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Abstract: We investigate surface modes in plasmonic Bragg fibers composed of nanostructured
coaxial cylindrical metal-dielectric multilayers. We demonstrate that the existence of surface
modes is determined by the sign of the spatially averaged permittivity of the plasmonic Bragg
fiber, ε̄. Specifically, localized surface modes occur at the interface between the cylindrical core
with ε̄ < 0 and the outermost uniform dielectric medium, which is similar to the topologically
protected plasmonic surface modes at the interface between two different one-dimensional
planar metal-dielectric lattices with opposite signs of the averaged permittivity. Moreover, when
increasing the number of dielectric-metal rings, the propagation constant of surface modes with
different azimuthal mode numbers is approaching that of surface plasmon polaritons formed
at the corresponding planar metal/dielectric interface. Robustness of such surface modes of
plasmonic Bragg fibers is demonstrated too.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Surface modes induced by nontrivial topological mechanisms have recently drawn much attention
in optics. Thanks to the topological protection, topological surface modes are intrinsically
robust against structural perturbations [1–4]. A variety of optical systems supporting such
surface modes have been proposed and demonstrated. The simplest example is analogous to the
celebrated Su-Schrieffer-Heeger (SSH) model for polyacetylene [5], in which a chain of sites
with alternating coupling constants exhibits two topologically distinct phases, and topologically
protected interfacial modes exist at their interface. The photonic realization of the SSH model was
demonstrated in dimerized dielectric waveguides [6], dielectric nanoparticles [7], and metallic
nanodisks [8], as well as in graphene plasmonic waveguide arrays [9]. These structures, which
implement the SSH model in photonics, are discrete one, as concerns the arrangement of their
optical elements.

Topological surface modes can also be realized in one-dimensional (1D) continuous periodic
systems [10–12]. In particular, the Zak phase, which is a special kind of the Berry phase defined for
photonic bands of 1D systems, characterizes topological properties of such periodic systems [13].
Interestingly, it was found that the Zak phase of plasmonic superlattices, composed of alternating
metallic and dielectric layers, is determined by the sign of the spatially averaged value of their
permittivity [12]. Topologically protected plasmonic surface modes exist at the interface between
two plasmonic lattices with opposite signs of the average permittivity, and these modes may be
regarded as a generalization of conventional surface plasmonic polaritons (SPPs) occurring at the
interface between dielectric and metallic materials. This means that for 1D plasmonic periodic
systems the spatial average of the permittivity, which has a more intuitive physical meaning,
acts as an alternative to the Zak phase in characterizing topological properties of the structure –
namely, in defining the existence of topological surface modes. This raises an important question:
can the sign of the average permittivity also determine the existence of plasmonic surface modes
in metallic-dielectric structures, beyond the 1D case, such as in plasmonic Bragg fibers composed
of coaxial cylindrical metal-dielectric multilayers?

In this paper, we consider a plasmonic Bragg fiber composed of coaxial cylindrical dielectric-
metal multilayers and investigate physical properties of localized surface modes in such fibers by
performing the mode analysis and direct beam-propagation simulations. We find that, similarly
to the case of topological surface modes in planar metal-dielectric multilayers, surface modes
exist at the interface between the core of the plasmonic Bragg fiber with a negative average
permittivity and the outermost uniform dielectric medium. We also find that, with the increase of
number of dielectric-metal rings of the plasmonic Bragg fiber, the propagation constant of all the
modes, including the fundamental and higher-order ones, approaches that of surface plasmon
polaritons formed at the planar interface between the metal and dielectric media. Finally, using
direct numerical simulations, the surface modes of plasmonic Bragg fibers are found to be robust
against structural disorder. The paper is organized as follows. In the next section we introduce the
theoretical model which is used to describe optical properties of our structure. Then, in Sec. 3,
we present and discuss the main results of our study. Finally, we summarize the results in Sec. 4.
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Fig. 1. (a) The cross-section of a plasmonic Bragg fiber composed of alternating coaxial
metal-dielectric cylindrical shells. (b) A schematic structure of the plasmonic Bragg fiber.

