BMI (at 

P<0.001 using GIANT summary statistics) had no material impact on the causal 

estimates derived from MR. 

In conclusion, our findings provide new information in support of a causal role of 

insulin resistance on branched chain amino acids and inflammation. Taken together 

with recent findings from complimentary studies, these data suggest BCAA 

metabolism may lie on a causal pathway from adiposity and insulin resistance to type 

2 diabetes. 
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Figure Legends 

 

Figure 1. Heat map of the 53 SNPs and their associations with 58 circulating 

biomarkers. The units are reported as an SD-difference in metabolic measure per 

insulin resistance increasing allele. Abbreviations: VLDL, very-low-density lipoprotein; 

IDL, intermediate-density lipoprotein; LDL, low-density lipoprotein; HDL, high-density 

lipoprotein; lipoprotein measures without further specification refer to total lipid 

concentrations; apoA1, apolipoprotein A-I; apoB, apolipoprotein B; w79s FA, omega 

7, 9 and saturated fatty acids; MUFA, monounsaturated fatty acids; PUFA, 

polyunsaturated fatty acids; DHA, docosahexaenoic acid; DBinFA, the average 

number of double bonds in fatty acids; FALen, the average fatty acid chain length. 

Insulin resistance was defined as a triad of higher fasting insulin (BMI adjusted), 

higher triglycerides and lower HDL-C. Metabolic measures were quantified by the 

high-throughput NMR metabolomics platform using primarily fasting serum samples. 

 

 

Figure 2. Forrest plot of the causal effect estimates of insulin resistance on 

circulating metabolic measures. Estimates are derived from inverse variance 

weighted (IVW) Mendelian randomization analyses. The three instruments are: 53 

SNPs identified from Lotta et al. (7) (black diamonds); 52 SNPs removing an outlier 

variant rs1011685 (near LPL) (red circles); 28 SNPs in loci not previously associated 

with high-density lipoprotein cholesterol and triglycerides at genome-wide 

significance (blue circles). Open and close symbols indicate P ≥ 0.001 and P < 0.001, 

respectively. Units are given as SD difference in metabolic measures per 1-SD 

genetically higher insulin resistance. Abbreviations are as listed in the caption for 

Figure 1. 

 

 

Figure 3. Funnel plots for the three branched-chain amino acids and 

glycoprotein acetyls showing the causal effect estimates. IVW refers to the 

conventional inverse variance weighted method (using 53 SNPs; red vertical lines), 

Egger to the MR-Egger (using 52 SNPs; green lines), WME to the weighted median 

estimator (using 52 SNPs; blue lines) and WMBE for the weighted mode-based 

estimator (using 52 SNPs; purple line). For the results shown for MR-Egger, WME 

and WMBE, the outlier SNP rs1011685 near LPL was removed. The 95% CIs for 

each method are shown as the colourful horizontal lines. Each individual black circle 

describes the causal effect estimate using the individual SNP as the instrument.  

 

 

Figure 4. Strands of evidence from multiple genetic studies supporting a 

causal pathway from adiposity, through insulin resistance and branched-chain 

amino acids, to diabetes. Sources of evidence: 1. Holmes et al. (3), Dale et al. (4); 

2. Dale et al. (4),  Emdin et al. (6); 3. Würtz et al. (23), this study (Supplemental Fig. 

3); 4. This study (Supplemental Fig. 4); 5. Holmes et al. (3), Dale et al. (4), Lyall et al. 
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(5); 6. Emdin et al. (6), Dale et al. (4); 7. This study (Figure 2), Mahendran et al. (15); 

8. Lotta et al. (11). For details of these studies and the MR estimates provided, 

please see Supplemental Table 10. *refers to adjustment with BMI.  
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Supplemental Table 1. Characteristics of the GWASs studies used in this study. 

