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Approximate Solution for Seismic Earth Pressures on Rigid Walls 

Retaining Inhomogeneous Elastic Soil 

Scott J. Brandenberg1, George Mylonakis2, and Jonathan P. Stewart3 

 

Abstract: An approximate elasto-dynamic solution is developed for computing seismic earth pressures 

acting on rigid walls retaining continuously inhomogeneous elastic material and excited by vertically 

propagating shear waves. The shear modulus of the soil is represented as a nonlinear function of depth, 

in a manner that is consistent with established analytical and empirical relationships, while mass density 

and Poisson's ratio are assumed constant. Solutions are presented for a single wall and for a pair of walls 

spaced at a finite distance. A shape function characterizing the vertical variation of horizontal 

displacement of the soil column in the free-field is assigned, and simplifying assumptions regarding the 

dynamic vertical stresses and the vertical-to-horizontal displacement gradient are made to facilitate 

closed-form expressions for horizontal displacement and stress fields. These solutions are used to 

compute the distribution of dynamic horizontal earth pressure acting on the wall. A Winkler stiffness 

intensity relationship is then derived such that the proposed method can be extended beyond the 

boundary conditions considered herein. These solutions agree well with exact analytical elasto-dynamic 

solutions for inhomogeneous soil that are considerably more complicated to implement. Causes of 

differences between the solutions are discussed. 
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1. Introduction 

Seismic earth pressures acting on embedded walls are most commonly analyzed using a limit 

equilibrium concept originally developed by Okabe [1] and Mononobe and Matsuo [2], commonly 

known as the Mononobe-Okabe (M-O) method. The M-O method was subsequently modified in various 

manners (e.g., [3], [4], [5], [6]). This family of methods (referred to as limit state methods) assumes that 

an inertia force acts on an active wedge to produce a dynamic increment of earth pressure.  

Limit state methods overlook several important aspects of the problem, such as wave propagation, 

poroelasticity of saturated soils (e.g., [7], [8], [9]), and soil-structure interaction that produces 

mismatches between wall and free-field soil displacements. Inertial forces in the backfill do not load the 

wall directly, as assumed in limit state methods. To illustrate this point, consider an embedded wall with 

the same mass and stiffness as the soil. Vertically propagating shear waves will induce no increment of 

lateral seismic earth pressure because inertia forces are transmitted entirely by shear, in accordance 

with the solution for one-dimensional shear wave propagation. Hence, there is no fundamental 

association between backfill inertia and seismic wall pressures.  

In a realistic wall-soil system (with wall elements stiffer than those for soil), dynamic body forces in the 

backfill induce dynamic deformations, which are incompatible with wall kinematics, causing interaction 

stresses to develop between the wall and soil. Furthermore, inertial loads arising from differences in 

mass between the wall structure and soil, or from the dynamic response of an above-ground structure 

attached to the wall, will produce force and overturning demands on the wall that in turn induce relative 

deformations and seismic earth pressures at wall-soil interfaces. As these phenomena are overlooked in 

limit analysis, M-O type methods fail to properly capture the fundamental physics of soil-wall 

interaction.  



It is therefore not surprising that the literature is mixed on the accuracy of the M-O method and its 

variants. Recent experimental studies have challenged the M-O method as being overly conservative for 

cantilever U-shaped walls [10] and free-standing retaining walls [11], and as providing a reasonable 

upper-bound for braced walls [12]. By contrast, analytical elasto-dynamic solutions [13], [14] and 

numerical modeling studies [15] have challenged M-O as being unconservative. This has led to confusion 

among practicing engineers and researchers regarding appropriate methods of analysis. 

