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1: Abstract 

It is well known that information that is initially thought to be correct but then revealed 

to be false, often continues to influence human judgement and decision making 

despite people being aware of the retraction. Yet little research has examined the 

underlying neural substrates of this phenomenon, which is known as the ‘continued 

influence effect of misinformation’ (CIEM). It remains unclear how the human brain 

processes critical information that retracts prior claims. To address this question in 

further detail, 26 healthy adults underwent functional magnetic resonance imaging 

(fMRI) while listening to brief narratives which either involved a retraction of prior 

information or not. Following each narrative, subjects’ comprehension of the 

narrative, including their inclination to rely on retracted information, was probed. As 

expected, it was found that retracted information continued to affect participants’ 

narrative-related reasoning. In addition, the fMRI data indicated that the continued 

influence of retracted information may be due to a breakdown of narrative-level 

integration and coherence-building mechanisms implemented by the precuneus and 

posterior cingulate gyrus. 

 

Keywords: continued influence effect; misinformation; memory updating 
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2: Introduction 

The persistence of erroneous beliefs appears ubiquitous in modern societies 

(Lewandowsky et al., 2012). One need look no further than the purported link 

between a common childhood vaccine and autism which has no scientific basis but 

is widely accepted by the public (Horne et al., 2015), or the persistent belief in the 

existence of Weapons of Mass Destruction in Iraq before the invasion of 2003 even 

though none were ever found (Jacobson, 2010; Kull et al., 2003). Much 

misinformation now spreads online, and accordingly, the World Economic Forum 

recently listed digital misinformation as one of the main challenges to societies 

globally (WEF, 2013). 

Decades of behavioral research indicate that discredited information can 

continue to influence people’s beliefs and reasoning even after that information has 

been retracted—a phenomenon known as the continued influence effect of 

misinformation (CIEM) (Ecker et al., 2011; Ecker et al., 2010; Johnson & Seifert, 

1994; Wilkes & Leatherbarrow, 1988; for reviews see Lewandowsky et al., 2012; 

Schwarz et al., 2016). The CIEM can occur even when people (a) remember the 

retraction (Johnson & Seifert, 1994; Marsh et al., 2003), and/or (b) receive prior 

warning about their exposure to false information (Ecker et al., 2010).  

Attempts to retract misinformation in real world settings therefore often 

struggle to prove effective (Miton & Mercier, 2015; Nyhan & Reifler, 2015). 

Difficulties in creating effective interventions against misinformation may also 

partially reflect the fact that the cognitive mechanisms underlying the CIEM remain 

elusive. To date, two main explanations have been discussed in the literature. 

According to the selective-retrieval account, both the incorrect (i.e. the 

misinformation) and the correct (i.e., the retraction) information get frequently stored 
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in memory concurrently, and the CIEM arises when the former gets activated but is 

insufficiently suppressed (Catarino et al., 2015; Ecker et al., 2011; Jacoby & 

Whitehouse, 1989; Lewandowsky et al., 2012). By contrast, according to the mental-

model-updating account, all information regarding a particular event is usually 

integrated in a unified mental model that requires updating whenever new relevant 

information becomes available. Retractions, however, necessarily threaten a model’s 

internal coherence by invalidating some of its original content and may, therefore, be 

particularly poorly encoded and/or retrieved (Ecker et al., 2010; Johnson-Laird, 2012; 

Verschueren et al., 2005). In a nutshell, whereas the selective-retrieval account links 

the CIEM to a failure in memory selection and suppression, the model-updating 

account holds a failure in memory updating responsible for the effect.  

Though both models postulate competing mental mechanisms, studying these 

mechanisms and their relative contribution to the CIEM via behavioural experiments 

has proven difficult in the past. A more promising avenue to differentiate between 

competing explanations of the effect may involve the identification of their underlying 

neural substrates. If there was indeed a systematic difference between the encoding 

of retracting and non-retracting information, this difference should be associated with 

observable changes in brain activity. Above all, the encoding of retracting information 

should violate a person’s prior assumptions more strongly than the encoding of non-

retracting information. Violation of assumption and detection of error has been 

shown to elicit stronger activity in the anterior cingulate cortex (ACC; Braver et al., 

2001; Bush et al., 2000; Carter et al., 1998; Carter & van Veen, 2007). In 

consequence, higher activity in this region when processing information that 

contradicts prior claims (by retracting them) would be expected.  
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In addition, according to the model-updating account, the encoding of 

retracting information and its integration with existing material should be shallower 

than the encoding of non-retracting information. The presentation of information that 

invalidates earlier assertions of the narrative results in a ‘gap’ in the mental 

representation. The representation will therefore no longer be coherent unless the 

false assertion, the misinformation, is maintained (Lewandowsky et al., 2012). One 

way to achieve this coherence is to limit the processing of the retracting information. 

Shallower encoding of information has previously been linked to reduced activity in 

the left hippocampus (HC) and in the left inferior frontal gyrus (IFG; Otten et al., 

2001; Wagner, 1998). Hence, traces of reduced activity in these regions during the 

encoding of retractions compared to non-retractions could provide further empirical 

evidence for a model-updating account of the CIEM.  