2. The theoretical model and transfer-matrix formalism

The plasmonic Bragg fiber considered in this study is built as a series of coaxial metal-dielectric
cylindrical shells, as schematically shown in Fig. 1. The electromagnetic field is assumed to
propagate along the common axis of the cylindrical shells, z. To make the analysis more specific,
we assume that the metallic and dielectric layers are made of silver and silicon, respectively.
The complex permittivity of the metal (silver) can be calculated by using the Drude model [14],
εM = 1−ω2

p/[ω(ω+ iν)], with plasma and damping frequencies being ωp = 13.7 × 1015 rad s−1

and ν = 2.7 × 1014 rad s−1, respectively. Note that the effect of interband transitions can be added
to the Drude permittivity without qualitatively changing main conclusions of our analysis. The
permittivity of the dielectric (silicon) is εD = 12.25. The thickness of the metal layer is fixed to
tM = 25 nm.
In order to be possible to use the operating wavelength to conveniently tune the average

permittivity of the plasmonic Bragg fiber, ε̄, from being negative, passing through zero, to
positive values, we assume that, at λ = 1550 nm (εM = −125.39), the average permittivity
of each metal-dielectric ring pair is tuned to zero; this of course also means that the average
permittivity of the whole Bragg structure is zero. As we are concerned with TM-polarized waves
and λ � tnM, t

n
D , this leads to the following expression at the corresponding wavelength:

ε̄n =
εDSn

D + εMSn
M

Sn
D + Sn

M

= 0, n = 1, 2, 3, · · · (1)

where Sn
M = π

[
(rnM )2 − (rnM − tM )2

]
and Sn

D = π
[
(rnM + tnD)2 − (rnM )2

]
are the cross-sectional

areas of the nth metallic and dielectric cylindrical shells, respectively. rnM and tnD are the inner
radius of the nth metallic cylindrical shell and the thickness of the nth dielectric cylindrical shell,
respectively. As the thickness of the metallic shell is assumed to be fixed, thus the values for the
series of the dielectric shells, tnD , can be obtained from Eq. (1).
Thus, thanks to the strong dispersion of the metallic permittivity, the average permittivity of

such a plasmonic Bragg fiber,

ε̄ =

∑
n(εDSn

D + εMSn
M )∑

n(Sn
D + Sn

M )
=

∑
n ε̄n(Sn

D + Sn
M )∑

n(Sn
D + Sn

M )
, (2)

can be shifted from negative to positive values by simply changing the operational wavelength.
In our structure, the outermost layer is a homogeneous dielectric (silicon), whose thickness does



not have to satisfy ε̄n = 0. Since the imaginary part of the permittivity of the metal is very small
as compared to its real part(εM = −125.39 − 2.84i), the influence of the metal loss on the results
are found to be negligible. Nevertheless, in the following analysis we have taken into account this
small imaginary part, unless otherwise stated.
The electromagnetic field in the plasmonic Bragg fiber can be calculated by employing the

transfer-matrix method. Thus, the z-component of the electric and magnetic fields in the nth
dielectric layer, which are a solution of theMaxwell equations expressed in cylindrical coordinates
(r , θ, z), can be written in the following form [15]:

Ez(r, θ, z) = [An
D Im(kDr) + Bn

DKm(kDr)] cos(mθ)eiβmz,
Hz(r, θ, z) = [Cn

D Im(kDr) + Dn
DKm(kDr)] sin(mθ)eiβmz,

(3)

where kD =
[
β2
m − (ω/c)2εD

]1/2 and, in the nth metallic layer, the fields are

Ez(r, θ, z) = [An
M Im(kMr) + Bn

MKm(kMr)] cos(mθ)eiβmz,
Hz(r, θ, z) = [Cn

M Im(kMr) + Dn
MKm(kMr)] sin(mθ)eiβmz,

(4)

where kM ≡
[
β2
m − (ω/c)2εM

]1/2, Im and Km are the modified Bessel functions of the first and
the second kind, respectively, βm is the propagation constant, m is the azimuthal mode number
which defines the order of the mode, ω is the angular frequency, and c is the speed of light
in vacuum. Moreover, An

