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ABSTRACT 

Pre-clinical research often uses rodents as animal models to guide the selection of 

appropriate oral drug and dose selection in humans. However, traditionally, such 

research fails to consider the gastrointestinal differences between the sexes of rats 

and the impact on oral drug delivery. This study aimed to identify and characterise the 

potential sex-related differences in the gastrointestinal environment of sacrificed male 

and female Wistar rats. Their gastrointestinal tracts were excised and segmented into 

the stomach, duodenum, jejunum, ileum, caecum and colon. The respective contents 

and tissue sections were collected and analysed for pH, buffer capacity, surface 

tension, osmolality and relative P-glycoprotein (P-gp) expression. The pH in the 

stomach of females was found to be lower than in males. Female rats also exhibited 

a higher buffer capacity in the caecum and colon when compared with their male 

counterparts. Males were found to have a higher osmolality than females in the 

duodenum, ileum and colon. Significant sex differences (p<0.05) in surface tension 

were observed in the ileum, where females exhibited a higher surface tension. 

Interestingly, female rats displayed significantly higher relative P-gp expression levels 

(p<0.05) when compared with male rats in the duodenum (1.24±0.85 vs. 0.36±0.26), 

jejunum (1.45±0.88 vs. 0.38±0.26) and ileum (0.92±0.43 vs. 0.40±0.18) but not in the 

colon (0.5±0.32 vs. 0.33±0.16) segments. The work reported has demonstrated the 

stark physiological differences between male and female rats at a physiological level, 

indicating how the ‘sex of the gut’ could influence oral drug delivery. These findings, 

therefore, are of critical importance in pre-clinical research and drug development. 

1. INTRODUCTION 

It is widely understood that females and males respond to medicines differently. In 

clinical practice, negating the impact of sex on treatment could have severe 



 

consequences; related to unexpected side effects or inadequate therapeutic efficacy. 

Despite this, early phase drug development traditionally fails to evaluate the 

differences between the sexes [1]. In particular, pre-clinical research has 

demonstrated a tendency to focus on males in both cell and animal studies, which may 

be obscuring key sex differences, as well as affecting important decisions during pre-

clinical development [2, 3].  

In an attempt to reduce the male-orientated bias in pre-clinical research, the 

US National Institute of Health (NIH) required applicants to incorporate a sex-balanced 

group of animals in pre-clinical studies [1, 3]. However, despite this call to action, there 

has not yet been a corresponding revolution or an agreed standardisation amongst 

the entire pre-clinical research community. To date, publications often continue to 

neglect the need for sex-based evaluation in pre-clinical studies [4, 5]. 

Laboratory animals are routinely used during pre-clinical research to act as 

intermediary models to identify compounds with promising biopharmaceutical 

properties. The majority of oral medicines are tested pre-clinically on rats due to their 

inexpensiveness and ease of handling [6]. Therefore, having an understanding of the 

gastrointestinal (GI) physiological differences between male and female rats is of 

utmost importance. However, basic information about their GI physiology, especially 

between the sexes, is not completely understood.  

 

Previous studies from our group have evaluated the impact of ageing on the GI 

environment in rats [7], as well as the assessment of the GI environment in different 

animal models, ranging from the guinea pig, rabbit and pig [8]. With regards to sex 

differences, Oltra-Noguera. et al. [9] evaluated the differences in intestinal drug 



 

absorption between male and female rats, as well as within different rat strains. 

Results found that there were significant differences in verapamil permeability 

between the sexes in several strains, demonstrating how potential sex-related 

differences may affect pre-clinical results.  

 

As such, this present study aimed to identify and characterise the physiological 

differences in GI fluid (pH, buffer capacity, surface tension and osmolality) and tissue 

composition (relative P-gp expression) between male and female rats, and to further 

understand their implications on oral drug delivery. 

