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ABSTRACT

The aim of the present research is to investigate the classi-
fication algorithms that identify the fluid type in oil, water
and gas pipes by analysing acoustic datasets. The data is
collected during 24 hours from optical laser acoustic sensors
which is attached alongside the 4000 m of oil, water and
gas pipes. In this research we used the sample of data from
1000 m and 20,000 s. We implemented Artificial Neural
Networks (ANN) and Conventional Neural Networks (CNN)
algorithms to recognise the patterns of each fluid type by
analysing its acoustic energy. Both algorithms were trained
on three datasets (oil, gas and water) and tested on another
dataset from different water pipe. The result of this study
shows ANN and CNN algorithms classify the fluid type with
the accuracy of 79.5% and 99.3% respectively when applied
on the test data set.

Index Terms— Convolutional Neural Networks, Artifi-
cial Neural Networks, Fluid Flow Classification, Signal Pro-
cessing

1. INTRODUCTION

Downhole oil and gas pipe fluid flow classification is an in-
creasingly important area in the oil industry and is part of the
Downbhole Fluid Analysis (DFA) which provides well logging
and reservoir evaluation. Conventional DFA is performed by
measuring one or more properties of fluid such as pressure,
volume, density, Reynolds number and temperature using cor-
responding sensors [1]. Identifying in-well flow regime be-
came an important component in monitoring the oil pipes and
it results in low cost intervention [2], optimising and max-
imising the oil production [3].
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It is now well established from a variety of studies,
that ultrasonic techniques are robust, inexpensive and non-
invasive to use as a flow meter but one of the most frequently
stated problems with this technique is its requirement for pre-
calibrating signals [4], [S]. The last two decades have seen a
growing trend towards using machine learning algorithms in
variety of industrial applications. Artificial Neural Networks
(ANN) are amongst the first types of machine learning algo-
rithm that have been employed to improve the precision of
ultrasonic devices and also to automate the process of fluid
flow measurement in multi-phase flow [6]. The combination
of ANN and dual energy fan-beam gamma-ray attenuation
technique improved the accuracy of oil, water and gas classi-
fication by approximately 5.68% using radial basis function
for ANN training [5]. Identifying the pattern in gamma-ray
pulse height distributions was another approach that used
ANNSs [7]. Scientists trained the parameters of ANNs with
algorithms such as Levenberg-Marquardt [8] to describe the
details of two phase flow [9] and to develop a new multiphase
flow metering device for real time multiphase flow classifica-
tion [8]. This new device is based on training the parameters
in physical models of multiphase fluid. In another study, 199
experimental data sets fed into three-layer back-propagation
neural networks and achieved 97% accuracy in its prediction
of flow regime [10].

Most studies in the field of multi-phase flow classification
have mainly focused on modifying the structure and parame-
ters of of Artificial Neural Networks [11] to identify the pat-
tern of each flow regime and have not dealt with processing
the big data which is produced by their new developed sen-
sors [8]. Data for this study were collected by using laser
optical fibre Distributed Acoustic sensors [3] and shows the
acoustic energy in the time-distance domain as can be seen in
Fig. 1. Acoustic data gathered from oil, water and gas pipes
during 20,000 seconds and within 1000 m. For each fluid
type 1000 frames generated show acoustic energy at different
locations within the same period of time. Therefore, the pur-
pose of this paper is to explore methods that can identify the
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Fig. 1. Sample of acoustic raw data in time-distance domain

abstract pattern in different types of fluid flow, overcome the
processing of big data and improve the accuracy of classifica-
tion comparing with ANN.

2. METHODS

2.1. Articial Neural Network

The structure of our ANN contains 16 hidden layers and input
data are acoustic energy of oil, water and gas dataset during
20,000 s and within 1000 m. The data is divided into three
sets; 70% for training, 15% for testing and 15% for valida-
tion. Levenberg-Marquardt (LM) is selected for training a
network with a dataset containing thousands of images as is
the case with our dataset. Therefore, we train ANN by the
Levenberg-Marquardt (LM) [12] algorithm to update the net-
work’s weights and biases. The Levenberg-Marquardt is de-
signed to minimise the loss functions made up of a sum of
squared errors.

