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ABSTRACT 23 

The consequences of inbreeding for fitness are important in evolutionary and 24 

conservation biology, but can critically depend on genetic purging. However, estimating 25 

purging has proven elusive. Using PURGd software, we assess the performance of the 26 

Inbreeding-Purging (IP) model and of ancestral inbreeding (Fa) models to detect purging in 27 

simulated pedigreed populations, and to estimate parameters that allow reliably predicting 28 

the evolution of fitness under inbreeding. The power to detect purging in a single small 29 

population of size N is low for both models during the first few generations of inbreeding (t 30 

≈ N/2), but increases for longer periods of slower inbreeding and is, on average, larger for 31 

the IP model. The ancestral inbreeding approach overestimates the rate of inbreeding 32 

depression during long inbreeding periods, and produces joint estimates of the effects of 33 

inbreeding and purging that lead to unreliable predictions for the evolution of fitness. The IP 34 

estimates of the rate of inbreeding depression become downwardly biased when obtained 35 

from long inbreeding processes. However, the effect of this bias is canceled out by a 36 

coupled downward bias in the estimate of the purging coefficient so that, unless the 37 

population is very small, the joint estimate of these two IP parameters yields good 38 

predictions of the evolution of mean fitness in populations of different sizes during periods 39 

of different lengths. Therefore, our results support the use of the IP model to detect 40 

inbreeding depression and purging, and to estimate reliable parameters for predictive 41 

purposes. 42 

  43 
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INTRODUCTION 44 

Inbreeding depression is a major threat to the survival of small endangered 45 

populations. It is mainly due to the increase in the frequency of homozygous 46 

genotypes for deleterious recessive alleles, which leads to fitness decay and increased 47 

extinction risk (Lande, 1994; Hedrick and Kalinowski, 2000; O’Grady et al., 2006; 48 

Charlesworth and Willis, 2009). However, deleterious recessive alleles that escape selection 49 

in non-inbred populations because they are usually in heterozygosis, can be purged under 50 

inbreeding as they are exposed in homozygosis. This is expected to result in a reduction 51 

of fitness depression and in some fitness recovery, unless the effective population size and 52 

the effects of deleterious alleles are so small that drift overwhelms natural selection (Garćıa-53 

Dorado, 2012, 2015). 54 

While inbreeding depression is ubiquitously documented (Crnokrak and Roff, 1999; 55 

O’Grady et al., 2006), there is far less empirical evidence for the effect of genetic 56 

purging. Evidence of purging has often been obtained in situations where inbreeding 57 

increases slowly, but many studies have failed to detect purging in both wild and captive 58 

populations or have just detected purging effects of small magnitude, particularly 59 

under fast inbreeding or during short periods of slow inbreeding (Ballou, 1997; Bryant et 60 

al., 1999; Byers and Waller, 1999; Crnokrak and Barrett, 2002; Boakes et al., 2006; 61 

Kennedy et al., 2014). This is not surprising, since purging is expected to be less efficient 62 

under faster inbreeding, but more delayed under slower inbreeding. Furthermore, purging 63 

can be difficult to detect because of lack of experimental power or confounding effects, as 64 

concurring adaptive processes (Hedrick and García-Dorado, 2016; López-Cortegano et al., 65 

2016). Thus, failure to detect purging does not mean that purging is irrelevant in actual 66 

populations. Developing methods and tools to detect and evaluate purging is of critical 67 

importance in conservation, as it may help to improve management policies. 68 
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The first models aimed to detect purging from pedigreed fitness data were based on 69 

different regression approaches that use an ancestral inbreeding coefficient (Fa) to define 70 

the independent variable(s) accounting for purging (Ballou, 1997; Boakes et al., 2006). 71 

This Fa coefficient, first described by Ballou (1997), represents the average proportion of 72 

an individual’s genome that has been in homozygosis by descent in at least one 73 

ancestor. It is relevant to purging because recessive deleterious alleles can be purged in 74 

inbred ancestors, so that individuals with higher ܨ௔ are expected to carry fewer such 75 

alleles than those with the same level of inbreeding but lower Fa values, and should 76 

therefore have higher fitness. Gulisija and Crow (2007) developed a different index to 77 

measure the opportunity of purging ( ௜ܱ) by assuming that, in the same pedigree path, there 78 

are no two ancestors that are homozygous for the same deleterious allele. However, the 79 

authors noted that, due to this assumption, their approach is appropriate to evaluate the 80 

opportunities of purging just for completely recessive and severely deleterious alleles with 81 

low initial frequency in shallow pedigrees. Furthermore, they did not develop an explicit 82 

model for the dependence of fitness on the opportunity of purging. Therefore, here we do 83 

not investigate the properties of this index. 84 

More recently, an Inbreeding-Purging (IP) model has been proposed, based on a 85 

“purged inbreeding coefficient” (g), that predicts how mean fitness and inbreeding load are 86 

expected to evolve in a population undergoing inbreeding. This coefficient g is defined as 87 

Wright’s inbreeding coefficient (F) adjusted for the reduction in frequency of the 88 

deleterious alleles caused by purging, so that it is the coefficient appropriate to predict the 89 

actual increase in homozygosis for these alleles. It depends on a purging coefficient (d) 90 

that represents the enhancement of selection under inbreeding (Garćıa-Dorado, 2012). For 91 

each single deleterious allele, d equals the recessive component of the selection coefficient, 92 

i.e., the deleterious effect that is concealed in the heterozygous and expressed just in the 93 

homozygous condition. Note that d equals the heterozygous value for relative fitness in the 94 
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classical quantitative genetics scale proposed by Falconer (Falconer and Mackay 1996). For 95 

overall fitness, which is affected by many alleles with different deleterious effects, reliable IP 96 

predictions can be obtained by using a single empirically defined d value. The dependence of 97 

g on d is illustrated in Figure 1, and shows that purging is more efficient when inbreeding 98 

is slower (i.e., when the effective population size is larger), but also takes longer to 99 

become relevant. Therefore, this model predicts that the rate of inbreeding (or the 100 

effective population size N) and the number of inbreeding generations (t) critically 101 

determine the extent of purging.  102 

The purging coefficient d  has been estimated from the evolution of mean fitness 103 

in Drosophila experiments, the IP model providing a much better fit than a model 104 

without purging (Bersabé and Garćıa-Dorado, 2013; López-Cortegano et al., 2016). 105 

Furthermore, equations have been derived to obtain IP predictions for pedigreed 106 

individuals and have been implemented in the free software package PURGd. This 107 

software analyzes pedigreed fitness data to obtain estimates of the IP parameters, 108 

namely the rate of inbreeding depression δ and the purging coefficient d (García-109 

