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Abstract  

Although evidence indicates that exposure to organophosphorus (OP) pesticides induces 

neurobehavioral disorders, little is known about the effects of OP on aggressive behaviour. Our study 

investigated the effects of repeated exposure to an OP pesticide, methamidophos, on the 

isolation-induced aggressive behaviour in mice. Forty seven male mice were individually housed for a 

month. Socially isolated animals were then confronted with a standard non-isolated opponent for 15 

minutes (pre-treatment trial), and the latency and frequency of aggressive and general exploratory 

behaviours were recorded. Based on the presence of attack behaviour in the pre-treatment trial, mice 

were classified as isolation-induced aggressive and non-aggressive. All mice were then treated for 

seven days with methamidophos (3.5 mg/kg/day, n=22, ip) or saline (1 mL/kg/day, control group, 

n=25, ip) and a second trial performed. Repeated exposure to methamidophos induced attack 

behaviour in non-aggressive mice. The treatment with methamidophos also decreased plasma 

butyrylcholinesterase and brain acetylcholinesterase activity. These results suggest that 

methamidophos has a pro-aggressive effect on socially isolated mice. 

Keywords: methamidophos, aggressive behaviour, mice, butyrylcholinesterase, acetylcholinesterase 
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1. Introduction 

Methamidophos (O,S-dimethyl phosphoroamidothioate) is a highly toxic organophosphorus 

(OP) pesticide widely used worldwide (Caldas et al. 2011; Caldas et al., 2006; Gray, 1982; Lu 2010; 

Robinson and Beiergrohslein, 1982; Yu et al. 2015).  Among the possible sources of human exposure, 

the diet route poses a substantial risk and recent reports show that methamidophos is the highest-

ranking pesticide exceeding by 100% the acceptable daily intake (Melnyk et al. 2016). Occupational 

exposure is also widespread, particularly amongst farmers, where the combination of absence of 

personal protection equipment during handling and a high frequency of usage may lead to acute and 

long term poisoning (Recena et al. 2006b; Recena et al. 2006a). Worldwide around 350,000 cases of 

self-poisoning with pesticides are recorded per year, and it is estimated that nearly 30% of global 

suicides are due to pesticide self-poisoning, with most cases recorded in low and middle income 

countries (Gunnell et al., 2007; Hulse et al., 2014). 

Acute exposure to this OP induces severe systemic disturbances, mostly associated with 

acetylcholine (ACh) accumulation on synaptic clefts due to inhibition of acetylcholinesterase (AChE) 

activity (Chowdhary et al. 2014; Ecobichon, 2000; Jeyaratnam, 1990). The symptoms observed after 

acute poisoning mainly result from overstimulation of cholinergic receptors present in synapses of the 

autonomic nervous system, central nervous system and neuromuscular junctions (O’Malley 1997; 

Eddleston et al. 2008b). Although acute symptoms are the most alarming because of their severity 

and even fatality, prolonged exposure to non-lethal doses of OP also presents with negative 

neurological effects [see Mackenzie Ross et al., 2013 for review].  

Central nervous system exposure to OP is high due to their lipophilicity which confers a great 

ability to cross the blood brain barrier (Ferrer 2003). Measurements of brain AChE activity combined 

with anatomical and behavioural studies provide evidence of OP-induced neurological effects in 

animal models (Ali et al. 1980; Socko et al. 1999; Sánchez-Amate et al. 2001a; Pelegrino et al. 2006; 

López-Crespo et al. 2007a; Lima et al. 2009a). Pelegrino and colleagues (2006) showed that repeated 

administration of sublethal doses of methamidophos induces atrophy of the molecular layer of the 

parietal cortex of rats. Neurobehavioural changes such as reduction in locomotor and exploratory 

activity (Ali et al. 1980; Socko et al. 1999; López-Crespo et al. 2007b), as well as depressive (Lima et 

al. 2009b) and anxiety-like behaviour (Sánchez-Amate et al. 2001b) have also been described after 

experimental exposure to OP pesticides. Although a number of studies point to important effects on 

behaviour, the effects of these compounds on aggressive behaviour remains poorly explored.  

