
December 2017 | Volume 4 | Article 671

Code
published: 18 December 2017
doi: 10.3389/frobt.2017.00067

Frontiers in Robotics and AI | www.frontiersin.org

Edited by:
Ugo Pattacini,

Fondazione Istituto Italiano di
Technologia, Italy

Reviewed by:
Tobias Fischer,

Imperial College London,
United Kingdom

Alessandro Roncone,
Yale University, United States

Lars Schillingmann,
Bielefeld University, Germany

*Correspondence:
Carlo Ciliberto

c.ciliberto@ucl.ac.uk

Specialty section:
This article was submitted to

Humanoid Robotics,
a section of the journal

Frontiers in Robotics and AI

Received: 19 August 2017
Accepted: 22 November 2017
Published: 18 December 2017

Citation:
Ciliberto C (2017) Connecting YARP

to the Web with Yarp.js.
Front. Robot. AI 4:67.

doi: 10.3389/frobt.2017.00067

Connecting YARP to the Web
with Yarp.js
Carlo Ciliberto*

University College London, London, United Kingdom

We present yarp.js, a JavaScript framework enabling robotics networks to interface and
interact with external devices by exploiting modern Web communication protocols. By
connecting a YARP server module with a browser client on any external device, yarp.js
allows to access on board sensors using standard Web APIs and stream the acquired
data through the yarp.js network without the need for any installation. Communication
between YARP modules and yarp.js clients is bi-directional, opening also the possibil-
ity for robotics applications to exploit the capabilities of modern browsers to process
external data, such as speech synthesis, 3D data visualization, or video streaming to
name a few. Yarp.js requires only a browser installed on the client device, allowing for
fast and easy deployment of novel applications. The code and sample applications to
get started with the proposed framework are available for the community at the yarp.js
GitHub repository.

Keywords: yarp, robotics, iCub, web, websocket, Internet of things

1. INTRodUCTIoN

Smartphones, tablets, and wearable devices have drastically changed human communication and
are nowadays a key component of everyday life, enabling humans to connect with each other and
other devices in real time, forming a dense network of complex and frequent interactions. In this
revolution, the Internet and Web technologies in general are playing the key role of a “lingua franca,”
establishing novel standards for modern communication protocols adopted by most platforms and
operating systems. Indeed, as information technologies advance, we are steadily moving toward an
“Internet of Things (IoT)” (Xia et al., 2012), where everyday object will be able to offer an interface
for digital communication with humans and other devices.

In this scenario, robotic agents designed to operate in human environments will undoubtedly
need to be well-versed in these new practices to seamlessly integrate within the IoT network.
Towards this goal, in this paper we present yarp.js, a novel framework developed with the goal of
connecting the YARP network with external devices using modern Internet protocols. YARP (Metta
et al., 2006) is to date one of the most efficient and flexible robotics middlewares, adopted by many
robotics laboratories worldwide and used as main communication tool for robotic platforms, such
as the humanoid iCub (Metta et al., 2008) and R1 (Parmiggiani et al., 2017). In this sense, yarp.js
provides a platform-independent approach to establish a two-way communication between YARP
modules (e.g., the robot itself or other machines on the YARP network) and external systems whose
only requirement is the ability to run an Internet browser.

Yarp.js decouples a server side, which must run on the YARP network, from a client side, which
simply needs to be capable of tcp/ip communication with the server. The server side is built over a
Node.js (Tilkov and Vinoski, 2010) abstraction layer wrapping the main YARP functionalities (e.g.,
opening/connecting ports, creating bottles or images, and writing/reading them via ports). Two

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/151188141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.frontiersin.org/Robotics_and_AI
http://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2017.00067&domain=pdf&date_stamp=2017-12-18
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.frontiersin.org/Robotics_and_AI/editorialboard
http://www.frontiersin.org/Robotics_and_AI/editorialboard
https://doi.org/10.3389/frobt.2017.00067
http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:c.ciliberto@ucl.ac.uk
https://doi.org/10.3389/frobt.2017.00067
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00067/full
https://www.frontiersin.org/Journal/10.3389/frobt.2017.00067/full
http://loop.frontiersin.org/people/337026

FIgURe 1 | Example of YARP network connected with non-YARP-capable
devices on the Web via yarp.js.

2

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

main benefits arise from this choice of server-side language: 1)
the possibility to write YARP modules in Node.js and therefore,
leverage the wide range of packages made available by the related
community via the well-established Node Package Manager
(NPM),1 and 2) the event-based philosophy of Node.js offers a
different perspective for programming the robot cognitive skills,
possibly allowing for novel and more reactive behaviors. Yarp.js
server is supported on OSX 10.11.6+ and Ubuntu 16.04+.

