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Abstract 
Motivation: A clear identification of the primary site of tumor is of great importance to the next tar-

geted site-specific treatments and could efficiently improve patient’s overall survival. Even though 

many classifiers based on gene expression had been proposed to predict the tumor primary, only a 

few studies focus on using DNA methylation profiles to develop classifiers, and none of them com-

pares the performance of classifiers based on different profiles. 

Results: We introduced novel selection strategies to identify highly tissue-specific CpG sites and 

then used the random forest approach to construct the classifiers to predict the origin of tumors. We 

also compared the prediction performance by applying similar strategy on miRNA expression profiles. 

Our analysis indicated that these classifiers had an accuracy of 96.05% (Maximum–Relevance–

Maximum–Distance: 90.02%–99.99%) or 95.31% (Principal component analysis: 79.82%–99.91%) 

on independent DNA methylation data sets, and an overall accuracy of 91.30% (range: 79.33%–

98.74%) on independent miRNA test sets for predicting tumor origin. This suggests that our feature 

selection methods are very effective to identify tissue-specific biomarkers and the classifiers we de-

veloped can efficiently predict the origin of tumors. We also developed a user-friendly webserver that 

helps users to predict the tumor origin by uploading miRNA expression or DNA methylation profile of 

their interests. 

Availability: The webserver, and relative data, code are accessible at 

http://server.malab.cn/MMCOP/  

Contact: zouquan@nclab.net, a.teschendorff@ucl.ac.uk 

Supplementary information: Supplementary data are available at Bioinformatics online. 

 

 

1 Introduction  

The primary site of cancers can remain ambiguous, or fail to be identi-

fied even after thorough physical examinations, such as full blood count, 

biochemistry and histological evaluation of biopsy material involving 

immunohistochemistry (Kwak, et al., 2010). Patients diagnosed with 

these cancers with an elusive origin site are often associated with a very 

low median survival time of  9–12 months in average after diagnosis.  

(Daugaard, et al., 2009). Although the survival rate depends on various 

factors such as cancer cell type, location, cancer spread, treatment re-

ceived, and response to treatment, the high mortality of patients mainly 

reflects the misclassification tumors (Monzon, et al., 2010; Søkilde, et 

al., 2014). Indeed, many cases remain undiagnosed or mistakenly diag-

nosed, so therapy cannot be matched to the specific disease. This is 

particularly relevant for cancers that respond well to specific chemother-

apies or hormone drugs. Therefore, it is of importance to accurately 

identify the primary origins of these tumor samples for ensuring a subse-

quent efficient specific treatment. 

The genetic expression of underlie cancer pathogenesis are rapidly be-

ing studied, which provides novel insights in tumor biology as well as in 

potential cancer biomarkers. Recent studies have also demonstrated that 

a comprehensive, enterprise-wide effort to map the genetic alterations of 

patients’ tumors is feasible, which could provide important information 

for timely patient care, and may help shape the future of cancer therapy 

(Heinzelmann, et al., 2011; Kurahashi, et al., 2013; Zehir, et al., 2017). 
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Tumor origin classification based on gene expression has been much 

proposed as a clinical application to predict the primary origin of cancers 

(Budhu, et al., 2008; Heinzelmann, et al., 2011; Rosenfeld, et al., 2008).  

The expression profiles of micro (mi)RNAs which are small non-

coding RNAs (Bartel, 2009; Wang, et al., 2016) that regulate the expres-

sion of genes involved in biological processes such as cell proliferation, 

death, and differentiation (Bartel, 2009; Hayashita, et al., 2005; Hwang 

and Mendell, 2006; Meng, et al., 2016) also had been used to identify 

primary sites of cancers. For example, Rolf et al (Søkilde, et al., 2014) 

developed an miRNA-based classifier involving feature selection em-

bedded in the Least Absolute Shrinkage and Selection Operator 

(LASSO) classification algorithm. This classifier demonstrated a high 

overall accuracy of 88% (confidence interval (CI), 75%–94%) at predict-

ing the origin site of cancers. Unfortunately, stomach and esophagus 

samples could not be separated by this classifier, one of the reasons 

could be that the histologies of these two tissues are pretty similar 

(Søkilde, et al., 2014) and gastroesophageal junction adenocarcinomas 

were also similar to samples of stomach cancer. Thus, some studies also 

suggested the 'stomach' class includes both stomach cancers and gas-

troesophageal junction adenocarcinomas (Rosenfeld, et al., 2008; van 

Duin, et al., 2007). Besides, the cost to maintain the state of preservation 

the examined biological tissues urges the development of new bi-

omarkers for identifying cancer sites. 