Clinical reports also provide evidence for OP-induced neurological disorders. Humans 

exposed to OP acute toxicity present a higher risk of depression, suicide or cognitive impairment 

(Savage et al. 1988; Rosenstock et al. 1991; Stallones and Beseler 2002; Beseler et al. 2006). A 

higher percentage of anxiety and depression was observed in sheep farmers chronically exposed to 

OP pesticides when compared with non-exposed individuals (Stephens et al. 1995; Mackenzie Ross 

et al. 2010). Likewise, an increased risk of depression (Beseler et al. 2008) and suicide (Parrón et al. 

1996; Wesseling et al. 2010) has also been described among individuals chronically exposed to OP 

when compared with subjects with similar socioeconomic and demographic characteristics. 
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A large number of the aforementioned psychiatric disorders show association with aggressive 

behaviour (Haller and Kruk 2006), and there are some reports of unprovoked aggressive behaviour, 

including two homicides, following short and long term exposure to cholinesterase inhibiting pesticides 

(Devinsky et al. 1992). Further, experimental studies show that rats chronically exposed to the OP 

dichlorvos exhibited marked aggression compared with control animals (Sarin and Gill 1998). Despite 

the evidence mentioned above, the effects of short term exposure to OPs on aggressive behaviour 

remain poorly understood. This has implications for the prevention of early psychiatric episodes, 

particularly among populations frequently exposed to OPs. Better understanding of this feature of OP 

exposure is highly relevant for socio-economic policy making in impoverished countries whose 

economies are dependent on agriculture. We hypothesized that short term repeated exposure to non-

lethal doses of OP would promote aggressive behaviour in mice. In the present work, we tested the 

effects of subacute exposure to sublethal doses of methamidophos in a murine model of isolation-

induced aggression (Malick 1979; Miczek 1983; Miczek et al. 2001; Haller and Kruk 2006). We also 

monitored locomotor activity, brain acetylcholinesterase (AChE) and plasma butyrylcholinesterase 

(BChE) activity.  

 

2. Material and Methods 

 

2.1. Animals 

Experiments were performed in male Swiss mice weighing between 25 and 35 g bred in-house. All 

experiments were performed in accordance with the Biomedical Research Guidelines for Animal 

Welfare, as stated by the Federation of the Brazilian Society of Experimental Biology and the project 

was approved by the Ethics Commitee in Animal Experimentation (CEUA-UFES n° 058/2010). Mice 

were housed in cages in a temperature and humidity controlled room with a 12 h light/dark cycle. 

Standard mice chow and tap water were available ad libitum. 

 

2.2. Dose and Treatment 

Methamidophos (O,S-dimethyl phosphoramidothioate; 60 percent m/v, Tamaron, Bayer) was diluted in 

saline (0.9 %) for administration by means of intraperitoneal injections. The i.p route was chosen to 

allow accurate and efficient delivery of the chosen dose and to reduce exposure variability. A lethality 

curve to methamidophos was previously determined in mice (Maretto et al. 2012) and a sublethal dose 

was chosen for the treatment protocol. Mice were treated with repeated administration of 

methamidophos (MTP, 3.5 mg/kg/daily, i.p., n=22) for seven days and a similar regimen was adopted 

for a control group treated with saline (SAL, 0.9 %, 1 mL/kg/day, i.p., n=25). The seven day treatment 

period was based on studies from Amr et al.(1997) that investigated psychiatric disorders in a 

population of pesticides formulators exposed to OPs on a daily basis for at least 9 months per year in 

the last two years. Considering that the ratio between human and mouse lifespan is approximately 

40:1 (Dutta and Sengupta 2016), we adopted a 7 day treatment period to produce an equivalent 

exposure to 9 months in humans. Assignment to methamidophos or saline was randomized, and the 

experimenter was blinded during treatment, data collection and analysis. 
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2.3. Social isolation-induced aggression 