The client side of yarp.js consists of a pure JavaScript library
and runs on both Google Chrome2 and Firefox3 browsers.
Communication is performed across WebSockets, which allow
for real-time exchange of data between the device on which the
client is running and the server. Yarp.js endows both client and
server with same functionalities, allowing also clients on external
device to open and write/read on a YARP port. This is particu-
larly useful to connect an external sensor, such as a smartphone
microphone, inertial sensors, camera, etc., to the YARP network
and allowing other modules to access its measurements. In this
sense, yarp.js allows to effortlessly extend YARP functionalities
to non-YARP devices by simply serving the required JavaScript
library so that there is no need for custom installation, essentially
making yarp.js automatically platform-independent on any
browser-enabled device.

Yarp.js v1.0.04 is available for the community as a GitHub
repository.5 We have provided a number of examples for new
users to get started with the proposed framework.

2. BACKgRoUNd ANd MoTIVATIoNS

We introduce the necessary background and motivations to
understand the main contributions of yarp.js.

2.1. YARP
Yet Another Robot Platform (YARP) (Metta et al., 2006) is a
framework developed to handle the low-level communication
processes between different sensors, processors, and actuators
in robotics applications. The main goal of YARP is to provide
researchers and developers with a unifying cross-platform layer
of communication in order to foster the diffusion and reproduc-
ibility of novel results in robotics. Figure 1 (left half) reports a
pictorial representation of a YARP network, where a number of
computational nodes (gray circles) communicate with each other
by leveraging on the abstraction layer offered by YARP (blue lines).
In a spirit similar to YARP, several robotics frameworks have been
proposed in the recent literature, such as Player (Gerkey et al.,
2003), ROS (Quigley et al., 2009), OROCOS (Bruyninckx, 2001),
MIRO (Utz et al., 2002), and LCM (Huang et al., 2010) to name
a few. We refer to Fitzpatrick et al. (2014) for a discussion on the
topic.

Unarguably, the most successful example of YARP application
is the iCub (Metta et al., 2008), a humanoid robot adopted by

1 https://www.npmjs.com.
2 https://www.google.com/chrome.
3 https://www.mozilla.org.
4 Yarp.js DOI: https://doi.org/10.5281/zenodo.1007786.
5 https://github.com/robotology/yarp.js.

more than 30 laboratories worldwide: Exploiting the flexibility
of YARP functionalities, computational models developed by
a number of different research groups to perform diverse tasks
ranging from torque control (Fumagalli et al., 2010, 2012; Del
Prete et al., 2012) to grasping (Gori et al., 2014), balancing (Pucci
et al., 2016), visual attention (Ruesch et al., 2008), visual or haptic
object recognition (Ciliberto et al., 2013; Higy et al., 2016), super-
vised learning (Gijsberts and Metta, 2011), can be combined on
the same platform, enabling the robot with advanced cognitive
capabilities such as in Ivaldi et al. (2013); Fischer and Demiris
(2016); Morse and Cangelosi (2017).

2.2. Robots, Modern Web APIs,
and Node.js
With the diffusion of lightweight portable devices, such as
smartphones and tables, in recent years it has become a necessity
for web applications to efficiently access and process information
acquired from diverse sensors, such as microphones, embedded
cameras, or inertial sensors. To this end, most modern browser
has designed a wide range of APIs that allow accessing such
resources across most devices, platforms, and operating systems.
This has significantly fostered the deployment and diffusion
of many novel applications capable of running natively in the
browser, such as image object recognition,6 GPS mapping and
route planning,7 speech-based assistants,8 videoconferencing,9
navigation in virtual reality environments10 to name a few.

Making these capabilities available to a robot is clearly
appealing and indeed the potential benefits of such interaction
have been thoroughly investigated in the literature (Taylor and
Wright, 1995; Hu et al., 2012; Kamei et al., 2012; Kehoe et al.,
2015). However, robotics application typically requires real-
time performance and deploying the necessary communication
infrastructure to satisfy such requirements can be difficult or not
possible due to compatibility issues. On the contrary, Web APIs
are already designed to take care of the low-level communication
with embedded sensors as well as the transmission of data across

6 https://www.clarifai.com/.
7 maps.google.com.
8 https://sdkcarlos.github.io/sites/artyom.html.
9 https://appr.tc/.
10 https://playcanv.as/p/sAsiDvtC/.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://www.npmjs.com
https://www.google.com/chrome
https://www.mozilla.org
https://doi.org/10.5281/zenodo.1007786
https://github.com/robotology/yarp.js
https://www.clarifai.com/
http://maps.google.com
https://sdkcarlos.github.io/sites/artyom.html
https://appr.tc/
https://playcanv.as/p/sAsiDvtC/

3

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

a network (i.e., the Internet). In this sense, the yarp.js framework
proposed in this work acts as an intermediate layer allowing
YARP and a browser to communicate, essentially “assimilating”
non-YARP capable devices within the robot’s network.

