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Abstract
We calculate the tensile and shear moduli of a series of boron nitride nanotubes and their
piezoelectric response to applied loads. We compare in detail results from a simple molecular
mechanics (MM) potential, the universal force field, with those from the atomistic finite element
method (AFEM) using both Euler–Bernoulli and Timoshenko beam formulations. The MM
energy minimisations are much more successful than those using the AFEM, and we analyse the
failure of the latter approach both qualitatively and quantitatively.

Keywords: atomistic finite element, molecular modelling, boron nitride nanotubes

(Some figures may appear in colour only in the online journal)

1. Introduction

The interest in nanotubes has continued to grow ever since
they were first shown to be a possible molecular structure for
elemental carbon [1]. This discovery led to studies of other
potential candidate materials with the potential to form
nanotubes. One of the most promising was boron nitride as it
was known to form both cubic and hexagonal polymorphs, as
an almost exact III–V analogue of carbon. Boron nitride
nanotubes (BNNTs) were predicted in 1994 [2] and shown to
be semiconductors with a large band gap. The first successful
synthesis of BNNTs was subsequently reported in 1995 by
Chopra et al [3] using the plasma discharge method. In 2003
Mele and Král [4] used a Berry phase approach to predict
piezoelectric properties of BNNTs caused by symmetry
breaking of the structure under deformation. They showed

that BNNTs would generate a coupled electric dipole
dependent on their chirality and the loading type to which
they were subjected. Armchair nanotubes subjected to torsion
would generate a coupled electric dipole, while zigzag
nanotubes would respond to elongation (as shown in
figure 1). Further, their work showed how the strength of the
coupling varied with the chiral angle for a given type of
loading. The predicted values for the piezoelectric coupling
tensor entries suggest that BNNTs are better piezoelectric
materials than polymer piezoelectric materials [5]. Their
piezoelectric properties coupled with their axial stiffness
offers potential applications in composites [6] and nano-
electro-mechanical devices (NEMs) [7]. A further benefit of
boron nitride materials is their large neutron absorption cross
sectional area, adding to their value in space vehicle appli-
cations [6].

One technique for modelling nanostructures made of
large numbers of atoms is the hybrid molecular mechanics
(MM) finite element method which we shall refer to as the
atomistic finite element method or AFEM. This method was
first used to model carbon nanotubes by Li and Chou [8] in
2003 and has since been used to model graphene, hexagonal
boron nitride, BNNTs and zirconia nanotubes by various
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authors [9–12]. The method has even been applied to deox-
yribonucleic acid as a way to study the mechanics of DNA
[13]. The method is based on the concept of taking energy
equivalence between the strain energy of deformed beams and
the deformation energy of molecular bonds as given by MM
potential models. The chemical bonds between atoms are
modelled as beams which can stretch, twist, bend and shear
allowing the application of standard structural finite element
techniques to determine the response of nanostructures to an
applied force or deformation. Li and Chou demonstrated this
method using both static [14] and dynamic simulations [15].

Much work using this method and related formulations
has adopted different element types to model the molecular
bonds. Meo and Rossi used non-linear spring elements and
torsional spring elements to model bond extension and
angular deformation properties of carbon–carbon bonds in
graphene and carbon nanotubes [16]. Adhikari et al used the
same method as Li and Chou to model DNA with the addition
of elastic spar elements for the hydrogen bonds [13]. Boldrin
et al [17] used the same principles as the original authors but
used deep shear Timoshenko type beam elements to calculate
the mechanical properties of boron nitride nanosheets. These
beam elements differ from the slender Euler–Bernoulli ele-
ments used elsewhere by including shear deformation, a
deformation mode that is relevant to beams with a low
length–width ratio. It can be shown that this ratio is low for
the effective beams employed in the AFEM. Boron nitride
structures subject to an external electric field have been
modelled by Zhang et al using the Li and Chou method [11].
However, their choice of atomic charges is based on a sim-
plified ionic model that does not necessarily realistically
represent the charge density distributions. Their assumption