Aside from these neural changes during the encoding of retracting and non-

retracting information, differences in brain activity can also be expected during the 

retrieval of both types of information. Initial evidence indicates that the right 

dorsolateral prefrontal cortex, including the IFG and middle frontal gyrus (MFG), can 

exert systematic inhibition of hippocampal retrieval processes when subjects actively 

suppress memories (such as retracted information; Anderson et al., 2004; Anderson 

& Hanslmayr, 2014; Benoit & Anderson, 2012; Depue, 2012; Levy & Anderson, 

2012). In addition, research on memory substitution has demonstrated that recalling 

a correct memory (such as a retraction) in the context of unwanted memories (such 

as initial misinformation) engages regions of the left ventrolateral prefrontal cortex 

that approximate to the pars opercularis and triangularis substructures of the left IFG 

(Benoit & Anderson, 2012; Depue, 2012; Nee & Jonides, 2008). In light of these 

findings, differences in activity in the right IFG, the right MFG, and/or the left IFG 
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during the retrieval of narratives with or without retractions promise to capture the 

role of memory suppression and/or substitution in the CIEM.  

In summary, based on the above tentative explanations, tracking prefrontal as 

well as hippocampal activity during the encoding of retracting and non-retracting 

information as well as during the retrieval of retracted versus non-retracted 

information promises to enhance our understanding of the mechanisms that 

contribute to the CIEM. Following precedents, the current study asked participants to 

read a series of brief news reports and to complete a comprehension test about each 

report, while undergoing fMRI scanning. Importantly, across reports, we manipulated 

whether the same sentence towards the end of a report either retracted information 

that was provided earlier or not. We predicted this manipulation to elicit differences in 

neural activity during the encoding and/or the subsequent retrieval of the key 

sentence in brain regions previously linked to expectancy violations, memory 

suppression, and memory substitution (i.e., the ACC, HC, IFG, and MFG). 

 

3: Method 

3.1: Participants 

We recruited 26 native English speakers, aged between 18-34 years 

(M = 22.88; SD = 4.17; 15 females, 11 males) through an advertisement on the 

University of Bristol’s Psychology department website. Participants received a £20 

cash stipend. Three further participants were tested but were excluded from the final 

analysis, one because of repeated and excessive head motion during scanning 

(>3mm), one because of non-completion due to illness, and a third due to a technical 

malfunction with the presentation software. All participants were right-handed as 

assessed by the Edinburgh Handedness Inventory (Oldfield, 1971) and reported 
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normal or corrected-to-normal vision and hearing. None had a history of neurological 

or neuropsychiatric disorder or was currently taking psychoactive medication. Written 

informed consent was obtained from all individuals. The study protocol was 

approved by the Human Research Ethics Committee of the University of Bristol’s 

Faculty of Science. 
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3.2: Stimuli 

Table 1.  

Example stimulus materials: Across retraction and control conditions, news reports 

differed solely in sentence 2 (in bold italics). Depending on the content in sentence 2, 

the key sentence 5 (in bold), which was identical across conditions, did or did not act 

as a retraction.  

1A: Example News Reports  

Event Sentence Control Retraction 

A 

Sentence 1 A new office building lies in rubble today after it suddenly collapsed. 

Sentence 2 Onlookers reported that the 

collapse occurred around 

11am this morning. 

Onlookers reported an out of control 

fire on the lower floors was 

responsible. 

Sentence 3 The building was only finished two months ago and opened shortly after. 

Sentence 4 The surrounding area has been closed off to the public while the rubble is 

cleared. 

Sentence 5 Fire crews at the scene stated that there was no evidence of a fire. 

Sentence 6 The company that owned the building has been contacted for comment. 

B 

Sentence 1 Flight AA9035 from Chicago to LA was evacuated before take-off yesterday. 

Sentence 2 Passengers said that the 

evacuation took place shortly 

after the plane had begun to 

taxi. 

Passengers said that the evacuation 

was due to a fire in the engine bay. 

Sentence 3 Passengers were asked to return to the terminal and await further news. 

Sentence 4 The airline responsible for the flight were unavailable for interview. 

Sentence 5 Fire crews at the scene stated that there was no evidence of a fire. 

Sentence 6 The flight was eventually cancelled and passengers were recompensed. 

1B: Example Comprehension Probes  

A/B 

Question 1 Based on this incident, measures designed to prevent fires should be 

reviewed. 

Question 2 It was necessary for the fire services to be at the scene. 

Question 3 It is likely that fire alarms would have been activated. 
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Brief, fictional news reports similar to those previously used in behavioural 

studies on the CIEM served as stimuli (cf. Johnson & Seifert, 1994). Each news 

report was six sentences long and began by introducing a news-worthy event (e.g., 

the collapse of a building or the evacuation of a plane). As shown in Table 1A, for 

each event two different report versions were created that differed only in the content 

of sentence 2. For example, in one version sentence 2 may have contained the 

(mis-)information that the building collapsed (or the plane was evacuated) due to a 

fire; whereas in another version sentence 2 may have contained only arbitrary 

contextual information of little relevance. Thus, depending on the content of 

sentence 2, the key sentence 5 - which was identical in both versions of the report - 

either did or did not act as a retraction of previously presented information. In this 

manner, retraction and control reports were created for 22 different events, resulting 

in 44 unique reports used in the study. Retraction and control reports were 

equivalent in terms of their mean lexical frequency [control reports: M=2.07, 

SD=0.17; retraction reports: M=2.08, SD=0.19; t(21)=0.75, p=.461], script 

concreteness [control reports: M=410.84, SD=26.69; retraction reports: M = 412.33, 

SD=28.87; t(21)=0.62,p=.545], and Flesch reading ease [control reports: M=60.89, 

SD=8.62; retraction reports: M=60.44, SD=9.76; t(21)=.60, p=.553]. 