The above motivations are shared with recent work (Osentoski
et al., 2011; Toris et al., 2015), where a JavaScript framework
was developed to allow portable devices to communicate with
the Robot Operating System (ROS) using Websockets and
JavaScript. In this sense, the client side of yarp.js can be inter-
preted as the equivalent of the ros.js framework for the YARP
environment, and one interesting byproduct of this work is the
possibility to create applications that naturally bridge YARP
and ROS frameworks by leveraging the two corresponding
JavaScript libraries.

A second relevant byproduct of our work is the extension
of standard YARP C++ routines to Node.js. This could be
beneficial in developing robotics applications. Indeed, Node.
js (and more generally JavaScript) is based on a system of
callbacks that are activated when the corresponding registered
event occurs (Tilkov and Vinoski, 2010). While this approach
can be equivalently implemented in more traditional languages
used in robotics (indeed its core is based on a C++ engine),
Node.js encourages a programming style that is asynchronous
by design and in this sense could be helpful in speeding-up
the development of high-level applications in robotics without
the need for ad-hoc careful synchronization between multiple
modules and threads. As a practical example, consider the
ActionsRenderingEngine (ARE)11: this iCub module manages
a number of possible behaviors for the robot, combining both
visual cues and motor actions and requires several threads (e.g.,
a vision thread, a motor thread, a visuo-motor thread, etc.) to be
carefully synchronized in order to avoid low-level errors (e.g.,
concurrent memory access). This module would be significantly
easier to develop (and read/debug), if written in an event-based
language where the low-level details related to asynchrony are
taken care of by design.

In the rest of this paper, we describe yarp.js and present a
number of sample applications highlighting the potential benefits
of the proposed framework in robotics.

3. SYSTeM oVeRVIeW

Yarp.js is conceptually organized in two separate components:
a server side, equipped with YARP communication capabilities
and a client side, which is able to transmit and receive data from
other nodes on the YARP network by exploiting the server side
as a proxy. Figure 1 reports a pictorial representation of a yarp.
js network, where messages from non-YARP equipped devices
(e.g., smartphones, tablets, etc.) are first sent via WebSockets
(green lines) to the yarp.js server and then propagated through
the YARP network (blue lines). The communication with YARP
and WebSockets is bi-directional, allowing to transmit data from
the network to the client.

The two-level structure of yarp.js is imposed by the nature
of web technologies. Indeed, while on one hand browsers offer

11 http://wiki.icub.org/brain/group__actionsRenderingEngine.html.

flexible cross-platform solutions to the deployment of novel
applications, they also need to cope with extremely critical
security issues (e.g., handling of passwords or sensitive data over
the Internet). As a consequence, code running in the browser
is allowed very limited interaction with the rest of the machine
hosting it, let alone other machines on the same local network.
In this sense, the server side of yarp.js can be interpreted as a
standard YARP module that is also able to communicate with the
browser, effectively acting as the missing link between the client
and the YARP network.

As a final note, we care to point out that YARP is already
equipped with basic HTTP communication functionalities12 via
Representation State Transfer (REST) (Fielding, 2000). However,
RESTful interoperability is not suited for real-time two-way com-
munication between server and client; one of the main motiva-
tions that led to the design of the WebSocket standard (Lubbers
and Greco, 2010).

3.1. Server Side: YARP in Node.js
The server side of yarp.js is written in Node.js (Tilkov and Vinoski,
2010) and comprises two layers: first, a low-level library of C++
addons for Node.js 13 that allows to access and use YARP objects
and functionalities from the Node.js environment. Second, a set
of Node.js APIs offering easier management of the YARP addons
(e.g., opening and connections of ports) as well as communica-
tion with client browsers. Below, we discuss these two layers in
detail.