of charges of +3e and −3e, for the boron and nitrogen atoms,
respectively, is intuitive but it is not consistent with results
from population analysis of ab initio quantum mechanical
calculations [18, 19]. Nasdala et al developed a multi element
approach (MDFEM) that uses different element types to
represent the force terms in the underlying MM model [20].
To account for different types of forces, the elements consist
of two node spring elements to carry bond elongation, three
node coupled bond elements to carry angular deformation and
four node elements to carry torsion. Although this method is
more complicated than the method proposed by Li and Chou,
a single bond will require many elements in order to capture
the different deformation mechanisms, it only requires three
translational degrees of freedom at each node instead of six.
Another somewhat more simplified multi-element approach is
that of Giannopoulos et al which uses one type of element to
represent bond stretching and another element, which con-
nects two atoms that share a bond with a common third atom,
to carry the angular and torsional load [21].

The AFEM has been employed almost solely for the
purpose of examining the stiffnesses of molecular structures.
Moreover, the initial geometries used have been idealised
nanotube geometries, where all atoms lie on the surface of a
cylinder, as opposed to energy minimised structures. However,
we seek to add additional functionality to calculate piezo-
electric properties, such as those of BNNTs. This requires
effective charges to be calculated for the atoms based on the
molecular geometry and structure and a family of methods that
provide a rapid method for effective charge calculations has
been developed from the premise of electronegativity equal-
ization [22–25].

Figure 1. Diagrams showing the resultant dipole vector, P and green arrows, due to a deformation. Figure 1(a) shows an applied axial stress,
figure 1(b) shows an applied torque, with the blue arrows indicating the resultant deformation of the nanotube.
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The work presented here seeks to determine the piezo-
electric tensor coefficients of BNNTs of a variety of chiralities
using the AFEM and an MM energy minimisation approach.
The dependence of the piezoelectric properties of BNNTs on
the atomic displacements makes this a good test of the
AFEM. The work compares the results of the AFEM with
those of MM simulations of the same structures to highlight
the differences in the outcomes from the different simulation
methods.

2. Atomistic finite element method

The AFEM seeks to model molecular bonds using beam
theory and the material and geometric properties of the beams
have to be defined. The properties of the beams are deduced
from empirical force models developed for MM simulations.
Common empirical force models express the total energy of a
molecule, UTotal, as

å å å

å

= + +

+ + ( )

U U U U

U U . 1

ij ijk ijklTotal
Bonds Angles Torsions

Pairs
vdW Coulomb

Uij is the bond stretching term which represents the energy
associated with a change in the bond length between atoms i
and j. Similarly, Uijk is the bond angle energy which depends
on the angle between bonds ij and jk where atom j is common
to both bonds. Uijkl is the torsion energy, the change in energy
as a function of the angle between bonds ij and kl with atoms j
and k connected by a third bond. UvdW and UCoulomb are van
der Waals and electrostatic energy, respectively, and are
considered non-bonded energy terms as they are calculated
for pairs of atoms which need not be covalently bonded.
These non-bonded terms have no counterpart in beam
deformation and are neglected in the AFEM. These force
models can use linear relationships between force and dis-
placement or they can use non-linear relationships such as
Morse potentials and truncated Fourier series. It is possible to
approximate, using Taylor series, these non-linear potentials
as linear at least close to equilibrium bond lengths, angles and
dihedral angles thus allowing the determination of properties
of the modelled structure due to small strains.

The linearised force coefficients can then be equated to
the structural properties of beams using
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Here, qD Dr ,ij ijk and fD ijkl are the bond elongation, angular
and dihedral deformations, respectively, and are determined
from the difference between their deformed values and their
relaxed values which were calculated by minimising the
energy of the molecule. The force constants kij, kijk and kijkl
define the relationship between the different deformations and
the change in energy. E A I L G, , , , and J are the material and
geometric properties of beams, namely the Young’s modulus,
cross sectional area, second moment of area, length, shear
modulus and angular moment of area, respectively. The
length of the beam is the relaxed length of the molecular bond
and the beam cross section is taken as a solid circle to provide
symmetrical bending properties. Finally, Φ in equation (5) is
the shear deformation constant and is given by

F = ( )EI

GA l

12
, 6

s
2

where k=A As is the shear area and κ is the shear correc-
tion factor, for which there are several formulations available,
such as that by Cowper [26],

k
n
n

=
+

+
( ) ( )6 1

7 6
, 7

where ν is the Poisson’s ratio of the hypothetical material of
the beam representing the atomic interactions.