In order to measure reliance on misinformation, each report was followed by a 

set of three comprehension probes (see Table 1B). Participants were asked to rate 

each probe, using their memory of the report, on a 9-point scale from “strongly 

disagree” to “strongly agree”. Importantly, all memory-based comprehension probes 

referred to critical information in sentence 5 (i.e., to information that was present in 

both control and retraction reports). The probes were phrased in such a manner that 

higher endorsement ratings could capture the degree to which participants 
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incorporated misinformation from sentence 2 (if applicable) in their understanding of 

the news report. Additionally, reports for two separate events were paired such that 

they shared an identical sentence 5 and identical probe statements (see Table 1). 

This allowed us to counterbalance reports such that each participant received the 

identical sentence 5 and the identical probe statements in both retraction and control 

conditions across two different event scenarios. For example, half the participants 

were presented with Event A in the control condition and with Event B in the 

retraction condition; for the other half of participants, this assignment was reversed. 

Each participant received the same number of retraction and control reports, and 

report order was randomised across participants, with the constraint that two paired 

event reports were never presented in immediate succession. 

3.3: fMRI Task and Procedure 

To assess whether participants could hear the auditory presentation over the 

background noise of the scanner, each subject was presented with an example 

report during a short (30 s) functional imaging scan, and volume levels were 

adjusted if necessary. Presentation of stimuli was controlled and responses were 

recorded using Matlab (v 2012a) in conjunction with Psychtoolbox (v 3.0.8; Brainard, 

1997); stimuli were presented via MRI-compatible headphones (Sensimetrics model 

S14). Participants listened to the 22 scripted news reports distributed across two 

functional runs of approximately 22 min each, with a short break in between. 

Participants were instructed to listen carefully to each news report and to 

subsequently respond to the comprehension statements as accurately as possible. 

The beginning of each trial was signalled by an exclamation mark (!) on the 

screen for 1000 ms. The exclamation mark was then replaced by a fixation cross that 

remained visible for the duration of the report, which was presented auditorily one 
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sentence at a time. Pseudorandom uniform temporal jitter (ranging from 1 to 6 sec, 

with a mean of 3.5 sec) between sentences ensured that the haemodynamic 

response to the critical sentence 5 could be modelled separately from the adjacent 

stimuli (see Ollinger et al., 2001). Temporal jitter (ranging from 15 to 18 sec, with a 

mean of 16.5 sec) also separated the end of the report from the three corresponding 

comprehension probes.  

Each set of comprehension probes was preceded by a question mark (?) 

presented on screen for 2000 ms. Probes were presented auditorily and were 

preceded by a warning tone of 1000 ms. After each probe, a response scale was 

shown on screen, which remained visible until participants entered a response. 

Participants logged their response on an MRI-compatible button response box 

(LU400, Cedrus Lumina) by moving a centrally-placed cursor from left to right on a 9-

point rating scale (from “strongly agree” to “strongly disagree”) with the index and 

middle fingers of their right hand. A response was registered and the scale removed 

from the screen when no further cursor movement was detected for 1500 ms. The 

temporal offset of each endorsement statement and the onset of its corresponding 

scale were again separated by temporal jitter (ranging from 2 to 5 sec, with a mean 

of 3.5 sec), as was the offset of the scale and the onset of the next statement (jitter 

ranging from 4 to 8 sec, with a mean of 6 sec). Once a participant had replied to the 

third and final statement for a given report, there was a fixed inter-trial interval of 10 

sec.  

3.4: Image Acquisition 

Images were acquired on a 3 tesla Siemens Skyra MRI scanner with a 32 

channel receive-only head coil. Memory foam was used to minimize head 

movement. Functional images were acquired using a whole-brain T2*-weighted 
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gradient echo sequence [echo planar imaging (EPI), TR = 2500 ms, TE = 30 ms, flip 

angle = 90°, 3 x 3 mm in-plane resolution; field of view (FOV) = 192 mm, phase 

encoding anterior to posterior, parallel acceleration factor 2]. Each volume consisted 

of 36 axial slices aligned parallel to AC-PC line (anterior commissure – posterior 

commissure) with 3 mm slice thickness and 0 mm gap. For each participant, 

approximately 528 volumes were collected during each run of the comprehension 

task. For each subject, a high resolution (0.9 × 0.9 × 0.9 mm) T1-weighted 3D 

volume scan was acquired with the MP-RAGE sequence [slice thickness = 0.9mm; 

TR = 1800 ms; TE = 2.25 ms; FOV = 240 mm; flip angle = 90°]. Between the two 

functional runs, field-maps were acquired for each subject [slice thickness = 3.0 mm; 

resolution = 3 × 3 × 3mm; TR = 520 ms; TE1/TE2 = 4.92/7.38 ms; flip angle = 60o; 

FOV = 192 mm]. 