As an important class of regulatory mechanism, DNA methylation 

(DNAm) is also central to numerous biological processes, such as regu-

lating gene expression (e.g., embryonic development, X-chromosome 

inactivation, genomic imprinting, and preservation of chromosome sta-

bility). Given such many cellular processes in which the DNAm could 

involve, it’s not surprising that the abnormal methylation may result in 

devastating consequences, such as common human disease (e.g., cancers, 

neurodevelopmental and degenerative disorders, autoimmune diseases) 

also highly tissue-specific, thus could be helpful in the detection and 

prediction of tumors’ origin. A recent study has demonstrated that 

DNAm profiles can also accurately determine the occult original site of 

cancers (Moran, et al., 2016). Another recent research proposed a proba-

bilistic method named CancerLocator has also achieved promising re-

sults on determining the presence and predicting location of tumors for 

several tissues with exploiting methylation profiles of cell-free DNA 

(Kang, et al., 2017). Thus, predicting the origin of tumors by means of 

DNAm profiles will become a new trend and additional tool to help 

predict the tumor origin.  

In this study, we firstly adopted novel feature selection strategies, 

which incorporating two levels to identify tissue-specific DNA methyla-

tion of CpG sites. Then a random forest algorithm was used to construct 

the classifiers which can identify the site of tumor origin with high speci-

ficity on the basis of the DNAm profile of the cancers. Another novelty 

of this study is that a similar prediction pipeline was also applied on the 

miRNA expression profiles to evaluate the performance difference be-

tween these two profile types. We select a large number of datasets from 

The Cancer Genome Atlas (TCGA) with a total of 5379 DNAm profiles 

and 6602 miRNA expression profiles to develop the classifiers, repre-

senting 14 commonly recognized sites of origin in the differential diag-

nosis of cancers, respectively. Our classifiers based on Illumina 450k 

DNAm profiles and miRNA expression are available through the Meth-

ylation and MiRNA Cancer Origin Predictor (MMCOP: 

http://server.malab.cn/MMCOP/) webserver, which enables researchers 

to predict the origin site of tumor samples of their interests. We also 

tested seven DNAm datasets in GEO to further validate the performance 

of our algorithm and webserver. 

2 Methods 

2.1 Flowchart and data collection 

Figure 1 is a flowchart of this study, including the algorithm flow. We 

randomly split the selected datasets from TCGA into two groups, one 

group was used as the training sets for the feature selection and classifier 

construction; another group, along with seven datasets in GEO, were 

used as the independent testing datasets to evaluate the performance of 

our classifiers and webserver. 

 

Figure 1.  Schematic overview of the workflow of data analysis, and the 

development of three classifiers. Note: PCA: Principal Component Analysis; 

MRMD: Maximum-Relevance-Maximum-Distance; DNAm: DNA methylation; FS: 

feature selection. 

For data quality control, we conducted a strict review of each dataset 

to only select those data that met the requirements of our study. One of 

the inclusion criteria for subsequent feature selection of miRNAs and 

DNAm CpGs is that the datasets should have a sufficient number of 

samples for both case and control (≥5) groups. Therefore, a total of 6602 

samples for miRNA-based profiles, including 6045 tumor samples, and a 

total of 5379 samples for DNAm-based profiles, including 4668 tumor 

samples, were collected through The Cancer Genome Atlas pilot 

(TCGA) project (https://tcga-data.nci.nih.gov/tcga/). The samples based 

on miRNA expression profiles were sequenced by the BCGSC (Illumi-

naHiSeq_miRNAseq) sequencing platform, which enables highly sensi-

tive and specific detection of common human miRNAs. The DNAm-

based profiles samples were obtained from the Infinium HumanMethyla-

tion450 platform, which allows for the assessment of methylation status 

of more than 480,000 cytosines distributed over the entire genome in 12 

samples in parallel (Dedeurwaerder, et al., 2011). MiRNA expression 

and DNAm comprised 14 clinically relevant histologies, covering a 

broad selection of solid tumors. The details of all tissue samples, includ-

ing tumor status, and histopathologic details used for constructing the 

classifier are provided in Table 1. To avoid the potential overfitting 

issue, we divided the tumor samples of each tissue equally into two 
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groups at random, one group, along with the normal samples, were used 

to conduct feature selection, and then the selected features will be used 

for classifier training on the tumor samples, while another was used to as 

the totally independent dataset to test the classifier (Table 1). 