Long-term social isolation in mice induces many behavioural changes that resemble those seen in 

depressive and anxiety disorders (Malick 1979; Fone and Porkess 2008). It also induces territorial and 

aggressive behaviour, resulting in attacks against an opponent (Malick 1979). Socially isolated mice 

were individually housed for 28 days in cages measuring 30 x 20 x 13 cm. The standard opponent 

mice were housed in groups of five in cages measuring 41 x 34 x 16 cm. After the isolation period, 

each isolated mouse was individually placed in a neutral cage (41 x 34 x 16 cm) together with a 

weight-matched non-isolated mouse (pre-treatment trial), i.e. a standard opponent. The latency and 

frequency of attacks, tail rattling and general exploratory behaviours (number of rearings and self 

grooming) were recorded over a 15 min period (Brain and Poole 1974; Brain 1980). Animals were 

classified as aggressive or non-aggressive based on the presence or absence of an attack in this first 

trial.  A second trial (i.e. post-treatment trial) was conducted 24 hours after the last injection of 

methamidophos or saline, i.e. 8 days later. The same standard opponent was used in the 

pre-treatment and post-treatment trials for each isolated animal tested. 

 

2.4. Open field test 

In order to evaluate whether methamidophos treatment could induce exploratory behaviour 

dysfunction that might interfere with the isolation-induced aggression test, we performed the open field 

test in a separate group of animals treated with saline or methamidophos under the same dose 

regimen (n=10/group). The open field apparatus consisted of a circular arena with a peripheral and a 

central area (total area= 1256 m², radius of the external circle = 20 cm, radius of the internal circle = 

11.8 cm) divided in 12 spaces by a grid cross on the floor (4 central and 8 peripheral), each space 

corresponding to a 105 cm² dimension. Twenty-four hours after the last injection of saline or 

methamidophos, each mouse was positioned in the centre of the apparatus and monitored for a period 

of 10 minutes. The total number of peripheral and central squares crossed was recorded. In addition 

to providing a measurement of general locomotor activity, which could interfere with other behavioural 

measures, preference or avoidance of central squares may also provide an evaluation of the anxiety 

level (Prut and Belzung 2003). 

 

2.5. Sample collection 

After the open field test, animals were decapitated, and brain and blood were harvested. Blood 

samples were collected in heparinized plastic microtubes and centrifuged at 1792 G for 10 minutes at 

4°C (SL-5AM® - Spinlab Scientific, South Korea) to obtain plasma. Plasma samples were stored at 

-20°C until dosage assays were perfomed. Brain tissue was quickly removed and stored in centrifuge 

tubes at -80°C until the day of the assay. 

 

2.6. Plasma butyrylcholinesterase (BChE) activity 

Plasma activity of BChE or AChE is frequently used for the diagnosis of OP exposure (Eddleston et al. 

2002). BChE activity is more easily measured and is used in the clinical setting as a useful tool for 
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indicating likelihood of exposure and for monitoring OP elimination (Eddleston et al, 2008). We aimed 

to verify that the sublethal dose chosen exceeded the occupational exposure level as stated in the 

Brazilian National Regulatory Law (Brasil 1978) for occupational exposure to cholinesterase inhibitors. 

According to this law, cholinesterase inhibitors may produce a maximum of 50% inhibition of the 

BChE. Therefore, the BChE assay was adopted as a screening tool to verify the effectiveness of the 

dose chosen in exceeding the maximum allowed exposure level. Plasma BChE activity was measured 

using a commercial kit (Doles, Brazil), which uses propionylthiocholine as substrate, and follows a 

colorimetric method described by Ellman et al. (1961) and modified by Dietz et al. (1973). BChE 

activity was measured in International Units (I.U./mL) and expressed as percentage of control activity. 

One I.U. of cholinesterase is the amount of enzyme that hydrolyses one µmol of substrate/minute/mL 

of serum at 37°C. 

