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ABSTRACT 

 

Solutions are formulated for seismic earth pressures acting on vertical flexible walls with the top 

and bottom constrained by discrete elastic stiffness elements (top constraint representing a 

structural constraint, bottom constraint representing foundation stiffness). Solutions are 

formulated using the Winkler assumption and correspond to shear waves propagating vertically 

through homogeneous soil. Earth pressures decrease as wall flexibility increases. Rotational and 

translation constraints at the top and bottom of the wall also contribute to mobilization of seismic 

earth pressures. Current standard-of-practice procedures are based on limit analysis methods that 

do not consider the influence of frequency, wall flexibility, structural constraints, or soil-

structure interaction (SSI) in general. The proposed approach is more robust because wave 

propagation effects are considered and seismic earth pressures result from the product of relative 

wall-soil displacements and stiffness at the wall-soil interface.  

 

INTRODUCTION 

 

Seismic earth pressures acting on free-standing retaining walls and shallowly embedded 

structures are commonly computed using a limit analysis in which a pseudo-static seismic 

coefficient (kh) acts upon an active Coulomb-type wedge in frictional soil, which results in an 

incremental change in the lateral earth pressure coefficient, KAE, over its static counterpart, KA. 

This approach is based on research by Okabe (1924) and Mononobe and Matsuo (1929), and is 

commonly known as the “Mononobe-Okabe” (M-O) method. Seed and Whitman (1970) 

observed that the M-O solution was approximately linear in the range of kh from 0 to 0.4, and 
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suggested a simplified linear form of the equation. Recent centrifuge experiments (Al Atik and 

Sitar 2010, Mikola et al. 2016) support a linear relationship between kh and KAE, with the Seed 

and Whitman method providing a good match for braced non-displacing basement walls, and 

lower pressures for free-standing retaining walls and cantilever basement walls. Furthermore, the 

seismic earth pressure distribution from the centrifuge tests was interpreted as being triangular in 

shape, which results in less bending moment demand than the typical assumption that the 

resultant acts at 0.6H from the base of the wall (e.g., Mononobe and Matsuo 1929), where H is 

wall height. An important finding from those centrifuge tests was that wall flexibility and base 

sliding significantly influenced mobilized seismic earth pressures. Limit analysis procedures do 

not consider these structural characteristics because relative wall-soil displacement is not 

considered in their formulation.  

 

Elasto-dynamic solutions provide an alternative to limit analysis procedures. Typically, elasto-

dynamic solutions are based on a vertically propagating shear wave acting on a vertical rigid 

wall. Furthermore, the retained soil is taken as an elastic soil layer resting on a rigid base, and the 

soil layer thickness is the same as the wall height (i.e., the “bathtub” configuration). Notable 

examples of this method are Wood (1973), Arias et al (1981), Veletsos and Younan (1994), 

Younan and Veletsos (2000), Ostadan (2005), Papazafeiropoulos and Psarropoulos (2010), 

Kloukinas et al. (2012) and Vrettos et al. (2016). These methods tend to produce seismic earth 

pressures that are higher than M-O pressures because: (1) the wall is usually assumed to be rigid, 

(2) the soil layer is excited at its first-mode frequency, producing significant depth-variations in 

ground motions, which in turn produce large relative wall-soil displacements.  

 

Brandenberg et al. (2015) demonstrated that kinematic seismic earth pressures have a strong 

dependence on the wavelength-to-height ratio (/H) and high values of /H are associated with 

lower earth pressures. Most walls are not founded on a rigid base, and the ground motion mean 

period tends to be associated with high /H values that often produce low seismic earth 

pressures. Although elasto-dynamic solutions are typically formulated for rigid walls and 

uniform soils, there are exceptions. Younan and Veletsos (2000) studied flexible cantilever and 

braced walls in the “bathtub” configuration, and found that wall flexibility tends to decrease 

seismic earth pressures compared with rigid walls. In the limit case of a perfectly flexible wall, 

seismic earth pressures are naturally zero at all wavelength-to-height ratios /H. This physical 

constraint cannot be captured by limit analysis solutions. Furthermore, earth pressures mobilized 

against cantilever walls tend to become more triangular as the walls become more flexible. 