The choice of beam model determines whether
equations (4) or (5) is used (equation (4) for slender beams
and (5) for deep shear beams) and in turn affects the need for
determining the beam radius and Poisson’s ratio. In the
slender beam model, also referred to as an Euler–Bernoulli
beam model, there is no need to determine a Poisson’s ratio or
radius as the MM derived constants can be used directly to
construct the entries in the element stiffness matrix [8]. The
radii of these beams can be calculated by combining
equations (2) and (4) substituting appropriate functions of
radius for the cross sectional area and second moment of area
for a solid cylindrical tube, and then solving for the radius to
give

= ( )r
k

k

4
. 8

ijk

ij

The radius of the beam produced using this beam model
results in a significant radius–length ratio which, in standard
beam theory, requires the use of a deep shear, Timoshenko
type beam model. Euler–Bernoulli slender beams have been
used in previous work with apparent success so whether one
needs to be concerned with deep shear for modelling mole-
cular bonds rather than using slender beams remains an open
question.

The deep shear beam model requires calculation of the
shear deformation constant and the shear correction factor
which requires finding appropriate values for radius and
Poisson’s ratio. This is achieved by substituting the appro-
priate functions of radius for the area, second moment of area
and polar moment of area into equations (2), (3), (5) and (6),
and substituting a suitable equation for the shear correction
factor into (6) before combining equations (2), (3) and (5).
The result (after some protracted manipulation) provides a
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function relating radius and Poisson’s ratio with the force
constants and the beam/bond lengths appearing as coeffi-
cients. The resulting formula, assuming the shear correction
factor as given in equation (7) is used, is

n n
n n

=
+ + +

+ + +

( ( ) ( ))
( ( ) ( ))

( )k
k r k r l k

k r l k

9 1 4 6 7

4 9 1 6 7
. 9ijk

ij ij ijkl

ij ijkl

2 4 2

4 2

This can be solved for coupled values of the radius and
Poisson’s ratio by minimising the difference between the
value kijk, as generated from the MM force field, and the right
hand side of equation (9). A suitable pair of values can be
chosen by applying an additional constraint of material iso-
tropy,

n
=

+( )
( )G

E

2 1
. 10

The isotropy condition is imposed for simplicity of the model
rather than for any physical considerations. We can rewrite
this by solving equations (2) and (3) for E and G, respec-
tively, and then substituting into equation (10)

n
n

=
+

( )
( )

( )r
k

k

4 1
. 11

ijkl

ij

The MM constants thus provide all the required infor-
mation to model the molecular bonds using beams. These can
then be constructed to form a frame structure using standard
finite element techniques.

3. Calculating piezoelectric properties

In order to use AFEM and MM to calculate the piezoelectric
properties of BNNTs the dipole density of the tubes and its
rate of change due to deformation must be calculated. The
dipole density can be found by summing the atomic dipole
moments and dividing by the surface area of the tube. The
areal dipole density is used, rather than the volumetric den-
sity, which would normally be used in calculations for bulk
material properties, due to the difficulty in assigning a wall
thickness to the hollow nanotube [5]. The use of per area
rather than per volume densities also changes the nature of the
piezoelectric tensor and the units of its entries from Cm–2 to
Cm–1. Nanotubes are considered to be a one-dimensional
structure due to their high length–radius ratio. This low
dimensionality allows the neglect of all but uniaxial tension
and torsional deformation in determining their piezoelectric
properties.

Atomic dipole moments can be calculated using atomic
polarisabilities and the electric field at the atom sites using

a= ( ) ( )p E r , 12A A

where pA is the atomic dipole moment, α is the atomic
polarisability and ( )E rA is the electric field at the atom
position, rA. Atomic polarisabilities are available from the
literature and are either calculated using quantum mechanics
or are determined experimentally [27]. The polarisabilities of
boron and nitrogen used in this work were ´ -3.03 10 24 cm3

and ´ -1.10 10 24 cm3, respectively [28].