3.5: Data Analysis 

Behavioural data were analysed using Matlab (v 2012b) for Windows. Image 

processing and statistical inference was performed with FSL software (v 5.0.8; 

Oxford Centre for Functional MRI of the BRAIN; FMRIB; Smith et al., 2004). Prior to 

model estimation, functional images were distortion and motion corrected (Jenkinson 

et al., 2002) by pre-processing with FEAT (FMRIB’s Expert Analysis Tool), which 

also included spatial smoothing (FWHM = 5 mm), high-pass temporal filtering (cut-off 

90 seconds). To facilitate group analysis the spatial transformation between the pre-

processed EPI data and each subject’s T1-weighted structural scan was determined 

using the boundary-based registration algorithm (BBR; Greve & Fischl, 2009) and 

FLIRT (FMRIB’s Linear Image Registration Tool; Jenkinson et al., 2002; Jenkinson & 

Smith, 2001). To improve registration, brain tissue was segmented from structural 

scans by using an in-house brain extraction tool (“VBM8BET”), based on the output 
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from VBM8 (“VBM at Structural Brain Mapping Group”, n.d., http://www.neuro.uni-

jena.de/vbm/). The final registration step included spatial normalisation of each 

subject’s brain extracted T1-weighted structural scan to a “standard space” template 

brain (Montreal Neurological Institute [MNI] averaged-152 subject 2 mm template), 

achieved using an initial 12-parameter affine registration with FLIRT, followed by 

non-linear registration using FNIRT (FMRIB’s non-linear image registration tool).  

Parameter estimates for each explanatory variable were calculated using a 

general linear model (GLM) implemented in FEAT, which used pre-whitening with 

FILM (Woolrich et al., 2001) to address issues related to temporal auto-correlation. 

Participant-specific motion parameters were included as regressors at the first-level. 

Following subject-level modelling, parameter-estimate maps and associated 

variance images were transformed to standard space and input to a group-level 

mixed effects model, estimated using FLAME 1 + 2 (FMRIB's Local Analysis of 

Mixed Effects). Two types of subject-level analyses were conducted. First, standard 

univariate whole-brain contrasts examined the effects of information type (retraction 

versus control) during encoding (i.e., during sentence 5) and retrieval (i.e., during the 

comprehension probes). Second, additional parametric whole-brain analyses 

examined whether participants’ behavioural responses to comprehension probes 

were linked to their brain activity at encoding or retrieval. 

For the first set of analyses, an event-related design was modelled using a 

canonical hemodynamic response function (HRF) with four regressors of interest 

(sentence 5 at encoding in both the control and retraction conditions, and all three 

comprehension probes at retrieval in both conditions) and eighteen nuisance 

regressors (all non-critical sentences at encoding, presentation of warning tone, 

presentation of scale and subsequent response, and six motion parameters). All 
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regressors (excluding confound regressors for motion) coded the onset and duration 

of each event. Based on the regressors of interest, contrast maps (retraction versus 

control) were computed separately for encoding and the retrieval phase. Within each 

subject, data from the two separate fMRI runs were combined using a fixed-effects 

model. These maps were then entered into a group-level paired t-test, treating 

participant as a random effect. Statistical inference was performed using Gaussian 

random field theory (Worsley et al., 1992), with a cluster-forming threshold of z > 2.3, 

and a (corrected) cluster-significance threshold of p < 0.05 (FWE corrected). Results 

were interrogated using AUTOAQ for automated anatomical labelling of activated 

clusters (Winkler, 2012). An arbitrary threshold of > 10% probability was used to 

determine regions contained within each cluster. 

For the second set of analyses, participants’ responses (at retrieval) were 

included as a parametric modulator of the two regressors modelling activity at (i) 

encoding (averaged across the three probes for each report) and (ii) retrieval. 

Corresponding statistical parametric maps were computed for each participant and 

entered into a second-level one-sample t-test for each condition, treating participant 

as a random effect. In order to identify regions for which correlations differed 

significantly between conditions for the regressors of interest (sentence 5 at 

encoding in both the control and retraction conditions, and comprehension probes at 

retrieval) a second-level paired t-test was conducted. The approach to determining 

significance levels for the parametric analyses was the same as for the whole-brain 

analyses.  



MISINFORMATION  PROCESSING                              15 

 

4: Results 

4.1: Behavioural data 

Participants’ endorsement of the comprehension probes, on a 9 point scale, 

was significantly higher following the presentation and subsequent retraction of 

misinformation (retraction condition: M = 4.42, SD = 1.06) compared to when no 

misinformation had been presented at all (control condition: M = 2.89, SD = 0.89), 

t(25)= 11.31, p < .001. This result shows that a retraction of misinformation was not 

sufficient to bring endorsement ratings back to a baseline level, demonstrating the 

expected continued influence effect of misinformation (CIEM).1 

4.2: Main effects of experimental condition 

To examine the effects of condition on participants’ brain activity during 

encoding and retrieval, we first computed a set of whole-brain contrasts that directly 

compared participants’ neural response during control and retraction reports. During 

the encoding of critical information in sentence 5, the contrast retraction > control 

failed to return any supra-threshold activations. The reverse contrast, however, 

yielded enhanced activity in one brain region (347 voxels; peak voxel: x = 18, y = -

38, z = 46; max z-value = 3.79). The region spanned the right precuneus (PrC) 

extending into the right posterior cingulate cortex (PCC) and postcentral gyrus 

(PCG). To illustrate the nature of neural activity in this region we extracted its mean 

parameter estimates for both experimental conditions (Fig. 1). No significant 

differences in brain activity emerged across the two experimental conditions at 

retrieval. 