Dorado, 2012; García-Dorado et al., 2016). Preliminary analysis of simulated data 110 

showed that this software accurately discriminates between situations with and without 111 

purging, and that the genealogical IP approach consistently provided a good fit to the data. 112 

However, the estimates of δ and d showed some downward bias (García-Dorado et al., 113 

2016). Thus, before this method is applied to real data, it is necessary to characterize the bias 114 

of (δ, d) estimates obtained under different scenarios and to check how far it affects the 115 

reliability of IP predictions of fitness evolution computed using them. 116 

Here, we analyze fitness data of simulated pedigreed individuals undergoing inbreeding 117 

and purging in order to investigate: i) how often the IP and Fa-based approaches allow to 118 

detect purging; ii) the extent to which the estimates of the model’s parameters depend on the 119 

rate of inbreeding (here determined by the population size N) and on the number of 120 
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inbreeding generations (t); iii) how reliable are the IP and Fa-based predictions for 121 

inbreeding scenarios with N and/or t values different from those used to estimate the model’s 122 

parameters. 123 

 124 

 125 

MATERIAL AND METHODS 126 

The simulated populations 127 

A monoecious panmictic population of size ܰ = 10ଷ is simulated under a mutation-128 

selection-drift (MSD) scenario over 10ସ generations to obtain a base population that can be 129 

assumed to be at the MSD balance. Mutations occur at a rate ߣ per genome and 130 

generation, and have selection coefficient ݏ and degree of dominance ℎ, so that fitness is 131 

reduced by h·s or s  when the mutant allele is in heterozygosis or homozygosis, 132 

respectively. According to the standard assumption of non-epistatic models, fitness is 133 

multiplicative across loci. In practice, fitness effects can be epistatic to some extent. In 134 

particular, the homozygous effect of a deleterious allele may be larger in individuals that are 135 

also homozygous for other deleterious alleles, giving reinforcing epistasis that involves 136 

recessive components. However, although this could be expected to produce an increase in 137 

inbreeding depression, previous simulation results suggest that this increase is canceled out 138 

by a parallel excess in purging, so that simple IP predictions not accounting for epistasis still 139 

fit the evolution of mean fitness under inbreeding (Pérez-Figueroa et al., 2009). The 140 

simulation methods are described in detail by Bersabé et al. (2016). 141 

Two different sets of mutational parameters (CAPTIVE and WILD, summarized in 142 

Table 1) are considered. In both cases, a variable selection coefficient is sampled from a 143 

gamma distribution with shape parameter ߙ = 3ିଵ and rate parameter β = α / E(s), 144 

where E(s) stands for the expected s value. Sampled s values larger than 1 are assigned 145 

as s = 1. The mutation rate and average deleterious effect in the WILD case are twice those 146 
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of the CAPTIVE one, in order to account for the inbreeding load that has been empirically 147 

detected in the wild, which is about fourfold that of captive populations (Ralls et al., 1988; 148 

O’Grady et al., 2006; Hedrick and García-Dorado, 2016). For each given s value, the 149 

degree of dominance h is sampled from a uniform distribution ranging between 0 and 150 ݁ି଻.ହ௦ (García-Dorado, 2003). Note that this gives an average degree of dominance (E(h)) 151 

that is larger in the CAPTIVE than in the WILD case, as the average selection 152 

coefficient is lower. The corresponding distributions of homozygous effects are shown 153 

in Figure 2. 154 

For each case considered, ten base populations are simulated. Populations of reduced 155 

size N=10, N=25, and N=50 (lines) are obtained from these base populations at the 156 

MSD equilibrium (250, 100 and 50 replicates, respectively, each of the 10 base populations 157 

contributing equal numbers of replicates for each size). Effective population sizes are 158 

assumed to equal actual population sizes. All lines are continued for 2N generations 159 

following the same protocol as for the base populations (i.e., under mutation, selection and 160 

drift), and pedigrees and individual fitness are recorded. 161 

 162 

Estimation of inbreeding depression and purging 163 

IP Model: This model predicts fitness as a function of a purged inbreeding coefficient g 164 

that is defined as Wright’s F inbreeding coefficient corrected for the reduction in frequency 165 

of deleterious alleles expected from purging. This g coefficient can be computed as a 166 

function of the purging coefficient d (García-Dorado, 2012). For a model with constant 167 

effects across loci, d equals the per-copy deleterious effect that is expressed in homozygosis 168 

but is concealed in heterozygosis (d=s(1-2h)/2). For more realistic models where deleterious 169 

effects vary across loci, as in our simulated populations, IP predictions should be averaged 170 

over the distribution of deleterious effects. Since this approach is not possible in practical 171 

situations, an effective purging coefficient (here referred to just as purging coefficient and 172 
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denoted by d) has been defined empirically as the d value giving the best predictions when 173 

used in the IP model, which has been shown to produce good approximations (García-174 

Dorado, 2012). A simple recurrence equation calculates g each generation as a function of d, 175 

the effective population size N, and the F and g values in the previous generation, or from 176 

pedigree data. García-Dorado et al. (2016) generalized the pedigree recurrence equations to 177 

allow for overlapping generations. These equations parallel those classically used to predict 178 

the evolution of F using Malecot’s coancestry coefficients, introducing an additional term 179 

that depends on d. Thus, the model can predict either the average fitness expected at 180 

generation t (Wt), or the expected fitness for an individual i with pedigree records (Wi). In 181 

the case of individual fitness,  182 

௜ܹ = ଴ܹ · ݁ିఋ·௚೔     ,               (1) 183 

where δ is the rate of inbreeding depression, gi is the purged inbreeding coefficient of 184 

individual i computed using d (Figure 1), and W0 is the expected fitness in the non-185 

inbred population. 186 

Note that, if natural selection can be ignored during the inbreeding period, g can 187 

be replaced with F, and δ equals the inbreeding load B in the base population defined 188 

as the sum over loci of 2s(1/2-h) q(1-q), as shown by Morton et al. (1956), where q is the 189 

frequency of the deleterious allele. Thus, the inbreeding load B can be interpreted as the 190 

expected rate of inbreeding depression if natural selection is neglected during the 191 

inbreeding process. This can be appropriate when very few generations are considered, 192 

so that purging has no opportunity to occur, when natural selection is overwhelmed by 193 

drift due to a very small effective population size, or when natural selection is relaxed 194 

by maintaining a population in benign conditions, as it could occur to some extent in ex 195 