2. MATERIALS AND METHODS 

2.1. Materials 

HPLC-grade water, methanol, peroxide-free tetrahydrofuran and trifluoroacetic acid 

were purchased from Fisher Scientific (Loughborough, UK). NaOH and HCl (0.1M 

standards) were used for buffer capacity determinations and were procured from 

Sigma Aldrich (Dorset, UK). Krebs-Bicarbonate Ringer’s solution (KBR), pH 7.4, was 

composed of 10mM D-glucose, 1.2mM CaCl2, 1.2mM MgCl2, 115mM NaCl, 25mM 

NaHCO3, 0.4Mm KH2PO4 and 2.4mM K2HPO4 (Clarke, 2009). Lysis buffer was freshly 

prepared with 50mM Tris, 250mM NaCl, 5mM EDTA, 1mM Na3VO4, 1mM PMSF, 1% 

Nonidet P40 and protease inhibitor cocktail in PBS (phosphate-buffered saline). All 

other chemicals and kits are noted individually in the following methods. 

2.2. Gastrointestinal tissues 

8-week-old Wistar Hanover Outbred rats (8 males and 6 females), weighing 180g and 

235g respectively, were purchased from Envigo Ltd. (Oxfordshire, UK). All animals 



 

were fed ad libitum with Teklad Global 18% Protein Rodent Diet (Harlan Ltd., 

Oxfordshire, UK) and given free access to tap water. All procedures were approved 

by the Home Office (PPL No.70/6421) and were conducted in accordance with the 

Animals (Scientific Procedures) Act 1986, UK. 

2.3. Gastrointestinal fluids 

All measurements were performed on the supernatant obtained from the 

gastrointestinal fluids of the rats, except pH which was also measured in situ.  The 

animals were sacrificed on the morning of the same day, in the same conditions, by 

CO2 asphyxiation and the GI tract was promptly excised. This was divided into the 

stomach (antrum; glandular stomach, and fundus; forestomach), duodenum, jejunum, 

ileum, caecum and colon (within 10 minutes). The gastrointestinal sections were 

emptied into 1.5mL Eppendorf tubes and centrifuged (Centrifuge 5415D, Eppendorf 

AG, Hamburg, Germany) at 13000rpm for 20min. The supernatant obtained was kept 

at -80°C until analysed as followed: 

 

Osmolality was measured with a Digital Micro-Osmometer (Type 5R), Hermann 

Roebling MESSTECHNIK, Berlin, Germany.   

 

Surface tension was measured using a Delta 8 Tensiometer (Kibron Inc), controlled 

by the Delta-8 manager software (version 3.8). The measurement was performed 

using a DynePlates (96-well plate designed for tensiometer) with 50µL of sample 

placed in each well. 

The pH was first measured in situ in the GI tract section by introducing the pH probe 

into the opening created by sectioning parts of the GI tract. For each GI segment, two 

in situ measurements were taken; one at the proximal opening (A) and the second at 



 

the distal region (B). Due to the limited volume of fluids available from some of the 

intestinal segments, however, some tests were run in pooled samples, in which fluids 

from the same segment of different animals were mixed to increase the available 

volume to perform the tests. This includes the further measurement of pH and buffer 

capacity of the GI supernatants using a pH meter (HI99161) equipped with an FC202 

electrode, designed for measurements of viscous and semi-solid materials (Hannah 

Instruments, Bedfordshire, UK).  

 

Buffer capacity in pooled rodent samples, was measured at a pH change of 1.0 unit 

by adding aliquots (10µL) of 0.1M HCl (for intestinal fluids) or 0.1M NaOH (for gastric 

fluids) to a 300µL supernatant pooled GI fluid sample to achieve the desired pH 

change. Buffer capacity was then calculated using the following equation: 

𝛽 (𝑚𝑚𝑜𝑙/𝐿/∆pH) =
𝑀𝑎 × 𝑉𝑎

∆𝑝𝐻
 ×  

1000

𝑉𝑏
 

Equation 1. β denotes the buffer capacity, 𝑀𝑎  is the molarity of the acid, 𝑉𝑎 is the 

volume of acid in mL, 𝑉𝑏 is the volume of buffer in mL and ∆𝑝𝐻 is the change in pH. 