Vrettos et al. (2016) formulated essentially exact analytical solutions for the “bathtub” 

configuration, but with vertically inhomogeneous soil. Their solutions show that earth pressures 

tend to increase with depth, whereas elasto-dynamic solutions with uniform soil tend to predict 

that earth pressures are highest at the surface (a trend also confirmed by numerical analyses, 

Ostadan, 2005). 
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A clear research need is to establish solutions for flexible walls retaining vertically 

inhomogeneous soil, and to move away from the “bathtub” configuration towards more realistic 

geometries and boundary conditions. The purpose of this paper is to demonstrate the influence of 

wall flexural stiffness and top/base constraint on seismic earth pressures for cantilever and 

braced walls. Solutions are based on two assumptions: (1) soil reactions at different depths are 

uncorrelated (classical Winkler assumption), and (2) excitation is from vertically propagating 

shear waves. Both assumptions are not essential and can be relaxed in future research to 

accommodate continuity in the soil reaction at different depths through higher-order models, as 

well as inclined seismic waves. To facilitate closed-form solutions of the governing ordinary 

differential equation, the soil is treated as uniform.  

 

PROBLEM STATEMENT 

 

Fig. 1 shows the geometry of the considered wall-soil configuration. An underground structure 

consisting of rigid diaphragms and flexible walls is embedded in a uniform soil profile 

undergoing seismic excitation by vertically propagating shear waves. This schematic includes 

intermediate walls and a roof diaphragm. These elements may not exist for some structures, but 

are included in the figure and derivation presented herein. The structure is embedded with its top 

flush with the ground surface. Underground structures are often embedded with the top below 

the surface, but this scenario is not considered here. However, the proposed solution procedure 

could easily be adapted for application to underground structures, provided that appropriate 

stiffness intensity values are derived, and the free-field ground motion is appropriate for the 

depth range of the walls. The assumption of rigid roof and floor diaphragms is acknowledged as 

a limitation (particularly in bending) that may have significance in some cases. These elements 

are treated as rigid here to enable the base translational and rotational stiffness to be represented 

as discrete elements. Soil profiles often have shear stiffness increasing with depth, but these 

effects are not considered here to facilitate a reasonably simple closed-form solution. 

 

The structure in Fig. 1 can be represented as a single vertical wall with translational and 

rotational constraints at the top and bottom, as illustrated in Fig. 2. The base translational and 

rotational stiffnesses arise from the rigid slab moving relative to the free-field soil, as indicated 

by Eqs. 1 and 2, where V(H) is the base shear force, M(H) is the base moment, u is the wall 

displacement, ug is the free-field soil displacement, is wall rotation, Kyb is the base translational 

stiffness, and Kxxb is the base rotational stiffness. Note that the free-field rotation is zero for 

vertically propagating shear waves. 

 

    ( ) ( )yb ffV H K u H u H  (1) 

  ( ) xxbM H K H  (2) 
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Figure 1. Schematic of underground structure consisting of vertical retaining walls, top and 

bottom diaphragms, and intermediate walls. The structure is subjected to a vertically-

propagating shear wave in the free-field soil column. 

 

The stiffness terms at the top of the wall represent structural resistance provided by the top 

diaphragm and the intermediate walls. By the principle of antisymmetry, the roof diaphragm 

does not provide a translational constraint under horizontal earthquake shaking unless it is 

connected to the floor diaphragm by intermediate structural elements. It can, however, provide a 

rotational constraint at the top of the wall. As illustrated in Fig. 2, forces at the top of the wall 

arise only from relative structural deformations between the base and top diaphragms, and rigid 

body deformation must be considered. The shear at the top of the wall, V(0), and bending 

moment at the top of the wall, M(0), are specified in Eqs. 3 and 4. 

 

            0 0ytV K u u H H H  (3) 

         0 0xxtM K H  (4) 

 

  
Figure 2. Winkler representation of wall with discrete stiffness at top and bottom, and 

distributed stiffness intensity along the length of the wall. 
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GOVERNING DIFFERENTIAL EQUATION 

 

Assuming the flexible wall can be modeled as an Euler-Bernoulli beam with constant flexural 

stiffness, EI, and constant subgrade reaction stiffness intensity, ky
i (horizontal stiffness per unit 

area), the differential equation governing kinematic soil-structure interaction between the wall 

and the vibrating soil column is given by Eq. 5. 

 


    

4

4

( )
( ) ( ) 0i

y g

u z
EI k u z u z

z
 

(5) 

 

Note that inertial effects associated with the wall and structural elements are not considered; the 

influence of inertial soil-structure interaction would need to be addressed separately. Inertial 

effects associated with the soil are considered in the free-field site response and to the extent that 

ky
i is frequency-dependent (e.g., Kloukinas et al. 2012).  