situ conservation programs. Otherwise, purging selection must be taken into account 196 

by replacing F with g. Furthermore, non-purging selection (i.e., selection as it would 197 

operate in an equilibrium population with stable homozygosis) should also be 198 
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considered, at least in not too small populations, as it can compensate for a significant 199 

fraction of the inbreeding depression. To understand this concept, discussed in the 200 

section devoted to the Full Model (FM) in García-Dorado (2012), think of a population 201 

at the MSD equilibrium. This population has finite size N (i.e., inbreeding increases at 202 

a rate 1/2N) and a given inbreeding load, but it does not experience inbreeding 203 

depression because it is compensated by natural selection. This kind of selection is not 204 

due to a net increase in homozygosis and, therefore, it can be considered part of the 205 

standard selection occurring in populations at the MSD balance and we do not use the 206 

term purging to describe it. According to this Full Model, due to non-purging selection, 207 

the actual expected rate of inbreeding depression as a function of g is δFM =B - B*, 208 

where B and B* are, respectively, the inbreeding loads expected at the MSD balance 209 

for the original non-inbred population and for the new reduced size N. To obtain this 210 

δFM value, we compute B and B* using Equations 10 and 13 in García-Dorado (2007), 211 

both averaged over 106 (s, h) values sampled from the corresponding joint distribution 212 

(s values larger than 1 were assigned s=1 as in the simulation process). Note that δFM 213 

approaches B for very small populations, but can be substantially smaller when N is 214 

large.  215 

For each pedigree, we estimate the purging coefficient ݀ and the rate of inbreeding 216 

depression δ  using the PURGd 2.0 software package (Garćıa-Dorado et al., 2016; freely 217 

available at https://www.ucm.es/genetica1/mecanismos). These estimates are obtained using 218 

the two methods implemented in PURGd. Results obtained using linear regression for 219 

log-transformed fitness (LR method) are not qualitatively different from those obtained 220 

using the numerical non-linear regression method (NNLR), but give more downwardly 221 

biased estimates of δ and larger standard errors. These LR results are not reported in 222 

the main text, although a summarizing figure is given in the Supplementary Material 223 

(Figure S1). Thus, we only report results from the NNLR method, which fits predictions 224 
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from Equation 1 by numerically searching for estimates that minimize the residual sums of 225 

squares (García-Dorado et al., 2016). The expected fitness value in the non-inbred 226 

population, E(W0), is obtained in a previous step as the mean fitness of non-inbred 227 

individuals with non-inbred ancestors (ܨ = ௔ܨ = 0), as explained in García-Dorado et 228 

al. (2016). Therefore, the program produces estimates of δ and d that are conditional 229 

to this estimate of the non-inbred expected fitness. To check for the convergence of the 230 

numerical algorithm, we estimate the genetic parameters for each pedigree as the result 231 

of a single run, and as the average of five and ten independent runs. 232 

A bootstrap method was devised to test the statistical significance of the estimate 233 

of d obtained from each replicate line against the null hypothesis d=0 and is described 234 

in the Supplementary Material.  235 

Ancestral Inbreeding models: Ballou (1997) defined the ancestral inbreeding 236 

coefficient (Fa) as the fraction of an individual’s genome that has been in 237 

homozygosis by descent in at least one ancestor, calculated in terms of the 238 

inbreeding coefficient (ܨ) and the ancestral inbreeding coefficient of the individual’s 239 

parents (sire S and dam D) as  240 ܨ௔ = ଵଶ ൛ܨ௔ (஽) + ൣ1 − ௔ (஽)൧ܨ · (஽)ܨ + ௔ (ௌ)ܨ + ൣ1 − ௔ (ௌ)൧ܨ ·  ൟ                   (2) 241(ௌ)ܨ

Thus, Fa is related to the purging opportunities in the ancestors of an individual. This 242 

equation assumes independence between F and Fa in the same individual, which can lead to 243 

some overestimation of ancestral inbreeding. In order to avoid this bias, it has been proposed 244 

to estimate ancestral inbreeding by using the so-called gene dropping simulation approach. 245 

Therefore, we have also implemented in PURGd this simulation method, which estimates 246 

ancestral inbreeding as described by Suwanlee et al (2007) using 106 replicates. Results for 247 

all the ancestral inbreeding models considered were obtained using Fa calculated both from 248 

Equation 2 and from gene dropping. For consistency with our IP method and with 249 

previously published Fa based analysis, in the main text we report results obtained using 250 
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Equation 2, and those obtained using gene dropping are shown in the Supplementary 251 

Material.  252 

To fit the joint effect of inbreeding and purging on fitness, Ballou proposed the 253 

following linear model 254 

W = W0 + bF F + bFFa F. Fa ,   255 

where bF is the partial regression coefficient that gives the decline of fitness with increasing 256 

inbreeding (F) for any constant value of the product F.Fa. According to Ballou, -bF 257 

represents the rate of inbreeding depression, while the coefficient bFFa measures the 258 

increase of fitness in inbred individuals due to reduced inbreeding depression caused by 259 

purging in their ancestors. 260 

Since we use a multiplicative fitness model, we rewrite Ballou’s model for individual 261 

fitness as     262 

௜ܹ = ଴ܹ · ݁௕ಷ·ி೔ା௕ಷಷೌி೔·ிೌ೔   (3) 263 

Two additional linear models have been proposed by Boakes and Wang (2005) to 264 

analyze purging using ancestral inbreeding. One of these two models (BW) considers that 265 

the effect of purging does not depend on the level of inbreeding, but just on previous 266 

purging opportunities. For multiplicative fitness, this model is written as 267 

௜ܹ = ଴ܹ · ݁௕ಷ·ி೔ା௕ಷೌிೌ೔  ,                         (4) 268 

where the coefficient of the purging term ܾிೌ  is the average rate of increase of individual 269 

fitness due to the opportunities of purging in the ancestors. 270 

The other model proposed by Boakes and Wang (2005) is the mixed “Ballou-Boakes & 271 

Wang” model (here B-BW), where the purging term is the sum of those in Ballou and BW 272 

models, giving  273 

௜ܹ = ଴ܹ · ݁௕ಷ·ி೔ା௕ಷೌிೌ೔ା௕ಷಷೌி೔·ிೌ೔ .                    (5) 274 

Fitness evaluation is often dichotomous by nature (e.g., dead/alive individuals), and 275 

both Ballou (1997) and Boakes and Wang (2005) tested their models by fitting dichotomous 276 
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(0, 1) fitness data using logistic regression. To check which is the better approach to handle 277 

such data, we generate dichotomous fitness values and analyze them using Ballou’s model, 278 

with both the NNLR and the Logistic methods (Figure S2; Tables S1 and S2). However, to 279 

compare ancestral inbreeding and IP approaches under similarly optimal conditions, in the 280 

main text we always report results of NNLR analysis of fitness data simulated as a 281 

continuous variable defined in the interval (0, 1). A bootstrap contrast analogous to that 282 

performed for the IP analysis is used in each replicate to test the significance of purging in 283 

