
1

Cross-validation based K nearest neighbor imputation for software quality datasets: An empirical

study

Jianglin Huang*, Jacky Wai Keung, Federica Sarro, Yan-Fu Li, Y.T. Yu, W.K. Chan and Hongyi

Sun

J. Huang is with the Department of Computer Science, City University of Hong Kong, Hong Kong, China
E-mail: jianhuang7@cityu.edu.hk
*corresponding author. Tel: +85256013641

J.W. Keung is with the Department of Computer Science, City University of Hong Kong, Hong Kong, China
E-mail: jacky.keung@cityu.edu.hk

F. Sarro is with the Department of Computer Science, University College London, London, UK
E-mail: f.sarro@ucl.ac.uk

Y.F. Li is with the Department of Industrial Engineering, Tsinghua University, Beijing, China
E-mail: liyanfu@tsinghua.edu.cn

Y.T. Yu is with the Department of Computer Science, City University of Hong Kong, Hong Kong, China
E-mail: csytyu@cityu.edu.hk

W.K. Chan is with the Department of Computer Science, City University of Hong Kong, Hong Kong, China
E-mail: wkchan@cityu.edu.hk

H. Sun is with the Department of Systems Engineering and Engineering Management, City University of Hong
Kong, Hong Kong, China
E-mail: Sun.3333@cityu.edu.hk

Abstract: Being able to predict software quality is essential, but also it pose significant

challenges in software engineering. Historical software project datasets are often being utilized

together with various machine learning algorithms for fault-proneness classification.

Unfortunately, the missing values in datasets have negative impacts on the estimation accuracy

and therefore, could lead to inconsistent results. As a method handling missing data, K nearest

neighbor (KNN) imputation gradually gains acceptance in empirical studies by its exemplary

performance and simplicity. To date, researchers still call for optimized parameter setting for

KNN imputation to further improve its performance. In the work, we develop a novel

incomplete-instance based KNN imputation technique, which utilizes a cross-validation scheme

to optimize the parameters for each missing value. An experimental assessment is conducted on

eight quality datasets under various missingness scenarios. The study also compared the

proposed imputation approach with mean imputation and other three KNN imputation

approaches. The results show that our proposed approach is superior to others in general. The

relatively optimal fixed parameter settings for KNN imputation for software quality data is also

2

determined. It is observed that the classification accuracy is improved or at least maintained by

using our approach for missing data imputation.

Keywords: empirical software engineering estimation, KNN, imputation, cross-validation,

missing data

Abbreviations

BMI Bayes Multiple Imputation
CA Classification Accuracy
CCkNNI Complete-case based KNN Imputation
CK Chidamber and Kemerer object-oriented metric
CVBkNNI Cross-validation based KNN Imputation
DkNNI Default KNN Imputation
FP Fault-proneness
FWGkNNI Feature Weighted Grey based KNN Imputation
G3D GRA-based distance, K = 3 with Dudani adaptation based imputation
GRA Grey Relational Analysis
GRC Grey Relational Coefficient
GRG Grey Relational Grade
ICkNNI Incomplete-case based KNN Imputation
IDWM Inverse Distance Weighted Mean
IRWM Inverse Rank Weighted Mean
KNN K Nearest Neighbor
LOC Lines of Code
MAR Missing At Random
MCAR Missing Completely At Random
MDT Missing Data Treatment
MEI Mean Imputation
MI Mutual Information
MM Missingness Mechanism
MP Missingness Pattern
MR Missingness Ratio
NI Non-ignorable
PROMISE PRedictOr Models In Software Engineering
RMSE Root Mean Square Error
RQ Research Question
SEE Software Engineering Estimation
SVM Support Vector Machine

3

1. Introduction

In the domain of empirical software engineering and its related software quality estimation,

researchers have devoted to predicting important quality-related variables, such as the fault count

or if the fault-proneness exists, etc. Most empirical software engineering estimation builds

statistical or machine learning models on historical data (Sentas and Angelis, 2006). Meanwhile,

the software community has accumulated a myriad of software project quality related data for

academic research, such as the PROMISE data repositories. Unfortunately, due to scarcity of

software engineering data (Myrtveit et al., 2001), the significant occurrence of missing values in

software datasets or known as “missingness” gradually becomes an unavoidable issue

(Khoshgoftaar and Van Hulse, 2008). In addition, many properties in software engineering

datasets are often indirectly measured, which leads to more frequent and complex missingness

pattern to occur (Mockus, 2008).

