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a b s t r a c t 

Cascaded or central-moment-based lattice Boltzmann method (CLBM) is a relatively recent development 

in the LBM community, which has better numerical stability and naturally achieves better Galilean invari- 

ance for a specified lattice compared with the classical single-relation-time (SRT) LBM. Recently, CLBM 

has been extended to simulate thermal flows based on the double-distribution-function (DDF) approach 

[L. Fei et al., Int. J. Heat Mass Transfer 120, 624 (2018)]. In this work, CLBM is further extended to sim- 

ulate thermal flows involving complex thermal boundary conditions and/or a heat source. Particularly, a 

discrete source term in the central-moment space is proposed to include a heat source, and a general 

bounce-back scheme is employed to implement thermal boundary conditions. The numerical results for 

several canonical problems are in good agreement with the analytical solutions and/or numerical results 

in the literature, which verifies the present CLBM implementation for thermal flows. 

© 2018 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the last three decades or so, the lattice Boltzmann method

LBM), which is a mesoscopic numerical method based on the ki-

etic theory, has been developed to be a widely used numerical

ethod for solving various fluid flows and heat transfer problems

1–7] . In the LBM, a discretized Boltzmann equation, based on a

pecific discrete velocity set and designed to reproduce the Navier–

tokes (N-S) equations in the macroscopic limit, is solved for the

istribution functions (DFs). Generally, the mesoscopic nature of

BM allows its natural incorporation of microscopic and/or meso-

copic physical phenomena, while the highly efficient algorithm

akes it affordable computationally [8,9] . 

In the extensively used algorithm for LBM, the numerical pro-

ess can be split into two steps [8–10] : the “collision” step and the

streaming” step. In the collision step, the single-relaxation-time

SRT) or BGK scheme [3] is the most widely used collision operator.

n the BGK-LBM, all the distribution functions are relaxed to their

ocal equilibrium states at an identical rate, where the relaxation

ate is related to the kinematic viscosity. The BGK–LBM is quite

imple to implement and can simulate low Reynolds number flows,
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ut it may have numerical instability at high Reynolds number

r low-viscosity flows, as well as inaccuracy of implementing the

oundary conditions [11–15] . To overcome these difficulties, the

ultiple-relaxation-time (MRT) collision operator was proposed in

he literature [11,12] . In the MRT–LBM, the DF is transformed into

 raw moment space, where different raw moments of the DF can

e relaxed at different relaxation rates to the local equilibrium raw

oments. Compared with the BGK–LBM, the MRT–LBM can en-

ance numerical stability by carefully separating the time scales

mong the kinetic modes [12] , as well as improve the numerical

ccuracy for non-slip boundary conditions by choosing a specified

elaxation rate for the energy flux [13–15] . However, Geier et al.

rgued that the MRT–LBM may also encounter instability for high

eynolds number flows due to the insufficient degree of Galilean

nvariance and the “cross-talk” effect induced by relaxing the raw

oments [16] . By relaxing central moments of the DF in the co-

oving frame, a cascaded or central-moment-based operator was

roposed in 2006 [16] . In the cascaded LBM, also known as CLBM,

he “cross-talk” effect in the MRT–LBM is eliminated naturally, and

 higher degree of Galilean invariance for a specified lattice can be

reserved readily by matching the higher order central moments

f the continuous Maxwell-Boltzmann distribution. By setting the

elaxation rates for high-order central moments to be 1, CLBM has

een applied to simulate high Reynolds number ( Re = 1 , 400 , 000 )

urbulent flow using coarse grids without resorting to any tur-
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S  
bulence models [16] . Recently, CLBM has been extended to sim-

ulate multiphase flows coupled with the pseudo-potential model

[17] by Lycett–Brown and Luo [18] . Compared with the BGK–LBM

for multiphase flows, the proposed multiphase CLBM reduces the

spurious currents near the phase interface significantly [18] , and

achieves higher stability range for the Reynolds number [19] . As

is known, the basic pseudo-potential model has some drawbacks,

such as thermodynamic inconsistency, large spurious currents, and

suffers from the problem of the surface tension dependence on the

density ratio [9] . More recently, Li et al. proposed an approach of

achieving thermodynamic consistency via tuning the mechanical

stability condition [20,21] , and analyzed the effects of the equation

of state on the thermodynamic consistency [22] . Inspired by the

methods in [20–22] , an improved forcing scheme in the pseudo-

potential model was proposed in [23] . By coupling the improved

forcing scheme with the cascaded operator, Lycett–Brown and Luo

achieved very high parameters in the simulation of binary droplet

collisions [24] . 