3.1.1. First Layer: Node.js Addons for YARP
(Language C++ → Node.js)
This layer exposes the APIs to create the following YARP objects
as Node.js objects: Bottle, Image, Sound, BufferedPort, RPCPort,
and Network. It is written in C++ using the Native Abstraction for
Node.js (NAN)14 library and provides a set of Node.js wrappers
for the corresponding YARP objects. As an example, below we
report the minimal Node.js code to open a YARP port and write
a Bottle on it using yarp.js.

var yarp = require(’<yarp.js-folder>/build/Release/
Yarp JS’);

//get yarp.js
var yarp_net = new yarp.Network();

//get the YARP network

var port = new yarp.BufferedPortBottle();
//create a port

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write

bottle.fromString(’hello yarp.js!’);
//fill the Bottle

port.write();
//write it over the network

12 http://www.yarp.it/yarp_http.html.
13 https://nodejs.org/api/addons.html.
14 https://github.com/nodejs/nan.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://wiki.icub.org/brain/group__actionsRenderingEngine.html
http://www.yarp.it/yarp_http.html
https://nodejs.org/api/addons.html
https://github.com/nodejs/nan

4

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

Note that these addons can be used as a standalone package
to develop YARP modules in Node.js. This is extremely advanta-
geous that it allows to effortlessly import Node.js packages from
NPM to YARP applications. As a matter of fact, the second layer
of yarp.js leverages a number of NPM packages to manage the
communication between YARP and the browsers.

Callbacks. Callbacks can be provided dynamically to YARP
objects. Below, we report the minimal code for reading from a port
and printing the content of the received message on the terminal.

port.onRead(function(yarp_object){
console.log(’Message received: ’+yarp_object.
toString());

});

Extending yarp.js. By leveraging on the NAN abstraction
layer, it is possible to easily extend yarp.js addons with new
functionalities or create new ones wrapping other YARP objects.
However, one aspect of this process deserves particular care,
namely the conceptual separation between the threaded nature of
YARP applications and the event-based philosophy of Node.js. To
this end, we provide the C++ class YarpJS_Callback, which
stems a separate Node.js worker thread from the main one and
runs the prescribed callback function when the required event
occurs. This allows to dynamically provide callback functions to
YARP objects as discussed above.

3.1.2. Second Layer: Yarp.js Server Manager
(Language Node.js)
The second layer is a JavaScript module wrapping the yarp.js
addons provided and offering (opinionated) management func-
tionalities: 1) a Port Manager handling operations on the YARP
network, such as opening/closing/connection of ports and 2) a
Browser Communicator in charge of the communication with
the client via WebSocket. In particular, this latter component
interprets messages from the browser as either messages to be
propagated to the network or as YARP commands that cannot be
executed directly from the browser (e.g., opening a port).

Port Manager. This component exposes a set of functions
meant to simplify the management of the YARP network from
the Node.js module. Specifically, it allows to recover ports by
name, connect two ports, and offer fallbacks in case of name
conflicts (e.g., more clients trying to open the same port). It also
manages to close all hanging objects when the Node.js module
ends, cleaning memory and the YARP network. The code snippet
below shows the difference in using the manager rather than the
rawNode.js addons.

var yarp = require(’<yarp.js-folder>/yarp.js’);
//get yarp.js

//no need to call YARP network

var port = new yarp.Port(’bottle’);
//create a port

port.open(’/yarpjs/example’);
//open it on the YARP network

var bottle = port.prepare();
//prepare the Bottle to write

bottle.fromString(’hello yarp.js!’);
//fill the Bottle

port.write();
//write it over the network

//alternatively, port.write(’hello yarp.js!’); would do
the same

Browser Communicator. The browser communication
component is based on the Socket.io package, which is designed
to create webservers with robust WebSockets functionalities. To
initialize the yarp.js manager it is sufficient to provide a Socket.
io object to the Browsercommunicator method. All the
communication with client browsers is then automatically
handled. The following code makes use of the standard HTTP15
and Express16 packages to provide a minimal example on how to
create a webserver offering yarp.js functionalities and listening on
a port for incoming connections.

var http = require(’http’).Server(require
(’express’)());

//create the web server
var io = require(’socket.io’)(http);

//create the Socket.io object
http.listen(3000);

//Run the server on locahlhost:3000

var yarp = require(’<path to yarp.js>’);
//get the yarp.js addons layer

yarp.browserCommunicator(io);
//Initialize the yarp.js manager

Once the yarp.js manager is initialized with Socket.io, all
messages coming from the client side of yarp.js are automatically
captured and processed by it. In Section 3.2, we list the main
functionalities offered by using this intermediate layer.

This component is in charge of communicating to the Port
Manager in which YARP ports are to be opened instead of the
browser clients. In particular, whenever such a port reads a mes-
sage in input, the Browser Communicator recovers it and pushes
to the corresponding clients via WebSockets. This piping of the
message is meant to create the “illusion” of having the brows-
ers directly reading from the port. This is extremely helpful to
develop code for the client side of yarp.js, however, it is important
to keep in mind that for computationally intensive applications
the Browser Communicator could become a bottleneck through
which all messages from YARP to the clients need to flow. Clearly,
this issue could be mitigated by having more than one yarp.js
server module running on the network.