ANN takes three datasets and classifies them into oil, gas
or water category. Fig. 2 presents the outcome of ANN on
the training, testing and validation dataset. Overall, 79.5% of
the predictions were correct and 20.5% were incorrect classi-
fications. Fig. 3 illustrates the error of the ANN classification
with the error of 0.020 in highest number of samples.

2.2. Convolutional Neural Network

One of the most successful types of Neural Network with a
great result in a variety of computer vision and pattern recog-
nition applications is called Convolutional Neural Network
(CNN) [13]. In the network with CNN structure there are
many copies of the same neuron that develop a large neural
network with the smaller number of parameters. Therefore,
the network does not need to learn a large number of parame-
ters and it uses one neuron in many places. This will dramat-
ically reduce the learning error in CNN structure.
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Fig. 2. Result of classification of oil, water and gas dataset.
The first three diagonal cells show the number and percentage
of correct classifications by the trained network. For example,
in the test confusion matrix (bottom right matrix in Fig. 2) 35
water samples are correctly classifed as water (class 1) which
corresponds to 7.1% of all 493 samples. Similarly, 105 cases
are correctly classified as gas and this corresponds to 21.3%
of all samples and 51.1% are correctly classified as oil and
this corresponds to 51.1% of all samples.

We fed Convolutional Neural Network with the pre-
processed data. In the pre-processing stage, data is nor-
malised and transformed from time-distance domain to
frequency-wave number domain using two dimensional Fast
Fourier Transform (2FFT) algorithm. In this implementation
the Neural Network Tool box from Matlab 2017b version
library was used. The implementation commenced with a
seven layers Convolutional Neural Network because this is
one of the simple CNN architecture which we started with
to avoid making a complex CNN unnecessarily. Also this
architecture has been used on other image datasets (MINST
dataset) [13]. The layers in the network are as follow;

Layer 1: Image Input Layer In this layer the property of
the input images has been specified. The size of each image in
our data set is 197-by-256-by-3 which is acoustic data during
20,000 s and within 1000 m (Fig. 1). The images are RGB
type.

Layer 2: Convolutional Layer A Convolutional layer is
formed by neurons that might have parallel or multilayer ar-
chitecture. These neurons connect to the small regions of the
input images or their previous layer. These small areas are
called filters whose size needs to be defined. For each region,
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Fig. 3. Error bar for training, testing and validation dataset.

we perform a basic calculation of a neural network that is a
dot product of the input and the weights, and then add a bias.
An input image is convolved by scanning the filter both hor-
izontally and vertically along the image, repeating the same
calculation. In addition to the filter size, we need to specify
the step size for moving the filter. In some cases the step size
and filter size might result in an overlap between the local re-
gion each neuron is connected to [14]. Each filter requires
the total number of A X w X ¢ weights, where h and w are
the height and width of the filter respectively and ¢ shows the
number of colour channel in the input image. Each filter uses
the same set of weights and biases to scan the whole input im-
age. The outcome of the convolution creates a feature map.
Therefore, the number of filter determines the number of fea-
ture map in the convolution layer [15], [16]. Eq. 1 computes
the total number of parameters in each convolution layer.

P = (h xw x c+ 1) x (Number of filters) €))

The output of the convolutional layer must be an integer
otherwise the filters can not fully cover the whole input im-
age. Eq. 2 calculates the height and width of the convolutional
layer;

Output of Convolutional Layer

_ (Input Size — Filter Size + 2 x Padding) 1 (2)
N step size

Let’s define map size as the total number of feature maps.
Eq. 3 shows how we count the total number of neurons in a
convulotional layer;

Total Number of Neuron in a Convolutional layer
= Map size x Number of filters

The input data set in our covolutional layer contains
colour images of size 197-by-256-by-3. We defined 20 fil-
ters and a filter size is the vector [7, 10] [13], the number of
weights per filter is 7 x 10 X 3 = 210, and the total number
of parameters in the layer is (210 4+ 1) x 20 = 4220.