 

2.7. Brain acetylcholinesterase (AChE) activity 

Whole brain AChE activity was determined using Ellman’s et al. (1961) method, modified by Lassiter 

et al. (2003) and Pires et al. (2005). Briefly, whole brains were weighed, homogenized in phosphate 

buffer with Triton-X 1% (proportion of 1 ml of phosphate buffer to 20 mg of tissue) and centrifuged at 

7800 G for 5 minutes at 4°C. A volume of 135μl of supernatant was transferred to a cuvette containing 

the following reagents: 35μl of 5mM dithio-bisnitrobenzoic acid (DTNB), 10μl of 75mM 

acetylthiocholine (ATCh) and 820μl of 0.1M phosphate buffer (pH 8.0). The colour development was 

recorded at 412 nm, using a spectrophotometer (Evolution 300 PC, Thermo Scientific, USA). Protein 

concentration in brain homogenates was quantified using a Bradford assay. AChE activity was 

calculated in µmoles of ATCh hydrolyzed per hour per mg of protein. AChE activity was expressed as 

percentage of control activity and measured values in µmol/h/mg of protein. 

 

2.8. Statistical Analysis 

Results are reported as mean ± standard error of the mean (S.E.M.). Data from the social isolation-

induced aggression test were analysed using a two-way ANOVA for repeated measures followed by 

Bonferroni’s post test, with methamidophos or saline treatment as the between-subject factor, and pre- 

and post-treatment trials as the within-subject factor. Data from the open field test, brain AChE and 

plasma BChE activity were analysed using paired Student t-test. P<0.05 was considered to be 

significant. All analyses were performed using Graphpad prism software (Graphpad prism 5.0, USA). 

 

3. Results 

 

3.1. Social isolation-induced aggression 

In the pre-treatment trial, performed after the isolation period, it was observed that some mice became 

aggressive, which could be identified by the presence of attacks against the opponent mouse, and 

some mice did not. Based on this observation, mice were grouped as isolation-induced aggressive 

and non-aggressive, and mice within each group were randomly assigned to either methamidophos or 

saline. According to this classification, we compared data from: (i) all isolated mice grouped together, 
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(n=47); or (ii) as separate groups of pre-treatment aggressive (n=25) and non-aggressive (n=22) mice. 

Figure 1 shows summary data from the grouped mice. No statistical difference was observed for all 

parameters analysed either for the repeated measures or for the treatment, and there was no 

interaction between treatment and time (for statistical values see Table 1). When analysing aggressive 

mice separately, we found no statistical difference between saline and methamidophos treatment 

(Figure 2, Table 1). However, non-aggressive mice showed significantly higher number of attacks over 

time [F(40,1)=5.287; p=0.0268], compared to saline controls [F(40,1)=4.328; p=0.0439], and there was a 

significant interaction between factors [F(40,1)=4.328; p=0.0439] (Figure 3). Non-aggressive mice 

treated with methamidophos did not differ in number of attacks from aggressive mice in the pre-

treatment trial (p>0.05). All other parameters evaluated in the non-aggressive group after 

methamidophos treatment were not statistically different (Table 1). 

 

3.2. Open field test 

The results of the open field test are presented in Table 2. No statistical difference was observed 

between the different treatment groups for peripheral squares crossed (t18=-0.936, p=0.362). However, 

there was a tendency to reduction in the number of central squares crossed in the 

methamidophos-treated group when compared to saline-treated animals (t18=2.08, p=0.052). 

 

3.3. Brain AChE and Plasma BChE activity 

Repeated administration of a sublethal dose of methamidophos induced a significant reduction of 72% 

on BChE activity when compared to saline group (t17=6.97, p<0.001; Figure 4A). BChE activity was 

10.73 I.U./mL in the saline, and 3.07 I.U./mL in the methamidophos group. Methamidophos treatment 

also significantly decreased brain AChE activity when compared to saline group (t18=3.00, p<0.01; 

Figure 4B). Mice treated with saline exhibited AChE activity of 4.04 µmol/h/mg of protein and those 

treated with methamidophos exhibited AChE activity of 3.16 µmol/h/mg of protein. 

 

4. Discussion 

In the present study, repeated administration of methamidophos induced a pro-aggressive 

behaviour in mice that did not present isolation-induced aggressive behaviour before OP treatment. 