To calculate the electric field the position of the atom
centres and the values of the effective charges on the atoms
must be known. These effective charges, or partial atomic
charges, represent the charge of the atoms if their electric field
was due to a point charge at the atomic nuclei. The atom
positions are calculated using MM or AFEM; they are the
same as the location of the nodes in the finite element
simulation. There are many methods available for calculating
effective atomic charges but the most convenient are simple
approaches based on electronegativities and atomic hardness
or idempotential [23–25, 29, 30]. The basis of such methods
is electronegativity equalisation, which involves the expan-
sion of chemical potential, E, of an atom, A, in a molecule so

= +
¶
¶

+
¶
¶

¼( ) ( )E Q E Q
E

Q
Q

E

Q

1

2
13A A A

A
A

A

2
2

2

where Q is the charge on the atom [23]. If the energy EA at
Q = 0 is taken as the zero point of the energy scale, the
atomic energy at = +Q 1 is equivalent to the ionisation
energy of atom A; the change in the energy is due to the
outermost electron being removed from the atom. In the same
manner, the energy at = -Q 1 is equivalent to its electron
affinity, the change in energy on the addition of an electron to
the atom, and it is possible to show that

c
¶
¶

= + =( ) ( )E

Q
E E

1

2
, 14

A
Ai ea

where Ei is the first ionisation potential and Eea is the electron
affinity of the atom. Equation (14) is the definition of the
Mulliken electronegativity [31], cA. This property describes
approximately the ability of an atom to attract electrons. A
further expression which can be derived from equation (13) is

¶
¶

= - = ( )E

Q
E E J . 15

A

AA

2

2 i ea

The idempotential, JAA, describes the Coulomb repulsion
between two electrons in the fA orbital [24]. This allows the
expression of the chemical potential of the molecule as the
sum of the atomic potentials plus the Coulomb potential
generated due to atoms with non-zero charge thus,

å

å å
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1 1,

Here, Q Q JA B AB is the Coulomb interaction energy of atom A
and atom B. The first sum on the left hand side of
equation (16) provides the energy contribution of individual
atoms and the second sum provides the contribution from the
interaction between different atoms. Taking the derivative of
equation (16) with respect to QA it is possible, after some
manipulation, to recast the problem as a linear set of
equations that can be solved to yield partial atomic charges.
This method assumes that unequal electronegativities will
lead to the more electronegative atoms attracting electrons.
This lowers the partial charge of atoms with greater
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electronegativity at the expense of the other atoms. The
electric field created by the partial charges should counteract
the electronegativity of the atoms and lead to a stable system
of partial atomic charges. Once the atomic positions and
charges are known the electric field at the individual atom
sites is calculated using Coulomb’s law.

The piezoelectric property of interest in this work is the
piezoelectric coupling tensor for the BNNTs,

e =
¶
¶

( )P
S

. 17

Here P is the areal dipole density vector and S is the strain
vector in a constant electric field. Considering the nanotubes
as one-dimensional allows the neglect of all but the entry in P
that is parallel to the tube axis. Likewise, the only entries for
the strain vector are axial elongation and axial torsion. The
non-zero entries of the piezoelectric coupling tensor all take
the same value for BNNTs so it is only necessary to calculate
a single derivative. In this work the effect of torsional and
extensional strain on the dipole moment parallel to the tube
axis was studied. The dipole density per unit area for the tubes
is given by

å
p

= = ( )P
p

R L2
, 18A

N
A1

Tube

where P is the dipole moment density, RTube is the radius of
the nanotube and L is the length of the nanotube. The shear
strain, γ, due to the torsion in the nanotube was calculated
using

g
q

= - ⎜ ⎟⎛
⎝

⎞
⎠ ( )R

L
tan , 191 tube

where θ is the torsion angle. The piezoelectric tensor entry
was generated by simulating a number of tubes undergoing
varying amounts of axial torsion and using finite differences
to approximate the derivative.