Brandenberg et al. [16] developed an elasto-dynamic Winkler-based framework for the kinematic wall-

soil interaction problem that explains both the lower-than-M-O experimental observations and the 

higher-than-M-O analytical and numerical simulations. The key parameter controlling relative wall-soil 

displacements, and hence mobilized earth pressures, is the ratio of wavelength, , of the vertically 

propagating shear wave, to wall height, H, which can be interpreted as a dimensionless frequency. Walls 

founded on thick soil deposits (like the experimental studies and most retaining structures) tend to have 

high /H ratios, which are associated with modest depth-dependent free-field displacements that are 

largely followed by wall-foundation systems. Under such conditions, earth pressures are low for a given 

surface motion amplitude. In contrast, the response of a uniform soil deposit resting on a rigid base is 

often dominated by the first mode of horizontal vibration, which corresponds to /H = 4 for retained soil 

deposits that are long relative to their thickness. Rigid walls resting on a rigid base (as often assumed in 

elasto-dynamic solutions)  can therefore mobilize significant kinematic interaction and high earth 

pressures.  

Although the Brandenberg et al. [16] solutions explain several key features of behavior, assumptions 

that limit their applicability include (1) uniform shear modulus with depth, (2) rigid walls, (3) a lack of 

gapping at the soil-wall interface, and (4) elastic soil behavior. The purpose of this paper is to address 

the assumption of uniform shear modulus with depth. To this end, an approximate elasto-dynamic 



solution is developed for continuously inhomogeneous soil, defined as a soil layer with a smooth 

variation of shear modulus with depth (as opposed to layers with abrupt transitions in shear modulus), 

using simplifications similar to those employed by Kloukinas et al. [17]. An expression for equivalent 

Winkler stiffness intensity is developed, and the solutions are compared with more rigorous numerical 

formulations from the literature.  

2. Vertical variation of soil shear modulus 

A number of empirical and theoretical equations have been suggested to capture the dependence of soil 

shear modulus on mean effective stress. Hertz [18], in his landmark 1882 paper, derived an expression 

in which the shear modulus of a particulate medium composed of elastic spheres is proportional to the 

mean effective stress raised to a power, n, which he found equal to 1/3. The same result was later 

obtained by more elaborate, yet still idealized particle contact models. Hardin and Richart [19] suggest a 

form in which the shear modulus is also a function of void ratio. Building upon the earlier work by 

Mindlin et al. [20], Hardin and Drnevich [21] found experimentally that n = 0.5 and also introduced an 

overconsolidation ratio term for plastic soils. Yamada et al. [22] also recommend n = 0.5 for granular 

soils and suggested that n = 1 for plastic clay-sand mixtures (they did not include a void ratio term in 

their formulation, which may explain why n is higher). All of these forms result in zero shear modulus 

when the effective stress is zero, which is unrealistic as it does not account for cementation, cohesion, 

capillary effects, and can be numerically problematic near the surface. 

Although shear modulus fundamentally depends on effective stress, it has also conveniently been 

formulated as a function of depth to facilitate analytical solutions. For example, Wood [13] and Veletsos 

and Younan [23] formulated solutions for the seismic increment of lateral earth pressure exerted by a 

soil deposit with a parabolic variation of shear modulus with depth, G(z). Rovithis et al. [24] suggest a 

form for shear wave velocity as a function of depth, Vs(z), that is equivalent to the equation for G(z) in 



Eq. 1 for mass density,  = const., where z is depth, zr is a reference depth, Gr is the shear modulus at z = 

zr, and b is a constant that influences the depth gradient and the value of G0 = G(0) (note that G0 = Grb2n). 

Rovithis et al. [24] utilize n for the depth-variation of Vs rather than for G, and it is therefore multiplied 

by 2 here to represent G. Their application was vertical wave propagation through a vertically 

inhomogeneous layer resting on a rigid base.  

 

Vrettos et al. [25] utilized the form provided in Eq. 2, where G∞ is the modulus at an infinite depth 

(approached asymptotically as z → ∞), and  is a constant that controls the rate of change of G with 

depth. Using this form, Vrettos et al. [25] developed exact analytical solutions for the response of a 

continuously inhomogeneous soil layer on a rigid base restrained between two rigid walls subjected to 

horizontal base shaking (illustrated in Fig 1b).  