Table 1.  Number of samples per tissue for miRNAs expression and 
DNA methylation profiles, training sets, testing sets. 

 

Note: miR: miRNAs; DNAm: DNA methylation; NT: normal tissue sample; TN: 

tumor tissue sample; *This tissue has no corresponding dataset. 

2.3 Data Preprocessing and Normalization 

The preprocessing analysis of datasets was performed with the Linear 

Models for Microarray and RNA-seq Data package (Limma) 

http://www.bioconductor.org/packages/release/bioc/html/limma.html) 

(Ritchie, et al., 2015), embedded in the R environment (http://www.r-

project.org/). For miRNA-based datasets, we selected miRNA isoform 

expression data because all isomiRs are from a specific miRNA locus 

and provide information about mature miRNA expression. The maxi-

mum miRNA expression value was selected if there were multiple 

isoforms for a given miRNA in each sample. For each tissue type of the 

selected dataset, we removed miRNAs or CpGs with more than 30% 

missing sample values (NA). The remaining missing values were imput-

ed using the impute.knn function. The miRNA expression values were 

logarithmically transformed with base 2 and quantile normalized. For 

DNAm datasets, the absolute methylation values representing the meth-

ylated intensity of every CpG were calculated using BMIQ_1.4 (Beta 

MIxture Quantile dilation) (Teschendorff, et al., 2013) to correct the type 

II probe bias. 

2.4 Feature selection and classifier construction 

2.4.1  First-level feature selection 

For miRNA- and DNAm-based samples, first-level feature selection was 

conducted by Limma to identify tissue-specific miRNAs/DNAms and to 

reduce the considerable redundancy of original data. Three different 

steps of analysis were conducted to select miRNAs/CpGs showing: 1) 

differential expression/methylation values in a given normal tissue com-

pared with other normal tissue types (one versus all, threshold: P≤0.05 

(miRNAs), P≤0.01 (DNAms)); 2) no different levels of the value in a 

given cancer tissue compared with corresponding normal tissues (one 

versus all, threshold: P≥0.3 (miRNAs), P≥0.5 (DNAms)); and 3) differ-

ential expression/methylation values for the corresponding cancer type 

compared with other tumor tissues (one versus all, threshold: P≤0.05 

(miRNAs), P≤0.01 (DNAms)). 

Due to the much higher dimensionality of DNAm profiles than that of 

the miRNA expression profiles, we set a much stricter threshold for 

DNAm profiles to efficiently reduce the data redundancy. The first step 

aims to select those miRNAs or CpGs whose mean values were signifi-

cantly different between a given normal tissue type and other normal 

tissue types. Because the goal of this study is to predict tumor original 

sites, the selection of biomarkers with differential expression among 

different normal tissues is necessary to identify tissue-specific miRNAs 

or CpGs. Those miRNAs/CpGs with false discovery rate (FDR)-adjusted 

P-values≤0.05/0.01 were extracted as candidates showing significant 

differential expression or methylation value. For dataset of a given tissue 

including both tumor samples and corresponding normal samples, we 

also need to ensure that the tissue-specific biomarkers did not show 

differential expression or different methylated values among the cancer 

and normal samples of the same tissue. The second step confirmed this. 

The thresholds were set as 0.3 and 0.5, respectively, so miRNAs/CpGs 

with FDR-adjusted P-values≥0.3/0.5 were considered to have normal 

miRNA expression or DNA methylation. The third step identified miR-

NAs or CpGs showing differential expression/methylation among differ-

ent tumor tissue types to discriminate cancer types from each other. The 

thresholds were set as the same as the first step. The main concern that 

we set the threshold for the second step as 0.3 and 0.5 for miRNA ex-

pression profiles and DNAm profiles respectively is for decreasing the 

amount of calculation, making the developed webserver friendlier and 

also trying to avoid potential overfitting issue. Furthermore, for DNAm 

profiles, the subsequent 2nd-level feature selection will examine each 

CpGs selected from 1st-level feature selection and then find out the opti-

mal number of CpGs which will be regarded as features. 