4. Boron nitride nanotube simulations

To test the AFEM method a range of BNNTs were modelled
using a bespoke Matlab script. The tubes varied in radius
from 1.6–11.0Å covering a number of chiralities in this
range. The chirality of the nanotubes is determined by the
vector that connects two equivalent lattice points of a hex-
agonal sheet. This vector describes the direction of rolling if
the tube were to be produced by rolling a sheet to form the
tube. The chirality can be described either by two integer
values, that act as multipliers of the two basis vectors needed
to span the two-dimensional hexagonal lattice, or by an angle
formed between the vector and a predefined direction. In this
work a 0° chiral angle is the same as an (n, n) chiral vector, a
vector which points along an armchair edge of the hexagonal
lattice. See figure 2 for illustration of this point.

The length of tubes was varied as a function of tube
radius in order to ensure a length–radius ratio of 20. The tubes
were terminated with hydrogen atoms in order to provide a
physically realistic structure, necessary for the charge

equilibration methods. A range of electronegativity equal-
isation methods are available, such as the charge equilibration
method (QEq) [24] and the partial atomic charges and hard-
ness analysis (PACHA) formalism [25], which utilise the
concepts presented in section 3. Atomic charges in this work
were generated using the PACHA formalism as implemented
in the General Lattice Utility Program (GULP) [32]. Initially
the QEq method was used but its recursive procedure failed to
converge for many of the tubes so PACHA was adopted
instead. There was a small variation (<0.02 e) in the calcu-
lated average atomic charges depending on chirality and
radius. The universal force field (UFF) [33] potential model
was chosen to provide the force constants used in the AFEM
model and the MM optimisations, thus allowing for direct
comparison of results. UFF was chosen as it is relatively
simple, has the option of linear or non-linear force expres-
sions and provides the required parameters for boron, nitro-
gen and hydrogen atoms.

The first step in the simulations was optimisation of the
nanotube geometry using MM energy minimisation in GULP.
AFEM requires that the original atomic positions are those of
the minimum energy for the molecule [34]. The original input
geometry, generated by our script, assumed that all the atoms
lie on the surface of a cylinder which is not an accurate model
of a boron nitride nanotube [35]. Structure optimisation
resulted in the atoms forming a buckled tube surface as can be
seen in figure 3.

The depth of the buckling of the surface varies with the
tube radii, as the radius increases the surface buckling lessens.
The relationship between the depth of the buckled surface and
the nanotube radius is shown in figure 4, including data gen-
erated using the density functional theory by Wirtz et al [36].

The force constants for the AFEM model were generated
by making linear approximations of the force equations
generated from the UFF potential about the equilibrium bond
lengths, angles and torsion angles of the optimised geometry
for each nanotube. Table 1 shows some examples of the force
constants and beam properties that were used in the AFEM
simulations. This harmonic potential approximation required
all deformations to be kept small.

With the molecular geometry optimised, two different
loading scenarios were simulated: torsion and extension. For
the torsional simulations the hydrogen atoms and the first

Figure 2. A two-dimensional hexagonal lattice can be spanned by
two basis vectors a and b. The diagram shows a ( )5, 1 vector
( +a b5 1 ) with chiral angle θ defined between the (n, n) vector and
the ( )5, 1 vector.
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connected boron and nitrogen atoms at one end of the tube
were rotated about the tube axis by progressively larger angles.

The angles of rotation were chosen by setting a limit of
0.2% on the shear strain of a continuous hollow tube with the
same length and radius of the nanotube under consideration.
The translational degrees of freedom perpendicular to the tube
axis of the atoms at both ends of the tubes were then removed

in order to provide the boundary conditions for both the MM
and atomistic finite element simulations. This allowed the
tubes to change in length while the relative rotation of the two
ends was kept constant. For the extension simulations a
similar approach was taken but with one end of the tubes
subjected to an increasing displacement along the tube axis.
The extension of the tubes was limited to 0.1% strain and
only the axial coordinate was held constant for the boundary
atoms at both ends of the tubes.

Finally, the tubes were optimised in GULP (using UFF)
with the applied restrictions on the end atoms and using
second derivative methods employing the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) algorithm [37]. For the largest
tubes limited memory BFGS (lBFGS) was used for the first
optimisation steps and the final steps employed the full BFGS
algorithm. Simultaneously, the tube geometries were input
into the AFEM code and a sparse stiffness matrix generated
by assembling translated element stiffness matrices. The
boundary conditions were applied, the stiffness matrix sub-
divided and the system of equations solved using Matlab’s
inbuilt left divide method. After the final atom positions were
calculated in each method the dipole density was calculated
and a finite difference scheme used to determine the rate of
change of dipole density due to increasing strain in the tubes.