 

In this paper, we formulate an approximate analytical solution for seismic earth pressure following the 

approach developed by Kloukinas et al. [17], but for soil with vertically inhomogeneous shear modulus 

resting on a rigid base (Fig. 1). The functional form for vertical inhomogeneity of shear modulus follows 

Rovithis et al. [24]. Solutions are developed for a single rigid wall retaining an infinitely long soil deposit 

(Fig. 1a) and for two rigid walls retaining a finite length deposit (Fig. 1b) (the common case of basement 

        
2

1

n

r r

r

z
G z G b b G f z

z

 
    

 
                                       (1) 

    0 0 1 z HG z G G G e 

                                                  (2) 



walls, with soil pressures on the outside, would be analyzed using the geometry in Fig 1a). The resulting 

earth pressures are compared with the exact analytical solutions formulated by Vrettos et al. [25]. The 

rigid wall and rigid base boundary conditions facilitate development of an analytical solution, but do not 

correspond well to most practical problems (the rigid base being a particularly strong limitation, 

although one that is very common in analytical and numerical solutions for retaining wall response). 

With an eye towards applications in which these limitations are relaxed, we also develop Winkler 

stiffness parameters suitable to solutions for flexible walls retaining vertically inhomogeneous soil and 

resting on a compliant base (a condition for which continuum analytical solutions are exceptionally 

difficult). We recognize that Winkler solutions for flexible walls and/or flexible base conditions are of the 

greatest practical use; such solutions are under development and are not presented here. This paper 

presents the admittedly intermediate, though essential, development of the elasto-dynamic solution 

and formulation of Winkler stiffness intensity for the case of inhomogeneous soil. 

 

Figure 1. Vertically heterogeneous soil retained (a) by a single rigid wall, and (b) between a pair of rigid walls. 

 



3. Equation of motion 

The equation of motion derived from horizontal equilibrium of the element in Fig. 1 is provided in Eq. 3, 

where stress components correspond to the changes induced by the imposed ground motion and do not 

include initial static stresses. 
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Stresses yy and yz are defined in Fig. 1, variable uy indicates horizontal displacement in the y direction 

relative to the base, and gHu&&  is horizontal acceleration at the base of the deposit.  

Isotropic elasticity theory for plane strain conditions provides equations for the applicable stress 

components given by Eq. 4, where f is the function of depth from Eq. 1.  
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Following Veletsos and Younan [14] and Kloukinas et al. [17], we assume that the increment in vertical 

normal stress due to horizontal shaking is zero (zz = 0) and that the derivative of vertical soil 

displacements with horizontal distance from the wall is also zero 0zu

y

 
 

 
 everywhere in the soil 



domain. The validity of these approximations is discussed in the aforementioned publications. Also, 

setting zr = H (and hence Gr = GH), and making appropriate algebraic substitutions into Eq. 3, the 

equation of motion may be represented by Eq. 5, where e
2 = (2-)/(1-) and  is angular frequency. 

Note that the complex shear wave velocity at the base of the deposit 
* 1 2H HV V iD     may be 

utilized in Eq. 5 to account for linear hysteretic material damping ratio, D.  
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Note that due to the approximate nature of the analysis involved, equilibrium in the vertical direction is 

not satisfied in this approach, nor is the soil surface completely free of shear tractions. In the same vein, 

the wall is neither perfectly rough nor perfectly smooth [14]. However, as shown in the aforementioned 

publications and in results presented below, these approximations typically have a minor influence on 

the resulting solution. 

 

4. Proposed solution 

Our approach to the solution of vertical distribution of stress on the walls is to first determine the 

applicable ground displacements by solving the equation of motion (Eq. 5). Those displacements are 

then used in Eq. 4 to compute stresses. Following the principal of virtual work, the variational form of 

Eq. 5 is represented by Eq. 6, where the (z) is a predefined dimensionless weight function that must 

satisfy the essential boundary condition (H) = 0. 
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The third term on the left-hand side is integrated by parts as in Eq. 7.  
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In light of the essential boundary condition (H) = 0, and the natural boundary condition duy/dz = 0 at 

z = 0 due to the absence of shear tractions at the surface, the first term on the right hand side of Eq. 7 

must be zero. 