More recently, CLBM was first extended to simulate thermal

flows by the present authors [25] , where a thermal cascaded lattice

Boltzmann method (TCLBM) was proposed based on the double-

distribution-function (DDF) approach. In our TCLBM, the CLBM is

used to simulate the flow field and another total energy BGK–LBM

is used for the temperature field, where the two fields are cou-

pled by equation of state for the ideal gas. The proposed TCLBM

has been proved to be able to simulate low-Mach compressible

thermal flows with commendable stability and accuracy. For in-

compressible thermal flows without viscous dissipation and pres-

sure work, another CLBM has been constructed on a simpler lat-

tice (D2Q5) to solve the passive-scalar temperature field [26] . Com-

pared with the D2Q5 MRT–LBM for the temperature equation, the

proposed D2Q5 CLBM is shown to be better Galilean invariant.

Thus a higher characteristic velocity can be adopted for convection

heat transfer problems, which decreases the computational load

significantly. Although CLBM has been applied to several thermal

problems [25,26] , less attention has been paid to two important

factors: temperature field with a heat source and non-isothermal

boundary conditions. In this work, we will present the implemen-

tation of a heat source and a general bounce-back scheme for the

thermal boundary conditions. 

The rest of the paper is structured as follows: In Section 2 ,

a brief introduction for the DDF-based CLBM for incompressible

thermal flows is given, followed by the implementation of a heat

source and general bounce-back scheme for thermal boundary con-

ditions. Numerical experiments are carried out for several bench-

mark problems to validate the employed method in Section 3 . Fi-

nally, a brief summary is given in Section 4 . 

2. Numerical method 

The macroscopic governing equations for incompressible ther-

mal flows can be written as: 

∇ · u = 0 , (1a)

∂u 

∂t 
+ u · ∇u = − 1 

ρ0 

∇p + ν∇ 

2 u + F , (1b)

∂T 

∂t 
+ u · ∇T = ∇ · (α∇φ) . (1c)

where u , p, ρ0 , T, ν and α are the velocity, pressure, reference den-

sity, temperature, kinematic viscosity, and thermal diffusivity, re-

spectively. The Boussinesq approximation is employed in this work,

thus the force field is defined as, 

F = −g β(T − T 0 ) + F v , (2)
here the gravitational acceleration vector g points to the negative

irection of y-axis, β is the thermal expansion coefficient, T 0 is the

eference temperature, and F v is an external body force. 

.1. CLBM for the flow field 

In the present work, the D2Q9 discrete velocity model [3] is

sed to simulate two-dimensional problems. As usual, the lattice

pacing �x , time step �t and lattice speed c = �x/ �t are set to

e 1. The discrete velocities e i = 

[| e ix 〉 , ∣∣e iy 〉] are defined by 

 

e ix 〉 = [0 , 1 , 0 , −1 , 0 , 1 , −1 , −1 , 1] � , (3a)

e iy 
〉
= [0 , 0 , 1 , 0 , −1 , 1 , 1 , −1 , −1] � , (3b)

here i = 0 , . . . , 8 , | · 〉 denotes the column vector, and the super-

cript � indicates transposition. 

For the cascaded collision operator, the collision step is carried

ut in the central-moment space. The raw moments and central

oments of the discrete distribution functions (DFs) f i are defined

s: 

 mn = 

〈
f i 
∣∣e m 

ix e 
n 
iy 

〉
, (4a)

˜ 
 mn = 

〈
f i 
∣∣( e ix − u x ) 

m 

( e iy − u y ) 
n 
〉
, (4b)

nd the equilibrium values k eq 
mn 

and 

˜ k 
eq 
mn are defined analogously

y replacing f i with the discrete equilibrium distribution functions

EDFs) f 
eq 
i 

. In this work, a simplified raw-moment set is adopted

26] , 

 

	i 〉 = [ k 00 , k 10 , k 01 , k 20 , k 02 , k 11 , k 21 , k 12 , k 22 ] 
� 
, (5)

nd so do the central moments ˜ 	i . Specifically, the raw moments

an be given from f i through a transformation matrix M by | 	i 〉 =
 | f i 〉 , and the central moments shifted from raw moments can be

erformed through a shift matrix N by 
∣∣ ˜ 	i 

〉
= N | 	i 〉 . The formula-

ions for M and N can be easily obtained according to the raw-

oments set [27] . In the present study, M and N are expressed as

26] , 

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 1 1 1 1 1 1 1 1 

0 1 0 −1 0 1 −1 −1 1 

0 0 1 0 −1 1 1 −1 −1 

0 1 0 1 0 1 1 1 1 

0 0 1 0 1 1 1 1 1 

0 0 0 0 0 1 −1 1 −1 

0 0 0 0 0 1 1 −1 −1 

0 0 0 0 0 1 −1 −1 1 

0 0 0 0 0 1 1 1 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (6a)

 = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

1 0 0 0 0 0 0 0 0 

−u x 1 0 0 0 0 0 0 0 

−u y 0 1 0 0 0 0 0 0 

u 2 x −2 u x 0 1 0 0 0 0 0 

u 2 y 0 −2 u y 0 1 0 0 0 0 

u x u y −u y −u x 0 0 1 0 0 0 

−u 2 x u y 2 u x u y u 2 x −u y 0 −2 u x 1 0 0 

−u 2 y u x u y 
2 2 u x u y 0 −u x −2 u y 0 1 0 

u 2 x u 
2 
y −2 u x u 

2 
y −2 u y u 

2 
x u 2 y u 2 x 4 u x u y −2 u y −2 u x 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

. (6b)

The post-collision central moments can be obtained by relaxing

ach of them to their local equilibrium states independently, ∣∣ ˜ 	∗
i 

〉
= ( I − S ) 

∣∣ ˜ 	i 

〉
+ S 

∣∣ ˜ 	eq 
i 

〉
+ ( I − S / 2) | C i 〉 , (7)

here the block-diagonal relation matrix is given by, 

 = diag 

(
[0 , 0 , 0] , 

[
s + , s −
s −, s + 

]
, [ s v , s 3 , s 3 , s 4 ] 

)
, (8)
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ith s + = ( s b + s ν ) / 2 and s − = ( s b − s ν ) / 2 [26,28] . The kinematic ν
nd bulk viscosities νb are related to the relaxation parameters by

= (1 /s ν − 0 . 5) c 2 s �t and νb = (1 /s b − 0 . 5) c 2 s �t, respectively. 

The equilibrium central moments ˜ 	eq 
i 

are defined equal to the

ontinuous central moments of the Maxwellian–Boltzmann distri-

ution in continuous velocity space, 

˜ 	eq 
i 

〉
= 

[
ρ, 0 , 0 , ρc 2 s , ρc 2 s , 0 , 0 , 0 , ρc 4 s 

]� 
, (9) 

here ρ is the fluid density, and c s = 

√ 

1 / 3 is the lattice sound

peed. Consistently, the forcing source terms in central moments

pace are given by [27] , 

 

C i 〉 = [0 , F x , F y , 0 , 0 , 0 , c 2 s F y , c 
2 
s F x , 0] � . (10) 

t may be noted that the method of incorporating a force field

nto the CLBM is the most recently proposed consistent forcing

cheme [27] and it shows great advantages over the previous forc-

ng schemes in CLBM. 

In the streaming step, the post-collision discrete DFs f ∗
i 

in space

 and time t stream to their neighbors in the next time step as

sual, 

f i ( x + e i �t , t + �t ) = f ∗i ( x , t) , (11)

here the post-collision discrete DFs are determined by 
∣∣ f ∗

i 

〉
=

 

−1 N 

−1 
∣∣ ˜ 	∗

i 

〉
. Using the Chapman–Enskog analysis, the incompress-

ble N-S equaltions in Eq. (1) can be reproduced in the low-Mach

umber limit [27,29] . The hydrodynamics variables are obtained by,

= 

∑ 

i 
f i , ρu = 

∑ 

i 
f i e i + 

�t 

2 

F . (12)

t should be noted that the so-called incompressible approximation

30] is employed in the present work. Thus the dynamic variable 

ensity ρ can be divided into the reference density ρ0 and a small

ensity fluctuation δρ . 