 

2.4. Western-blotting Studies 

2.4.1 Total protein extraction and quantification 

The whole intestine, including the duodenum, jejunum, ileum and colon, was removed 

from the sacrificed rats and stored in KBR solution. 1L of KBR solution (pH 7.4) was 

prepared freshly before the experiment at room temperature (25oC). 1cm segments 

were cut from the duodenum, jejunum, ileum and colon. The mucosal tissue was then 

obtained by placing the tissue segments on an ice-cold glass plate and the serosa 

layer was gently squeezed out. 



 

To extract the tissue protein, each segment was placed into a glass vial containing 

3mL of lysis buffer and homogenised for 20 seconds at 10,000 rpm (T18 digital 

ULTRA-TURRAX®; IKA). The homogenised segment solutions were then incubated 

at 4oC for 2 hours and transferred to 1.5mL Eppendorf tubes and centrifuged at 10,000 

rpm at 4oC for 10min. The supernatants, as the final extracted protein samples, were 

transferred to micro-tubes and then stored at -20oC until analysis. Protein 

quantification was assessed by adapting the instructions from the Pierce BCA Protein 

Assay Kit (ThermoFisher), detailed in section 2.4.2. 

2.4.2 Determination of relative P-gp expression in rat intestine 

Protein samples (25μg) were suspended in NuPAGE® LDS Sample Buffer (Invitrogen, 

Carlsbad, CA) and then kept in a 70oC incubator for 10min denaturation. The 

denatured protein sample was then loaded on a NuPAGETM NovexTM 4–12% Bis-

Tris gel (Invitrogen). 5μL Sharp Pre-Stained protein standard (Invitrogen) was also 

loaded as molecular weight marker. Protein gel electrophoresis was then undertaken 

according to the protein gel electrophoresis protocol from Invitrogen. The separated 

protein samples were then transferred to a nitrocellulose membrane with XCell 

SureLock™ Mini-Cell Electrophoresis System (Invitrogen) according to the 

manufacturer’s instructions. Membranes were blocked with 3% bovine serum albumin 

(BSA) in TBS-T；mouse monoclonal anti-P-gp (C-219 3:200; Enzo Life Science, 

Exeter, UK) and anti-β-actin mouse monoclonal antibody (1:2000; Sigma-Aldrich, 

Poole, UK). Samples were incubated for 1h at room temperature (25℃). For the 

detection of P-gp and reference protein (β-actin), blots were incubated for 1h at room 

temperature with the respective primary antibodies being diluted in a 3% BSA in TBS-

T. The detection of bound antibodies was completed with affinity-purified rabbit anti-

mouse IgG coupled to peroxidase (secondary antibody; Sigma) diluted to 1:5000 in 



 

3% BSA in TBS-T. After a 1h incubation with the secondary antibody conjugated with 

horseradish peroxidase, protein bands were visualised by chem-iluminescence 

detection method with Pierce™ ECL Western Blotting Substrate (ThermoFisher). The 

blots were then photographed with a ChemiDoc XRS camera (Bio-Rad). The detection 

of P-gp and the reference protein bands were performed with the Image Lab™ 

software (Bio-Rad). For a calculation of the relative P-gp expression in selected 

groups, the reference protein was individually set to 1. The intensity of P-gp was 

consequently set relative to it. 

 

2.5 Statistical analysis 

The data was analysed by one-way ANOVA, followed by a post-hoc Tukey test with a 

95% confidence interval using IBM SPSS Statistics 19 (SPSS Inc., Illinois, USA). A 

Univariate General Linear Model tool was used with a Tukey post-hoc analysis, taking 

species and locations as fixed factors.   