Following [17], we represent the horizontal displacement in a separable form using Eq. 8, where Y(y) is 

an unknown function of horizontal distance from the wall, having dimensions of length, and (z) is a 

trial function [referred to subsequently as a “shape function” following finite element convention 

(e.g.,[26]), taken here as having the same form as the weight function. 
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Substituting Eqs. 7 and 8 into Eq. 6 results in Eq. 9, which is the so-called weak form of the governing 

differential equation. 
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 The parameter ao is a dimensionless frequency, and aoc is an approximation of the fundamental 

dimensionless frequency of the soil deposit which can be interpreted as a “cutoff” frequency beyond 

which horizontally propagating stress waves emerge in the retained soil. The value of aoc is exact if  is 

selected to match the displacement profile corresponding to the fundamental mode. Parameter L on 

the right-hand side is a modal participation coefficient. Finally, boc is a stiffness multiplier resulting from 

the inhomogeneity of the medium. Note that f = 1 (and therefore boc = 1) for homogeneous soil, in which 

case the above parameters reduce to those in the Kloukinas et al. [17] solution. The presence of 

parameter boc and function f in Eqs. 9 and 10 distinguishes the proposed solution from the earlier one by 

Kloukinas et al. [17]. 

The shape function must satisfy the essential boundary condition (H) = 0, and it must be at least once 

differentiable with respect to z. However, it need not satisfy the natural boundary condition '(0) = 0 

because this was directly imposed in deriving the weak form. In this light, the strong and weak forms on 

the two sides of Eq. 7 could be unequal, with the weak form on the right side being preferred. This is an 

important element of the analysis, since the error introduced in the solution by the approximate shape 



function greatly reduces as the order of differentiation decreases. This allows the use of “imperfect” 

shape functions that don’t satisfy the higher-order derivatives at the boundaries, such as the linear 

shape function employed by Kloukinas et al. [17]. Furthermore, the gradient d/dz is not meaningful 

when evaluated at isolated points, but only in an integral sense (note that gradients of  appear only 

inside integrals in Eqs. 10b, 10c, and 10d). Scott [27] discusses related techniques, as applied to classical 

foundation engineering problems. Applications to foundation dynamics have been presented by 

Mylonakis [28] and Anoyatis and Lemnitzer [29]. 

 

4.1  Solution for single wall 

For a single wall retaining a deposit of soil that extends infinitely in the positive y-direction, the 

boundary conditions for Eq. 9 are Y(0) = 0, and Y(∞) = finite. The elementary solution is given by Eq. 11. 

The total solution for soil displacement relative to the base is obtained by multiplying Eq. 11 by (z). 
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 The horizontal pressure acting on the rigid wall is obtained at y = 0, by making appropriate substitutions 

into Eq. 4a, and is given by Eq. 12, where   2 2 1      . 
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The pressure resultant, PE, is obtained by integrating the horizontal pressure over the wall height, as 

indicated in Eq. 13. 
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Finally, the height of the resultant above the base of the wall, h, is computed using Eq. 14. 
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Different shape functions produce different solutions because L , aoc, and boc depend on (z). The 

shape function adopted here (Eq. 15) is the exact fundamental mode shape corresponding to the 

solution by Rovithis et al. [24]. Note that Z = z/H, and J() and N() denote Bessel functions of the first 

and second kind of order , respectively, where  = (2n-1)/2(1-n). Solutions for various alternative 

shape functions are presented in the appendix. 
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In Eq. 15, 0 corresponds to the first mode eigenvalue, and is computed by solving the lowest value of 0 

that satisfies the characteristic equation (Rovithis et al. [24]): 
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Figure 2. Shape functions corresponding to the exact eigenvectors for one-dimensional wave propagation. 

 

Substituting Eq. 15 into Eqs. 10b and 10c results in long non-integrable expressions. Therefore, the 

expressions have been integrated numerically, and the results for L, aoc, and boc are provided in Fig. 3 as 

functions of n and b. When either n = 0 or b = 1 (i.e., a uniform profile),  L, aoc, are constant and boc is 

unity, resulting in a solution equivalent to the expressions for a uniform profile derived by Kloukinas et 

al. [17]. Differences among the solutions for the various shape functions increase as the degree of 

inhomogeneity increases (i.e., as n increases or b decreases).  