.2. CLBM for the temperature field 

Due to the simplicity of convection-diffusion equation, a D2Q5

iscrete velocity model (the five discrete velocity set is defined in

q. (3), { e i = [ | e ix 〉 , | e iy 〉 ] | i = 0 , 1 , . . . , 4 } ) can be used to construct

he CLBM for the temperature field [26] . Similarly, the raw mo-

ents and central moments of the temperature distribution func-

ions g i are defined by [26] , 

 

T 
mn = 

〈
g i 
∣∣e m 

ix e 
n 
iy 

〉
, (13a) 

˜ 
 

T 
mn = 

〈
g i 
∣∣( e ix − u x ) 

m 

( e iy − u y ) 
n 
〉
. (13b) 

In the D2Q5 lattice, the following five raw moments are

dopted [26] , 

	T 
i 

〉
= 

[
k T 00 , k 

T 
10 , k 

T 
01 , k 

T 
20 , k 

T 
02 

]� 
, (14) 

nd so do the central moments 
∣∣ ˜ 	T 

i 

〉
. Analogously, the raw mo-

ents and central moments can be calculated through a transfor-

ation matrix M T and a shift matrix N T , respectively [26] , 

	T 
i 

〉
= M T | g i 〉 , 

∣∣ ˜ 	T 
i 

〉
= N T 

∣∣	T 
i 

〉
. (15) 

xplicitly, the transformation matrix M T is expressed as [26] , 

 T = 

⎡ 

⎢ ⎢ ⎣ 

1 1 1 1 1 

0 1 0 −1 0 

0 0 1 0 −1 

0 1 0 1 0 

0 0 1 0 1 

⎤ 

⎥ ⎥ ⎦ 

, (16) 
nd the shift matrix N T is given by, 

 T = 

⎡ 

⎢ ⎢ ⎣ 

1 0 0 0 0 

−u x 1 0 0 0 

−u y 0 1 0 0 

u 

2 
x −2 u x 0 1 0 

u 

2 
y 0 −2 u y 0 1 

⎤ 

⎥ ⎥ ⎦ 

. (17) 

The collision in the central-moment space can be written as, 

˜ 	T, ∗
i 

〉
= (I − S T ) 

∣∣ ˜ 	T 
i 

〉
+ S T 

∣∣ ˜ 	T,eq 
i 

〉
, (18)

here S T = diag( λo , λ1 , λ1 , λ2 , λ2 ) is the diagonal relaxation ma-

rix. The thermal diffusivity is related to the relaxation parame-

er by α = (1 / λ1 − 0 . 5) c 2 T �t . The equilibrium values of the central

oments are given by, 

˜ 	T,eq 
i 

〉
= 

[
T , 0 , 0 , T c 2 T , T c 

2 
T 

]� 
, (19) 

here c 2 T is the sound speed in the D2Q5 lattice. The post-collision

emperature distribution functions g ∗
i 

can be obtained by 

 

∗
i = M 

−1 
T 

N 

−1 
T 

∣∣ ˜ 	T, ∗
i 

〉
. (20)

he streaming step for g ∗
i 

is also as usual, 

 i (x + e i �t, t + �t) = g ∗i (x , t) . (21)

he temperature T is computed as, 

 = 

∑ 4 

i =0 
g i . (22) 

hrough the Chapman–Enskog analysis, the convection-diffusion

quation for the temperature field can be recovered in the macro-

copic limit. 

.3. Heat source and boundary conditions 

The DDF-based CLBM introduced above has been proved to be

ble to simulate several incompressible thermal flows with isother-

al boundary condition. However, it can hardly simulate convec-

ive heat transfer problems with a heat source. Inspired by the

revious method to include the heat source in the BGK and MRT

BM [31,32] , here we present a CLBM for the temperature equa-

ion with a generalized heat source term. Similar to the consistent

orcing scheme in CLBM, a heat source Q can be incorporated into

q. (18) by means of central moments, 

˜ 	T, ∗
i 

〉
= (I − S T ) 

∣∣ ˜ 	T 
i 

〉
+ S T 

∣∣ ˜ 	T,eq 
i 

〉
+ (I − S T / 2) | R i 〉 . (23)

here R i correspond to the central moments of the heat source, 

 

R i 〉 = 

[
Q, 0 , 0 , Qc 2 T , Qc 2 T 

]
. (24) 

nalogously, the calculation of temperature is modified as, 

 = 

∑ 4 

i =0 
g i + Q/ 2 . (25)

To implement thermal boundary conditions, a general half-way

ounce-back scheme is adopted in this work. After the collision

tep, the post-collision temperature distribution functions are ob-

ained by Eq. (20) . In the streaming step, the distribution functions

ntering from “outside” of the boundary g �
 i ( x f , t + �t) are deter-

ined by, 

 �
 i ( x f , t + �t) = −g ∗i ( x f , t) + c 2 T T w 

, (26) 

here e �
 i = −e i , and T w 

is the temperature at the boundary. For the

eneral thermal boundary conditions, b 1 ∂ T w 

/ ∂n + b 2 T w 

= b 3 , the

oundary temperature T w 

can be solved using a finite-difference

cheme. Different from the method in [33] , a second-order finite-

ifference scheme is adopted for the temperature gradient, 
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Fig. 1. Comparison of temperature profiles predicted by the D2Q5 CLBM simulation 

and the analytical solution. 
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Fig. 2. Global relative errors E 2 change with λ2 for α = 1 / 10 and α = 1 / 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of the dimensionless temperature profiles predicted by the 