Ballou’s analysis (see Supplementary Material).  284 

Non-Linear Regression coefficients for Fa-based models, as well as bootstrap 285 

errors, are computed using PURGd 2.0. As in the case of the IP model, the intercept is 286 

obtained in a previous step as the mean fitness for non-inbred individuals with non-287 

inbred ancestors (ܨ = ௔ܨ = 0). 288 

 289 

 290 

Analysis of the predictive value of the estimates  291 

To evaluate the predictive value of the parameters estimated in the previous 292 

section, we use the estimates obtained from different numbers of generations (t=N/2, 293 

t=N, t=2N) in lines of different sizes (N=10, N=25, N=50) to predict the evolution of 294 

average fitness for lines for each of the three sizes considered (crossed predictions). 295 

We check how these predictions fit the corresponding simulated data by graphically 296 

comparing the observed and predicted evolution of mean fitness. 297 

In the case of the IP model, predictions of the expected fitness at generation t 298 

(Wt) are computed using the equation for the evolution of mean fitness, obtained by 299 

replacing Wi and gi in Equation 1 with their expected values at generation t (Wt and 300 

gt). For this purpose, gt is computed as a function of N using the expression provided 301 

in García-Dorado (2012). The neutral prediction of the model by Morton et al. (1956) 302 
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is also obtained by replacing gt with the standard inbreeding coefficient (Ft) into 303 

Equation 1 and using the inbreeding load computed in the simulated population (δ = 304 

BSIM). 305 

 In the case of models based on ancestral inbreeding, predictions for mean 306 

fitness are obtained by replacing Fi and Fai in Equations 3-5 with their expected 307 

values through generations, Ft and Fat. Below we derive an expression for the 308 

evolution of Fat through generations in a panmictic population maintained with 309 

effective size N. 310 

From Equation 2, assuming a monoecious population, or the same expected Fa 311 

value (or F values) for sires and dams, the average ancestral inbreeding at generation 312 

t can be computed by iterating the expression 313 ܨ௔ ௧ = ௔ (௧ିଵ)ܨ + ൣ1 − ௔ (௧ିଵ)൧ܨ ·  314 , (௧ିଵ)ܨ

which, noting that ܨ௧ = 1 − ቀ1 − ଵଶேቁ௧ and rearranging, can be written as 315 

௔ ௧ܨ = 1 − ቀ1 − ଵଶேቁ௧ିଵ · ൣ1 −  ௔ (௧ିଵ)൧   .              (6) 316ܨ

In addition, an expression directly giving the expected ancestral inbreeding after t 317 

generations can be derived, so that it is not necessary to iterate expression 6 through 318 

generations. For simplicity, we define ݔ௧ = 1 − ݇ ௔ ௧ andܨ = ൫1 − భమಿ൯, so that Equation 6 319 

can be written as ݔ௧ = ௧ିଵݔ · ݇௧ିଵ. Therefore, since x0=1, the expected value of xt can be 320 

computed as  321 

xt = xo ∏ ݇௜௧ିଵ௜ୀ଴   = ݇∑ ௧೟షభ೔సబ  = k t (t-1)/2 322 

and, replacing xt and k into this expression and rearranging, we obtain  323 

௔ ௧ܨ = 1 − ቀ1 − ଵଶேቁభమ௧(୲ିଵ)
                                            324 

 325 

 326 
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 327 

RESULTS 328 

IP estimates of the rate of inbreeding depression and the purging coefficient  329 

The inbreeding loads in the simulated base populations (BSIM=0.5828 ± 0.0144 for 330 

CAPTIVE; BSIM=2.5370 ± 0.0460 for WILD) are close to their corresponding expectations 331 

for the MSD balance (B=0.6266 for CAPTIVE, B=2.5511 for WILD). The estimated rates of 332 

inbreeding depression (δ) are close to B for N=10, as usually assumed, but decline for larger 333 

sizes, being in good agreement with their expected values (δFM) when computed from short 334 

term data (t=N/2) (Table 2). The estimates of δ based on longer inbreeding periods become 335 

downwardly biased. 336 

Estimates of d are large, indicating substantial purging (Tables 2 and S3). There is a 337 

trend for a reduction of d when estimated from longer inbreeding periods, which is 338 

associated with a parallel reduction in the estimate of δ. As expected, the estimates of 339 

this purging parameter are always larger in the WILD case than in the CAPTIVE one. 340 

In both cases, the estimates are very similar regardless of the number of runs averaged 341 

per replicate (results not shown). Thus, the estimates presented here were obtained from 342 

just one run, though more runs might be needed if additional environmental factors were 343 

included.  344 

We have also estimated the purging coefficient by using the expected value of the rate 345 

of inbreeding depression (δFM) as a known δ value in PURGd (results shown in Tables 2 and 346 

S3). It is interesting to note that this alleviates the underestimation of d with increased 347 

number of analyzed generations, compared to the situations where both d and δ are jointly 348 

estimated from the data. 349 

 350 

 351 

 352 
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Estimates of the coefficients in ancestral inbreeding models  353 

Tables 3 and S4-S5 show the estimates of non-linear regression coefficients for Fa-354 

based models. Similar results obtained using gene dropping are shown in the Supplementary 355 

Material (Tables S6-S7). In both Ballou’s and B-BW models, -bF estimates obtained from 356 

short term data for different population sizes (N) are reasonably close to the expected rate of 357 

inbreeding depression (δFM), although standard errors are larger than in the IP model. 358 

However, Ballou’s -bF estimates tend to increase when based on more generations of 359 

inbreeding, leading to values well above δFM in the WILD case.  360 

The estimates of the coefficients for terms including Fa are usually positive, indicating 361 

purging, but vary depending on N and t in an unpredictable way, particularly for BW and B-362 

BW models where -bFa can even be negative in some instances.   363 

Figure 3 illustrates how different Fa-based models fit the data for lines of different 364 

sizes, showing the observed evolution of fitness during 2N generations together with the 365 

corresponding predictions computed using coefficients estimated from the same data (Figure 366 