M , Bn
M , Cn

M , and Dn
M (An

D , Bn
D , Cn

D , and Dn
D) are modal amplitude

coefficients within the nth metallic (dielectric) layers.
The transverse components of the fields can be expressed in terms of Ez and Hz using the

following relations:

Er =
iβm

ω2µε − β2
m

(
∂Ez

∂r
+
ωµ

βm

∂Hz

r∂θ

)
, (5)

Eθ =
iβm

ω2µε − β2
m

(
∂Ez

r∂θ
− ωµ
βm

∂Hz

∂r

)
, (6)

Hr =
iβm

ω2µε − β2
m

(
∂Hz

∂r
− ωε
βm

∂Ez

r∂θ

)
, (7)

Hθ =
iβm

ω2µε − β2
m

(
∂Hz

r∂θ
+
ωε

βm

∂Ez

∂r

)
, (8)

where µ = µ0 is the magnetic permeability of vacuum.
Once the electromagnetic field in the nth dielectric layer is known, one can easily find the field

in the nth metallic layer by applying the boundary conditions at the interface between the nth
dielectric and metallic layers. The continuity of the tangential field components Ez , Hz , Eθ , and
Hθ yields:

MM (ρ)
©«

An
M

Bn
M

Cn
M

Dn
M

ª®®®¬ = MD(ρ)
©«

An
D

Bn
D

Cn
D

Dn
D

ª®®®¬ , (9)

with matrices

MM (ρ) =
©«

Im(%M ) Km(%M ) 0 0
ωε0εM
%M

I ′m(%M ) ωε0εM
%M

K ′m(%M ) mρ

%2
M

Im(%M ) mρ

%2
M

Km(%M )
0 0 Im(%M ) Km(%M )

mρ

%2
M

Im(%M ) mρ

%2
M

Km(%M ) ωµ0µM

%M
I ′m(%M ) ωµ0µM

%M
K ′m(%M )

ª®®®®¬
(10)



and

MD(ρ) =
©«

Im(%D) Km(%D) 0 0
ωε0εD
%D

I ′m(%D) ωε0εD
%D

K ′m(%D) mρ

%2
D

Im(%D) mρ

%2
D

Km(%D)
0 0 Im(%D) Km(%D)

mρ

%2
D

Im(%D) mρ

%2
D

Km(%D) ωµ0µD
%D

I ′m(%D) ωµ0µD
%D

K ′m(%D)

ª®®®®¬
(11)

Here, ρ = rnD is the inner radius of the nth dielectric cylindrical shell, and %M,D = kM,Dρ.
Moreover, Eq. (9) can be rewritten as:

©«
An
M

Bn
M

Cn
M

Dn
M

ª®®®¬ = M−1
M (ρ)MD(ρ)

©«
An
D

Bn
D

Cn
D

Dn
D

ª®®®¬ . (12)

Similarly, knowing coefficients of the electromagnetic fields in the nth metallic layer, one
can determine their counterparts in the (n + 1)th dielectric layer by using the following matrix
relation: ©«

An+1
D

Bn+1
D

Cn+1
D

Dn+1
D

ª®®®¬ = M−1
D (ρ′)MM (ρ′)

©«
An
M

Bn
M

Cn
M

Dn
M

ª®®®¬ , (13)

where ρ′ = rnM is the outer radius of the nth metallic cylindrical shell.
Equations (12) and (13) can be used iteratively to relate the amplitude coefficients in the first

dielectric layer, i.e., A1
D , B1

D , C1
D , and D1

D , to their counterparts in the outermost dielectric layer,
i.e., An+1

D , Bn+1
D , Cn+1

D , and Dn+1
D . The final result of this operation can be written as:

©«
An+1
D

Bn+1
D

Cn+1
D

Dn+1
D

ª®®®¬ = M−1
D (rnM )MM (rnM ) · · ·M−1

M (r1
D)MD(r1

D)
©«

A1
D

B1
D

C1
D

D1
D

ª®®®¬ =
©«

t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44

ª®®®¬
©«

A1
D

B1
D

C1
D

D1
D

ª®®®¬ .
(14)