                                                           
1 It was not necessary to include a condition in which misinformation is presented and never retracted, 

as is common in most research on the CIEM, as the control and retraction conditions alone are 
sufficient to demonstrate the effect, i.e. significantly higher endorsement in the retraction condition. 
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Figure 1. Whole-brain contrasts revealed a main effect of condition (control > 

retraction) during the encoding of critical information in sentence 5 in the right 

precuneus (extending into the posterior cingulate gyrus and the postcentral gyrus). 

To visually illustrate the nature of this difference we extracted and plotted the mean 

parameter estimates from the area in both experimental conditions (mean ± standard 

error bars). The figure shows group data from 26 participants displayed on the MNI 

2mm brain template in radiological format on coronal, sagittal, and axial sections. 

Data were obtained from a mixed effects model (paired t-test), with cluster forming 

threshold of z>2.3, and p<0.05 (FWE-corrected). 

 

4.3: Parametric effects of endorsement ratings at encoding 

Our next set of analyses related changes in brain activity during the encoding 

of critical information in sentence 5 to participants’ endorsement ratings on the 

reports’ corresponding comprehension probes (the average ratings given on the 

three comprehension probes for each report were included as parametric modulators 

of the regressors modelling activity in each condition during sentence 5). In the 

control condition, positive correlations between neural activity during encoding of 
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sentence 5 and subsequent endorsement ratings were observed in two regions of 

the right parietal lobe (see Table 1A and Fig. 2A). Thus, enhanced activity in these 

two regions predicted less accurate responding to comprehension probes (recall that 

higher endorsement ratings reflect a continued influence of misinformation). More 

importantly, several brain regions, including the left and right MFG, showed a 

negative correlation (see Table 1B and Fig. 2B). Thus, enhanced activity in these 

regions predicted more accurate responding to comprehension probes. In the 

retraction condition, no supra-threshold activations emerged, regardless whether 

negative or positive correlations were examined.  

 

Table 1. 

Peak voxel in MNI coordinates and number of voxels for brain regions that showed 

changes in activity during encoding of critical information (as presented in sentence 

5) which correlated with participants’ subsequent endorsement ratings in the control 

condition as identified by an exploratory whole brain analysis at a cluster forming 

threshold of z>2.3 and p<0.05 (FWE-corrected). 

Region Voxels Hemisphere Max    
z-value 

x y z 

A) Brain regions with positive correlations 

Superior Parietal Lobule 
(extending into the 
Postcentral Gyrus) 

335 R 3.58 28 -46 66 

Supramarginal Gyrus 
(extending into the 
Postcentral Gyrus and 
the Parietal Operculum) 

443 R 3.45  62 -20 32 

B) Brain regions with negative correlations 

Cerebellum (Crus I 
extending into Crus II) 

332 L 3.17 -10 -88 -24 

Frontal Pole 591 L 3.52 -26  60 26 

Middle Frontal Gyrus 377 R 3.39  54  22 32 

Middle Frontal Gyrus 318 L 3.17 -52  22 34 
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Figure 2. During the encoding of critical information (i.e., sentence 5) in control 

reports, neural activity correlated with participants’ subsequent endorsement ratings 

in several brain regions. Panel A shows brain regions with positive correlations, 

panel B shows selected brain regions with negative correlations. For illustrative 

reasons, corresponding bar graphs portray each region’s parametric response in 

both experimental conditions (mean ± standard error bars). The figure shows group 

data from 26 participants displayed on the MNI 2mm brain template in radiological 

format on sagittal sections. Data were obtained from a mixed effects model (one 

sample t-test), with cluster forming threshold of z>2.3, and p<0.05 (FWE-corrected). 

 

Besides exploring the presence of parametric brain activity at encoding for 

each experimental condition separately, we also examined whether there were 

significant differences in this activity across conditions. This analysis returned only a 

single brain region that spanned the left PCG, supramarginal gyrus, and the parietal 

operculum (430 voxels; peak voxel: x = -56, y = -18, z = 32; z-value = 3.32). 

Extracting the region’s mean parameter estimates for each participant per 

experimental condition illustrates that changes in its neural activity were more 
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predictive of participants’ endorsement ratings in the control condition than in the 

retraction condition (see Fig. 3).  