Figure 3. Figure 3(a) shows the shape of an (8, 0) nanotube in its initial state, where all atoms lie on the circumference of a circle and
figure 3(b) shows the relaxed state with its ‘wrinkled’ surface. The boron atoms are marked as red and the nitrogen atoms as blue with the
grey dots representing the hydrogen atoms used to terminate the tubes (only visible in (c) through (d)). The graphs show the change in
position of the atoms in cylindrical polar coordinates plotted against position along the length of the tube. Figure 3(c) shows the change in
radial distance from the central axis of the tube, figure 3(d) shows the slight adjustments to the angular positions and figure 3(e) shows how
the relaxed tube has changed length as the surface has buckled.

Figure 4. Plot showing the depth of the buckling of different BNNTs
versus tube radius. The DFT data from Wirtz et al [36] show a
similar pattern but with a faster decay as the radius increases.
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5. Results and discussion

The results of the torsional simulations are shown in figures 5
and 6. Figure 5 shows the relationship between the axial
component of the polarisation vector and the shear strain in
the nanotube. Figure 6 plots the piezoelectric response of a
number of nanotubes of different chirality subjected to a
torsional loading. The chiral angle varies between 0°, an
armchair nanotube with chiral vector (n, n), and 30°, a zig-zag
nanotube with chiral vector ( )n, 0 . Although the overall trend
in the results is similar to that in other work, neither method
accurately follows those from more accurate quantum
mechanical electronic structure methods [5]. The difference
between the AFEM and the MM results are worth noting,
given that the beam properties used in the AFEM models
were based on the UFF force field that was used in the MM
simulations. The most significant failure of AFEM was the
inability to produce a zero value for the piezoelectric tensor
coefficient for zig-zag type BNNTs under axial torsional
loading. The results generated using MM, even using a
relatively old potential model such as UFF, were surprisingly
close to those generated using more accurate quantum
mechanical electronic structure methods [5].

The results for the extension based simulations are shown
in figures 7 and 8. The non-linear results in figure 7(b)

indicate the AFEM method fails to predict the correct beha-
viour of the polarisation vector. The MM based results can
be seen clearly in figure 8(b) and show the correct trend with

Table 1. The linearised force constants and effective beam properties used for both the Euler–Bernoulli and Timoshenko beam models that
were used for the (16, 16) nanotube. The beam radius for the Euler–Bernoulli beam model is included for comparison with the Timoshenko
beam model radius only. The beam radii and Poisson’s ratio were found using the methods described in section 2.

Energy component Euler–Bernoulli Timoshenko

kAxial ´ -6.265 10 N8 Å−1 ´ -6.265 10 8 N Å−1

kBend ´ -4.873 10 N9 Årad−1 ´ -4.873 10 N9 Årad−1

kTorsion ´ -1.325 10 N9 Årad−2 ´ -1.325 10 N9 Årad−2

rBeam 0.558 Å 0.301 Å
ν (Poisson’s ratio) — 0.068

Figure 5. The polarisation against shear strain for a range of different chiral angles for the MM, figure 5(a), and AFEM (using Euler–
Bernoulli beam formulation), figure 5(b), results.

Figure 6. Piezoelectric coefficients, ez xy, , for a number of different
nanotubes with varying chirality placed under torsional loading.
Results from Sai and Mele [5] are included for comparison.
Qualitatively, both the AFEM plots show similar responses
compared to the MM as the chiral angle is varied, but quantitatively
they show a smaller piezoelectric response and erroneous non-zero
tensor coefficients for the 30° chiral angle tubes (i.e. zigzag tubes).
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respect to the chiral angle but the method appears to
overestimate the value of the piezoelectric tensor coefficient.
The work of Sai and Mele [5] predicts a lower (more
negative) value for the piezoelectric coefficient at 30° for the
extension case than at 0° for the torsion case and the MM
results shown here also display this behaviour. The AFEM
results fail to reproduce either the trend or the values expected
based on either the MM results or results produced by other
authors using higher fidelity models. Figure 8(a) captures the
scatter of all the AFEM results and shows the extent of the
disparity with the MM results.