S3, obtained using gene dropping, gives similar results). BW model fits the data poorly, 367 

showing a systematic overestimation of fitness during the first N generations and an 368 

increasing underestimation later on, while Ballou’s model fits remarkably well. B-BW 369 

model does not improve fitting over Ballou’s one, which is not surprising as ܾி௔  estimates 370 

are usually small. Therefore, hereafter we will use Ballou’s model to evaluate the predictive 371 

value of Fa-based methods. 372 

 373 

 374 

The efficiency of IP and Ballou’s models to detect purging  375 

Figure 4 gives the percent of replicates in which a model including purging fitted the 376 

data significantly better than a non-purging model, both for IP and Ballou approaches 377 

(Figure S4 with Ballou’s results obtained using gene dropping gives similar results). For 378 
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both models, purging detection is more likely in larger lines and for larger inbreeding 379 

periods, as expected from more efficient purging and larger sample sizes. Detection is also 380 

more likely for the WILD than for the CAPTIVE case, as expected. 381 

Under both IP and Ballou’s models, the proportion of detected cases in the most 382 

difficult situation (N=10, t=N/2, CAPTIVE) is very small, indicating that although both 383 

approaches detect purging when estimates are averaged over replicates, they may not be able 384 

to do so when small replicates are separately considered during short inbreeding periods. The 385 

fact that, in that situation, the proportion of detected cases is smaller than 0.05 indicates that 386 

the test is conservative. In more favorable situations, both IP and Ballou models give 387 

substantial detection rates, usually somewhat larger for the former model.  388 

 389 

The reliability of predictions based on estimates using IP and Ballou’s models  390 

One of the main aims of this work is to check whether each pair of IP parameters (δ, 391 

d) estimated by PURGd from pedigree data for each (N, t) situation (Tables 2 and S3) is 392 

reliable for predicting the evolution of fitness in lines of different sizes during periods of 393 

considerable length (t up to 2N). Thus, Figure 5 gives, for each population size, the crossed 394 

IP predictions computed using different (δ, d) estimates obtained from data corresponding 395 

to different population sizes and inbreeding periods, together with the prediction 396 

computed assuming no selection and using the inbreeding load of the base population (d=0; 397 

δ = BSIM), and with the evolution of mean fitness observed in the simulated lines. IP 398 

predictions remain quite accurate during the first N generations. In general, there is a slight 399 

trend for long-term fitness being better predicted using (δ, d) estimates from long term data. 400 

Furthermore, predictions computed using (δ, d) estimates obtained from small lines, where 401 

purging is more likely to be overwhelmed by genetic drift, tend to underrate fitness for 402 

larger lines. Conversely, IP predictions tend to overestimate fitness in the long term. 403 
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However, all these biases are usually small, with the exception of those for N=10 lines in the 404 

WILD case. 405 

In any case, despite the variability observed between the average (δ, d) estimates 406 

obtained from different data sets (Tables 2 and S3), IP predictions remain quite accurate 407 

and always fit the data much better than a model assuming no selection. The reason is that 408 

the reductions in the estimate of δ obtained from longer inbreeding periods are compensated 409 

by reductions in the corresponding estimate of d.  410 

Figure 6 shows a similar evaluation for the reliability of Ballou’s predictions computed 411 

using estimates of the corresponding coefficients obtained from different data sets (Tables 3 412 

and S4-S5). Figure S5 obtained using gene dropping estimates gives similar results. 413 

Predictions obtained using parameters estimated in smaller lines underestimate long-term 414 

fitness, while those obtained from larger lines tend to overestimate fitness in the medium-415 

term but can still underestimate fitness in the long term. Fitting also improves when 416 

estimates are based on longer inbreeding periods and, of course, when the coefficients used 417 

to obtain predictions had been estimated in the same data set for which fitting is tested. In 418 

general, predictions are reliable during the first few generations, where purging is irrelevant, 419 

but become unreliable later on. Thus, Ballou’s predictions of mean fitness are highly 420 

dependent on the conditions used to estimate the coefficients of the model, and become 421 

very erratic after a few generations. The same analysis was performed for the BW model, 422 

giving even less reliable predictions (data not shown). 423 

Comparing Figures 5 and 6 shows that IP predictions are more accurate than those 424 

of Ballou’s Fa-based model, the IP model providing reasonable predictions of the 425 

evolution of fitness for any of the population sizes considered using parameters 426 

estimated under different conditions. 427 

 428 

 429 
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DISCUSSION  430 

Using simulated pedigreed fitness data, we analyze the performance of the 431 

Inbreeding-Purging model (IP) and of models based on ancestral inbreeding (Fa) in order 432 

to: i) detect purging; ii) estimate genetic parameters that can be used to obtain reliable 433 

predictions of the evolution of fitness under inbreeding and purging. The IP model is 434 

based on the expected effect of selection against the recessive component of deleterious 435 

effects (d) that is exposed in homozygotes due to inbreeding, while the Fa approach is 436 

based on the statistical fitting of models including inbreeding (F) and ancestral 437 

inbreeding (Fa) terms. To estimate the parameters of these models we have used an 438 

updated version of the PURGd software (García-Dorado et al., 2016) 439 

 440 

The statistical estimation approaches 441 

We have discussed in a previous paper (García-Dorado et. al., 2016) the advantages 442 

of the NNLR approach compared to linear regression for log-fitness data (LR), and the 443 

analysis of the data presented here confirm those advantages (results not shown). 444 

Furthermore, here we compare the performance of our NNLR method with that of the 445 

logistic regression approach previously used in the literature to analyze purging for 446 

dichotomous data, as those from dead/alive records, (Ballou, 1997; Boakes et al., 2007; 447 

Ceballos and Álvarez, 2013; Kennedy et al., 2014). To do so, we have estimated the 448 

parameters of Ballou’s model using both approaches for simulated binary fitness data, 449 

and we find that the NNLR estimates fit these data as well or slightly better than the 450 

logistic ones (Figure S2). Therefore, since the NNLR analysis relies on a model that is 451 

consistent with our exponential IP model and has other advantages regarding the 452 

estimation of δ, as discussed in García-Dorado (2016), we encourage its use to analyze 453 

binary fitness data. Hereafter, we discuss the properties of both IP and Fa models using 454 

NNLR estimates obtained from untransformed continuous fitness data. 455 
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The mutational models 456 

In order to explore the consequences of purging against the inbreeding load 457 

expressed in wild or captive populations, we analyze fitness under two mutational 458 

models. The CAPTIVE mutational model corresponds to model II in Pérez-Figueroa et 459 

al. ( 2009). This model accounts for the properties of deleterious effects detected in 460 