3.2. Client Side: YARP in the Browser
(Language JavaScript)
The client side of yarp.js is a lightweight JavaScript library that
leverages the browser implementation of Socket.io to commu-
nicate with the server side described in Section 3.1. The only
requirement in this sense is for the browser to have WebSocket
functionalities. Yarp.js can be initialized using the following code,

15 https://nodejs.org/api/all.html.
16 https://expressjs.com.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://nodejs.org/api/all.html
https://expressjs.com

5

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

which here is assumed to be placed in the HTML page served to
the browser:

<script src = "/socket.io/socket.io.js"></script>
<script src = "/yarp.js"></script>
<script>

yarp.init(io());
yarp.onInit(function(){
//yarp.jscode

});
</script>

The yarp.js manager on the client side offers the same APIs
of the Port Manager on the server side. Specifically, it exposes
a Network object that can be used to create new connections
among ports on the YARP network and also a Port object that
can be used to create new buffered ports and open them. As
explained before, these operations cannot be performed directly
by the client but are rather executed on the server side of yarp.js
after receiving the corresponding message via WebSocket. Below,
we report a code sample showing how to open a port and write/
read messages which are automatically sent to the YARP network.
All JavaScript code is to be assumed to be run within the onInit.

let port = new Port(port_type);
//port_type default: ’bottle’

port.open(port_name);
//if the port does not exist the server open

ones.

port.write([1,2,3]);
//write a bottle containing 3 integers

port.onRead(function(yarp_object){
console.log(yarp_object.toString());

});

The functionalities of yarp.js in the browser allow to easily
develop and deploy YARP applications on the hosting device as
we describe in the following.

4. APPLICATIoNS

On the yarp.js repository we provide a number of sample applica-
tions to get new users started with the proposed framework. They are
organized in a single bundle17 that can be run by executing the code

$>node examples/examples.js

on the machine, where the server side of yarp.js is installed. Then,
from any other device on the same local network, the example
bundle can be accessed by navigating with Firefox on Google
Chrome browser on http://<ip.of.yarpjs.machineer:3000.

Figure 2 shows how examples are rendered to the user.

4.1. Reading and Transmitting Inertial data
This application shows how sensors on external devices (e.g.,
where YARP is not installed) can be accessed from the YARP

17 https://github.com/robotology/yarp.js/tree/master/examples.

network. We make use of the Web API18 to read from the inertial
sensor of a smartphone and stream it through a port.

window.addEventListener("deviceorientation",
function(event){

port_orientation_out.write([event.alpha,event.
beta,event.gamma]);

}, true);

Another client can read the inertial data streamed through
the network and visualize the corresponding 3D orientation of
the device using WebGL functionalities (a topic addressed in
more detail in Section 4.4). Figure 2B shows a snapshot of this
application.

4.2. Speech Recognition and Synthesis
This application uses the Web Speech API19 for speech recogni-
tion and synthesis. To simplify the access to the Web Speech API
yarp.js provide a synthetizer

yarpSpeakPort.onRead(function(msg){
yarp.Synthetizer.speak(msg);

});

which allows to speak aloud text, read from a YARP port and
Recognizer module

yarp.Recognizer.enableAutorestart();
\\starts the speech recognition module

yarp.Recognizer.addEventListener(’yarp speech finished’,
function (e) {

yarpSpeechRecPort.write(e.detail[0].transcript);
}, false);

which recognizes human speech from the embedded micro-
phone and emits the event “yarp speech finished” as
soon as the Web Speech API consider the audio signal to have
terminated.

4.3. Stream Video (a “yarpview” in the
Browser)
YARP images can be read from a port on the yarp.js client and
visualized in the browser. Ideally, the WebRTC protocol (Johnston
and Burnett, 2012) should be adopted for the transmission of
large amounts of data over UDP. Unfortunately, to this date a
standard solution for server-to-browser WebRTC communica-
tion does not exist. To reduce the burden on the server/client
communication, we compress the images in either PNG or JPEG
before sending them over WebSockets.

Images can be then visualized in a <canvas> HTML ele-
ment using the following code.

let canvas = document.getElementByTag(’canvas’);
let img = new Image();

18 https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation.
19 https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://<ip.of.yarpjs.machineer:3000
https://github.com/robotology/yarp.js/tree/master/examples
https://developer.mozilla.org/en-US/docs/Web/API/Window/ondeviceorientation
https://dvcs.w3.org/hg/speech-api/raw-file/tip/speechapi.html

FIgURe 2 | The bundle of yarp.js application examples available on the project repository. (A) Landing page of the examples bundle. (B) Reading and transmitting
inertial data (Section 4.1). (C) Speech Recognition and Synthesis (Section 4.2). (d) Visualizing Yarp Images in the Browser (Section 4.3). (e) 3D Visualization of YARP
data (Section 4.4). (F) Face tracking for robot teleoperation 4.5. All depicted individuals provided their consent for the publication of this image.