Together, we referred to these three steps to identify tissue-specific 

biomarkers as first-level feature selection. The intersection of miRNAs 

and CpGs selected using these three steps was regarded as preliminary 

features of first-level feature selection. 

2.4.2  Second-level feature selection 

The number of miRNAs selected from the first-level feature selection 

ranged from 11–32 (Tables 2 and S1). Our subsequent miRNA-based 

classifier demonstrated that these selected miRNAs were tissue-specific 

biomarkers sufficiently capable of predicting the tumor origin with a 

high level of accuracy. It was therefore not necessary to apply second-

level feature selection to the miRNAs selected in the first level. Howev-

er, DNAm profiles included more than 400,000 CpGs even after the 

preprocessing procedure. Consequently, those CpGs selected by first-

level feature selection were still large in number and redundant, ranging 

from 430–6,780 (Tables 2 and S2) for each tissue. Therefore, we pro-

posed a second-level feature selection to further identify tissue-specific 

CpGs.  

Here, we present two methods for the second-level feature selection. 

One of the second-level feature selection method called Maximum–

Relevance–Maximum–Distance (MRMD, 

http://lab.malab.cn/soft/MRMD/index_en.html) (Zou, et al., 2016) which 

selects features with strong correlations and lowest redundancy features. 

In MRMD, Pearson's correlation coefficient is used to measure the rele-

vance and Euclidean distance is used to calculate the redundancy. Pear-
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son’s correlation coefficient showed the close relationship between fea-

tures and labels, while the distance between features was used to present 

data redundancy. With the increasing of Pearson's correlation coefficient, 

the relevance between feature and target class will become higher. The 

larger the distance of feature is, the lower the redundancy of sub-feature 

set will become. The feature with large sum of relevance and distance 

would be selected into the ultimate sub-feature set. Finally, the sub-

feature set that selected by MRMD will have lowest redundancy and 

strongest relevance with target class. We used MRMD to find out the 

optimal number of features. Firstly, MRMD will rank all the feature 

candidates according to the calculated Pearson's correlation coefficient 

and Euclidean distance, then MRMD will use top-ranked features to 

construct a simple classifier to evaluate the classification accuracy. After 

all the feature candidates were ranked and the accuracy were computed, 

a top-ranked feature list with highest accuracy will be selected out as the 

final features. 

Another feature selection method named Principal Component Analy-

sis (PCA, embedded in the Dimensionality Reduction part of scikit-learn, 

http://scikit-learn.org/stable/index.html) (Pedregosa, et al., 2011) was 

also used to conduct the second-level feature selection. PCA is a statisti-

cal procedure that uses orthogonal transformation to obtain a set of line-

arly uncorrelated variables, principal components, from observations of 

possibly correlated variables. We selected the principle components 

according to cumulative percentage of total variation. Generally, 

let ��, ��, … , �� be the eigenvalues of Σ (sorted in decreasing order), so 

that �� is the eigenvalue corresponding to the eigenvector 	�. Then if we 

retain k principal components, the percentage of variance retained is 

given by: 

∑ ��
�
���

∑ ��
�
���

 

Here, we selected the number of principle components which retains the 

cumulative percentage of total variation more than 95%. 95% is also a 

commonly used threshold in determining the number of selected compo-

nents in PCA (Bro and Smilde, 2014; Hirsch, 2016). 

2.4.3  Classifier Construction 

MiRNAs selected from first-level feature selection and CpGs selected 

from second-level feature selection were used as tissue-specific bi-

omarkers of each class. All classes were combined for the further con-

struction of a random forest model. Because the selection of relevant 

biomarkers (e.g., genes, miRNAs, CpGs) for sample classification (e.g., 

to differentiate between patients with and without cancer) is common to 

most genomics studies, another main objective of this study was the 

identification of small biomarker sets that could be used for clinical 

diagnostic purposes. This would require the possible smallest set of 

biomarkers capable of achieving a high prediction performance, thus 

excluding “redundant” biomarkers (Díaz-Uriarte and De Andres, 2006). 