 

3. RESULTS AND DISCUSSION 

3.1. Gastrointestinal fluid pH 

Figure 1 represents how the pH measured in situ changes along the GI tract in both 

male and female Wistar rats. For both sexes, the GI fluid pH profile followed a similar 

trend and such findings were comparable to trends published in the literature [7, 10]. 

In both males and females, pH was lowest in the stomach, with the antrum (also known 

as the glandular stomach) having a lower pH value than the fundus (also known as 

the forestomach).  

 



 

Interestingly, females were found to exhibit a significantly (p<0.05) lower pH in the 

fundus than males (pH values of 3.6 vs. 4.6, respectively). As the fundus does not 

contain acid-secreting glands, this in part could be due to the different feeding 

behaviours of male and female rats. In this present study, rats had free access to food 

and water which, therefore, may have contributed to the differences seen. Another 

reason could be due to the differences in male and female rat physiology; previous 

research has shown that oestrogens are inhibitors of the gastric acid secretion whilst 

testosterone is an inducer [11, 12]. However, in a recent study, it was found that males 

have a higher gastric blood flow than their female counterparts [13]. Oestrogen 

administration was able to reduce the mean blood flow in the gastric mucosa by 31% 

in males, however, remained largely unchanged in females. The thickening of the 

mucus layer was also demonstrated at a faster rate in females than males. This 

suggests that females may be more “resistant” to feminine hormones and may be 

more effective in repairing damage to the gastric wall. If the mucus-producing rate of 

females is higher, it may suggest an evolutionary biological adaptation to higher 

stomach acidity.  

 

In both sexes, a sharp rise in pH was observed from the antrum to the duodenum, 

which remained stable until the distal ileum where a small pH increase was observed. 

Such findings were also reported in previous studies [7]. This finding can be explained 

due to the presence of bicarbonate ions, bile and other species that neutralise the 

stomach acid. The pH then reduced markedly in the caecum and the colon, which was 

expected as it is a common site for fermentation and acid species production [14]. GI 

tract pH values were similar in both sexes between the antrum and the proximal colon. 

However, there were statistically significant (p<0.05) differences in the proximal 



 

duodenum, distal jejunum and distal colon. The differences observed were likely due 

to the small standard deviation and are not considered to be relevant.  

 

The standard deviation was highest in the stomach (both fundus and antrum) and in 

the distal portion of the colon, whilst remaining quite low throughout the small intestine. 

This suggests that inter-individual variability was higher in these regions, which may 

be due to the animals having free access to water and food. Following rodent sacrifice, 

it was observed the rats had different volumes of gastric contents, and thus, may have 

contributed to the variability observed. As for the colon, the higher variability may be 

due to the differences in microbial flora of each animal.  

 

GI fluid pH is widely known to affect drug ionisation by influencing drug solubility, 

stability, absorption and, ultimately, bioavailability. As such, the observed differences 

in GI fluid pH between male and female rats may have implications for the in vivo 

testing of oral dosage forms. For example, the differences in pH between the sexes 

could affect the behaviour of pH-responsive formulations, potentially leading to 

incorrect pharmacokinetic extrapolation [10, 15].  

 

3.2. Gastrointestinal fluid buffer capacity 

The overall trend of buffer capacity was found to be relatively similar in male and 

female Wistar rats and followed the expected trend for both sexes (Figure 2) [15, 16]. 

In particular, buffer capacity was found to be higher in the stomach, lower in the small 

intestine (where it remained constant) and higher again in the caecum and colon. A 

higher buffer capacity in the stomach may be explained by the large amount of chyme 



 

that is gradually released into the duodenum. As the chyme was converted into chyle, 

the buffer capacity reduced by approximately 20mmol.L-1
pH-1. 