Characteristics Exposure GWAS* (insulin resistance) Outcome GWAS 

Phenotype 
Fasting insulin adjusted for 

BMI 
Triglycerides and HDL 

cholesterol 

Circulating metabolic 
measures profiled by high-

throughput quantitative serum 
NMR metabolomics  

Consortium MAGIC GLGC MAGNETIC 
PubMed ID 22885924, 22581228 24097068 27005778 

N Up to 108,557 participants Up to 188,577 participants Up to 24,925 participants 
Ethnicity European European European 

Genotype data 
GWAS array and 
metabochip array 

GWAS array and 
metabochip array GWAS array 

*: Lotta et al (1) built a genetic instrument for insulin resistance by combining published GWAS results 
for fasting insulin (adjusted for BMI), HDL cholesterol and triglycerides. Here, the characteristics of the 
GWAS for each individual phenotype of insulin resistance are listed. 
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Supplemental Table 2. Characteristics of the individual cohorts used in the 
metabolite-GWAS. 

Study  Age BMI Female% 
 N Mean s.d. Mean s.d.  
EGCUT 3,287 46.3 19.5 26.4 5.4 58 
ERF 2,118 48.2 14.7 26.7 4.7 58 
FTC 664 23.9 2.1 23.1 3.7 50 
FR97 3,661 45.3 12.8 26.3 4.5 55 
COROGENE 828 53.2 13.2 26.6 4.1 54 
GenMets 572 55.8 7.3 27.2 4.5 57 
HBCS 708 61.3 2.9 27.1 4.1 60 
KORA 1,745 60.9 8.8 28.2 4.8 52 
LLS 2,227 59.2 6.8 25.4 3.5 54 
NTR 1,192 38.8 12.8 24.6 4.2 64 
NFBC 1966 4,709 31.2 0.4 24.6 4.1 51 
PredictCVD 374 47.5 14.6 26.6 4.4 37 
PROTE 597 38.3 16 25.2 4.6 51 
YFS 2,390 37.7 5 26 4.7 54 

 
 
Supplemental Table 3 and 4 presented as Excel files due to their large size. 
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Supplemental Table 5. Characteristics of different MR methods*. 

Method Principle Breakdown 
level †  

Stability to presence of 
horizontal pleiotropy 

Analytical code 
for the methods 

IVW (2) 

Combing the ratio estimates 
from individual SNPs via fixed-

effect meta-analysis; 
alternatively, interpreted as the 

regression of  SNP-outcome 
onto SNP-exposure forced 

through original. 

0% 
Stable if the sum of horizontal 
pleiotropic effects across all 

variants is zero. R and Stata 
codes for IVW 
and MR-Egger 

regression 
methods are 

available at Web 
Appendix of 
reference (3) 

MR-Egger 
regression ‡ 
(3) 

The regression of  SNP-outcome 
onto SNP-exposure allows the y-
intercept to float. The y-intercept 
is used to infer the presence and 
extent of unbalanced horizontal 

pleiotropy and the slope 
indicates the corrected causal 

effect estimate. 

100% 

Stable even if all variants are 
invalid provided that the 
associations of individual 

variants with the exposure are 
unrelated to the 

corresponding pleiotropic 
effects. 

Weighted 
median 
estimator (4) 

The median of the ratio 
estimates obtained from 

individual SNPs 
50% 

Stable if more than 50% of the 
weights is contributed by valid 

variants, regardless of the 
type of horizontal pleiotropy. 

R code is 
provided in 
Supporting 
Information 
Appendix 2 

from reference (4) 

Weighted 
mode-based 
estimator (5) 

The highest density of the ratio 
estimates across all SNPs 

Depends on 
the weights 
of individual 

SNP 
 

Stable if the largest number of 
similar individual-instrument 
causal effect estimates arise 

from valid instruments, 
regardless of the type of 

horizontal pleiotropy 

R code is 
provided in 

supplementary 
materials from 
reference (5) 

* This table is based on multiple previous publications (3-5).  

† Breakdown refers to the proportion of information that can come from invalid instrumental 
variables before the method gives biased estimates. 

‡ The MR-Egger estimate of the causal effect can be prone to be underestimated when the 
assumption of no-measurement error (NOME) of the SNP to exposure is violated; the 
heterogeneity index (I2) was used to detect the extent of the violation and MR-Egger with 
SIMEX was used to correct such violation (6).  
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Supplemental Table 6. The causal effect estimates using 53-SNP, 52-SNP and 28-SNP 
instrument via inverse-variance weighted method as shown in Figure 2. 