Many estimation models cannot directly handle the missing data values; therefore, it leaves the

data-preprocessing step very necessary for modern estimation process in software engineering.

For example, a well-known technique called listwise deletion, had been widely adopted for

handling missing values during data-preprocessing, but it potentially impairs the completeness of

data and introduces undesirable biases in estimation (Huang et al., 2015). By contrast, missing

data imputation methods replace missing variables by artificial estimates (Song et al., 2008); at

the same time maintain the data completeness. Nowadays, more complex imputation approaches,

such as random forest (Stekhoven and Bühlmann, 2012), neural network (Rey-del-Castillo and

Cardeñosa, 2012), decision trees (Deb and Liew, 2016), and low-rank matrix factorization (Jing

et al., 2016), have been proposed to handle the missingness issue in the applications of

bioinformatics, education, ecology, energy, traffic and software engineering, etc.

When compared to mean imputation (MEI), novel approaches are still lacking popularity in

software engineering estimation (SEE) (Khatibi Bardsiri et al., 2013; Kocaguneli et al., 2013a),

one of which is the K nearest neighbor (KNN) imputation. The main advantage of KNN

imputation is that it is simple and free of parametric assumptions required otherwise. It could

adapt to distinct types of variables or features known to be important in estimation. KNN

imputation had been specially applied in real-world application as a data-preprocessing step in

governmental or national surveys, such as reported in Chen and Shao (2000). Its performance has

4

also been widely analyzed in the domain of SEE (Strike et al., 2001; Twala et al., 2005). Since

most of the empirical software engineering datasets are relatively small or medium-sized, the

newer robust approaches, like random forest, neural network, and low-rank matrix factorization

as less than relevant. The cost of applying these sophistical approaches in practice is also

unpredictable. The majority of the previous SEE studies only applied KNN imputation with fixed

parameters when dealing with incomplete software measurement data.

Song and Shepperd (2007) once evaluated a KNN imputation approach with several key features

classification in small-sized software effort datasets. More recently, Van Hulse and Khoshgoftaar

(2014) extended the flexibility of KNN imputation for the software quality datasets, using

incomplete-instance for missing data imputation instead of complete-instance to provide a

relatively superior performance. Unfortunately, the parameter setting of the former KNN

imputation approaches was generally predetermined for each imputation, regardless of its

features or the types of missingness being imputed. While in the specialized KNN imputation

studies, numerous efforts have been made to improve the imputation performance. The major

improvement drives from two research directions (Zhang, 2012):

- Searching for the most similar K nearest neighbors for a given missing value;

- Final adaptation from the selected neighbors.

Both two directions are about the parameter setting in KNN estimator, including the distance

measure, the choice of K, and the adaptation method. The 1st direction is the KNN algorithm

kernel. Literature review shows that the current rule of searching the neighbors in SEE is mostly

based on Minkowski distance measure. Some specialized studies of KNN imputation show that

the grey relational analysis (GRA) based distance, is more appropriate to capture the ‘nearness’

(Huang and Lee, 2004). Caruana (2001) has pointed out that the KNN imputation could not

always be superior with any possible distance measures. The choice of the K is subject to

controversy recently. The related studies often prepopulate that the K from limited experience

and empirical studies, other researchers argues the potential choices of K to be , 100N N >

(Lall and Sharma, 1996). Where N is the sample size of the dataset being investigated.

The 2nd direction is computation using the selected neighbors. Missing data imputation using

median/mean is a naive and effective adaptation in some cases. Using rank or distance as weight

5

is also popular in literature (Kocaguneli et al., 2012b). Unfortunately, there is no such a

guarantee that one of these adaptations results the best option. Therefore, researchers turned to

build ensembles of multi-adaptation methods to empirically find the best one under certain

circumstance (Kocaguneli et al., 2012b; Kocaguneli et al., 2013b).