  

Females were found to have a higher buffer capacity than males across the whole GI 

tract. This is especially apparent in the caecum and in the colon, where 2-fold and 1.8-

fold differences were observed between females and males, respectively. This could 

be explained by one of two reasons. Firstly, females may be producing a higher 

amount of buffering species in the caecum or colon. In particular, short-chain fatty 

acids (SCFAs) have been found to contribute to the overall buffer capacity of the 

luminal fluids [17]. SCFAs are mainly produced by certain bacteria taxa [18]. For 

example, the total faecal SCFA propionate concentration is linked to the abundance 

of Bacteroidetes [19], whereas SCFA butyrate is mainly produced by certain 

Coprococcus [20]. Both taxa have been reported to be more abundant in female rats 

[21] [22]. The higher amounts of SCFA-producing bacteria in the female distal gut may 

explain why the buffer capacity was higher in the female rats. Here, innate differences 

between the sexes may contribute to the microbiota distribution in rats, and thus, affect 

the buffer capacity of the luminal environment. A second theory could relate to the 

differences of the presence of food in female and male rats. In this study, the animals 

had free access to food and water prior to their sacrifice. When sacrificed, the rats 

were found to have different amounts of food in their GI tract. Co-ingestion of food and 

liquids have been known to impact buffer capacity and, as such, may have contributed 

towards the differences observed [23]. 

The buffer capacity of the GI luminal fluids plays a major role in the dissolution of 

ionisable drugs. In particular, buffer capacity determines the microclimate pH in the 

diffusion boundary layer adjacent to the dissolving surface [24]. As such, the large 



 

differences between male and female rats buffer capacity may again pose implications 

for the in vivo testing of oral dosage forms. For example, colon-targeted formulations 

may exhibit different dissolution rates between male and female rat models due to the 

variation in buffer capacity. 

3.3. Gastrointestinal fluid osmolality 

The osmolality of GI fluids in male and female rats showed similar profiles across the 

whole GI tract (Figure 3), and followed a trend that was similar to other studies [7]. In 

both cases, osmolality was found to be higher in the stomach and reduced distally. 

Males were found to have a higher osmolality (p<0.05) than females in the duodenum, 

ileum and colon compared to females. In male rats, osmolality of the gastric contents 

was not statistically different from that in the proximal and mid small intestine due to 

high variability in gastric osmolality. This may be justified by the different gastric 

contents found in the animals, which was also observed to occur in humans [25]. 

Osmolality in the distal small intestine was also statistically similar to that of the 

caecum and the proximal colon, in spite of the mean values decreasing considerably.  

 

GI fluid osmolality may contribute to oral drug absorption by affecting drug solubility; it 

has been reported that the “salting-out” and “salting-in” effect can change solubility 

[26]. Osmolality and fluid volume have been investigated in relation to buffer capacity 

and pH, given that the alteration of salt concentration and ingested fluids can affect 

both parameters through stimulating the secretion of gastric acid, bile and pancreatic 

juices [23, 27]. The continuous digestion and absorption of osmotically-active species 

may contribute to a distal reduction of the osmolality of the luminal environment. This 

finding is important due to the alteration of ionic content may further influence drug 

ionisation, and hence, limit drug absorption. 



 

 

3.4. Gastrointestinal fluid surface tension 

As shown in Figure 4, the surface tension values of GI fluids were similar amongst 

male and female rats. In both cases, the lowest surface tension value was recorded in 

the duodenum, which then increased distally. The surface tension of gastric acid in 

humans was previously reported to lie in the range of 35-45mNm-1 [28], which is also 

reflected in the results here. Significant sex differences were observed in the ileum, 

where females had a higher surface tension compared to males (p<0.05). The higher 

surface tension in the ileum of females suggests that they may be more efficient in the 

removal of bile salts from the luminal environment, leading to an increase in surface 

tension. The reason behind this is unclear, however, and may be related to a combined 

effect of higher reabsorption rates and a more efficient metabolism of bile salts. In the 

caecum and colon, the surface tension in females stabilised (equal to that of the ileum), 

whereas an increase was demonstrated in males. 