Metabolites 53-SNP instrument 52-SNP instrument 28-SNP instrument 
 Beta SE Pvalue Beta SE Pvalue Beta SE Pvalue 
Extremely large VLDL 0.67 0.08 4E-12 0.63 0.09 1E-09 0.64 0.10 1E-04 
Very large VLDL 0.72 0.07 4E-13 0.67 0.08 3E-10 0.67 0.10 7E-05 
Large VLDL 0.90 0.08 2E-16 0.81 0.09 8E-13 0.84 0.10 3E-06 
Medium VLDL 1.06 0.07 P<2E-16 0.93 0.08 5E-15 0.90 0.10 1E-06 
Small VLDL 0.96 0.07 P<2E-16 0.82 0.08 4E-13 0.74 0.10 2E-05 
Very small VLDL 0.59 0.07 2E-10 0.50 0.09 4E-07 0.41 0.10 9E-03 
IDL 0.24 0.07 2E-03 0.20 0.08 2E-02 0.22 0.10 1E-01 
Large LDL 0.23 0.07 4E-03 0.19 0.08 3E-02 0.27 0.10 7E-02 
Medium LDL 0.30 0.07 2E-04 0.25 0.08 6E-03 0.35 0.10 2E-02 
Small LDL 0.37 0.07 8E-06 0.32 0.08 4E-04 0.44 0.10 5E-03 
Very large HDL -0.64 0.08 2E-11 -0.58 0.09 1E-08 -0.35 0.10 2E-02 
Large HDL -0.96 0.07 P<2E-16 -0.90 0.08 2E-14 -0.63 0.10 2E-04 
Medium HDL -0.43 0.07 5E-07 -0.43 0.08 7E-06 -0.07 0.10 6E-01 
Small HDL 0.11 0.08 2E-01 0.06 0.09 5E-01 0.41 0.10 8E-03 
HDL C -0.98 0.07 P<2E-16 -0.92 0.08 2E-15 -0.50 0.10 1E-03 
ApoA1 -0.51 0.08 2E-08 -0.46 0.09 3E-06 -0.13 0.10 4E-01 
LDL C 0.21 0.07 5E-03 0.18 0.08 3E-02 0.32 0.10 3E-02 
Esterified C 0.10 0.09 2E-01 0.05 0.10 6E-01 0.31 0.20 8E-02 
Free C -0.05 0.09 5E-01 -0.07 0.10 5E-01 0.16 0.20 4E-01 
Total C 0.20 0.07 8E-03 0.14 0.08 9E-02 0.37 0.10 1E-02 
Total TG 1.03 0.07 P<2E-16 0.92 0.08 2E-15 0.92 0.10 3E-07 
ApoB 0.63 0.07 1E-11 0.57 0.08 1E-08 0.66 0.10 6E-05 
Phosphoglycerides 0.07 0.09 4E-01 0.01 0.10 9E-01 0.27 0.20 1E-01 
Cholines -0.07 0.09 4E-01 -0.12 0.10 2E-01 0.13 0.20 4E-01 
Sphingomyelin -0.24 0.09 9E-03 -0.27 0.10 9E-03 -0.18 0.20 3E-01 
VLDL particle size 0.94 0.07 P<2E-16 0.85 0.08 1E-13 0.83 0.10 3E-06 
LDL particle size -0.13 0.07 9E-02 -0.13 0.08 1E-01 -0.35 0.10 2E-02 
HDL particle size -0.88 0.08 4E-16 -0.80 0.09 1E-12 -0.61 0.10 2E-04 
Total FA 0.55 0.09 1E-07 0.42 0.10 1E-04 0.61 0.20 1E-03 
w79S FA 0.59 0.09 2E-08 0.47 0.10 3E-05 0.63 0.20 1E-03 
MUFA 0.56 0.09 5E-08 0.42 0.10 1E-04 0.61 0.20 1E-03 
Omega-3 FA 0.42 0.09 2E-05 0.37 0.10 7E-04 0.45 0.20 1E-02 
DHA 0.15 0.09 9E-02 0.13 0.10 2E-01 0.12 0.20 5E-01 
Omega-6 FA 0.31 0.09 1E-03 0.19 0.10 6E-02 0.36 0.20 5E-02 
Linoleic acid 0.29 0.09 2E-03 0.16 0.10 1E-01 0.36 0.20 4E-02 
other PUFA 0.28 0.09 3E-03 0.24 0.10 2E-02 0.23 0.20 2E-01 
DBinFA -0.37 0.08 5E-05 -0.33 0.10 1E-03 -0.38 0.20 3E-02 
FALen -0.66 0.09 1E-09 -0.57 0.10 9E-07 -0.66 0.20 6E-04 
Alanine 0.19 0.07 7E-03 0.23 0.08 4E-03 0.32 0.10 2E-02 
Glutamine -0.20 0.07 6E-03 -0.29 0.08 6E-04 -0.39 0.10 6E-03 
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Glycine -0.17 0.08 4E-02 -0.25 0.09 6E-03 -0.34 0.10 3E-02 
Histidine 0.19 0.07 2E-02 0.22 0.08 1E-02 0.17 0.10 2E-01 
Isoleucine 0.56 0.07 3E-11 0.65 0.08 4E-11 0.74 0.10 4E-06 
Leucine 0.42 0.07 9E-08 0.52 0.08 1E-08 0.65 0.10 3E-05 
Valine 0.26 0.07 3E-04 0.41 0.08 2E-06 0.49 0.10 7E-04 
Phenylalanine 0.12 0.07 1E-01 0.11 0.08 2E-01 0.28 0.10 4E-02 
Tyrosine 0.14 0.07 4E-02 0.19 0.08 2E-02 0.34 0.10 1E-02 
Glucose 0.15 0.07 3E-02 0.10 0.08 2E-01 0.00 0.10 1E+00 
Lactate 0.12 0.07 8E-02 0.13 0.08 1E-01 0.16 0.10 2E-01 
Pyruvate 0.20 0.07 5E-03 0.21 0.08 9E-03 0.26 0.10 5E-02 
Citrate -0.25 0.07 6E-04 -0.31 0.08 2E-04 -0.33 0.10 2E-02 
Glycerol 0.01 0.07 8E-01 -0.11 0.09 2E-01 -0.11 0.10 5E-01 
Acetate -0.16 0.07 3E-02 -0.20 0.08 1E-02 -0.18 0.10 2E-01 
Acetoacetate -0.15 0.08 5E-02 -0.28 0.09 2E-03 0.17 0.10 2E-01 
Beta-hydroxybutyrate -0.30 0.07 9E-05 -0.39 0.08 1E-05 -0.20 0.10 1E-01 
Creatinine -0.03 0.07 7E-01 -0.04 0.08 6E-01 -0.02 0.10 9E-01 
Albumin 0.06 0.08 4E-01 0.04 0.09 6E-01 0.23 0.10 1E-01 
Glycoprotein acetyls 0.47 0.07 5E-08 0.36 0.08 8E-05 0.25 0.10 9E-02 