Layer 3 : ReLLU Layer This layer is called Rectified Lin-
ear Unit layer and is located after the convolutional layer.
The activation function is defined in this layer and performs a
threshold operation to each component of its input. A Recti-
fied Linear activation function is defined in Eq 4. It should be
noted that the size of the output from this layer is the same as
its input [17].
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Layer 4 : Max-Pooling Layer This layer is used to re-
duce the number of parameters in the network and avoid over-
fitting. There is no learning operation in this layer. We use
max-pooling function to down sample the parameters in this
layer. Max-pooling function takes an input from the activa-
tion function and outputs the maximum values of the rectan-
gular area in its input. In the network with multiple convo-
lutional layers, we need to have max-pooling layer between
each of the two convolutional layers to reduce the number
of parameters. The pool size and the step size need to be
specified. If the size of the pool is more than the step size
then there is some overlapping in the scanning area. Suppose
that the size of the input is n — by — n and the pool size is
h — by — h, the max-pooling function reduces the output of
the max-pooling layer to the size h [18]. We choose both step
size and pool size to be number 4.
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Fig. 4. Structure of Convolutional Neural Network.

Layer 5 : Fully Connected Layer All the features
learned by previous layers will combine in a Fully Connected
Layer to classify the input image. Therefore, the number of
outputs of this layer equals the number of classes the images
belongs to. In our data set we set this number to three (water,
oil and gas).



Layer 6 : Softmax Layer This layer contains an activa-
tion function to perform classification in the fully connected
layer. This layer is usually located after the last fully con-
nected layer. Softmax function is defined in Eq. 5 and it is
considered when we need to classify more than two classes.
It is also known normalised exponential [19].

exp(ar(z,0))

S capla;(x,0))
)

where p(c,.) is the class prior probability, 0 < p(c.|z,8) <
1, Zle p(cjlz,0) = 1 and the conditional probability for
classris p(z, 0|c;) with a, = In(p(z, 8|c,)p(c,)) [19].

Layer 7 : Classification Layer Classification layer is the
last layer of the network which outputs the probabilities of in-
puts belonging to one of the classes based on the result of the
softmax function. We compute the error of multi-class classi-
fication problem with the cross entropy function (Eq. 6) [19].

p(0r|$,9) — kp(z70|cr)p(c7") —

Zj:l p(z,0lc;)p(c))

n k
i=1j=1
Where t;; shows the 7th sample has assigned to class j, the
parameter vector is 6 and y;(x;, ) is the probability that an
input ¢ has been allocated to the class j [19].

A Gaussian distribution with a mean of zero and a stan-
dard deviation of 0.01 is commonly used for initialising the
weights and biases of the convolutional neural network. The
network parameters are updated by Stochastic Gradient De-
scent (SGD) algorithm [19] as its preferred algorithm for
training thousand of images. The SGD algorithm takes the
small steps towards the negative gradient direction to min-
imise the error function where;

Opr1 =0 — aVE(0) (7

where ¢ and 6 are the iteration number and the parame-
ter vector respectively, & > 0 determines the learning rate
and the loss function is F(6). The SGD algorithm uses the
whole training set to evaluate the gradient of the loss func-
tion, VE(0) and updates the parameters in each iteration. The
SGD uses a subset of the training set which is called a mini-
batch during each iteration to [19] take one step toward min-
imising the loss function. A epoch is a period of the training
algorithm over all the training data set using the mini-patches.
The last term in Eq. 8 is the momentum where A is related to
the contribution of the previous gradient step to the current
iteration [19].

(9@_»,_1 =0, — OzVE(Qg) + 7(9@ — 95_1) (®)

Accuracy is the ratio of the number of true labels in the
test data matching the classifications from classify, to the
number of images in the test data. In this case about 98.5%
of the digit estimations match the true digit values in the test
set.
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Fig. 5. Result of classification of oil, water and gas dataset
using Convolutional Neural Network on FFT data.

Table 1. Result of Classification Algorithms

Method Accuracy Time s
ANN Training 80.5% 0.02
ANN Testing 79.5% 0.001

CNN Training 100% 3135.30
CNN Testing 99.3% 0.01

3. CONCLUSION

The present study was designed to investigate the algorithms
for classification of the fluid types oil, water and gas datasets.
Artificial Neural network and Convolutional neural Networks
were implemented for this purpose. The most obvious finding
to emerge from this study is that Convolutional neural Net-
works outperformed ANN to classify our datasets with accu-
racy of 99.3%. However, CNN takes longer to produce the
result and this can be resolved by running the CNN on a GPU
cluster.
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