 

Surface tension of the GI fluids from rats is significantly lower than that of water (which 

is approximately 72mN.m-1 [29]). This can be easily understood by the presence of a 

myriad of compounds that act as surfactants in the GI tract, of which bile salts are the 

most widely known [30]. Bile salts are released in the upper duodenum and, as a 

result, the surface tension of the chyme is reduced. Rats lack a gall bladder which 

signify that their bile is not concentrated and stored, but released continuously in the 

small intestine [31]. As a result, rat bile is reported to be more dilute, although secreted 

in relatively higher volumes, when compared with humans [31, 32]. This might lead to 

a constantly higher level of bile salts in the rat GI tract during the fasted state, allowing 

for a lower surface tension.  



 

 

The standard deviation of these mean surface tension values were very low in the 

duodenum and jejunum, suggesting that the luminal environments in the upper GI tract 

were homogeneous with little inter-subject variability. However, in the ileum, caecum 

and colon, the standard deviation was very high, suggesting that the mechanism 

behind the distal increase of the surface tension is more variable. This supports the 

hypothesis of a variable, albeit more efficient, degradation or scavenging mechanism 

of retrieving bile salts in female rats compared to males.  

 

For oral drug delivery, surface tension of GI fluids may impact drug absorption. Surface 

tension has been found to contribute to the degree of solvation of drug particles and 

respective wettability [33], as well as being inversely related to the dissolution rate of 

some active substances [34].  

 

3.5. P-glycoprotein expression 

Figure 5 shows that there was a significant sex difference (p<0.05) in the relative P-

gp expression of rats under the aforementioned conditions. P-gp is an efflux 

transporter located at the apical side of epithelial cells. As a result, the absorption of 

xenobiotics, toxins or any other harmful substances is reduced due to the efflux 

transportation function of P-gp [35]. It is shown that female rats had a higher relative 

P-gp expression, while male rats displayed a lower expression level along the 

intestine. According to the Western-blotting results, shown in Figure 5, the relative 

expression of P-gp increased from the proximal to distal intestine in male rats were 

0.360.26 in the duodenum, 0.380.26 in the jejunum, 0.400.18 in the ileum and 

0.330.16 in the colon. Contrastingly, female rats displayed a relatively higher P-gp 



 

expression level, especially in the duodenum, jejunum and ileum (1.240.85, 

1.450.88 and 0.920.43, respectively). There was a statistically significant sex 

difference (p<0.05) in relative P-gp expression demonstrated along the whole 

intestine, except for the colon. 

 

Interestingly, our results reported here contrast to the work of previous studies that 

have evaluated P-gp expression in rats. A study conducted by MacLean et al. [36] 

showed that the relative expression of P-gp in six male rats increased up to 5-fold from 

the proximal to distal intestine. In their study, there were no sex differences in P-gp 

expression along the intestine. The difference here may be due to the different rat 

strains, the housekeeping protein and potentially due to the fact that the previous study 

only investigated fasted-state rats. In this current study, Wistar male and female rats 

were used whereas Han-Wistar rats were used in the previous study. Moreover, the 

housekeeping protein used in the current study was beta-actin, whereas villin protein 

was used to normalise the P-gp expression in the previous study. More work is 

required to understand the difference between the current studies and previous 

studies; however, the work reported here provides an insight on the significant 

differences between the sexes. 

 

In humans, previous studies regarding the sex differences in intestinal P-gp function 

have been inconsistent. A study conducted by Mouly et al. [37] investigated the P-gp 

expression level in the duodenum, the jejunum and the ileum obtained from four 

humans but did not mention sex differences as a variable. Following the re-analysis of 

the data reported by Schuetz et al. [38], Potter. et al. [39] reported that P-gp expression 

was higher in males when compared with females. Consequently, two studies were 



 

later published and claimed that there were no sex difference exhibited in P-gp 

intestinal expression. In one study, Paine. et al. [40] investigated the P-gp expression 

in the proximal intestine (duodenum) in men and women. Their results revealed that 

there were no significant sex differences, (mean P-gp expression was 0.66 vs. 0.73 in 

males and females, respectively). Another study explored the P-gp expression in the 

stomach, the jejunum and the ileum regions of the intestine [41]. In all three portions, 

sex differences in P-gp expression were not observed. 