Drosophila mutation accumulation experiments, but uses a larger deleterious mutation 461 

rate and higher kurtosis to roughly account for the additional rate of mutations that 462 

behave as deleterious in molecular evolutionary studies but whose effect is too small to 463 

be detected in mutation accumulation experiments (García-Dorado and Caballero, 2000; 464 

Ávila and García-Dorado, 2002; García-Dorado et al., 2004; Halligan and Keightley, 465 

2009). WILD mutational parameters were obtained by doubling the average deleterious 466 

effect and the deleterious mutation rate of the CAPTIVE case to approximately account 467 

for the about fourfold inbreeding load expressed in competitive or wild conditions (Ralls 468 

et al., 1988; O’Grady et al., 2006; Yun and Agrawal, 2014; Hedrick and García-Dorado, 469 

2016). Our estimates of the purging coefficient d in the CAPTIVE case are larger than 470 

those estimated in non-competitive conditions for Drosophila (Bersabé and García-471 

Dorado, 2013), but the estimates obtained in the WILD case are similar to those 472 

experimentally obtained in competitive conditions (López-Cortegano et al., 2016). We 473 

find that our CAPTIVE and WILD cases parallel the non-competitive and competitive 474 

conditions of those experiments, as the WILD case gives a larger inbreeding load but 475 

also a larger purging coefficient than the CAPTIVE one so that, under slow inbreeding, 476 

long term inbreeding depression is small in both instances.  477 

 478 

Performance of IP and Fa models 479 

The IP estimates of δ obtained using early data of the inbreeding process are in good 480 

agreement with their expected value (up to t=N generations in the CAPTIVE case or t=N/2 481 
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in the WILD case; see Table 2). However, they become downwardly biased when based on 482 

full data from a long inbreeding process, which is associated with a reduction of the 483 

estimates of d. The reason is that, for t = 2N, most purging occurs during a small proportion 484 

of the period considered and, since the model’s predictions are not exact, estimates smaller 485 

than the true δ and d values can lead to some overfitting of long-term data. More stable 486 

estimates of d were obtained by introducing into the model the expected rate of inbreeding 487 

depression (δFM) as a known δ value. In practice, δFM is unknown, but δ can be estimated in a 488 

previous step by analyzing data of early generations, or by assuming d=0 and using fitness 489 

data from individuals with no ancestral inbreeding (Fa=0; an option incorporated in 490 

PURGd 2.0). This δ estimate can then be introduced into PURGd as a known δ value to 491 

obtain more stable estimates of d.  492 

A main finding is that, despite the bias for δ and d described above, each joint (δ, d) IP 493 

estimate, whether obtained from small or large lines or based on short-term data or on the 494 

full long inbreeding process, produces good predictions for the evolution of mean fitness 495 

over the whole range of population sizes and during the whole period of inbreeding 496 

considered (Figure 5). An exception is that of the smaller lines (N=10) for the WILD case, 497 

where the observed inbreeding depression is larger than the IP prediction, unless (δ, d) were 498 

also estimated from the same data (N=10 lines). Furthermore, (δ, d) estimates obtained from 499 

N=10 lines predict too small fitness in the medium term for larger lines. The reason is that IP 500 

is a deterministic model that predicts the consequences of natural selection on homozygous 501 

genotypes induced by inbreeding, but does not account for the reduction in the efficiency of 502 

natural selection caused by random drift. In fact, it has been found that drift roughly 503 

overwhelms purging for Nd < 1 (García-Dorado, 2012), so that alleles with d < 0.1 should 504 

be hardly purged in lines with N = 10. In the WILD case, the number of mutations per 505 

gamete with an effect small enough to escape purging for N=10 is larger than in the 506 

CAPTIVE one (see Figure 2 and note that Ns<2 implies Nd<1 for h<1). In fact, the class 507 
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with d < 0.1 contributes twice inbreeding load in the WILD than in the CAPTIVE case (0.36 508 

vs. 0.18). Thus, in the WILD case, the IP model is less reliable for the smaller lines. 509 

Remarkably, even in this N=10 case, IP predictions are much more accurate than those 510 

computed by ignoring purging.  511 

It should be noted that IP predictions (as well as Fa-based ones) do not account for the 512 

fitness decline caused by the continuous accumulation of newly arisen mutations. Therefore, 513 

they tend to overestimate long-term fitness in small lines where natural selection against the 514 

accumulation of new deleterious mutations is relatively inefficient. This bias, although can 515 

be corrected in theoretical situations (see the Full Model approach in García-Dorado, 2012), 516 

is unknown in practice. In our data, this mutational fitness decline is small for the periods 517 

considered, although it could be threatening for very small lines in the long term (García-518 

Dorado et al., 1999; Ávila and García-Dorado, 2002; Caballero et al., 2002; García-Dorado, 519 

2003; Halligan and Keightley, 2009). 520 

In addition to the IP model, we used three different models to estimate the dependence 521 

of individual fitness on F and Fa, where the latter parameter (the ancestral inbreeding) is 522 

used as an indirect measure of the purging opportunities in the individual’s ancestors. For 523 

the three models, we have obtained results using Fa estimates computed using the original 524 

Ballou’s equation (Equation 2) or the gene dropping simulation approach suggested by 525 

Suwanlee et al. (2007). We found that, Ballou’s original formula produces some upward 526 

bias in the estimates of Fa, but the ability of Fa models to detect purging and predict its 527 

consequences are very similar regardless how Fa was computed.  528 

According to Ballou (1997), when Fa is included into the model, the regression 529 

coefficient of fitness on F gives the rate of inbreeding depression (δ= -bF). This is obviously 530 

true for the particular case of Fa=0, where ܾி  estimates the rate of inbreeding depression for 531 

fitness in non-purged individuals. However, the meaning of bF is less clear for Fa > 0 since, 532 

as shown in the IP approach, the dependence of fitness on F among purged individuals 533 
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varies according to how fast inbreeding has been produced and, therefore, it also depends on 534 