 

 

Figure 3. During the encoding of critical information (i.e., sentence 5), neural activity 

correlated more strongly with participants’ subsequent endorsement ratings in the 

control condition than in the retraction condition in the left postcentral gyrus. The 

corresponding bar graph portrays the region’s parametric response in both 

experimental conditions (mean ± standard error bars). The figure shows group data 

from 26 participants displayed on the MNI 2mm brain template in radiological format 

on a sagittal section (see also Table 3). Data were obtained from a mixed effects 

model (paired samples t-test), with cluster forming threshold of z>2.3, and p<0.05 

(FWE-corrected). 

 

4.4: Parametric effects of endorsement ratings at retrieval 

An additional set of parametric analyses examined whether changes in brain 

activity during the processing of the comprehension probes (i.e., at retrieval) were 

correlated with participants’ endorsement ratings in response to these probes (the 

ratings given on the three comprehension probes for each report were included as 

parametric modulators of the regressors modelling activity in each condition during 

retrieval). In the control condition (see Table 2), no supra-threshold activations 

indicative of positive correlations emerged, but several brain regions with negative 

correlations were identified. Among them were the right MFG, the left PCG 

(extending into the left precentral gyrus), and the PCC (see Fig. 4).  
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Table 2. 

Peak voxel in MNI coordinates and number of voxels for brain regions that showed 

changes in activity during processing of the comprehension probes (i.e., at retrieval) 

which correlated with participants’ subsequent endorsement ratings in the control 

condition as identified by an exploratory whole brain analysis at a cluster forming 

threshold of z>2.3 and p<0.05 (FWE-corrected). 

Region Voxels Hemisphere Max    
z-value 

x y z 

A) Brain regions with positive correlations 

No supra-threshold activation 

B) Brain regions with negative correlations 

Angular Gyrus 
(extending into 
Supramarginal Gyrus 
and the Occipital Cortex) 

588 L 3.33 -42 -50 42 

Middle Frontal Gyrus 578 R 3.34  44     8 42 

Middle Temporal Gyrus 
(extending into the 
Angular Gyrus) 

1216 R 3.64  66 -38 -8 

Occipital Pole (extending 
into the Inferior Occipital 
Gyrus) 

565 L 3.33 -34 -94 4 

Postcentral Gyrus 
(extending into the 
Precentral Gyrus) 

1164 L 4.11 -46 -20 50 

Posterior Cingulate 
Gyrus 

1075 L 3.33 -8 -48 24 

Superior Frontal Gyrus 539 L/R 3.21  0  32 44 
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Figure 4. During comprehension probes (i.e., at retrieval) following control reports, 

neural activity correlated negatively with participants’ subsequent endorsement 

ratings in several brain regions, including the right middle frontal gyrus (MFG), the 

left postcentral gyrus (PCG), and the posterior cingulate cortex (PCC). For illustrative 

reasons, corresponding bar graphs portray each region’s parametric response in 

both experimental conditions (mean ± standard error bars). The figure shows group 

data from 26 participants displayed on the MNI 2mm brain template in radiological 

format on sagittal sections. Data were obtained from a mixed effects model (one 

sample t-test), with cluster forming threshold of z>2.3, and p<0.05 (FWE-corrected). 

 

In the retraction condition (Table 3), only brain regions displaying positive 

correlations emerged (see Fig. 5), but no brain regions with negative correlations. 

The two regions with positive correlations were located in the left and the right PCG. 
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Table 3. 

Peak voxel in MNI coordinates and number of voxels for brain regions that showed 

changes in activity during processing of the comprehension probes (i.e., at retrieval) 

which correlated with participants’ subsequent endorsement ratings in the retraction 

condition as identified by an exploratory whole brain analysis at a cluster forming 

threshold of z>2.3 and p<0.05 (FWE-corrected). 

Region Voxels Hemisphere Max    
z-value 

x y z 

A) Brain regions with positive correlations 

Postcentral Gyrus 
(extending into the 
Precentral Gyrus) 

687 R 3.16 46 -4 60 

Postcentral Gyrus 567 L 3.35 -34 -32 62 

B) Brain regions with negative correlations 

No supra-threshold activation 

 

 

 

Figure 5. During comprehension probes (i.e., at retrieval) following retraction reports, 

neural activity correlated positively with participants’ subsequent endorsement 

ratings in the left and right postcentral gyrus (PCG). For illustrative reasons, 

corresponding bar graphs portray each region’s parametric response in both 

experimental conditions (mean ± standard error bars). The figure shows group data 

from 26 participants displayed on the MNI 2mm brain template in radiological format 

on sagittal sections. Data were obtained from a mixed effects model (one sample t-

test), with cluster forming threshold of z>2.3, and p<0.05 (FWE-corrected). 
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Finally, six brain regions showed significant differences in their parametric 

activity at retrieval across conditions (see Table 4), including the left PCG (see Fig. 

6). Importantly, the latter observation implied that the left PCG showed a statistically 

significant negative correlation with endorsement ratings in the control condition, a 

statistically significant positive correlation with endorsement ratings in the retraction 

condition, and a significant difference in correlations across conditions (Fig. 7). 

 

Table 4. Peak voxels in MNI coordinates and number of voxels for brain regions 

showing significant differences in correlations between participants’ neural response 

to comprehension probes (i.e., at retrieval) and their endorsement ratings across 

experimental conditions (control vs. retraction) as identified by an exploratory whole 

brain analysis at a cluster forming threshold of z>2.3 and p<0.05 (FWE-corrected). 