This effect was observed in absence of any interference in the peripheral locomotor activity evaluated 

through the open field test. Mice treated with methamidophos also showed a trend towards reduction 

in locomotor activity in the central squares, suggesting that exposure to methamidophos had an 

anxiogenic-like effect. It is noteworthy that, although a sublethal dose of methamidophos was 

employed, final plasma BChE activity resembled that of acute OP poisoning. BChE is a sensitive 

marker of exposure to OPs (Eddleston et al. 2008a). Plasma levels of BChE achieved the diagnosis 

criteria for cholinesterase inhibitors exposure stated by the Brazilian National Regulatory Law (Brasil 

1978), which sets 50% inhibition of BChE activity as a maximum biological exposure level. Although, 

BChE inhibition does not straight correlate with clinical features in OP-poisoned patients, the 

independent measurement of brain AChE confirms that methamidophos treatment significantly 
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decreased whole brain AChE activity in this study. In fact, Singh (1985) has demonstrated that brain 

samples are more sensitive to methamidophos than plasma samples.  

It is important to consider, however, some methodological limitations of the dosage regimen 

employed in the present study. . The measurement of brain AChE activity by the Ellman’s method 

without usage of a specific inhibitor of BChE does not allow us to exclude BChE activity in our brain 

samples. Notwithstanding, according to Vellom et al. (1993), AChE promotes rapid catalysis of the 

substrate used, acetylthiocholine, while BChE shows far less selectivity for the size of the acyl group. 

This is clearly demonstrated by the kinetic constants (Kcat/Km ratio) for the catalysis of 

acetylthiocholine by AChE (4.4 x 109) and by BChE (0.24 x 109). Additionally, Lassiter and colleagues 

(2003) showed that only 12% of overall cholinesterase activity was reduced in rodent brain samples 

after inhibition of BChE with iso-OMPA. This indicates that almost 90% of cholinesterase activity 

measured in rodent brains relates to AChE.  

Methamidophos, like other OP pesticides, is a cholinesterase inhibitor. Evidence suggests that 

cholinesterase inhibitors may increase aggression in animals and humans. Studies performed by Allon 

et al. (2005) reported that rats acutely exposed to sarin vapour, a potent AChE inhibitor, exhibited 

signs of aggression and weight loss. Although Allon et al. (2005) did not use a specific test for 

evaluation of aggressive behaviour. Mice treated with another OP compound, chlorpyrifos, during 

gestational and postnatal phases, showed enhanced agonistic behaviour (Ricceri et al. 2006). In rats, 

10 days exposure to diisopropylfluorophosphate, an OP pesticide, increased shock-induced 

aggression (Ray et al. 1989). Moreover, chronic exposure to the OP dichlorvos increased aggressive 

behaviour in rats while reducing brain AChE activity (Sarin and Gill 1998). Further, physiostigmine, a 

reversible AChE inhibitor, has been reported to enhance intermale mouse aggression at low doses 

(Charpentier 1969). In fact, increase in aggression in mice and rats has been previously attributed to 

cholinesterase inhibitors and muscarinic receptor agonists (Bell et al. 1985). Moreover, there are some 

case reports of patients exhibiting aggressive behaviour while using donepezil, a reversible 

cholinesterase inhibitor used for the treatment of dementia (Bouman and Pinner 1998; Bianchetti et al. 

2003). Although, the above mentioned reversible cholinesterase inhibitors differ from OP compounds 

in their kinetics and dynamic properties, there is a common feature between them which is the 

consequent ACh accumulation in synapses and interference with cholinergic transmission. Devinsky 

et al. (1992) reported episodes of unprovoked aggressive behaviour, including two homicides after OP 

exposure. Among the cases reported, one occurred after one month of exposure while the other two 

cases involved more than 3 years of OP exposure.  Amr et al. (1997) investigated psychiatric 

disorders in a population of pesticide formulators exposed daily for at least 9 months of the year, and 

found that irritability was amongst the most frequent symptoms observed. Although no previous 

studies have investigated the effects of short term repeated OP exposure in the isolation-induced 

aggression test, the above mentioned evidence are in accordance with our results, in which a pro-

aggressive behaviour induced by repeated methamidophos exposure could be observed. 