Considering the unique characteristics of this research and the properties 

of genomics data, classification algorithms suitable for both two-class 

and multi-class problems, or when the number of variables exceeds that 

of observations, and those that avoid overfitting would be of great inter-

est. Random forest is one such algorithm that has been shown to have a 

high performance in many classification cases base on gene expression 

microarray (Breiman, 2001; Statnikov, et al., 2008). We therefore adopt-

ed random forest after feature selection step for miRNAs and CpGs. For 

a more comprehensive evaluation on the algorithm, we also compare the 

random forest with other two benchmark classifiers (SVM and KNN). 

Because the number of minority class samples (a given tissue class) 

were very small compared with that of majority class samples (other 

tissue classes), this would cause imbalance problem. To address this 

problem, which may seriously impact on classifier performance, we 

adopted an under-sampling (Al-Shahib, et al., 2005) method to randomly 

sample a subset from the majority class to form a balanced dataset with 

the corresponding minority class. Each tissue and individual model, with 

a balanced dataset, was trained to discriminate a given tissue from all 

other tissues (one versus all). For example, in the case of miRNA expres-

sion profiles, we had a total of 203 bladder urothelial carcinomas, and a 

total of 2818 other tissue samples. We therefore randomly selected 203 

samples from the 2818 to construct a balanced dataset by combining 

with the 203 bladder samples. (see columns 7 and 12 in Table 1). Each 

individual model was trained with a fivefold cross-validation. 

We also developed a Java-based MMCOP webserver to enable users 

to predict tumor origin sites by uploading miRNA expression data or 

DNA methylation profiling data. This webserver supports miRNA-based 

classifier and DNAm-based classifier (second-level feature selection is 

MRMD). Our web-server also supports the prediction of the datasets 

which contain not many missing miRNAs or CpGs. For the further vali-

dation of performance of webserver, we also used several DNAm da-

tasets in GEO (GSE67116, GSE85845, GSE69914, GSE38268, 

GSE61446, GSE49149 and GSE45187) to test the webserver (Table S6).  

3 Results 

3.1 Sample Selection 

To determine which tissue should be included to construct the classifier, 

we focused on those cancers most commonly detected by light micros-

copy. Most of these samples (~90%) are adenocarcinomas, with ~60% 

moderately to well-differentiated, and ~30% poorly differentiated. 

Common adenocarcinoma origins include the lung, pancreas, breast, 

prostate, stomach, liver, and colon. The remaining 10% of these samples 

are squamous cell carcinomas, mostly arising from head and neck tu-

mors, which are often poorly or even undifferentiated (Greco and 

Hainsworth, 2006). To ensure a comprehensive representation of major 

carcinoma types defined by their anatomic tissue or organ of origin, we 

selected several major carcinomas (bladder, breast, colon, lung, stomach, 

kidney, liver, and uterus tumors). Thus, for miRNA-based and DNAm-

based samples, we respectively selected 6602 miRNA samples and 5379 

DNAm samples for 14 tissue types covering most cancer types. Table 1 

lists the 14 tissues and histologies. 

3.2 Feature Selection and Tissue-specific miRNAs expres-

sion and CpGs methylation 

The key to constructing a classifier that performs well at predicting the 

tumor origin site is to use true tissue-specific features. We therefore 

adopted different strategies for the selection of highly tissue-specific 

biomarkers from different dataset types. Another consideration of feature 

selection was the feature size of different datasets. For miRNA-based 

datasets, with only ~1800 common miRNAs (only 419 miRNAs re-

mained after data preprocessing), we adopted a one-level feature selec-

tion that not only ensured the optimal identification of tissue-specific 

miRNAs, but also selected appropriate amounts of miRNAs (~11–32) for 

each tissue (Table 2). However, because DNAm datasets covered the 

entire genome, we further adopted a second feature selection (MRMD 

and PCA) to filter out redundant CpGs. The optimal number of features 

selected out for each tissue was determined by the automated searching 

model of MRMD and PCA, since more complex models would have 
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included additional features with no corresponding increase in classifier 

performance. The selected miRNAs with high tissue-specific discrimina-

tory potential from the first feature selection are listed in Table 2, which 

also includes the number of automated searching features from both 

feature selection levels. Detailed information of CpGs selected after the 

second feature selection is available in the supplementary materials 

(Tables S2). 