 
The three instruments are: 53 SNPs identified from Lotta et al. (1); 52 SNPs removing an outlier 
variant rs1011685 (near LPL); 28 SNPs not previously associated with high-density lipoprotein 
cholesterol and triglycerides at genome-wide significance. The unit for Betas is reported as: SD 
metabolite per 1-SD higher insulin resistance. Insulin resistance is defined as a triad of higher fasting 
insulin (BMI adjusted), higher triglycerides and lower HDL cholesterol. 
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Supplemental Table 7. Associations of insulin resistance genetic instrument with 
body mass index. 

Instrument Estimate Std. Error CI 2.50% CI 97.50% Pvalue 
Association of insulin resistance genetic instrument with BMI (SD BMI per SD insulin resistance) 

53 SNPs 
-0.11 0.022 -0.16 -0.07 3.15E-06 

52 SNPs 
-0.16 0.025 -0.21 -0.11 4.29E-08 

28 SNPs 
-0.12 0.042 -0.21 -0.04 6.86E-03 

Association of fasting insulin (BMI adjusted) genetic instrument with BMI (SD BMI per SD insulin) 

12 SNPs 
-0.33 0.035 -0.41 -0.26 1.35E-06 

 
Two-sample MR via inverse variance weighted method was used to assess the causal effect 
estimates of insulin resistance (and fasting insulin) on body mass index (BMI). The associations of the 
instrument SNPs with BMI were obtained from GIANT consortium for up to 339,224 individuals (7). 
The four instruments are: 53 SNPs identified from Lotta et al. (1); 52 SNPs removing an outlier variant 
rs1011685 (near LPL); 28 SNPs not previously associated with high-density lipoprotein cholesterol 
and triglycerides at genome-wide significance; 12 SNPs associated with fasting insulin adjusted for 
BMI reported by MAGIC consortium (8).  
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Supplemental Table 8. Sensitivity analyses using different methods across all 
instruments. 