Region Voxels Hemisphere Max    
z-value 

x y z 

Control Condition > Retraction Condition 

No supra-threshold activation 

Retraction Condition > Control Condition 

Frontal Pole 543 L 3.42 -30 62 6 

Fusiform Gyrus 829 L 3.51 -40 -48 -22 

Inferior Occipital Cortex 870 R 3.36 52 -70 -12 

Insular Cortex 418 L 3.26 -32 -22 12 

Planum Temporale 1361 R 3.58 32 -26 4 

Postcentral Gyrus 5557 L 4.34 -34 -34 60 
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Figure 6. During comprehension probes (i.e., at retrieval), neural activity correlated 

more strongly with participants’ subsequent endorsement ratings in the retraction 

condition than in the control condition in the left postcentral gyrus (PCG). The 

corresponding bar graph portrays the region’s parametric response in both 

experimental conditions (mean ± standard error bars). The figure shows group data 

from 26 participants displayed on the MNI 2mm brain template in radiological format 

on a sagittal section (see also Table 3). Data were obtained from a mixed effects 

model (paired samples t-test), with cluster forming threshold of z>2.3, and p<0.05 

(FWE-corrected). 

 

 

Figure 7: During comprehension probes (i.e. at retrieval), the left postcentral gyrus 

(PCG) showed a statistically significant negative correlation with endorsement 

ratings in the control condition, a statistically significant positive correlation with 

endorsement ratings in the retraction condition, and a significant difference in 

correlations across conditions. The figure shows the overlap between masks of 

functional results for these three contrasts at the location of the peak voxel for the 

correlation contrast (retraction > control) analysis, displayed on the MNI 2mm brain 

template in radiological format on a sagittal section. 
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5: Discussion 

In line with a growing body of behavioural work, the current study 

demonstrated that simple retractions fail to cancel out the lasting effect of previously 

acquired misinformation (Ecker et al., 2011; Ecker et al., 2010; Ecker et al., 2017 

Gilbert et al., 1990; Johnson & Seifert, 1994; Schul & Mazursky, 1990; Seifert, 2002; 

Wilkes & Leatherbarrow, 1988; for reviews see Lewandowsky et al., 2012; Schwarz 

et al., 2016). Going beyond existing work, however, the current study also 

investigated the neural substrates of this continued influence effect of misinformation 

(CIEM).   

As predicted by the model-updating account, the encoding of identical pieces 

of information elicited differences in brain activity depending on whether the 

information was processed as a retraction or not. Specifically, retractions elicited less 

activity in the right PrC (extending into the PCC and PCG) than non-retractions. This 

observation is particularly notable in the context of prior reports on the role of the 

PrC/PCC. The region has repeatedly been shown to support the integration of 

continuous pieces of verbal information in a coherent mental model (Silbert et al., 

2014; Whitney et al., 2009; Wilson et al., 2008; Xu et al., 2005). In addition, 

reductions in PrC activity have recently been linked to integration difficulties (e.g., 

Lahnakoski et al., 2017). In light of these findings, our data suggest that basic 

integrative and coherence-building mechanisms are less engaged whenever new 

pieces of information that challenge a person’s prior understanding of an event 

require encoding. 

It shall be acknowledged, however, that the PrC also forms a pivotal 

component of the so-called default mode network (DMN). While the DMN is typically 

associated with inward-focus and rest, brain activity in this network is also known to 
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be affected by task difficulty (Greicius & Menon, 2004; Mckiernan et al., 2003). 

Fortunately, our study design excludes the possibility that retractions were simply 

more difficult than non-retractions in terms of their linguistic or semantic properties 

given that the relevant statements were identical. Consequently, any potential 

differences in processing difficulty across conditions could only be related to the 

overall narrative in which the statements were encoded. 

Our surprising finding that the encoding of retractions (compared to non-

retractions) failed to elicit any increase in neural activity throughout the brain is 

deserving of future investigation. For example, retraction statements did not elicit 

stronger activity in the ACC, as is usually found when participants experience a 

violation of their expectancies (Braver et al., 2001; Bush et al., 2000; Carter et al., 

1998; Carter & van Veen, 2007). Given that our sample of participants was 

comparable to many prior fMRI studies that reported ACC activity, this absence of an 

effect may not simply reflect an issue of statistical power. Instead, it may indicate 

that humans have a tendency to encode conflicting pieces of information about an 

event that they did not personally witness as alternative, rather than as mutually 

exclusive, accounts of an event (Ayers & Reder, 1998; Seifert, 2002). This possibility 

deserves particular attention in future research as it could partially explain why 

simple retraction messages tend to be rather ineffective at overcoming 

misinformation.  

The current study also entailed several parametric analyses that examined 

whether brain activity during the encoding of critical new information in sentence 5 

(e.g., “Firecrews […] stated that there was no evidence of a fire.”) was correlated 

with participants’ subsequent responses to comprehension probes that re-visited this 

information (e.g., “Based on this incident, measures […] to prevent fires should be 
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reviewed”). In the control condition, participants’ responses to these comprehension 

probes were more accurate (i.e., elicited lower endorsement ratings), the more they 

engaged the left and right MFG during the encoding of the critical (albeit non-

retracting) information. These findings align well with prior reports that the MFG 

region supports the successful integration of new knowledge in an individual’s 

existing understanding of an event (Moss et al., 2011). Though a comparable effect 

appeared to be absent in the retraction condition (see Fig. 2), a direct comparison of 

parametric MFG activity across conditions failed to reach statistical significance.  