Two additional boundary conditions should be considered to determine the electromagnetic
field in the plasmonic Bragg fiber. First, the fields in the first metallic layer must be finite, while
Km is has a singularity at r = 0. This requires that B1

D = D1
D = 0. Second, the amplitude of the

electromagnetic waves in the outermost dielectric layer (the cover) should be finite. This requires
that An+1

D = Cn+1
D = 0, since Im is infinite at r →∞. Thus Eq. (14) can be written as:

An+1
D = t11 A1

D + t13C1
D = 0,

Cn+1
D = t31 A1

D + t33C1
D = 0, (15)

which, in turn, may be expressed as(
t11 t13
t31 t33

) (
A1
D

C1
D

)
= 0. (16)

In order for Eq. (16) to have non-trivial solutions, the determinant of the matrix must be zero,
which gives:

t11
t31
=

t13
t33
. (17)

Once the structure of the plasmonic Bragg fiber structure is chosen and the frequency is fixed,
Eq. (17) only depends on βm. Therefore, the solution of Eq. (17) gives us the propagation constant
of any optical mode of the fiber. After finding the value of βm, one can determine values of A1

D
and C1

D from Eq. (16). Subsequently, by combining this result with Eqs. (12) and (13), one can
calculate the electromagnetic field in any layer of the plasmonic Bragg fiber.
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Fig. 2. The left (right) panel shows |Ez | profiles of the fundamental mode of the plamonic
Bragg fiber with (a) ε̄ < 0, (b) ε̄ = 0, and (c) ε̄ > 0, obtained by using the transfer-matrix
method (COMSOL simulations). In all panels, the plasmonic Bragg fiber consists of five
metal-dielectric ring units with tM = 25 nm and εD = 12.25. The average permittivities
corresponding to the operational wavelength are: (a) ε̄ = −11.4 + 0.72i at λ = 2.2 µm,
εM = −253.5+8.124i; (b) ε̄ = 0 at λ = 1.55 µm, εM = −125.39+2.84i; (c) ε̄ = 2.2+0.1825i
at λ = 1.39 µm, εM = −100.66 + 2.05i. The green dashed lines indicate the interfaces
between the metallic and dielectric layers.

3. Numerical results and discussion

We now employ the transfer-matrix formalism to calculate the field distribution in the plasmonic
Bragg fibers and investigate the existence of localized surface states. First, we consider a plasmonic
Bragg fiber composed of five dielectric-metal rings and surrounded by a homogeneous dielectric
cladding with permittivity εD = 12.25, as per Fig. 1. As discussed in the preceding section, the
spatially averaged permittivity of such a plasmonic Bragg fiber can be tuned simply by varying the
operational wavelength. Figure 2 shows the electric-field distribution of the fundamental mode,
namely the mode with m = 0, of the plasmonic Bragg fiber, determined for the cases in which
ε̄ < 0, ε̄ = 0, and ε̄ > 0. These calculations were performed using both the transfer-matrix method
and COMSOL simulations, an excellent agreement between the two approaches being observed.
Similarly to the case of topological surface modes existing at the interface between two planar
plasmonic superlattices with opposite signs of the averaged permittivity, these calculations reveal
that, if the sign of the averaged permittivity of the plasmonic Bragg fiber is negative, localized



m=1
m=2

m=0

m=1
m=2

m=0

0 5.5 11

0 1.8 3.6

0 3.3 6.6

0 4.5 9

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

r [  m]μ

n=5

n=10

n=15

n=20

(a)

(b)

(c)

(d)

kspp

n
3

(e)

8 13 18 23

3.56

3.5

3.62

3.68

28

|E  |z

|E  |z

|E  |z

|E  |z

k
z

k
0

R
e(

  
  
  
  
 )

3 5 71 8.5
  [  m]μ

3.54

3.5

3.62

3.66

3.58

k
z

k
0

R
e(

  
  
  
  