 Isoleucine 
Beta (95%CI); 
Pvalue 

Leucine 
Beta (95%CI); 
Pvalue 

Valine 
Beta (95%CI); 
Pvalue 

GlycA 
Beta (95%CI);  
Pvalue 

53 SNPs 
IVW 0.56 (0.43, 0.70) 

p=3e-11 
0.42 (0.28, 0.55) 
p=9e-08 

0.26 (0.12, 0.39) 
p=3e-04 

0.47 (0.32, 0.62) 
p=5e-08 

MR-Egger     
 Standard 

approach 
0.32 (0.07, 0.58) 
p=1e-02 
I2=0.95 

0.10 (-0.17, 0.37) 
p=5e-01 
I2=0.95 

-0.17 (-0.44, 0.10) 
p=2e-01 
I2=0.95 

0.63 (0.34, 0.92) 
p=3e-05 
I2=0.95 

 SIMEX 
adjusted 

0.34 (0.02, 0.65) 
p=4e-2 

0.11 (-0.25,  0.47) 
p=5e-01 

-0.18 (-0.55, 0.19) 
p=4e-01 

0.67 (0.26, 1.08) 
p=2e-03 

Weighted Median 0.42 (0.21, 0.64) 
p=1e-04 

0.23 (0.00, 0.45) 
p=5e-02 

-0.02 (-0.27, 0.23) 
p=9e-01 

0.56 (0.32, 0.79) 
p=3e-06 

Weighted MBE 0.32 (0.05, 0.59) 
p=2e-02 

0.09 (-0.19, 0.37) 
p=5e-01 

-0.25 (-0.51, 0.02) 
p=7e-02 

0.85 (0.53, 1.17) 
p=4e-06 

52 SNPs (removing outlier SNP rs1011685) 
IVW 0.65 (0.49, 0.80) 

p=4e-11 
0.52 (0.37, 0.68) 
p=1e-08 

0.41 (0.26, 0.57) 
p=2e-06 

0.36 (0.19, 0.53) 
p=8e-05 

MR-Egger     
 Standard 

approach 
0.52 (0.05, 0.99) 
p=3e-02 
I2=0.81 

0.31 (-0.18, 0.79) 
p=2e-01 
I2=0.81 

0.24 (-0.25, 0.72) 
p=3e-01 
I2=0.81 

0.02 (-0.49, 0.52) 
p=9e-01 
I2=0.82 

 SIMEX 
adjusted 

0.60 (-0.02, 1.21) 
p=6e-02 

0.35 (-0.35, 1.05) 
p=3e-01 

0.27 (-0.45,  0.98) 
p=5e-01 

0.02 (-0.71, 0.75) 
p=9e-01 

Weighted Median 0.64 (0.39, 0.88) 
p=4e-07 

0.56 (0.32, 0.80) 
p=5e-06 

0.43 (0.17, 0.69) 
p=1e-03 

0.45 (0.21, 0.69) 
p=3e-04 

Weighted MBE 1.08 (0.29, 1.86) 
p=9e-03 

0.90 ( 0.17, 1.62) 
p=2e-02 

0.84 (-0.17, 1.85) 
p=1e-01 

0.46 (-0.19, 1.10) 
p=2e-01 

28 SNPs (not previously associated HDL-C or TGs at genome-wide significance) 
IVW 0.74 (0.48, 1.01) 

p=4e-06 
0.65 (0.39, 0.92) 
p=3e-05 

0.49 (0.23, 0.75) 
p=7e-04 

0.25 (-0.04, 0.54) 
9e-02 

MR-Egger     
 Standard 

approach 
0.70 (-0.44, 1.83) 
p=2e-01 
I2=0.10 

1.16 (0.04, 2.27) 
p=4e-2 
I2=0.09 

0.62 (-0.53, 1.77) 
p=3e-01 
I2=0.10 

0.30 (-1.03, 1.63) 
p=7e-01 
I2=0.12 

 SIMEX 
adjusted 

1.01 (-0.54,  2.57) 
p=2e-01 

1.63 (0.00, 3.25) 
p=5e-02 

0.86 (-1.03,  2.74) 
p=4e-01 

0.44 (-1.63,  2.51) 
p=7e-01 

Weighted Median 0.92 (0.56, 1.29) 
p=6e-07 

0.77 (0.39, 1.15) 
p=8e-05 

0.55 (0.16, 0.94) 
p=6e-03 

0.42 (0.05, 0.80) 
p=3e-02 

Weighted MBE  1.08 (0.15, 2.00) 
p=3e-02 

0.06 (-0.90, 1.02) 
p=9e-01 

-0.28 (-1.50, 0.93) 
p=7e-01 

0.50 (-0.44,1.44) 