In fact, at encoding, only the left PCG displayed a statistically significant 

difference in parametric activity across conditions. Specifically, it was found that 

activity increases in the left PCG tentatively predicted less accurate responses 

towards comprehension probes (i.e., higher endorsement ratings) in the control 

condition, but not in the retraction condition (see Fig. 3). Our result meshes well with 

other findings that increased activity in the left PCG during the encoding of 

information can signal insufficient processing, which in turn predicts subsequent 

forgetting (Rizio & Dennis, 2013). In light of this observation, our data could indicate 

that participants occassionaly failed to refute misleading comprehension probes in 

the control condition because they failed to successfully memorize the critical 

information in the first place. In comparision, a similar correlational effect should be 

harder to detect in the retraction condition, as sufficient encoding would be more 

consistently and/or more severly compromised in this condition. 

While our neuroimaging results so far lend empirical support to the view that 

the encoding of information differs depending on whether it acts as a retraction or not 

(as postulated by the model updating account; e.g. Ecker et al., 2010; Kendeou et 

al., 2014; Verschueren et al., 2005), we found less evidence that both types of 
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information engage different neural mechanisms during retrieval. First, no systematic 

differences in brain activity were observed when participants processed 

comprehension statements that invited them to re-visit critical information which 

contained retracting (and retracted) information or not. Second, subsequent 

parametric analyses that linked participants’ brain activity during the processing of 

the comprehension statements to their replies to these statements revealed largely 

unexpected results. 

Only in the control condition (but not in the retraction condition), did we detect 

increases in neural activity during the processing of comprehension probes that 

predicted more accurate replies in response to these probes. Among the brain 

regions displaying this pattern of activity were again the right MFG and left PCG. The 

right MFG overlapped considerably with the cluster identified in our previous 

encoding-based parametric analysis. In other words, activity increases predictive of 

accurate replies to comprehension probes were found in a similar portion of the right 

MFG during both encoding and retrieval. This convergence suggests that the region 

may not only play a major role in constituting an individual’s original understanding of 

a (retraction-free) narrative, but also in maintaining it. 

In contrast to the right MFG, localization of parametric activity in the left PCG 

differed across encoding and retrieval. Specifically, parametric activity in the left 

PCG was located more dorsally at retrieval than at encoding. In addition, it was 

found that at retrieval, increased activity in the dorsal portion of the left PCG 

predicted not only more accurate responding towards comprehension probes in the 

control condition, but also less accurate responding towards them in the retraction 

condition. This difference across conditions was statistically significant, emphasizing 

that retrieval-related parametric activity in the left dorsal PCG was directly affected 
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by the presence or absence of retractions in the original news reports. One ad-hoc 

interpretation of this finding draws from the observation that activity in the left dorsal 

PCG can be systematically enhanced whenever participants encounter statements 

that they find implausible (e.g., when Non-Christians read that ‘Jesus Christ really 

performed the miracles attributed to him in the Bible’; Harris et al., 2009). Thus, 

activity in the left dorsal PCG in the current study may have signalled how 

implausible participants found each comprehension probe. In case of particularly 

implausible probes, additional memory checks may have been performed in both 

processing conditions, but with markedly different results. While enhanced scrutiny in 

the control condition should have exclusively activated memories that directly 

contradicted the seemingly implausible probe (thereby helping participants to refute 

it), such scrutiny in the retraction condition may have elicited some (actually 

retracted) memories validating the probe (thereby undermining a person’s 

willingness to simply refute it). Although speculative, these results may provide 

tentative support for the notion that people encode both the incorrect 

(misinformation) and correct (retraction) information concurrently in memory (e.g. 

Ayers & Reder, 1998; Catarino et al., 2015; Ecker et al., 2011; Jacoby & 

Whitehouse, 1989).  

In summary, this study aimed to enhance our understanding of the cognitive 

mechanisms that contribute to the CIEM. To do so, it investigated neural processing 

differences during the encoding and retrieval of retracting and non-retracting 

information using both exploratory and theory-driven data analysis methods. In 

partial support of the model-updating account of the CIEM (e.g., Ecker et al., 2010; 

Kendeou et al., 2014; Verschueren et al., 2005), we found that the same piece of 

information was processed differently in the right PrC/PCC depending on whether it 



MISINFORMATION  PROCESSING                              30 

 

retracted prior information or not. Although previous theorizing strongly suggests that 

the CIEM is also due to inadequate memory suppression and substitution 

mechanisms (Catarino et al., 2015; Ecker et al., 2011), the current study provided 

little evidence in favour of these mechanisms. Future research is therefore needed to 

clarify whether this absence of evidence indicates a minor role of these mechanisms 

in the CIEM or whether fMRI designs need to be further optimized in order to 

adequately capture the impact of these mechanisms.  
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