   



 

Figure 3. Solutions for L , aoc, and boc as function of n and G0/GH. 

For ease of application, we present in Eq. 17 approximate relations for the model parameters developed 

through least squares regression of the results from Figure 3.  These equations provides errors with 

mean of 0 and standard deviations of 4%, 1%, and 2% for L, aoc, and boc, respectively, in the range 

G0 / GH = 0.1 to 0.9 and n = 0.05 to 0.45. Note that n = 0.5 corresponds to a parabolic variation of shear 

wave velocity and linear variation of shear modulus with depth. 
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4.3 Solution for pair of walls 

For a soil layer of finite length, L, retained between two rigid walls (Fig 1b), the boundary conditions 

required to solve Eq. 9 are Y() = 0, and Y(L) = 0. (By symmetry, it also holds that σyy(L/2,z)  = 0, which can 

be used as an alternative boundary condition.) The elementary solution is given by Eq. 18. 
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The horizontal pressure acting on the rigid wall is obtained at y = 0 by making appropriate substitutions 

into Eq. 4a, and is given by Eq. 19. 
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The value of aoc in Eq. 10b was derived for a one-dimensional wave propagation solution, and is 

consistent with the Rayleigh approach for approximating the natural frequency of the free-field soil 

deposit [30]. However, this value of aoc may under-estimate the first mode natural frequency for a finite-

length deposit because the constraints provided by the rigid walls stiffen the system. A two-dimensional 

Rayleigh solution may be utilized to provide a more accurate estimate of the dimensionless natural 

frequency, ˆoca ,  of a finite-length deposit. The two-dimensional Rayleigh solution is provided by Eq. 20. 

This equation was derived following procedures outlined by Paolucci (1999) [30], and the derivation is 

omitted for brevity. 
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which is higher than aoc, due the restraining action of the walls at the two ends of the domain. 

We present in Figure 4 the ratio ˆoc oca a plotted versus L/H for a condition wherein n = 0.25, 

G0/GH = 0.5, and  = 0.3, as well as for an essentially uniform profile (n = 0.01, G0/GH = 0.99) and an 

essentially linear profile of shear modulus (n = 0.5, G0/GH = 0.01). The results in Fig 4 are similar for these 

different inhomogeneous soil profiles. Furthermore, the solution is nearly insensitive to (z), as the 

plots for all four shape functions plot essentially on top of each other. The frequency ratio increases 

sharply as L/H becomes smaller than about 4, and is nearly equal to unity for L/H larger than 10 (hence 

the validity of the one dimensional Rayleigh solution for a single wall). 

 

Figure 4. Solution for ˆoc oca a versus L/H for various combinations of b and n; =0.3. 



5. Comparison of proposed solution with exact solution 

The solutions formulated by Vrettos et al. [25] provide a benchmark to which our simpler approximate 

analytical solution may be compared. The Vrettos et al. solution is for the two-wall problem in Fig. 1b 

(no comparable single-wall solution is presented). To facilitate this comparison, the profile of shear 

modulus given by Eq. 1 must be matched to the profiles of shear modulus utilized by Vrettos et al. [25] 

given by Eq. 2. We do this by setting the shear modulus at the top and bottom of the profiles to be the 

same (and thereby solving for b), and subsequently computing n to achieve the same average shear 

modulus over the layer thickness. Examples of the matched profiles are shown in Fig. 5.  

 

Figure 5. Matched Profiles of normalized shear modulus using Eq. 1 by Rovithis et al. [24] (dotted lines) and Eq. 2 

by Vrettos et al. [25] (solid lines). 