p=3e-01 

 
The results were broadly consistent after removing the outlier SNP (rs1011685). MR-Egger (3) 
suggests there is little directional pleiotropy, as the intercepts were of generally small magnitudes 
(MR-Egger intercepts ≤ 0.01) in comparison with the betas. As MR-Egger estimate of causal effect is 
prone to be underestimated when the assumption of no-measurement error (NOME) is violated, the 
heterogeneity index (I2) was used to detect the extent of the violation and SIMEX-method was used to 
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correct such violation (6). The lower value of I2 (value lies between 0 and 1) indicates stronger NOME 
violation and thus stronger dilution of the estimates. For mode-based estimator (5), the smoothing 
parameter for the empirical density function was set to 0.5, in order to increase the precision to detect 
potential pleiotropy. Weighted median estimates are valid as long as the majority of weights 
contributing to the analyses are valid (4). For all the methods, inverse-variance of the ratio estimators 
were used as the weights. IVW: inverse-variance weighted; GlycA: glycoprotein acetyls. 
 
 
 
 
Supplemental Table 9. The intercepts for MR-Egger. 
 

 Egger-Intercepts SE P value 
53 SNPs 
Ile 0.0061 0.003 0.08 
Leu 0.008 0.004 0.04 
Val 0.0109 0.004 0.01 
GlycA -0.0039 0.004 0.37 
52 SNPs 
Ile 0.0027 0.005 0.62 
Leu 0.0043 0.006 0.48 
Val 0.0036 0.006 0.57 
GlycA 0.0071 0.006 0.26 
28 SNPs 
Ile 0.0008 0.009 0.93 
Leu -0.0083 0.01 0.41 
Val -0.0022 0.012 0.85 
GlycA -0.0008 0.013 0.95 

 
The intercepts of MR Egger were of generally small magnitudes (intercepts ≤ 0.01, far less than the 
betas) with little significance level, suggesting that there is little directional pleiotropy of the genetic 
instruments. 
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Supplemental Table 10. Details of Mendelian randomization studies and estimates to accompany Figure 4. 

Ref in Figure 4 Exposure Outcome Mendelian randomization estimate (per-1SD higher exposure) References 

1 BMI 
Fasting insulin 

HDL-cholesterol 
Triglycerides 

logFI: 0.39 SD (0.29, 0.49); 
HDL-C: -0.22 SD (-0.29, -0.14); 

logTG: 0.19 SD (0.12, 0.28). 

Holmes et al. (9) and Dale et 
al.*(10) 

2 WHRadjBMI 
Fasting insulin 

HDL-cholesterol 
Triglycerides 

logFI: 0.33 SD (0.15, 0.51); 
HDL-C: -0.38 SD (-0.49, -0.28); 

logTG: 0.45 SD (0.28, 0.62). 