Table 2.  The number of selected miRNAs and CpGs from the feature selection and the performance of three classifiers for the miRNA expression and 
DNA methylation profiles. 

 

Note: FS: feature selection; ACC: accuracy; *This tissue has no corresponding datasets; the details of CpGs selected by the MRMD are available in the Supple-

mentary materials. 

To verify the rationality of our feature selection method, we con-
structed a box plot (Figure 2) for the top CpGs of 14 DNAm tissues and 
a heat-map (Figure 3) of selected tissue-specific miRNAs for the miR-

NA-based profiles. These two figures show that some tissues are easy to 
distinguish from others because of their strong and differentially methyl-
ated CpG or differentially expressed tissue-specific miRNA signatures. 

 

Figure 2.  Boxplot of beta-value of 14 top tissue-specific CpGs of 14 histologies in the training set. Since the boxplot is showing the comparison of a 

single CpG site, the p-value between two boxes was calculated by the t-test. Note: HeNe: Head and Neck; KRCC: Kidney Renal Clear Cell; KRPC: 

Kidney Renal Papillary Cell; LSC: Lung squamous cell; NT: normal tissue sample; TN: tumor tissue sample.
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Figure 3.  Heatmap of Expression of tumor tissue-specific miRNAs (rows) across 400 samples (columns) that represent the 14 histologies in the train-

ing set. These 400 samples were minified in equal proportion from the total 3578 samples. The heatmap shows median normalized log2 data for every 

miRNA selected in each tissue. Note: HeNe: Head and Neck; KiCh: Kidney Chromophobe; KRCC: Kidney Renal Clear Cell.

 

3.3 Classifier performance evaluation 

Indeed, the performance of a predictor depends on the quality and the 

number of selected features. In this case, the optimal number of tissue-

specific miRNAs was obtained from the first feature selection, while the 

best performance of the DNAm-based classifier was obtained using 

CpGs selected by the automated searching model of MRMD and PCA. A 

random forest algorithm of this balanced dataset was then used to train 

the classifier with the optimal selection of tissue-specific biomarkers, 

thus generating an individual model. For a more comprehensive evalua-

tion on the classification, we also compared the random forest method 

with other two benchmark classifiers (SVM and KNN). After examining 

all possible values of each method’s hyper parameters, we report only 

the best prediction results for each of three classifiers (random forest, 

SVM and KNN). All the training went through a five-fold cross-

validation phase. The results are available in the Tables S3-S5. We also 

added false positives (fp) and false negatives (fn) in the attachment ta-

bles to offer more useful information on cancer diagnosis. Both for 

miRNA expression profiles and DNAm profiles, the results showed that 

the random forest classifier outperforms other two classifiers (SVM and 

KNN). The analysis below is all based on the random forest classifier. 

The five-fold cross-validation training accuracy and the testing accu-

racy are shown in Table 2. Those tissues of origin correctly predicted by 

either a miRNA-based or DNAm-based classifier account for the majori-

ty in all cases, with overall testing accuracies of 91.30% (miRNA-based, 

CI, 79.33%–98.74%), 96.05% (DNAm-based by MRMD, CI, 83.08%–

99.99%), and 95.31% (DNAm-based by PCA, CI, 79.82%–99.83%) 

(Table 2).  

In terms of the biology bias, the first-level feature selection is largely 

based on miRNA differential expression and DNA differential methyla-

tion analysis. However, the second-level feature selection, either by 

MRMD or PCA, is mainly based on the algorithm from the mathematical 

meaning. In fact, the datasets we used for detailed analysis represent two 

main data regimes: the first is that the dimension (D) of data is smaller 

than the sample size (n) (miRNA expression profiles: D=419, n=3578); 

the second is that the high-dimensional dataset with an ambient dimen-

sion (D) may be the same or substantially larger than the sample size (n) 