 )

kspp

(f)

rm

rm

Fig. 3. (a), (b), (c), (d) Profiles of the electric field, |Ez |, of the surface modes located at
the interface between a plasmonic Bragg fiber with ε̄ < 0 and a uniform dielectric medium
with εD = 12.25. From top to bottom panels, the number of metal-dielectric rings, n, of
the plasmonic Bragg fiber increases. (e) The dependence of the effective mode index of the
plasmonic surface modes with m = 0, 1, 2, on the the number of the metal-dielectric rings.
The black dashed line denotes the propagation constant of the SPPs at the corresponding
planar metallic-dielectric interface. (f) The same as in (e) but with the plasmonic Bragg fiber
replaced by a homogeneous metallic cylinder with the same radius. The green dashed lines
indicate the interfaces between the metallic and dielectric layers.

surface modes always exist at the interface between the plasmonic Bragg fiber and the outermost
uniform dielectric medium, as shown in Fig. 2(a). On the other hand, no localized modes appear
at the interface between the outermost uniform dielectric medium and the plasmonic Bragg fiber
with ε̄ = 0 and ε̄ > 0, as shown in Figs. 2(b) and 2(c), respectively.

The condition for the existence of a localized surface state in the plasmonic Bragg fiber can
be related to the formation of surface plasmon polaritons (SPPs) at the interface between two
homogeneous and isotropic media. It is well know that SPPs exists only if permittivities of the
two media have opposite signs. As is illustrated in Figs. 3(a) through 3(d), indeed, the field
profile of the surface modes resembles that of SPPs, with an additional feature represented by
the field oscillations inside the plasmonic Bragg fiber. The similarity between the conventional
SPPs and surface modes in plasmonic Bragg fibers is also illustrated in Fig. 3(e), where we
present the dependence of the propagation constant of the fundamental (m = 0) and higher-order
(m = 1, 2) surface modes on the size of the plasmonic Bragg fiber. We note that, with the increase
of the number of dielectric-metall rings, the propagation constant of the fundamental and the
higher-order modes of the plasmonic Bragg fiber approach asymptotically that of conventional
SPPs formed at the planar interface between a semi-infinite metal and a semi-infinite dielectric
medium, namely, kspp = k0

√
εMεD/(εM + εD). Although the propagation constants of the

fundamental and higher-order modes deviate from the dispersion curve of kspp when the number
of dielectric-metal rings decreases, localized surface modes exist for any number of rings.
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Moreover, as shown in Fig. 3(f), when the plasmonic Bragg fiber with ε̄ < 0 is replaced by a
homogeneous metallic cylinder with the same radius, the radial dependence of the propagation
constant of the surface modes is similar to that of the plasmonic Bragg fiber, as per Fig. 3(e).
We mention here that, the imaginary part of the propagation constants of these surface modes
is extremely small [Lm(kz) ∼ 0.003 for all the modes shown in Fig. 3(e)], which defines an
essentially long propagation length (Lprop ∼ 58.8 µm).
Direct numerical simulations of optical beams propagating in the plasmonic Bragg fibers

investigated in this work, performed by numerically solving the 3D Maxwell equations governing
the beam dynamics, corroborate the conclusions of the above analysis. Thus, Fig. 4 shows how



an input TM-polarized Gaussian beam evolves in the plasmonic Bragg fiber when the operational
wavelength is varied. The plasmonic Bragg fiber is composed of n = 30 dielectric-metal rings,
and its average permittivity is tuned by varying the operational wavelength. As expected, when
ε̄ of the plasmonic Bragg fiber is negative, a localized mode quickly forms at the interface
between the fiber and the cladding, whereas the additional energy of the input wave diffracts off
as radiation waves, see Fig. 4(b). By contrast, the input optical beam strongly diffracts without
any signature of the formation of a surface mode, in the case when the plasmonic Bragg fiber has
ε̄ = 0 or ε̄ > 0, as shown in Figs. 4(c) and 4(d), respectively.
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Fig. 5. The dependence of the eigenvalue (blue line) and electric field amplitude of the
fundamental surface mode on the disorder level, calculated for the plasmonic Bragg fibers
composed of n = 10 dielectric-meta rings. The operating wavelength is λ = 2.2 µm, thus
the average permittivity of the plasmonic Bragg fiber is negative, ε̄ < 0. The modal profiles
are calculated for five disorder levels: 0 % (A), 20 % (B), 40 % (C), 60 % (D), 80 % (E). All
results are obtained by averaging over 100 disorder realizations.