Given the evidence for cholinergic involvement in aggressive behaviour, it is possible that the 

pro-aggressive behaviour induced by methamidophos treatment can be attributed to cholinergic hyper 

stimulation in the central nervous system (CNS). This hypothesis is supported by the finding that 
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Flinders Sensitive Line hypercholinergic rats are significantly more aggressive (Pucilowski et al. 1990). 

Moreover, cholinomimetic drugs administered into cerebral ventricles of cats elicited affective type of 

aggression (Beleslin and Samardzić 1979). Likewise, injections of acetylcholine into the hypothalamus 

and periaqueductal grey matter, brain areas involved in mediating aggressive behaviour, led to 

defensive rage in cats (Allikmets 1974). Additionally, carbachol injection into the lateral hypothalamus 

elicited killing behaviour in rats (Smith et al. 1970), while scopolamine, a muscarinic antagonist, 

reduced aggressive behaviour in mice (Winslow and Camacho 1995). Although we did not measure 

AChE activity in specific brain structures, the reduction in whole brain AChE activity after 

methamidophos treatment could generate cholinergic hyper stimulation in brain areas mediating 

aggressive behaviour. Nevertheless the central cholinergic hyper stimulation seems to be an important 

mechanism involved in the effects observed after the methamidophos treatment, recent finds on the 

ghrelin peptide and plasma BChE activity points alternative mechanisms for the aggression effects 

mediated by the OP exposure (Chen et al. 2015). Knockout mice with plasma BChE gene deletion 

exhibited increased levels of ghrelin as well as increased levels of aggression (Chen et al. 2015). In 

fact, previous in vitro studies had shown that purified plasma BChE promoted hydrolysis of the ghrelin 

peptide (De Vriese et al. 2004). Interestingly, overexpression of BChE led to low ghrelin levels in the 

blood stream and reduced aggression and social stress in mice (Brimijoin et al. 2015). Although 

caution should be exercised when drawing comparisons between our study and genetically modified 

mice, it is possible that the large inhibition of plasma BChE activity induced by methamidophos 

treatment could increase ghrelin levels, which could account for the increase in aggressive behaviour 

in the present study. Indeed, a recent study using chronic administration of another OP, chlorpiryfos, 

showed an increase in plasma levels of ghrelin in mice (Peris-Sampedro et al. 2015). 

Methamidophos exposure only increased aggression in non-aggressive socially isolated mice. 

This is in line with previous studies showing that drug-induced changes in aggressive behaviour can 

be different in mice depending on the aggression level exhibited in the pre-screening test (Felip et al. 

2001; Miczek et al. 2002; Lumley et al. 2004; Redolat et al. 2005). Additionally, the anxiogenic-like 

effect seems to be more obviously detectable in animals with low levels of emotional reactivity (Lisboa 

et al. 2010). It is possible that this selective effect induced by methamidophos exposure might be 

associated with a reduction in GABA levels in certain brain areas, which could differently affect 

sociable and unsociable mice. Sustková-Fišerová et al. (2009) showed that socially isolated 

non-aggressive mice had almost three times higher levels of GABA in the pre-frontal cortex when 

compared with aggressive mice. Additionally, chronic exposure to methamidophos was shown to 

decrease GABA release in cerebral cortex and hippocampal slices (Noriega-Ortega et al. 2011).  

Exposure to some OP pesticides, at low doses, also interferes with monoaminergic 

neurotransmission, particularly via serotonin modulation (Ali et al. 1980; Aldridge et al. 2005; Slotkin et 

al. 2006). Accordingly, Lima et al. (2011) reported that exposure to low doses of methamidophos 

affects synaptic transmission by reducing serotoninergic biomarkers in regions such as cerebral cortex 

and midbrain. Vergnes et al. (1986) also showed that depletion of 5-HT increases aggression in a 

variety of species in several different social situations. In fact, decreased 5-HT levels in the pre-frontal 

cortical area are detectable when a resident rat is attacking an intruder (Van Erp and Miczek, 2000). In 
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the same way, pharmacological manipulation using agonists or reuptake inhibitors aiming to increase 

5-HT neurotransmission reduced aggressive behaviour in isolated male mice (Olivier et al. 1989; 

Sánchez et al. 1993; Sánchez and Hyttel 1994). However, it was beyond the scope of the present 

study to identify the neurotransmitter systems involved in increased aggression by OP exposure, and 

further studies will be required to reveal the mechanism. 