(DNA methylation profiles: D=395515, n=3045). For the first data re-

gime (D � n), many machine learning-based classifiers have been devel-

oped to predict the tumor origin. Our algorithm, which combines first-

level feature selection (miRNA differential expression analysis) and 

random forest to construct the miRNA-based classifier, has a similar 

sensitivity to other cancer classification methods. Our miRNA-based 

classifier has a high prediction accuracy 91.41% (CI, 80.81%–98.48%) 

by five-fold cross-validation of initial training datasets, and a high test-

ing accuracy of 91.30% (CI, 79.33%–98.74%). The classifier based on 

the LASSO algorithm proposed by Rolf et al. (Søkilde, et al., 2014) had 

a relatively lower overall prediction accuracy (88% accuracy; CI, 75%–

94%) on 15 tissues, particularly for the colorectal tissue, the LASSO 

classifier had an overall accuracy of 76.47%, while our miRNA-based 

classifier had a higher performance on predicting this tissue (83.40%) 

(Table 2). Similarly, our miRNA-based classifier had an accuracy of 

87.47% for predicting bladder tissue, while the K nearest neighbor-based 

miRNA classifier reported by Rosenfeld et al (Rosenfeld, et al., 2008) 

had zero sensitivity to bladder cancer. However, there’s one tissue (bile 

duct) which is inherently difficult to classify correctly. The testing accu-

racy for this tissue using our miRNA-based classifier were 79.33%. This 

is lower than accuracies of other tissues but superior to the immuno-

histochemistry marker-based method of Park et al. (Park, et al., 2007) 

which identified cholangiocarcinoma (bile duct) with an accuracy of 

28.00%, and other machine-learning methods, such as the method pro-

posed by Rolf et al (Søkilde, et al., 2014) which had also a lower per-

formance (78.00%) on predicting bile duct. All of these had demonstrat-

ed our miRNA-based classifier had a similar or higher prediction per-

formance when compared to other reported machine-learning methods.  

The second data regime (D � n) has been observed with the rapid de-

velopment of data collection technology, enabling more observations to 

be collected (larger n), and more variables to be measured, such as the 

dimensions (larger D) (Negahban, et al., 2009). One example of this data 

regime is DNA methylation intensity data collected from Infinium 450K 

array. To process these data more efficiently, we adopted two widely-

used methods (MRMD and PCA) as second-level feature selection to 
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identify tissue-specific CpGs from first-level selection (differential 

methylation analysis). Our two DNAm-based classifiers were shown to 

have much higher accuracy levels than the miRNA-based classifier in 

some tissues (Table 2). The five-fold cross-validation of initial training 

datasets achieved accuracy levels of 96.75% (DNAm-based by MRMD, 

CI, 86.96%–99.99%) and 92.83% (DNAm-based by PCA, CI, 72.22%–

99.99%) and a very high testing accuracy of 96.05% (DNAm-based by 

MRMD, CI, 83.08%–99.99%) and 95.31% (DNAm-based by PCA, CI, 

79.82%–99.83%) on the independent datasets (Table 2). Indeed, in these 

two DNAm-based classifiers, most tissues had quite high testing accura-

cy (>90%), including those which are difficult to be identified by miR-

NA expression profiling, such as uterus (98.63% in MRMD and 93.96% 

in PCA), and bladder (95.89% in MRMD and 91.00% in PCA). Particu-

larly, the prediction accuracy of colorectal tissue by DNAm profiles, 

achieving 99.99% by MRMD and 99.66% by PCA, are much higher than 

the classifier based on miRNA expression profiles, which only has an 

accuracy of 83.40%. However, it is possible that the testing samples and 

training sample coming from a same database (TCGA) which may cause 

kind of technical artifact on such high prediction accuracy. It is possible 

that we may get a lower prediction accuracy if we choose another sam-

ples coming from a totally different database. Indeed, we also considered 

this possibility by evaluating our algorithm on seven datasets coming 

from GEO database, which is totally different from TCGA, and the re-

sults showed our algorithm still works quite good on these testing sam-

ples.  