 

The solution to this Eq. 5 is provided in Eq. 6, where  =  (ky
i/4EI)0.25 is the Winkler constant, 

and k = /Vs is the wave number (Flores Berones & Whitman 1982, Rovithis et al 2012). Note 

that the moment of inertia, I, is computed per unit width of wall under the plane strain 

assumption [i.e. t3/12(1-w
2), where t is wall thickness and w is the Poisson ratio for the wall 

material], and has units of L3. 

 

                    
 

1 2 3 4 04
( ) cos sin cos sin cos

i
yz z z z

gi
y

k
u z C e z C e z C e z C e z u kz

EI k k
 

(6) 

 

Four boundary conditions at the two ends of the wall are specified to compute C1, C2, C3, and C4. 

For the problem at hand, the four boundary conditions arise from the stiffness terms at the base 

and top of the wall, and we solve for forces and displacements at the top and bottom of the wall 

rather than taking them as known boundary conditions. To impose the boundary conditions, 

derivatives of (6) with respect to z must first be computed, as provided in Eqs. 7-10. Note that in 

those equations  = du/dz, M = EI·d2u/dz2, V = EI·d3u/dz3, and  = EI·d4u/dz4. By making 

appropriate substitutions of (7) through (10) into (1) through (4), a system of equations (11) is 

obtained from which the values of C1, C2, C3, and C4 may be solved. 

 

INFLUENCE OF WALL FLEXIBILITY AND TOP CONSTRAINT 

 

Example solutions are presented in Figs. 3 through 5 for various values of H for a case with the 

base fixed against rotation and translation, with various constraints at the top of the wall. Fig. 3 

corresponds to a cantilever wall, Fig. 4 corresponds to a wall that is fixed against rotation at the 

connection with the top diaphragm, and Fig. 5 corresponds to a wall that is fixed against rotation 
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and translation at the connection with the top diaphragm. Solutions are plotted for /H = 12, 

which is generally consistent with experimental results by Al Atik and Sitar (2010). Note that 

first-mode resonance of the retained soil column corresponds to /H = 4, and would be 

associated with significantly higher earth pressures (Brandenberg et al. 2015). 

 

Several general trends are evident from these figures. First, within each figure, wall 

displacements decrease while lateral earth pressures and bending moments increase as the wall 

becomes stiffer (i.e., as H decreases). The increased pressure arises from larger relative 

displacements between the wall and the free-field soil. Second, comparing among the three 

figures, lateral earth pressures increase and wall displacements decrease as the constraint at the 

top of the wall increases. However, mobilized bending moments tend to decrease as constraints 

are added to the top of the wall because the wall exhibits double curvature when the top is 

constrained. 

  
Figure 3. Solutions for displacement, seismic earth pressure increment, and bending 

moment for various values of H and for Kyt = Kxxt = 0, and Kyb = Kxxb = ∞. 

  

Figure 4. Solutions for displacement, seismic earth pressure increment, and bending moment for 

various values of H and for Kyt = 0, and Kyb = Kxxb = Kxxt = ∞.  
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Figure 5. Solutions for displacement, seismic earth pressure increment, and bending 

moment for various values of H and for Kxxt = Kyt = Kyb = Kxxb = ∞. 

 

COMPARISON WITH YOUNAN AND VELETSOS (2000) 

 

Younan and Veletsos (2000) developed an approximate analytical solution for the seismic earth 

pressure acting on flexible walls retaining uniform soil. Their solution corresponds to a “bathtub” 

configuration (i.e., Kyb = Kxxb = ∞), and they provided earth pressures for a static condition (i.e., a 

constant horizontal body force acting in the retained soil). They parameterized the wall stiffness 

using a dimensionless parameter dw, which is related to H as derived shown in Eq. 12, where w 

and  are the Poisson ratio for the wall and soil materials, respectively. 

 

   

  

4
4 1

1 2

w

w

H
d

 

  




 
 (12) 

 

Figure 6(a) shows a comparison of the Younan and Veletsos solution with the proposed Winkler 

solution for the cantilever wall configuration. The solution is also compared with a finite element 

simulation performed using the program RS2 by Rocscience. The finite element solution was 

performed using a constant body force, and is provided as a point of reference for the two 

approximate analytical solutions. Details of the mesh configuration cannot be presented here due 

to length considerations. Earth pressures computed from the proposed Winkler solution are 

slightly larger than those from the Younan and Veletsos solution for stiff walls (dw = 0 and 1) 

and slightly lower than those for flexible walls (dw = 5 and 40). The finite element solution lies 

between the two approximate analytical solutions, but is closer to the Younan and Veletsos 

solution. In these analyses the spring values ky
i derived by Kloukinas et al. (2012) for rigid walls 

were employed. Wall flexibility likely influences ky
i, but this effect is beyond the scope of this 

paper. 
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Figure 6. Comparison of proposed Winkler solution with Younan and Veletsos (2000) 

approximate analytical solution, and a finite element solution for a cantilever wall (=0.33). 