 Our data showed that approximately 50 % of the socially isolated mice did not exhibit 

aggressive behaviour, i.e. absence of at least one attack episode. Previous studies also described 

similar proportion of non-aggressive mice in singly housed Swiss mice (Krsiak 1975; D’Amato and 

Castellano 1989). It is noteworthy, however, that aggressive and non-aggressive mice were 

confronted with the same standard opponent in the trials tested, which could have interacted with the 

processing of novelty by the isolated mice. Indeed, conflicting results have been shown after repeated 

exposure to the same opponent either in the social interaction or in the resident intruder test. 

Parmigiani and Brain (1983) observed that familiar intruders were less attacked by the resident mouse 

in the second trial. However, other studies (Brain and Poole 1974; Winslow and Camacho 1995; Koike 

et al. 2009) observed that repeated exposure to the same intruder raises the aggressiveness of the 

resident against it. In these studies, the inter-trial time is within minutes to hours after the first trial. In 

our study, the re-exposure only occurred 8 days after the first trial, which could account for the 

differences observed. Additionally, (Krsiak 1975) suggest that isolation-induced timidity is stable in 

repeated interactions. Recently, Hsieh and colleagues (2017) conducted a study in which they showed 

that the natural social interaction in CD1 mice does not only happen due to novelty. They also showed 

that testing the mice in one single compartment, similarly to our study, favours aggressive instead of 

sociopositive behaviours. Finally, if re-exposure alone led to increase in aggressive behaviour in the 

present study, the same effect would have been observed in the saline control group. 

 

5. Conclusions 

Our results show for the first time that non-aggressive socially-isolated mice became aggressive after 

exposure to sublethal doses of methamidophos. Therefore, alongside many other behavioural 

changes associated with  OP exposure, OP compounds also induce aggressive behaviour that seems 

to be associated, at least partially, with changes in brain AChE and plasma BChE activity. 

 

Perspectives 

While developing countries are the largest buyers of pesticides worldwide, they often do not have 

effective regulatory policies and enforcement procedures on occupational exposure and environmental 

contamination. The literature suggests that, amongst other factors, higher suicide rates in rural regions 

seem to be associated with higher levels of impulsive behaviour and ready access to highly toxic 

pesticides (Jiang et al. 2013). The evidence from our study, that short term exposure to the OP 

methamidophos produces a pro-aggressive behaviour, is corroborated by clinical reports on 

aggressive behaviour related to pesticides exposure (Devinsky et al. 1992; Amr et al. 1997). Our study 

highlights the importance of potentially implementing psychiatric screening tools such as the General 

Health Questionnaire (GHQ-28) or the Buss-Perry Aggression Questionnaire (BPAD) (Goldberg et al. 
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1997; Zivari-Rahman et al. 2012; Alcorn, Joseph et al. 2013) in the populations occupationally 

exposed to OPs, particularly agricultural workers. This should be done alongside physical exams and 

measurements of cholinesterase activity. Psychiatric evaluation might be a useful tool to improve early 

symptom detection and improve vigilance in this working population. 
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Figures Captions 
 

Figure 1. Grouped data of aggressive and non-aggressive isolated mice in the isolation-induced 

aggression test, before and after repeated administration of methamidophos (3.5 mg/kg/day, ip, n=22) 

or saline (Control, n=25). Two-way ANOVA for repeated measures. Data represent mean ± SEM. 

 

Figure 2. Data presented by aggressive animals in the isolation-induced aggression test, before and 

after repeated administration of methamidophos (3.5 mg/kg/day, ip, n=12) or saline (Control, n=13). 

Repeated treatment with methamidophos did not change aggressive behaviour in mice that previously 

exhibited aggressive behaviour induced by social isolation. Two-way ANOVA for repeated measures. 

Data represent mean ± SEM. 