 

The data presented here clearly shows the physiological differences between male 

and female rat models, which may in turn lead to differences in drug pharmacokinetics 

or efficacy. As P-gp is a biological membrane efflux transporter, which is capable of 

modulating the transmembrane activities of drugs in different organs [42], this could 

be particularly consequential if evaluating a novel drug that is a P-gp substrate. For 

example, previous studies have evaluated the permeability of of rhodamine 123 

(Rho123; a known P-gp substrate) at different segmental regions of the rat small 

intestine. In fact, this study observed that the segmental differences in Rho123 

permeability significantly correlated with P-gp activity, with permeability being highest 

in the middle ileum [43, 44]. With regards to sex differences, Oltra-Noguera. et al. [9] 

observed that the permeability of verapamil, which is a P-gp substrate, was 

significantly lower in females compared to male rats of the Wistar Unilever, CD*IGS 

and Long Evans strains. Our findings here could explain the reason behind this 

reduction in permeability could be due to a higher relative P-gp expression within 

female rats. However, it is worth noting that a different strain of rats was used in the 

current study (Wistar Hanover Outbred rats). Furthermore, the Western-blotting 

technique may have some limitations as it calculates only the relative expression of P-



 

gp as opposed to absolute expression. As such, it may be worth investigating absolute 

P-gp expression in future work.  

 

5. CONCLUSION 

Pre-clinical research often fails to evaluate the impact of sex differences on oral drug 

delivery. Here, the GI fluid and tissue environment (relative P-gp expression) of male 

and female rats were evaluated. GI fluid pH, buffer capacity, surface tension and 

osmolality were found to be similar in the sexes. Differences were predominantly 

identified in the stomach and in the distal portion of the GI tract (in the ileum, caecum 

and colon). In terms of relative P-gp expression, marked sex differences were 

observed along the intestinal tract. From the duodenum to the ileum segments, female 

rats expressed a significantly higher P-gp level when compared with their male 

counterparts (p<0.05). In the colon, however, no significant differences in relative P-

gp expression were observed, with both male and female rats exhibiting low levels. 

Relative P-gp expression along the whole intestine in females was consistently high 

in the small intestine and dramatically reduced in the colon. Male rats, however, 

exhibited a consistently low level of P-gp along the whole intestine tract. The results 

presented in this study contribute towards an increased understanding of how the GI 

environment is innately affected by sex. Therefore, the work reported is especially 

important to consider during pre-clinical development, and during translation into 

humans.    
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Figure Captions 

 



 

Figure 1. pH of the luminal environment of sections of the GI tract of male and female 

Wistar rats. A – Denotes proximal portion of the segment; B – denotes distal portion 

of the segment. The results are measured in situ. *denotes a statistical significance 

(p<0.05) between males and females. 

 

Figure 2. Buffer capacity (ΔpH=1.0) of pooled fluids of sections of the GI tract of male 

and female Wistar rats. The values are the mean of the repeated measurements. 

 

Figure 3. Osmolality of the GI fluids in male and female Wistar rats. *denotes a 

statistically significant (p<0.05) between males and females. 

 

Figure 4. Surface tension of the fluids of sections of the GI tract of male and female 

Wistar rats. *denotes a statistically significant (p<0.05) between males and females. 

 

Figure 5. P-gp relative expression along the intestinal tract of male and female rats (n 

= 6). *denotes a statistically significant (p<0.05) between males and females. 

 

 