6

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

port_video_in.onRead(function(yarp_img){
img.src = yarp.getImageSrc(yarp_img.compres-
sion_type,yarp_img.buffer);
canvas.getContext(’2d’).drawImage(img,0,0);

});

Figure 2D shows the yarp.js acting as a yarpviewer20 in
the browser.

4.4. 3d Visualization of YARP data
WebGL21 is a standard Web API providing 3D graphics function-
alities on the browser. Exploiting the three.js-WebGL library22,
we built a simple application to visualize point clouds read from
YARP ports received as Bottles of one or more 3D array which are
interpreted as 3D cordinates and rendered in a navigable virtual
scene (Figure 2E).

Note that allowing the browser to directly interact with the
graphic card of the hosting machine opens a wide range of
possibilities. Indeed, recently there has been interest in develop-
ing applications to run Deep Learning models directly in the
browser.23

4.5. Teleoperation with Face Tracking
We conclude by proposing a teleoperation application, where a
face tracker running in the browser is used to actively control
the head of the iCub robot. We used the Tracker.js24 library
to capture images from the device camera, detect the face

20 http://www.yarp.it/yarpview.html.
21 https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API.
22 https://threejs.org.
23 http://cs.stanford.edu/people/karpathy/convnetjs, https://github.com/transcra-
nial/keras-js, https://pair-code.github.io/deeplearnjs/, https://tenso.rs.
24 https://trackingjs.com.

of a user, and obtain the (u,v) position of the corresponding
rectangle in the image. Then, the position was translated to a
3D point

 () ()x y z u w v h, , = − , / − . , / − .1 0 5 0 3

which is sent to the /xd:i port of the iKinGazeCtrl25
(Roncone et al., 2016) to control the gaze of the robot to point
toward it. See the following code.

let tracker = new tracking.Object Tracker
(’face’);
tracker.on(’track’, function(event){

let rect = event.data[0];
let u = rect.x + rect.width/2;
let v = rect.y + rect.height/2;

gazePort.write([-1, (u/w - 0.5), (v/h - 0.3)]);
});

where w and h, respectively denote the height and width of the
device camera. Figure 2F shows an example of this application,
where images streamed from the robot camera are send back to
the browser are described in Section 4.3.

5. CoNCLUSIoN

We have presented yarp.js, a JavaScript framework to enable
YARP-based robotics systems with modern Web APIs function-
alities. Yarp.js allows modules running on the YARP network
to access sensors information on devices that are not equipped
with the YARP communication layer by exploiting WebSocket
communication. By leveraging on Web technologies, applications

25 http://wiki.icub.org/brain/group__iKinGazeCtrl.html.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
http://www.yarp.it/yarpview.html
https://developer.mozilla.org/en-US/docs/Web/API/WebGL_API
https://threejs.org
http://cs.stanford.edu/people/karpathy/convnetjs
https://github.com/transcranial/keras-js
https://github.com/transcranial/keras-js
https://pair-code.github.io/deeplearnjs/
https://tenso.rs
https://trackingjs.com
http://wiki.icub.org/brain/group__iKinGazeCtrl.html

7

Ciliberto Connecting YARP to the Web with Yarp.js

Frontiers in Robotics and AI | www.frontiersin.org December 2017 | Volume 4 | Article 67

ReFeReNCeS

Bruyninckx, H. (2001). “Open robot control software: the Orocos project,” in
Proceedings 2001 IEEE International Conference on Robotics and Automation,
ICRA 2001, Vol. 3 (Seoul: IEEE), 2523–2528.

Ciliberto, C., Fanello, S. R., Santoro, M., Natale, L., Metta, G., and Rosasco, L. (2013).
“On the impact of learning hierarchical representations for visual recognition in
robotics,” in 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) (Tokyo: IEEE), 3759–3764.

Del Prete, A., Nori, F., Metta, G., and Natale, L. (2012). “Control of contact
forces: the role of tactile feedback for contact localization,” in 2012 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (San
Francisco: IEEE), 4048–4053.

Fielding, R. (2000). “Representational state transfer,” in Architectural Styles and the
Design of Netowork-Based Software Architecture, 76–85.