To examine the differences between the AFEM and MM
results a comparison of the final positions of the atoms,
generated using AFEM and MM, was performed for each
nanotube. The atomic positions were transformed from

Cartesian to cylindrical polar coordinates and then the atomic
displacements were calculated; for both AFEM and MM the
change in position from the optimised geometry to the twisted
are extended geometries. An example of the results from this
analysis can be seen in figures 9 and 10. For the torsional case
seen in figure 10, the AFEM results show a linear increase in
angular displacement, which is expected of a continuum
mechanics based model. The radial and axial displacements
bare little similarity to those generated using the MM model.
The MM method showed the tubes bulging in different
positions along the tube from the AFEM and the bulges were
coupled to angular displacement behaviour. The two methods
gave very different results for the tension load case. The radial
and angular displacements for the AFEM simulations were
entirely different to those generated using the MM method.

Figure 7. The polarisation against axial strain for a range of different chiral angles for the MM, figure 7(a), and AFEM (using Euler–Bernoulli
beam formulation) figure 7(b), results. The non-linearity of several lines displays the inability of the AFEM method to correctly predict the
polarisation of the nanotubes.

Figure 8. Calculated piezoelectric coefficients of nanotubes subjected to an axial load. The left plot shows all the results and the significant
variability of the AFM values. The right plot shows a close up of the MM minimisation results showing the correct trend and reasonable
values.
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To understand further the discrepancy between the two
methods the energies relating to different molecular defor-
mation modes were compared. This analysis was carried out
on a (16, 16) armchair BNNT and the results are in tables 2
and 3. These results clearly show that the Timoshenko for-
mulation, although arguably correct for the aspect ratio of the
beams used to model the molecular bonds, results in sig-
nificantly lower total energies when compared with the Euler–
Bernoulli formulation or MM. This result is expected as the
more compliant nature of the Timoshenko beam formulation
will result in lower input energies required to produce the
same amount of deformation. The Euler–Bernoulli formula-
tion performed reasonably well in the torsion load case
but poorly in the tensile load case when compared with the
MM minimisation results. This difference appeared to depend
on the non-bonded energy terms ignored in the AFEM
formulation.

The energy calculations can be used to calculate values
for the Young’s modulus and the shear modulus of the

Figure 9. Plots comparing the displacement of the MM results (shown in red) with the displacements of the AFEM using Euler–Bernoulli
beam elements (shown in blue) for a (14, 8) nanotube under axial tension. The displacements are measured from the optimised atomic
coordinates of the relaxed nanotube and are given in cylindrical polar coordinates with the z axis at the center of the tube.

Figure 10. Plots using the basis as in figure 9 but for a (14, 8) nanotube under torsional loading.

Table 2. Components of energy, given in electron volts, for a
(16, 16) BNNT under axial tension at 1% strain. The MM
minimisation results are the difference between the energy of the
optimised geometry and the energy at 0.1% strain. The AFEM
values are the sum of the strain energies for all elements of the
different modes of deformation, tension/compression, bending and
torsion, at 0.1% strain. The AFEM method assumes that beam
tension/compression, bending and torsion corresponds to the bond
extension, angle and torsion terms of the MM potential.

Energy
component

MM
minimisation

AFEM
(Euler–Bernoulli)

AFEM
(Timoshenko)

(eV) (eV) (eV)

Bond
extension

0.1167 0.0767 0.0130

Bond angle 0.6389 0.0612 0.0437
Bond torsion −0.4753 0.0000 0.0000
Inversion −0.1393 — —

Van der Waals −3.5153 — —

Electrostatic 3.5399 — —

Total 0.1656 0.1379 0.0567
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nanotubes using

= D( ) ( )U
EA

L
L

1

2
, 20Tension

2

and

q= D( ) ( )U
GJ

L

1

2
, 21Torsion

2

rearranged for E and G, respectively. The area, A, and the
torsion constant, J, can be calculated for a hollow tube with a
wall thickness equal to the interplanar distance of hexagonal
boron nitrite. The results of this analysis and some values
from the literature are shown in table 4. These are in agree-
ment with those from similar methodologies. The values from
Verma et al [38] for a similar nanotube predicted and agreed
with the values produced in this work, despite the significant
differences in the formulations of the Tersoff–Brenner
potential [39] and the UFF potential. Li and Chou [14], the
orginal authors of AFEM as implemented in this work, used
Euler–Bernoulli type beams but generated force constants
using the DREIDING potential [40]. Their results show

similar values for the Young’s modulus and shear modulus
values in this work for the Euler–Bernoulli type element
formulation combined with the UFF potential.