Fa. This explains why -bF is a poor estimator of the expected rate of inbreeding depression 535 

unless it is based on early inbreeding periods, otherwise showing important bias of different 536 

sign depending on the model used. 537 

In Ballou’s model, purging is measured by the coefficient corresponding to the 538 

interaction effect (bFFa). Thus, this model considers that the role of purging is to reduce 539 

inbreeding depression, so that it only affects inbred individuals. Therefore, bFFa 540 

measures the rate of reduction of inbreeding depression with increasing Fa. Due to this 541 

interaction term, this model has a common feature with the IP approach: the effect of 542 

purging increases when inbreeding accumulates, both models predicting an initial 543 

fitness decline that is later reversed to some extent, in agreement with the pattern 544 

observed in simulated lines. 545 

On the contrary, in the BW model purging is measured by the coefficient bFa, 546 

which represents the rate of increase in fitness with increasing Fa, averaged over all F 547 

values (including individuals with F=0), and does not account for the reversal of the 548 

initial depression. Boakes and Wang (2005) found that this BW model was more 549 

efficient detecting purging in mutational models with mildly deleterious alleles, 550 

probably because those models involved high mutation rates implying larger expressed 551 

load in non-inbred individuals, and because those authors detected purging measuring 552 

its consequences on the overall load of deleterious alleles per individual. On the 553 

contrary, we evaluate the ability of the models to detect the reduction in inbreeding 554 

depression, so that Ballou’s model is more appropriate than BW. Regarding the B-BW 555 

model, it did not outperform Ballou’s nor BW models in Boakes & Wang study (2005), 556 

nor in the present analysis.  557 

Therefore, we consider the performance of Ballou’s Fa-based model to detect and 558 

predict the consequences of purging on inbreeding depression, and we compare it to 559 
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that of the IP model. The estimates of the interaction term in Ballou’s model (bFFa) are 560 

very dependent on both the size of the lines and the number of generations of 561 

inbreeding considered. Furthermore, for each population size N, different pairs of joint 562 

estimates (bF, bFFa) produce different predictions for the evolution of fitness, which 563 

compromises the reliability of Ballou’s method. It is interesting to note that, as Fa 564 

approaches 1, (bF ·F + bFFa F·Fa) approaches (bF + bFFa)F. Thus, after the early fitness 565 

recovery ascribed to purging, this method predicts a continuous rate of decline of fitness 566 

with increasing F. Since such decline is not a general consequence expected from inbreeding 567 

and purging, this prediction can be considered a flaw of the model. However, due to this 568 

predicted decline, Ballou’s model can spuriously fit the medium-term fitness decline 569 

ascribed to the fraction of the inbreeding load caused by deleterious alleles that are not being 570 

successfully purged (those with Nd < 1), or to the continuous fixation of new deleterious 571 

mutations. Overall, due to the erratic nature of Ballou’s model predictions, ascribed to the 572 

inconsistency of the corresponding estimates, the IP model should be preferred to estimate 573 

parameters that can be useful to predict the evolution of fitness under inbreeding.  574 

Finally, according to our conservative bootstrap results, the probability of 575 

detecting purging in each replicate is higher for IP than for Ballou’s analysis and 576 

increases for larger lines and longer inbreeding processes. Thus, in the WILD case, at 577 

least 20 generations are required to have a good probability (p>0.8) of detecting 578 

purging with effective population size 10 or above, while about 10 generations gives a 579 

modest detection rate (about 30% for N=10 and 50% for N=25). In the CAPTIVE case, 580 

detection chances using data of about 20 generations of inbreeding are modest, unless 581 

the effective size is about 50 or larger. Thus, purging can pass undetected because 582 

inbreeding is too fast for enough purging to occur, or because, being slow, is tracked 583 

for a too short period. In practice, detection rates are likely to be smaller due to the 584 

noisy nature of fitness measurements (particularly for binary data), to population 585 
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management partially relaxing fitness, or to concurrent adaptive processes or 586 

undetected environmental trends (García-Dorado, 2015; Hedrick and García-Dorado, 587 

2016; López-Cortegano et al., 2016).  588 

Thus, our results encourage the use of the IP approach to analyze and predict purging, 589 

showing that: i) δ estimates are more reliable when based on short periods of inbreeding, so 590 

that only small purging has occurred (or on individuals with no ancestral inbreeding); ii) 591 

purging is better detected from long inbreeding processes and under slow inbreeding; iii) the 592 

estimate of the purging coefficient d is less biased when based on short-term inbreeding, but 593 

more reliable estimates can be obtained from longer processes by using a good estimate of δ 594 

as a known parameter; iv) joint (δ, d) estimates, even if they are downwardly biased in some 595 

cases, usually produce reliable IP predictions for the evolution of mean fitness under 596 

inbreeding, unless inbreeding is too fast. We also find that purging detection and 597 

measurement are very demanding, which can explain why many analyses have failed to 598 

detect purging in individual data sets (Ballou, 1997; Bryant et al., 1999; Byers and Waller, 599 

1999; Crnokrak and Barrett, 2002; Boakes et al., 2006; Kennedy et al., 2014). Genomic 600 

information can contribute to obtain large samples of data useful to detect and measure 601 

inbreeding depression (Kardos et al., 2016; Wang, 2016). Unfortunately, inferring 602 

purging using genomic based estimates of inbreeding is not straightforward because 603 

the historical information about how present inbreeding has been produced is less 604 

explicit in genomic data than in a pedigree. Although it should be possible to infer this 605 

historical information from analysis based on the length of the segments that are 606 

identical by descent (Keller et al., 2011; Speed and Balding, 2015), no method has so 607 

far been developed to obtain estimates of a predictive purging parameter from such 608 

data. Another possibility is pedigree reconstruction based on massive molecular 609 

markers (Fernández and Toro, 2006; Wang, 2011; Wang et al., 2012; Jiménez-Mena et al., 610 

2016). However, in both instances, detection possibilities may be poor if fitness records are 611 
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available just for individuals of the present generation. In any case, our understanding of 612 

purging can be expected to improve in the future through the accumulation of IP 613 

analysis of different sets of available pedigreed data. 614 
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Figure Legends 718 

Figure 1: Evolution of the expected purged inbreeding coefficient (g) against 719 

generation number for different d values, together with the evolution of Wright’s inbreeding 720 

coefficient (F) for populations of effective size 25 (left) or 100 (right). 721 

Figure 2: The area below the lines gives the expected number of deleterious mutations 722 

with homozygous effects within any interval in the abscissa axis. Dotted line: CAPTIVE 723 

mutational model. Dashed line: WILD mutational model. Note that the figure does not 724 

show probability density functions, as they do not integrate to 1 but to the mutation rate 725 

λ. 726 

Figure 3: Evolution of mean fitness in simulated lines (red) and the corresponding 727 

predictions obtained using different Fa-based models. Predictions are computed for 728 

two different cases, CAPTIVE and WILD, and three different population sizes (N=10, 729 

N=25 and N=50) over t=2N generations using the coefficients estimated from the same 730 

lines and number of generations. Three models based on ancestral inbreeding are used: 731 