Overall, the DNAm-based classifiers’ performances on predicting the 

origins of tumors are much higher than the miRNA-based classifier 

(except for liver tissue). The DNAm-based classifier (MRMD) and 

DNAm-based classifier (PCA) can also complement each other with 

their respective advantages on predicting some tissues. For example, the 

DNAm-basd classifier (PCA) could predict the kidney, lung, pancreas 

more accurately than the MRMD, while has a relative lower prediction 

performance on other tissues compared with the DNAm-based classifier 

(MRMD) (Table 2).  

 

Figure 4.  The heatmap of performance for GEO datasets that are used for validation of the webserver. Note: HeNe: Head and Neck; KRCC: Kidney 
Renal Clear Cell; KRPC: Kidney Renal Papillary Cell; LSC: Lung squamous cell.

 

We also used seven independent datasets from GEO (Table S6) to test 

our webserver, and the performances of GEO datasets were also dis-

played in the Figure 4. The confusion matrix of webserver prediction 

results was also available the Table S7. Among these seven datasets, 

GSE67116 contains 53 metastasis samples, the original site of these 

samples is endometrium, which located in uterus. And the performance 

of our classifier showed there are 46 samples were correctly classified 

with an accuracy of 86.79%. This result, along with other six GEO data-

sets’ results had further demonstrated that our methods have a very effi-

cient prediction.  

4 Conclusion 

Patients with cancers which has an elusive site often present with a rela-
tive low survive rate and survival time, since the optimal tumor treatment 
depends much on the correct identification of origin of tumors. With 
rapid developments of sequencing technology, large amounts of se-
quencing data have been generated and are becoming readily available, 
which also facilitates the development of machine learning methods 
based on the mRNA expression, or miRNA expression profiles to im-
prove the prediction of the tumor origin (Horlings, et al., 2008; 
Kurahashi, et al., 2014; Rosenfeld, et al., 2008; Søkilde, et al., 2014; 
Tothill, et al., 2005). However, as displayed in this current study and 

other reported research, some tissues are still difficult to be predicted just 
by the miRNA expression profiles. On the other hand, the DNAm, which 
are characterized by their highly tissue-specific expression, have been 
reported to be useful for classification of tumor types (Assié, et al., 2014; 
Network, 2013; Network, 2014) and for carcinoma of unknown primary 
origin recently (Moran, et al., 2016). 

In this study, we developed novel feature selection methods to identify 
those tissue-specific CpGs and used random forest to construct the clas-
sifiers. The comparisons with other two benchmark classifiers (SVM and 
KNN) also demonstrated that the random forest is a better choice. We 
also apply this method on the miRNA expression profiles to compare the 
prediction performance with DNAm profiles. Our subsequent construct-
ed classifiers for miRNA-based and DNAm-based datasets are both 
demonstrated with promising results on predicting tumor origins on a 
spectrum of diagnostically well-characterized tissues. We also test our 
classifiers on the metastases samples from GEO datasets with also 
achieving a promising result. The experiment results also demonstrate 
that the classifiers based on the DNAm profiles have a higher prediction 
performance than miRNA-based classifiers. 

One of the main challenges in machine learning-based classifier de-
velopment is the identification of an appropriate set of features to train a 
classifier to accurately identify each class. For DNAm profiles, our two-
level feature selection process ensured an adequate number of selected 
biomarkers to construct an accurate classifier. Figures 2-3 show that 
those biomarkers selected from first- or second-level feature selection 
had strong heterogeneous tissue-specific signatures. Additionally, those 
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selected biomarkers (miRNAs or CpGs) may have specific biological 
meanings, which are worth exploring for further research. 

Taken together, our findings show that our three classifier types in this 
study (miRNA-based, DNAm-based by MRMD, and DNAm-based by 
PCA) can efficiently predict tumor sites on well-characterized samples, 
which may help improve the diagnosis and treatment of patients, and 
also the performance of DNAm-based classifiers are better than that of 
miRNA-based classifiers. Through our webserver (MMCOP), users may 
predict the unidentified tumor sites by uploading or pasting miRNA 
expression profiles or DNAm profiles of some diseases. For most pa-
tients with advanced-stage tumors, treatments are becoming increasingly 
specific, and an adjunct genomics diagnostic regimen could enable a 
more directed clinical evaluation. We believe that our classifiers, as well 
as those based on relevant biomarkers such as mRNA and proteins, 
combined with additional clinical investigation will advance and pro-
mote the rational and specific therapy.  
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