Earth pressure distributions reported by Vrettos et al. [25] are compared with the proposed solution in 

Fig. 6 for G0/G∞ = 0.1, 0.2, and 0.3 for a range of frequencies and for L/H = 10. Vrettos et al. reported 

results for selected values of dimensionless frequency 0 = (H/Vo)2; reported solutions are for 0 = 2.36, 



and 5.76 for all three G0/G∞ ratios, and also for 0 = 9 and 12 for G0/G∞ = 0.1. The proposed solutions 

agree reasonably well with the exact solutions, particularly at shallow depths. The proposed solution 

predicts zero seismic earth pressure at the base of the wall, whereas the exact solution predicts non-

zero seismic earth pressure at that depth. The cause of this discrepancy lies in the use of shape function 

(z), which is zero at the bottom of the layer, thus rendering as zero the contact stresses at the base of 

the wall. This can also be viewed as the outcome of a Winkler type solution, given the zero relative 

displacement between wall and soil at the base of the layer.  

 

 

Figure 6. Profiles of normalized earth pressure 
yy

gHH u



 &&
 for various values of G0/G∞ at various dimensionless 

frequencies. Note that 0 = (H/Vo)2, = 0.3, and L/H = 10.  

 



 

Using the shape function given by Eq. 15d, the normalized seismic thrust versus normalized frequency 

relationships are presented in Fig. 7 for profiles with G0/G∞ = 0.1, 0.2, and 0.3, and for various L/H ratios. 

These solutions are plotted only up to ˆ 1o oca a   because the use of first-mode shape functions for  

renders the solutions inappropriate at frequencies higher than first-mode resonance. The proposed 

solution tends to under-estimate the Vrettos et al. [21] solution, particularly near resonance (i.e., values 

of ˆ
o oca a  near unity) and lower values of L/H. The under-prediction for low values of L/H may be 

related to additional modes of vibration in the exact solution that are not being captured by the 

proposed solution. 

 

 

Figure 7. Dimensionless resultant force 
2

E

gH

P

H u &&
versus dimensionless frequency for proposed solution 

compared with discrete points tabulated by Vrettos et al. [25] (D = 0.05, = 0.3).  

 



6. Winkler stiffness 

The pressure mobilized against the wall is assumed to be a function of the relative displacement 

between the “free-field” soil column and the wall multiplied by a Winkler stiffness intensity, ky
i(z) [14]. 

The Winkler stiffness intensity term has units of force/length3. The Winkler spring stiffness term is 

assumed to follow the form in Eq. 21, where 
i

yHk  is the value of the Winkler stiffness at z = H.  

   i i

y yHk z k f z   (21) 

 

The value of 
i

yHk  is obtained by solving Eq. 22, which forces the average value of ky
i (over the wall 

height) to equal the average horizontal stress divided by the average relative displacement between the 

“free-field” and the wall. The “free-field” displacement is defined as the soil displacement that would 

occur in the absence of any influence from walls (i.e., where dyy/dz = 0 based on the equation of 

motion). The solution is computed for the case of a single wall retaining an infinite length soil deposit 

because the free-field motion is equal to that at y = ∞. The notion of a free-field displacement is more 

complicated for a finite-length deposit retained between two walls, because the walls influence the soil 

displacement everywhere in the domain. Although the antisymmetry condition imposes yy = 0 at y = 

L/2, the gradient dyy/dz is unequal to zero along this vertical plane due to the influence of the walls. In 

this context, a “free-field” displacement does not exist, though it may be reasonably approximated near 

the center of a long soil layer (i.e., with large L/H). The resulting expression is analogous to that 

formulated by Kloukinas et al. [14], with the exception that in the present solution the shear modulus 

term in the equations is at the base of the deposit (i.e., GH is used instead of G), the aoc and ao terms are 

computed using Eqs. 10a and 10b, and the boc term is introduced.  
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 Note that the "static" stiffness (i.e., 
i i

yHo yHk k  for ao = 0) is linearly proportional to the product oc ocb a , 

and can therefore be directly scaled from Fig. 2. Equation 23 represents a regression of the resulting 

values of 
i

yHok for b = 0.1 to 0.9 and n = 0.05 to 0.45. In this light, boc can be viewed merely as a stiffness 

multiplier. Values of the normalized static stiffness are plotted as a function of Poisson’s ratio for 

different shape functions in Fig. 8 for n = 0. 5 and b = 0.1, which are input parameters that are 

reasonable for cohesionless sand. Alternative shape functions have little influence on the resulting 

dimensionless stiffness intensity distributions. 
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Figure 8. Profiles of normalized static Winkler stiffness intensity at the base of the wall versus Poisson ratio for 

various values of G0/GH and n.  