The AFEM method implements the bond stretch term in
exactly the same manner as the MM potential. However, the
bonded terms from the potential, angle bending, torsion, and
out-of-plane bending, are present in the AFEM model only
after considerable simplifications. These simplifications
reduce the number of atoms involved in the bonded interac-
tion terms by removing the three-body bond angle and four-
body bond torsion interactions. The beam models attempt to
replace these terms with two-body bending and torsion terms
which require the addition of rotational degrees of freedom.
These degrees of freedom are not present in MM methods and
the stiffness matrix coefficients for these terms rely on various
assumptions which are questionable in a molecular context.
This leads to situations where pure bond torsions that occur in
MM can be modelled as beam bending in AFEM, as shown
by Nasdala et al [41]. Complete neglect of the non-bonded
interaction terms will always produce significant differences
when comparing MM minimisations, using potentials with
bonded and non-bonded terms, with AFEM regardless of how
well the bonded terms are reproduced.

Overall, it is clear that the AFEM generates quantitatively
different atomic displacements compared with MM methods.
This results in the quantitatively and qualitatively incorrect
behaviour of the piezoelectric tensor values, energies due to
deformation and mechanical properties of BNNTs.

6. Conclusions

This paper has shown the limitations of using a simple
implementation of an AFEM for investigating the piezo-
electric behaviour of BNNTs. Further, it shows the failure of
the method to accurately generate the displacement due to
external loading for molecules with significant Coulombic
interactions. We have applied methods for investigating the
qualitative and quantitative behaviour of such models which
allow direct comparison with higher fidelity models. The
work raises the question of whether simple beam models, that
use force-displacement constants that couple movement of
only the bonded neighbour atoms, are suitable for molecular
studies. The work also shows that neglecting non-bonded
interaction terms from an empirical MM potential will gen-
erate spurious results.

The use of MM, coupled with dipole density calculations
based on partial atomic charges calculated using electro-
negativity equalisation methods, shows some promise for
calculating the piezoelectric properties of molecules.
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Table 3. Components of energy, given in electron volts, for a (10, 0)
BNNT under torsion resulting in a 0.2% shear strain following the
same method as table 2.

Energy
component

MM
minimisation

AFEM
(Euler–Bernoulli)

AFEM
(Timoshenko)

(eV) (eV) (eV)

Bond
extension

0.1431 0.0645 0.0065

Bond angle 0.1904 0.1528 0.0606
Bond torsion −0.0364 0.0010 0.0005
Inversion −0.0078 — —

Van der Waals −0.0028 — —

Electrostatic 0.0282 — —

Total 0.3147 0.2184 0.0675

Table 4. Young’s modulus, E, and shear modulus, G from different
methods and authors with the wall thickness, t, used as stated in each
case. All values are calculated using an arbitrary wall thickness of
3.33 Å, the interplanar distance for hexagonal boron nitride, except
for the result from Li and Chou who performed the calculation using
3.4 Å. The values for this work are for a (16, 16) boron nitride
nanotube. The values from Verma et al are for a (15, 15) nanotube
and the values from Li and Chou are for a nanotube with a radius
similar to that of the (16, 16) tube, =r 11.1Tube Å.

Work Method Potential E G t
(GPa) (GPa) (Å)

This work MM UFF 1039 492 3.33
This work AFEM UFF (Euler–Bernoulli) 865 342 3.33
This work AFEM UFF (Timoshenko) 356 106 3.33
Verma
et al [38]

MM Tersoff-Brenner 1035 507 3.33

Li and
Chou [14]

AFEM DREIDING
(Euler–Bernoulli)

900 500 3.40
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