In this study, we focus and present a novel approach named as cross-validation based KNN

imputation (CVBkNNI) to conquer the major drawback of existing KNN imputation approaches:

an inability of adapting the parameter setting to the data. CVBkNNI utilizes a cross-validation

scheme to search for the optimal parameter setting for estimating each missing value. CVBkNNI

is also compared with three other KNN imputation approaches in the presence of artificial

missingness scenarios. This empirical study:

- Introduce CVBkNNI, a novel approach with an adaptive parameter setting, applicable to

software quality prediction and modeling. The internal design of CVBkNNI includes both

imputation ordering and various parameters of KNN imputation estimator. Based on the

estimators returned from the CVBkNN algorithm, a fixed parameter setting is discovered to

be recommendable for KNN imputation in software quality datasets.

- Validate that the missingness scenario could be a critical factor that significantly impacts the

imputation performance under certain circumstance. A thorough statistical analysis is

presented to compare with the different KNN imputation approaches under different

missingness scenarios.

In the remaining parts of the work, background and review are presented in Section 2. Section 3

introduces the CVBkNNI, the novel missing data imputation technique proposed in this study.

The experimental design is described in Section 4. Section 5 further presents the experimental

results. Section 6 discusses the known threats to validity in this empirical study. At last, the work

is concluded with future work in Section 7.

2. Background

In this section, we define the terminology and provide a simple review. This section covers three

aspects: an introduction to the missingness mechanisms and patterns, the review of recent

6

specialized K nearest neighbor (KNN) imputation studies and the missing data treatments

(MDTs) research in software engineering estimation (SEE).

The missingness mechanisms (MM) and patterns (MP) explain how the missingness is

summarized and classified in literature. Selecting the proper approach to deal with missing

values is related to the assumption of the mechanism and pattern (Song et al., 2005). The

introduction of MM, MP and ratio helps build different missingness scenarios. The performance

of different MDTs could be further validated under these scenarios then. In the section of

experiment design, the incomplete datasets are synthetized according to the various missingness

scenarios.

The KNN imputation, free of data distribution assumption, is an important single hot-deck

imputation technique. Popular single imputation approaches also contain mean imputation (MEI),

median imputation and the ones based on stochastic regression methods, etc. Single imputation

cannot tolerate the variability of characterization of the imputed values. Concisely, it is unable to

provide valid confidence intervals of the imputed values. Therefore, its simultaneous accuracy as

well as robustness become a concern but difficult to address adequately. As an alternative of

single data imputation, multiple imputation generates many different imputed datasets and then

computes the final estimation result of the complete dataset by applying appropriate adaptation

strategy, which is considered more complex in its application. Novel techniques, for example,

iterative imputation, gain increasing popularity in recent years, and they improve the estimation

accuracy by iteratively searching for the optimal estimates until convergence.

As the specialized KNN imputation research has been evolved in years, yet it has been applied in

contemporary SEE studies. Huang et al. (2015) has found that MEI monopolizes the imputation

approaches in recent software effort estimation studies. A review of the other MDTs in SEE

studies is presented at last.

2.1 Missingness mechanisms and patterns

Missingness mechanisms (MMs) and patterns (MP) make assumptions about the distribution and

types of missing values (Song et al., 2008). The judgment of MM helps assess what imputation

approach may be adopted (Song et al., 2005). The MM concerns if the missingness is related to

7

the key variable or not. It is critical as it determines how difficult handling missing values is

(Song and Shepperd, 2007). There are three mechanisms (Little and Rubin, 2002): missing

completely at random (MCAR), missing at random (MAR) and non-ignorable (NI). To present

the MM with formal notations, assume the real-valued software data we intend to collect as

{ }, 1iX x i N= ≤ ≤ , and X has observed and missing parts. Consider the missing parts in X

have the values that are unobserved, we use the missing data indicator { }iM m= , where

0 if is unobserved
1 if is observed

i
i

i

x
m

x
⎧

= ⎨
⎩

, to denote the observation outcome. The missingness mechanism is

characterized by the conditional probability distribution of M given X, i.e. ()| ,p M X ψ , where

ψ refers to the unknown parameters.

MCAR means there is no difference between the distribution of observed and missing values

(Song et al., 2008). In other words, missingness does not depend on either observed values or

missing values of X , thus () ()| , ,p M X p Mψ ψ= .