D2Q5 CLBM simulation and the analytical solution. 
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Fig. 4. Global relative errors E 2 change with grid sizes for viscous dissipation prob- 

lem in Poiseuille flow. 
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∂ T w 

∂n 

= 

8 T w 

− 9 T 1 + T 2 
3 n · e i �x 

, (27)

where T 1 and T 2 are temperatures at the first and second layer

nodes neighboring the boundary, and n is the boundary normal

vector. The boundary temperature can be calculated as, 

T w 

= 

9 b 1 T 1 − b 1 T 2 + 3 n · e i �x b 3 
8 b 1 + 3 n · e i �x b 2 

. (28)

After obtaining T w 

, the unknown distribution functions g �
 i ( x f , t +

�t) can be calculated using Eq. (26) . 

3. Numerical experiments 

In this section, several benchmark problems are conducted to

verify our implementation of the heat source and boundary condi-

tions. In the present CLBM for the temperature field, the value of c T 
can be independent of c s , and is set to be c T = 

√ 

2 / 5 in this work.

Unless otherwise specified, the half-way bounce-back boundary

scheme is used for both velocity and temperature boundary con-

ditions, while s 3 in Eq. (8) is chosen according to the non-slip rule

s 3 = (16 − 8 s ν ) / (8 − s ν ) [27] . 

3.1. Time-independent diffusion problem 

The first tested problem is a time-independent diffusion prob-

lem, which can be described by the following simplified equation

and boundary conditions, 

α
∂ 2 T 

∂ y 2 
+ Q = 0 , (29a)
 (x, y = 0) = T 0 , T (x, y = L ) = T L , (29b)

here T 0 and T L are the temperatures at the bottom and the top

f a straight channel. The heat source is Q = 2 α�T / L 2 , with �T =
( T L − T 0 ) , and the exact solution is, 

 a = T 0 + 

�T y 

L 

(
2 − y 

L 

)
. (30)

ue to the simple flow configuration, only 6 nodes are used to

over the channel width ( L = 6�x ). The simulation results are

ompared with the analytical solution in Fig. 1 . Two cases with

= [ 1 / 10 , 1 / 3 ] are considered, where the boundary conditions are

 0 = 0 and T L = 1 , respectively. The corresponding relaxation rates

re chosen as: (1) λ1 = 4 / 3 and λ2 = 3 / 4 for the first case; (2)

1 = 3 / 4 and λ2 = 4 / 3 for the second case. It is seen that the sim-

lation results are in very good agreement with the analytical so-

ution. As analyzed by Cui et al. [32] , when the relaxation rate

2 is specified as λ2 = 12( λ1 − 2) / ( λ1 − 12) , the numerical slip in

he D2Q5 MRT can be eliminated. To check its applicability in the

resent D2Q5 CLBM, a series of simulations are carried out with λ2 

hanging from 0.2 to 1.8. As shown in Fig. 2 , the global relative er-

or E 2 , defined as E 2 = 

√ ∑ 

(T − T a ) 
2 
/ 
∑ 

T a 
2 
, reaches the minimum

alues at λ2 = 3 / 4 and λ2 = 4 / 3 for α = 1 / 10 and α = 1 / 3 , respec-

ively. Thus the non-slip rule in the D2Q5 MRT is also suitable for

he present D2Q5 CLBM, which further verifies our previous analy-

is that the MRT–LBM and CLBM can be put into a unified general

ramework [27] . 
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Fig. 5. Isotherms of natural convection in a square cavity at: (a) Ra = 10 3 , (b) Ra = 10 4 , (c) Ra = 10 5 , and (d) Ra = 10 6 . 
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.2. Viscous dissipation in poiseuille flow 