Fischer, T., and Demiris, Y. (2016). “Markerless perspective taking for humanoid
robots in unconstrained environments,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA) (Stockholm: IEEE), 3309–3316.

Fitzpatrick, P., Ceseracciu, E., Domenichelli, D., Paikan, A., Metta, G., and Natale, L.
(2014). A middle way for robotics middleware. J. Software Eng. Robot. 5, 42–49.

Fumagalli, M., Ivaldi, S., Randazzo, M., Natale, L., Metta, G., Sandini, G., et al.
(2012). Force feedback exploiting tactile and proximal force/torque sensing.
Auton. Robots 33, 381–398. doi:10.1007/s10514-012-9291-2

Fumagalli, M., Randazzo, M., Nori, F., Natale, L., Metta, G., and Sandini, G. (2010).
“Exploiting proximal f/t measurements for the icub active compliance,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Taipei: IEEE), 1870–1876.

Gerkey, B., Vaughan, R. T., and Howard, A. (2003). “The player/stage project:
tools for multi-robot and distributed sensor systems,” in Proceedings of the 11th
International Conference on Advanced Robotics, Coimbra, Vol. 1, 317–323.

Gijsberts, A., and Metta, G. (2011). “Incremental learning of robot dynamics
using random features,” in 2011 IEEE International Conference on Robotics and
Automation (ICRA) (Shanghai: IEEE), 951–956.

Gori, I., Pattacini, U., Tikhanoff, V., and Metta, G. (2014). “Three-finger precision
grasp on incomplete 3d point clouds,” in 2014 IEEE International Conference on
Robotics and Automation (ICRA) (Hong Kong: IEEE), 5366–5373.

Higy, B., Ciliberto, C., Rosasco, L., and Natale, L. (2016). “Combining sensory
modalities and exploratory procedures to improve haptic object recognition in
robotics,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids) (Cancun: IEEE), 117–124.

Hu, G., Tay, W. P., and Wen, Y. (2012). Cloud robotics: architecture, challenges and
applications. IEEE Netw. 26. doi:10.1109/MNET.2012.6201212

Huang, A. S., Olson, E., and Moore, D. C. (2010). “LCM: lightweight communica-
tions and marshalling,” in 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (Taipei: IEEE), 4057–4062.

Ivaldi, S., Lyubova, N., Droniou, A., Gerardeaux-Viret, D., Filliat, D., Padois, V.,
et al. (2013). “Learning to recognize objects through curiosity-driven manip-
ulation with the icub humanoid robot,” in 2013 IEEE Third Joint International
Conference on Development and Learning and Epigenetic Robotics (ICDL)
(Osaka: IEEE), 1–8.

Johnston, A. B., and Burnett, D. C. (2012). WebRTC: APIs and RTCWEB Protocols
of the HTML5 Real-Time Web. Digital Codex LLC.

Kamei, K., Nishio, S., Hagita, N., and Sato, M. (2012). Cloud networked robotics.
IEEE Netw. 26. doi:10.1109/MNET.2012.6201213

Kehoe, B., Patil, S., Abbeel, P., and Goldberg, K. (2015). A survey of research on
cloud robotics and automation. IEEE Trans. Autom. Sci. Eng. 12, 398–409.
doi:10.1109/TASE.2014.2376492

Lubbers, P., and Greco, F. (2010). HTML5 web sockets: a quantum leap in scalability
for the web. SOA World Mag. 1.

Metta, G., Fitzpatrick, P., and Natale, L. (2006). Yarp: yet another robot platform.
Int. J. Adv. Robot. Syst. 3, 8. doi:10.5772/5761

Metta, G., Sandini, G., Vernon, D., Natale, L., and Nori, F. (2008). “The ICUB
humanoid robot: an open platform for research in embodied cognition,” in
Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems
(Gaithersburg: ACM), 50–56.

Morse, A. F., and Cangelosi, A. (2017). Why are there developmental stages in
language learning? a developmental robotics model of language development.
Cogn. Sci. 41, 32–51. doi:10.1111/cogs.12390

Osentoski, S., Jay, G., Crick, C., Pitzer, B., DuHadway, C., and Jenkins, O. C.
(2011). “Robots as web services: reproducible experimentation and application
development using ROSJS,” in 2011 IEEE International Conference on Robotics
and Automation (ICRA) (Shanghai: IEEE), 6078–6083.

Parmiggiani, A., Fiorio, L., Scalzo, A., Sureshbabu, A. V., Randazzo, M., Maggiali, M.,
et al. (2017). “The design and validation of the r1 personal humanoid,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(Vancouver: IEEE), 2591–2598.