Ballou’s (green), BW (yellow) and B-BW model (black dotted), as well as a prediction 732 

without selection (grey).  733 

Figure 4: Percent of replicates where a model including purging fitted the data 734 

significantly better than a non-purging model under the IP or Ballou approaches, both for 735 

CAPTIVE and WILD mutational models (bootstrap contrasts with α=0.05).    736 

Figure 5: Observed fitness for the CAPTIVE (up) and WILD (down) cases, and the 737 

corresponding prediction computed using the estimates obtained in the IP model. In each 738 

panel, observed and predicted values over t=2N generations correspond to the 739 

population size indicated in the column (N=10, N=25 and N=50). Different 740 

predictions are plotted using estimates obtained from different data sets, denoted by 741 

different colors and strokes as shown in the lateral panel. Neutral predictions, 742 
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computed assuming no selection and using the inbreeding load observed in the simulated 743 

base population (BSIM), are also shown. 744 

Figure 6: Observed fitness for the CAPTIVE (up) and WILD (down) cases, and the 745 

corresponding prediction computed using the estimates obtained in Ballou’s model. In 746 

each panel, observed and predicted values over t=2N generations correspond to the 747 

population size indicated in the column (N=10, N=25 and N=50), and different 748 

predictions are plotted using estimates obtained from different data sets, denoted by 749 

different colors and strokes as shown in the lateral panel. Neutral predictions, 750 

computed assuming no selection and using the inbreeding load observed in the simulated 751 

base population (BSIM), are also shown. 752 

 753 



 

 

 E(s) E(h) λ 

CAPTIVE 0.1 0.337 0.1 

WILD 0.2 0.283 0.2 

Table 1: Genetic parameters used in simulations for t h e  two different cases (CAPTIVE and WILD): Expected (E) values of the selection coefficient (s, gamma 

distributed with shape parameter 1/3) and of the degree of dominance (h, uniformly distributed between 0 and e-7.5s), and mutation rate (λ).  

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Estimates of rates of inbreeding depression and purging coefficients from lines of different sizes (N) and different numbers of generations (t). Estimates are averaged over replicates, and 

are given with their empirical standard errors. This table gives the expected rate of inbreeding depression, computed as δFM  (see text for explanation) together with the corresponding PURGd 

estimates. It also gives the corresponding estimates of the purging coefficient (d). An estimate of d is also obtained by forcing PURGd to use δFM as the known rate of inbreeding depression 

(d(δFM)). Extended results are reported in the Supplementary Material including results from N=25 lines and t=N (Table S3) 

 

 CAPTIVE WILD
 δFM δ d d(δF M ) δFM δ d d(δF M ) 
 
 
N=10 

t=N/2  
 

0.5540 

0.5667 
± 0.0185

0.2572 
± 0.0136

0. 2856 
± 0.0144

 
 
2.2846 

2.2899 
± 0.0541 

0.3233 
± 0.0131

0.3476 
± 0.0130

       

t=2N 
 
 

0.4955 
± 0.0149 

0.1981 
± 0.0099 

0. 2492 
± 0.0103 

1.8043 
± 0.0392 

0.2196 
± 0.0076 

0.3015 
± 0.0082 

 
 
N=50 

t=N/2  
 

0.4448 

0.5004 
± 0.0266 

0.2915 
± 0.0247 

0. 2781 
± 0.0281 

 
 
1.8861 

1.8686 
± 0.0626 

0.3954 
± 0.0159 

0.4036 
± 0.0152 

       

t=2N 0.3745 
0.0195 

0.1499 
0.0199 

0. 1958 
± 0.0201 

1.4010 
± 0.0632 

0.2539 
± 0.0218 

0.3389 
± 0.0177 



 

          Ballou             BW                         B-BW 
CAPTIVE  bF  bFFa   bF  bFa   bF  bFFa bFa  
N=10 t=N/2 -0.5529 

± 0.0217 
0.1529 
± 0.0842 

 -0.5396 
± 0.0185 

0.0410 
± 0.0119 

 -0.5556 
± 0.0219 

0.0562 
± 0.1167 

0.0325 
± 0.0159 

 t=2N -0.6247 
± 0.0214 

0.4040 
± 0.0222 

 -0.3536 
± 0.0113 

0.0565 
± 0.0064 

 -0.6163 
± 0.0212 

0.3921 
± 0.0250 

0.0010 
± 0.0073 
 

N=50 t=N/2 -0.5506 
± 0.0361 

0.3265 
± 0.0434 

 -0.4965 
± 0.0206 

0.0504 
± 0.0057 

 -0.6096 
± 0.0392 

0.2434 
± 0.0569 

0.0319 
± 0.0080 

 t=2N -0.7228 
± 0.0515 

0.6377 
± 0.0523 

 -0.0575 
± 0.0105 

-0.0176 
± 0.0054 

 -0.6363 
± 0.0608 

0.5961 
± 0.0595 

-0.0222 
± 0.0077 
 

WILD  bF  bFFa   bF  bFa   bF  bFFa bFa  
N=10 t=N/2 -2.4140 

± 0.0657 
2.0244 
± 0.2515 

 -2.2974 
± 0.0581 

0.3210 
± 0.0438 

 -2.4481 
± 0.0678 

1.3741 
± 0.2922 

0.1763 
± 0.0531 

 t=2N -2.5070 
± 0.0663 

1.9002 
± 0.0648 

 -1.2819 
± 0.0301 

0.3079 
± 0.0154 

 -2.5667 
± 0.0637 

1.8801 
± 0.0702 

0.0465 
± 0.0232 

 
N=50 t=N/2 -2.1444 

± 0.0805 
1.6447 
± 0.0899 

 -1.9312 
± 0.0525 

0.2697 
± 0.0133 

 -2.5151 
± 0.0929 

1.1384 
± 0.1004 

0.1994 
± 0.0184 

 t=2N -2.6496 
± 0.1065 

2.4997 
± 0.1066 

 -0.0908 
± 0.0144  

-0.0448 
± 0.0089 

 -2.4896 
± 0.1217 

2.4214 
± 0.1323 

-0.0421 
± 0.0128 

 

 

Table 3. Non-linear regression coefficients estimated for Ballou’s model, BW model and B-BW model in pedigrees of different populations sizes (N=10 and N=50) and numbers of generations 

(t = N/2  and t = 2N). Estimates are averaged over replicates, and are given with their empirical standard errors. Extended results are reported in the Supplementary Material including results from 

N=25 lines and t=N/2  (Tables S4 and S5).  
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