To validate the implementation of a spatially variable heat

ource, viscous dissipation in Poiseuille flow is simulated. The flow

s driven by a constant body force along x direction, F = [ F x , 0] ,

hile the walls are at constant temperature T w 

. The viscous dis-

ipation is considered by adding a heat source, Q = ν(∂ u/∂ y ) 2 , in
q. (1c) . By using the non-slip rule for the velocity field, a very

ccurate velocity profile can be provided by the D2Q9 CLBM in

ection. 2.1 . The analytical temperature field is [31] , 

 a = T w 

+ 

1 

3 να

(
h 

2 F x 

2 

)2 [
1 −

(
y 

h 

)4 
]
, (31) 

here h is the half-width of the channel. The simulation result is

ompared with the analytical solution in Fig. 3 , where the dimen-

ionless temperature is defined as, 

 

∗ = 3 να(T − T w 

) / 

(
h 

2 F x 

2 

)2 

. (32) 

t is clearly shown that the simulation result agrees well with the

nalytical solution. The global relative errors at different grid sizes

re shown in Fig. 4 . A very good linear fit is seen in the simulation

esults, and the slop is 2.05. It indicates that the implementation
f the boundary condition and heat source for the present problem

as second-order accuracy in space. 

.3. Natural convection in a square cavity 

The natural convection driven by the buoyancy force in a square

avity is simulated to validate the implementation of complex ther-

al boundary conditions. This problem has been widely examined

n the literatures [25,34–36] . The left and right walls of a square

avity are at constant temperature T h = 1 and T l = 0 , respectively,

hile the top and the bottom walls are adiabatic. The problem is

haracterized by the Prandtl number P r = ν/a and Rayleigh num-

er Ra = gβ( T h − T l ) H 

3 / (νa ) , where H is the cavity hight. In the

resent paper, Pr is set to be 0.71, and the characteristic veloc-

ty U = 

√ 

gβ( T h − T l ) H is set to be 0.1. The grid sizes are chosen

o be Nx × Ny = 128 × 128 , 192 × 192, 192 × 192 and 256 × 256 for

a = 10 3 , 10 4 , 10 5 and 10 6 , respectively. The isotherms and stream-

ines at different Ra are shown in Figs. 5 and 6 , respectively. Qual-

tatively, all the characteristics in both temperature and flow fields

gree well with the results in previous studies [34–36] . To be more

uantitative, data of the present work are listed in Table 1 , com-

ared with those reported in previous studies [35,36] . The fol-

owing quantities are compared: the maximum horizontal velocity

omponent u max at x = H/ 2 and its location y max , the maximum
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Fig. 6. Streamlines of natural convection in a square cavity at: (a) Ra = 10 3 , (b) Ra = 10 4 , (c) Ra = 10 5 , and (d) Ra = 10 6 . 

Table 1 

Comparisons of the present CLBM results with the Benchmark solu- 

tions [35,36] . 

Ra 10 3 10 4 10 5 10 6 

u max LBM1 [36] 3.644 16.134 34.87 64.838 

LBM2 [35] 3.6554 16.0761 34.8343 65.3606 

CLBM 3.6532 16.1737 35.0488 65.0274 

y max LBM1 [36] 0.815 0.825 0.855 0.850 

LBM2 [35] 0.8125 0.8203 0.8594 0.8516 

CLBM 0.8140 0.8255 0.8574 0.8525 

v max LBM1 [36] 3.691 19.552 67.799 215.26 

LBM2 [35] 3.6985 19.6368 68.2671 216.415 

CLBM 3.6999 19.6735 68.7584 220.919 

x max LBM1 [36] 0.180 0.120 0.065 0.040 

LBM2 [35] 0.1797 0.1172 0.0625 0.0391 

CLBM 0.1792 0.1172 0.0647 0.0387 

Nu LBM1 [36] 1.117 2.241 4.491 8.731 

LBM2 [35] 1.1168 2.2477 4.5345 8.7775 

CLBM 1.1174 2.2428 4.5178 8.8204 
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vertical velocity component v max at y = H/ 2 and its location x max ,

and the average Nusselt number Nu along the cold wall. There is an

excellent agreement between the present results and the bench-

mark solutions in the previous studies [35,36] . 
. Conclusions 

In this work, we extend previous DDF-based thermal CLBM

o simulate more general incompressible thermal flows with heat

ources and thermal boundary conditions. To include a heat source

n the temperature equation, a discrete source term R i is added to

he collision step in central-moment space. To deal with thermal

oundary conditions, the general bounce-back boundary scheme

n MRT–LBM is modified and adopted in the present D2Q5 CLBM.

hrough numerical simulations of several benchmark cases, very

ood accuracy of the proposed implementation for the heat source

nd boundary conditions are confirmed. In addition, it is found

hat the non-slip rule in the D2Q5 MRT–LBM is also suitable for

he D2Q5 CLBM. 
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