Pucci, D., Romano, F., Traversaro, S., and Nori, F. (2016). “Highly dynamic bal-
ancing via force control,” in 2016 IEEE-RAS 16th International Conference on
Humanoid Robots (Humanoids) (Cancun: IEEE), 141–141.

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., et al. (2009). “Ros:
an open-source robot operating system,” in ICRA Workshop on Open Source
Software, Vol. 3 (Kobe), 5.

Roncone, A., Pattacini, U., Metta, G., and Natale, L. (2016). “A cartesian 6-dof gaze
controller for humanoid robots,” in Proceedings of Robotics: Science and Systems,
AnnArbor, MI. doi:10.15607/RSS.2016.XII.022

Ruesch, J., Lopes, M., Bernardino, A., Hornstein, J., Santos-Victor, J., and Pfeifer, R.
(2008). “Multimodal saliency-based bottom-up attention a framework for the
humanoid robot icub,” in 2008 IEEE International Conference on Robotics and
Automation, ICRA 2008 (Pasadena: IEEE), 962–967.

Taylor, A. L., and Wright, J. T. (1995). “A telerobot on the world wide web,” in In
National Conference of the Australian Robot Association (Melbourne: Citeseer).

Tilkov, S., and Vinoski, S. (2010). Node. js: using javascript to build high-per-
formance network programs. IEEE Internet Comput. 14, 80–83. doi:10.1109/
MIC.2010.145

Toris, R., Kammerl, J., Lu, D. V., Lee, J., Jenkins, O. C., Osentoski, S., et al. (2015).
“Robot web tools: efficient messaging for cloud robotics,” in 2015 IEEE/
RSJ International Conference on Intelligent Robots and Systems (IROS) (Chicago:
IEEE), 4530–4537.

Utz, H., Sablatnog, S., Enderle, S., and Kraetzschmar, G. (2002). Miro-middleware
for mobile robot applications. IEEE Trans. Robot. Autom. 18, 493–497.
doi:10.1109/TRA.2002.802930

Xia, F., Yang, L. T., Wang, L., and Vinel, A. (2012). Internet of things. Int. J. Commun.
Syst. 25, 1101. doi:10.1002/dac.2417

Conflict of Interest Statement: The author declares that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Copyright © 2017 Ciliberto. This is an open-access article distributed under the terms
of the Creative Commons Attribution License (CC BY). The use, distribution or
reproduction in other forums is permitted, provided the original author(s) or licensor
are credited and that the original publication in this journal is cited, in accordance
with accepted academic practice. No use, distribution or reproduction is permitted
which does not comply with these terms.

based on yarp.js are easy to deploy and develop. We have presented
a number of applications showing the benefit of the proposed
approach.

Yarp.js is easy to extend and a main challenge in the future
will be to enrich its capabilities with WebRTC functionalities,
which would be the natural solution to the issues related to the
transmission of large amounts of data between server and client.
We will investigate this direction in future work.

AUTHoR CoNTRIBUTIoNS

The author confirms being the sole contributor of this work and
approved it for publication.

FUNdINg

This work was supported by EPSRC grant EP/P009069/1.

http://www.frontiersin.org/Robotics_and_AI
http://www.frontiersin.org
http://www.frontiersin.org/Robotics_and_AI/archive
https://doi.org/10.1007/s10514-012-9291-2
https://doi.org/10.1109/MNET.2012.6201212
https://doi.org/10.1109/MNET.2012.6201213
https://doi.org/10.1109/TASE.2014.2376492
https://doi.org/10.5772/5761
https://doi.org/10.1111/cogs.12390
https://doi.org/10.15607/RSS.2016.XII.022
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/MIC.2010.145
https://doi.org/10.1109/TRA.2002.802930
https://doi.org/10.1002/dac.2417
http://creativecommons.org/licenses/by/4.0/

	Connecting YARP to the Web
with Yarp.js
	1. Introduction
	2. Background and Motivations
	2.1. YARP
	2.2. Robots, Modern Web APIs,
and Node.js

	3. System Overview
	3.1. Server Side: YARP in Node.js
	3.1.1. First Layer: Node.js Addons for YARP (Language C++ → Node.js)
	3.1.2. Second Layer: Yarp.js Server Manager (Language Node.js)

	3.2. Client Side: YARP in the Browser (Language JavaScript)

	4. Applications
	4.1. Reading and Transmitting Inertial Data
	4.2. Speech Recognition and Synthesis
	4.3. Stream Video (a “yarpview” in the Browser)
	4.4. 3D Visualization of YARP Data
	4.5. Teleoperation with Face Tracking

	5. Conclusion
	Author Contributions
	Funding
	References