 

7. Comparison of responses for inhomogeneous and homogeneous profiles 

A natural question is how the Winkler stiffness intensity and seismic thrust for a specific inhomogeneous 

profile relates to those for an “equivalent homogeneous” profile. We define an “equivalent uniform” 

profile as having the same fundamental frequency as the inhomogeneous profile (both cases retain the 

rigid base condition). The equivalent uniform profile is obtained by solving for aoc, and subsequently 

computing Vs,eq using Eq. 23. 

 

,e 2H
s q oc
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V a


   (23) 

 

For the equivalent homogeneous profile, f(z) = 1, boc = 1, aoc,eq = /2, and aoc,eq is computed using Eq. 10b 

with f = 1. The solution for ky
i
eq for an equivalent uniform profile may then be computed from Eq. 24, 

where ao,eq = H/Vs,eq. This solution is identical to that of Kloukinas et al. [17].  
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Another comparison worth making for its simplicity is to substitute Geq with G(z), and simply use Eq. 23 

to define the profile of ky
i. This approach neglects the difference in the physics of wave propagation for a 

uniform profile compared to an inhomogeneous profile due to omission of the boc term, and use of an 



incorrect aoc term, but is nevertheless interesting to explore to examine the nature of the resulting 

errors.  

Example profiles are shown in Fig. 9 for bo = 2.36, n = 0.307 and b = 0.045. The values of ky
i are 

normalized by GH/H to facilitate a fair comparison among the three approaches. The ky
i values for the 

equivalent uniform profile are higher than for the inhomogeneous profile at depths shallower than 

about z/H = 0.45. Furthermore, the displacement is also higher in this region, thereby producing higher 

horizontal earth pressures. The profile using Eq. 23, but with Geq set equal to G(z), results in a lower 

value of ky
i throughout the profile, and lower corresponding seismic earth pressures.  This indicates that 

properly considering the physics of wave propagation is important for formulating accurate Winkler 

stiffness terms. 

 

Figure 9. Comparison of response of inhomogeneous profile with “equivalent uniform” profile. Results labelled as 

Eq. 20 represent the proposed solution for an inhomogeneous profile with n = 0.307 and b = 0.045; halfspace 

results labeled as Eq. 23 match the fundamental frequency of the soil column; nonuniform results labelled as Eq. 

23 substitute depth-dependent moduli into the halfspace solution of Kloukinas et al. [17].  

 



In the special case where aoc,eq = aoc, the ratio of static stiffness intensity for the inhomogeneous case 

relative to the homogeneous case is given by Eq. 25. This equation elucidates that boc is a stiffness 

modifier accounting for inhomogeneity, and that matching the stiffness intensity for an equivalent 

uniform profile at all depths is not possible because the function f(z) appears in the equation. 
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Seismic thrust values computed for a range of n and b values are presented in Fig. 10 as a ratio of the 

thrust for the inhomogeneous profile to that of the equivalent uniform profile. The inhomogeneous 

profiles produce lower seismic earth pressure resultants as compared with their “equivalent uniform” 

counterparts. This differential response is caused by the fact that the inhomogeneous profile is softer 

near the surface, where relative displacements between the soil and wall are high, and stiffer soil near 

the base of the wall, where relative displacements between the soil and wall are low (Brandenberg et al. 

[31]). 

 

Figure 10. Influence of inhomogeneity on seismic thrust;  = 0.3, L = ∞. 

 



8. Conclusions 

An approximate elasto-dynamic solution was developed for seismic earth pressures acting on a single 

vertical rigid wall supporting a semi-infinite soil layer, and on a pair of walls spaced at a finite distance. 