As the existence of surface modes in the plasmonic Bragg fibers is determined by the sign
of the averaged permittivity, one expects that such surface modes are extremely robust against
structural disorder. This is expected as a fully random structural perturbation preserves the
average values of the area of the transverse cross-section of constituent cylindrical shells and
thus does not modify the spatially averaged permittivity or its sign. To test this conjecture, we
introduce disorder into the plasmonic Bragg fiber by assuming a random fluctuation of the area of
the transverse cross-section of the metallic components. Thus, the area of the nth metallic layer is
set to Ŝn

M = Sn
M + δn, where δn is a random value. We assume δn to be uniformly distributed

in the interval of [−δ, δ], 0 < δ < S1
M , hence the level of disorder can be characterized by the

parameter, ∆ ≡ δ/S1
M . We choose the operating wavelength λ = 2.2 µm at which the unperturbed

plasmonic Bragg fiber has ε̄ < 0. The eigenvalues and field profiles of the fundamental surface
modes determined for increasing disorder strength, ∆, are shown in Fig. 5, where the results are
averaged over 100 randomly-perturbed configurations.
As recently found in planar plasmonic lattices [12], the sign of the spatial average of the

permittivity determines the Zak phase of such superlattices, and the existence of interfacial
modes between a superlattice with ε̄ < 0 and one with ε̄ > 0 can be naturally viewed as the edge
modes occurring at the interface between two topologically distinct structures. For plasmonic
Bragg fibers considered here, although one cannot rigorously define a Zak phase as in the case
of 1D periodic structures, with the increase of the number of metallic-dielectric ring pairs, the
structure increasingly resembles a 1D periodic structure as far as the outmost region is concerned.
Therefore, one naturally expects that similar topological modes occur in the regions where the
average permittivity changes its sign. From this topological viewpoint, the surface modes of



plasmonic Bragg fibers with ε̄ < 0 are robust against structural disorder added to the photonic
system. This envision is indeed confirmed by our analysis. To be more specific, as one can see in
Fig. 5, the eigenvalue (propagation constant) of the surface modes is unaffected by the structural
disorder, and it is actually pinned to the value of the conventional SPPs formed at the interface
between a homogeneous metallic cylinder with the same radius as the Bragg fiber and a dielectric
cladding. Furthermore, the spatial profile of the surface mode remains almost unchanged, even
when the disorder strength increases to 80 % or even larger values. Therefore, the surface modes
existing at the interface between a plasmonic Bragg fiber with ε̄ < 0 and uniform dielectric
cladding may be viewed as an extension of the topological modes that exist at the interface
between two 1D plasmonic superlattices with opposite sign of the average permittivity.

4. Conclusion

Using both the mode analysis and direct beam propagation simulations, we have studied the
surface modes of the plasmonic Bragg fibers. Our analysis has revealed that the existence of
the surface modes in this setting is determined by the sign of the spatially averaged electrical
permittivity. As a consequence of this property, the surface states are robust against addition of
disorder to the system. The localized surface modes, which exist at the interface between the
Bragg-fiber’s core with ε̄ < 0 and the outermost uniform dielectric medium, may be viewed as
an extension of the topological modes in two 1D plasmonic superlattice with opposite signs of
the averaged permittivity in the corresponding periodic sublattices. Finally, we mention that, it
is known that the nonlinear optical effects are enhanced by the SPP effect, and the nonlinear
change of the dielectric permittivity is even expected to change the average permittivity from
negative values to positive or vice versus, which can fundamentally change the topology of
the metallic-dielectric Bragg structures and consequently the condition for the existence of the
surface modes. Thus it may be interesting to extend the present analysis to the light propagation
in nonlinear Bragg fibers [16].
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