(a) cantilever wall, (b) cantilever wall restrained by pin. 

Figure 6(b) shows the configuration with a pin connection constraining the top of the wall. Note 

that the pinned configuration arises only when a top diaphragm connects the top of the wall to 

intermediate walls or columns that transfer loads to the floor diaphragm. For a case where the top 

diaphragm serves as a strut spanning the excavation, but is not connected to intermediate 

structural elements, antisymmetry dictates that a pin should not be present (a condition not 

mentioned by Younan and Veletsos). The proposed Winkler solution is again higher than the 

Younan and Veletsos solution for stiff walls. The Younan and Veletsos solution predicts a sharp 

increase in pressure near the top of the wall, which can be interpreted as an elasticity-driven 

singularity. This pattern is visible in the finite element solution, but much less pronounced. For 

flexible walls (dw=5 and 40), the Younan and Veletsos solution and the finite element solution 

indicate more oscillation of pressure with depth compared with the proposed Winkler solution, 

but the overall trends are similar. The key benefit to the proposed Winkler solution compared to 

the Younan and Veletsos approach is that it is extensible to boundary conditions that are more 

complicated than the "bathtub" configuration in which the wall and soil rest atop a rigid base 

layer (e.g., Brandenberg et al. 2015). The purpose of comparing with the Younan and Veletsos 

solution is to demonstrate the accuracy of the proposed solution so that it may be confidently 

extended to problems with more complex boundary conditions.  

 

CONCLUSION 

 

Seismic earth pressures mobilized against vertical walls of underground structures are 

fundamentally related to relative wall-soil displacements, which in turn depend significantly on 

the flexural stiffness of the wall, soil stiffness, and the translational and rotational constraints 
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imposed at the top and bottom of the wall. The M-O method and its variants do not account for 

structural characteristics of the wall, and therefore miss an important aspect of behavior. The 

problem is fundamentally a soil-structure interaction problem, and should be analyzed as such. 

Formation of an active wedge is a poor analogy in this case, and procedures that are based on 

variations of the M-O theory may be erroneous as a result. The authors urge that this long-held 

paradigm be abandoned for analysis of underground structures, and replaced with SSI procedures 

that rationally account for the nature of interaction between walls and the surrounding soil.  

 

The proposed Winkler solution is an approximation that compares reasonably well with the more 

rigorous approximate analytical solution by Younan and Veletsos (2000) and with finite element 

simulation results. A benefit of the proposed Winkler solution is that it is amenable to structures 

with flexible base conditions, whereas analytical solutions are generally restricted to rigid base 

conditions. Furthermore, the proposed Winkler solution is simpler to implement than finite 

element solutions.  

 

A few limitations of the proposed Winkler solution are acknowledged here. First, shear stiffness 

of soil tends to increase with depth due to the influence of confining pressure and age. Solutions 

that consider inhomogeneous soil profiles with shear modulus increasing with depth show that 

the seismic earth pressure mobilized at the top of the wall tend to be lower than for uniform soil 

profiles (e.g., Vrettos et al. 2016, Brandenberg et al. 2017). Vertically homogeneous soil profiles 

were utilized herein because a closed-form solution to the governing ODE can be obtained, 

whereas closed-form solutions are highly complex when ky
i is a function of depth (Franklin & 

Scott 1979, Fradelos 2016). Second, nonlinearity in soil-structure interaction is not considered in 

the formulations presented herein, but could conceivably be incorporated by either using an 

equivalent-linear approximation, or by formulating solutions involving pertinent nonlinear ky
i 

elements (p-y analysis). Third, the vertical walls studied herein are assumed to behave as elastic 

flexural beams. Shear deformation may become a significant contributor to the displacement of 

walls with a small height-to-thickness ratio (e.g., Massone et al. 2006), thereby rendering the 

flexural beam assumption inappropriate. Finally, walls may yield in flexure before mobilizing 

the bending moments predicted herein. Whether the predicted flexural demands exceed the 

section capacity should be checked, and walls that are predicted to yield should be analyzed 

using a framework that considers elasto-plastic beam behavior. 
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