Dale et al.* (10) and 
Emdin et al.(11) 

3 BMI BCAAs 
Isoleucine: 0.20 SD (0.12, 0.28); 
Leucine: 0.17 SD (0.09, 0.25); 
Valine: 0.19 SD (0.10, 0.27). 

Würtz et al. (12) and 
Supplemental Figure 3* 

4 WHRadjBMI BCAAs 
Isoleucine: 0.21 SD (0.09, 0.33); 
Leucine: 0.15 SD (0.03, 0.27); 
Valine: 0.10 SD (-0.02, 0.22). 

Supplemental Figure 4 

5 BMI T2D OR 1.96 (1.41, 2.78) 
Holmes et al. (9); Dale et al. *(10); 

Lyall et al. (13) 
6 WHRadjBMI T2D OR 1.82 (1.38, 2.42) Emdin et al. (11); Dale et al.*(10) 

7 Insulin resistance# BCAAs 
Isoleucine: 0.56SD (0.43, 0.70); 
Leucine: 0.42SD (0.28, 0.55); 
Valine: 0.26SD (0.12, 0.39) 

Figure 2*, Mahendran et al. (14) 

8 BCAAs T2D The study provided genetic evidence for a causal link between 
BCAA metabolism and risk of T2D. For further details see ref (15) 

Lotta et al. (16) 

Where more than one reference is provided, the reference followed by * is the one used for the data reported under the “MR 
estimate” column. #: Insulin resistance is a composite trait proxied by higher fasting insulin (adjusted for BMI), triglycerides and 
lower HDL-cholesterol. logFI: logarithm of fasting insulin; SD: standard deviation 
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Supplemental Figure 1. The associations of the individual SNPs for the composite insulin resistance with the individual 
insulin resistance phenotypes. 

 
The SNP associations with insulin (BMI adjusted) was obtained from MAGIC Consortium (8). The SNP associations with TG and 
HDL-C were obtained from GLGC consortium (17). The SNP association with composite insulin resistance was defined as the 
meta-analyzed results of SNP associations with fasting insulin (BMI adjusted), TG and HDL-C. Among the 53 SNPs, most of the 
SNPs fell in a straight line (with a slope equal to 1), suggesting a similar contribution of the three traits to the ‘composite’ insulin 
resistance phenotype with the exception of rs1011685 (near LPL), which had a much weaker effect on insulin adjusted for BMI. 
Each dot indicates one SNP. The horizontal lines denotes the CIs for the associations of SNPs with composite insulin resistance 
while the vertical lines denotes the CIs for the associations of SNPs with the individual phenotypes. 
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Supplemental Figure 2. Causal effect estimates of fasting insulin on circulating 
metabolic measures. 
 

 
Black diamond: Causal effect estimates of insulin resistance (a composite trait 
denoted as increased insulin adjusted for BMI, increased TGs and decreased HDL-
C) on circulating metabolic measures, using insulin resistance associated 53 SNPs 
as the instrument. The unit is SD difference in metabolite concentration per SD 
higher insulin resistance. These are also shown in Figure 2. Grey circle: Causal 
effect estimates of fasting insulin (adjusted for BMI) on the circulating metabolic 
measures, using the 12 loci reported by a previous GWAS as the instrument (8). The 
unit is SD difference in metabolite concentration per SD higher fasting insulin 
(adjusted for BMI). Both estimates were calculated via two-sample Mendelian 
randomization analysis using inverse-variance weighted method (2). 
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Supplemental Figure 3. Causal effect estimates of body mass index on 
branched-chain amino acids and glycoprotein acetyls. 
 

BMI  Amino acids and glycoprotein acetyls 

 
 
The 97 BMI-associated loci reported by previous GWA study (GIANT consortium) were used 
as the instrument to assess the causal effects of BMI on circulating metabolic measures. 
Summary statistics from this BMI-GWAS (up to 322,154 individuals, primarily European) (7) 
and metabolic-GWAS (up to 24,925 participants, European) (18) were used in the two-
sample Mendelian randomization analysis. The causal effect estimates using 97 SNPs were 
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Supplemental Figure 4. Causal effect estimates of waist-to-hip ratio on 
branched-chain amino acids and glycoprotein acetyls. 
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