 

Figure 3. Data presented by non-aggressive animals in the isolation-induced aggression test, before 

and after repeated administration of methamidophos (3.5 mg/kg/day, ip, n=10) or saline (Control 

n=12). Repeated treatment with methamidophos increased aggressive behaviour in mice that 

previously did not exhibited aggressive behaviour induced by social isolation. *p<0.05 indicates 

statistical difference from the methamidophos compared with the control group (Two-way ANOVA for 

repeated measures followed by Bonferroni’s post test). Data represent mean ± SEM. 

 

Figure 4. Plasma butyrylcholinesterase (BChE, panel A) or brain acetylcholinesterase (AChE, panel 

B) activity of mice after repeated administration of methamidophos (hatched bar, n=10 for BChE and 

AChE) or saline (control, open bar, n=9 for BChE; n=10 for AChE). BChE and AChE activity are 

expressed as percentage of control. Comparisons with Student t test. **p<0.001 and *p<0.01 indicates 

statistical difference compared with the control group. 

 

Table Caption 

 

Table 1. Statistical analysis (Two-way ANOVA for repeated measures) of grouped data, aggressive 

animals and non-aggressive animals.  

 

Table 2. Parameters evaluated in the open field test in mice treated with repeated administration of 

methamidophos (3.5 mg/kg/day, ip, n=10) or saline (Control, n=10). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4
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Table 1 

 Behaviour Treatment Factor Time Factor Interaction 

Grouped data 

Latency to attack F(1,90)=0.04, p>0.05 F(1,90)=0.09, p>0.05 F(1,90)=0.08, p>0.05 

Number of attacks F(1,90)=1.35, p>0.05 F(1,90)=0.37, p>0.05 F(1,90)=1.08, p>0.05 

Tail rattling F(1,90)=2.52, p>0.05 F(1,90)=1.00, p>0.05 F(1,90)=0.200, p>0.05 

Self-grooming F(1,90)=2.81, p>0.05 F(1,90)=1.34, p>0.05 F(1,90)=0.64, p>0.05 

Rearing F(1,90)=1.50, p>0.05 F(1,90)=2.50, p>0.05 F(1,90)=0.19, p>0.05 

Aggressive 

animals 

Latency to attack F(1,46)=1.20, p>0.05 F(1,46)=1.83, p>0.05 F(1,46)=0.27, p>0.05 

Number of attacks F(1,46)=0.02, p>0.05 F(1,46)=1.40, p>0.05 F(1,46)=0.06, p>0.05 

Tail rattling F(1,46)=4.55, p>0.05 F(1,46)=2.31, p>0.05 F(1,46)=0.41, p>0.05 

Self-grooming F(1,46)=0.12, p>0.05 F(1,46)=0.95, p>0.05 F(1,46)=1.43, p>0.05 

Rearing F(1,46)=3.14, p>0.05 F(1,46)=3.25, p>0.05 F(1,46)=0.05, p>0.05 

Non-aggressive 

animals 

Latency to attack F(1,40)=2.47, p>0.05 F(1,40)=7.24, p<0.05* F(1,40)=2.47, p>0.05 

Number of attacks F(1,40)=4.32, p<0.05* F(1,40)=5.28, p<0.05* F(1,40)=0.08, p<0.05* 

Tail rattling F(1,40)=0.22, p>0.05 F(1,40)=1.39, p>0.05 F(1,40)=0.08, p>0.05 

Self-grooming F(1,40)=2.80, p>0.05 F(1,40)=0.64, p>0.05 F(1,40)=0.08, p>0.05 

Rearing F(1,40)=0.001, p>0.05 F(1,40)=3.72, p>0.05 F(1,40)=0.15, p>0.05 
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Table 2 

Treatment Crossed Squares 

 Central Peripheral 

CTRL-Sal 21.2 ± 4.8 60.3 ± 5.0 

MTD 3.5 mg/Kg 10.5 ± 1.9 # 68.8 ± 7.6 

Notes: Data represent the mean ± S.E.M. # p=0.052 from the MTP 3.5mg/Kg compared with 

saline group. 

 