In both cases, the soil layer is inhomogeneous and exhibits a constant Poisson’s ratio and mass density. 

The proposed solution is simpler and easier to implement than a landmark exact analytical solution for 

this problem formulated by Vrettos et al. [25]. Although the proposed solution introduces errors due to 

the use of approximate shape functions, the assumption that vertical stresses are zero, and that the 

vertical displacement gradient in the horizontal direction is zero, the resulting solutions nevertheless 

agree quite well with exact solutions.  

The solutions correspond to a rigid wall retaining an inhomogeneous soil layer resting on a rigid base. 

The rigid base and rigid wall assumptions do not correspond well to the boundary conditions for typical 

retaining walls. The infinite impedance contrast at the base of the soil layer creates significant 

amplification near resonance, resulting in large seismic earth pressure increments. Such amplification 

would not exist for the typical configuration in which the retained soil rests on a compliant base. 

Moreover, the rigid base assumption and the rigid wall assumption reduce the ability of the wall to 

conform with free-field soil displacements, thereby further increasing mobilized earth pressures. 

Although the present solution will overestimate seismic earth pressures for these reasons, the 

derivation of stiffness intensity solutions for inhomogeneous media presented herein is nonetheless a 

key step in the ongoing process of deriving a framework for analysis of kinematic wall response for 

realistic conditions, which ultimately will relax the rigid base and wall assumptions. 
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Appendix A 

Solutions presented herein are derived using Eq. 15, which is the exact first-mode shape function for a 

one-dimensional continuously inhomogeneous elastic layer. In Appendix A, the solutions are derived for 

three other shape functions to explore the influence of shape function selection on the solutions for 

Winkler stiffness intensity. The first is harmonic (Eq. A1), which is an exact representation of the first-

mode shape function for uniform soil; the second is parabolic (Eq. A2), which approximates the first 

mode shape function for uniform soil; and the third characterizes the shape of an inhomogenous soil 

deposit subject to a constant horizontal body force proportional to its self-weight (Eq. A3). Eq. A3 was 

derived by the following steps: (1) compute shear stress as a function of depth, (z) = khz, where (z) is 

shear stress at depth z and kh is the horizontal body force, (2) compute shear strain as a function of 

depth as (z) = (z)/GHf(z), (3) compute displacement at depth z by integrating shear strain from the 

bottom of the deposit as ( ) ( )

z

g

H

u z d     , where  is a dummy variable of integration, and finally (4) 

normalize the resulting displacement function by the surface displacement to obtain the shape function. 

Note that step 4 renders the shape function insensitive to selection of kh. The detailed derivation is 

omitted for brevity. The shape functions are plotted in Fig. A1. 
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Figure A1. Shape functions corresponding to (a) harmonic (Eq. A1) and parabolic (Eq. A2) functions, (b) constant 

horizontal body force (Eq. A3), and (c) the exact eigenvectors for one-dimensional wave propagation. 

 

Solutions for L, aoc, and boc computed using the shape functions in Fig. A1 are illustrated in Fig. A2. 

Differences among the solutions for the various shape functions increase as the degree of 

inhomogeneity increases (i.e., as n increases or b decreases). 

 

Figure A2. Solutions for L, aoc, and boc versus b for various values of n for four different shape functions. 



Values of the normalized static stiffness intensity are plotted as a function of Poisson's ratio for different 

shape functions in Fig. A3 for n = 0.25 and b = 0.1. The shape functions defined by Eqs. A1, A2, and A3 

tend to predict lower values of stiffness intensity than Eq. 15. Furthermore, Eq. 15 produces very similar 

results regardless of whether aoc and boc are computed by numerical integration of the bounded 

integrals, or by the approximation provided by Eq. 17. This is further evidence that the simple closed-

form expressions in Eq. 17 provide reasonably accurate values. 

 

Figure A3. Normalized static Winkler stiffness intensity at the base of the wall versus Poisson ratio for four 

different shape functions. Furthermore, the shape function corresponding to Eq. 15 is provided based on closed-

form solutions to the integrals, and according to the simplified closed-form equation given by Eq. 17. 
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