MAR means that missingness only depends on the observed values of other variable(s), not the

missing ones. It does not fulfil the condition of MCAR (it must depend on at least one variable).

Assuming that m is a potential value (vector) for M , then { }1,0m Ν
∀ ∈ and ,x y Ν∀ ∈° with

() () (), :H x y m p M m x p M m y= = = = , where (),H x y denotes the Hamming difference

vector of variables x and y , that has 0 in the positions where x and y differ and 1 in the

positions where they coincide.

NI represents the situation that neither MCAR nor MAR holds (Valdiviezo and Van Aelst, 2015).

Missingness only depends on the unobserved values, i.e. their real values. Even accounting for all

the available observed information, the reason for observations being missing still depends on the

unseen missingness.

Generally, there are two types of multivariate missingness patterns (MPs): monotone and general

(non-monotone) (Song and Shepperd, 2007; Van Buuren, 2012). An MP is said to be monotone if

an instance ix , could be ordered such that if ,i px is missing then all values in ix with p pʹ > are

missing simultaneously. It could occur in longitudinal studies. In software quality datasets, if a

8

major basic measure is missing, all the following derived ones will not exist. In the general

pattern, missing data can occur anywhere and no special structure appears regardless of how the

variables are arranged. The type of MP may affect the selection of MDTs. Strike et al. (2001)

found the MDTs tend to perform worse with monotone pattern. This issue will be discussed in the

experiment analysis.

Some imputation approaches cannot handle specific MMs or MPs appropriately (Song and

Shepperd, 2007). MCAR could be tested by Little and Rubin (2002)’s multivariate test under

certain strict conditions. Unfortunately, it is hardly applicable to validate the exact MM and MP

before adopting an MDT (Song et al., 2005). Identifying MM is difficult since the prior

distribution is in general unknown. Hardly it is possible to guarantee that none of MCAR, NI or

MAR could exist in software quality data. Generally, the MM in real datasets is often to be either

NI or MAR, while the MP often consists both general and monotone, but not always tenable

(Song et al., 2005; Song et al., 2008; Strike et al., 2001). Song et al. (2008) illustrated how NI and

MAR may happen in software practice. Suppose under the politic pressure, software engineers

prefer not to report many high fault rates and then intend to make the values missing. While some

software metrics are too difficult and time-consuming to collect, which, therefore, may cause the

values missing as well. They explain how NI could happen when missingness depends on its real

values. MAR could occur if only the small-sized projects were less likely to report fault rates than

the large well-organized projects. It exemplifies MAR that missingness depends on the non-

missing project feature: size. Therefore, this study simulates the MPs (monotone and general) and

MMs (MCAR, MAR, and NI) simultaneously to conduct the experiments.

2.2 KNN imputation improvement

In this section, 12 former studies about specific improvements on KNN imputation are

chronologically selected and summarized in Table 1 in terms of the imputation estimator design

and the experimental data simulation (missingness injection) approaches. Note that this is not an

exhaustive search on recent studies. We use the keywords combination:

(knn OR k-nn OR knni OR “nearest neighbo*”) AND (imput*) AND (missing)

to search the related recent papers. Only the qualified works that concentrates on kNN imputation

improvement for numeric variables are kept. The studies in Table 1 are simply summarized

9

according to the KNN imputation technique design and experiment design. In specific, García-

Laencina et al. (2009) proposed a feature weighted distance measure based on mutual information

(MI) in KNN imputation. Their experiment validated that both missing data imputation and

classification task were improved by their technique. Hron et al. (2010) adopted the Aitchison

distance in KNN imputation and found that it is not robust against outliers. Zhang et al. (2011)

proposed a nonparametric iterative imputation algorithm (NIIA) to impute missing value and

found it outperforms the other methods in general. Zhang (2011) proposed shell neighbors

imputation (SNI) which fills in an incomplete instance in a given dataset by only using its left and

right nearest neighbors with respect to each other. SNI was found to be better than a traditional

KNN imputation. Zhang (2012) changed the distance measure to grey distance and found its

advantage in capturing the proximity relationship. Magnussen and Tomppo (2014) calibrated

KNN imputation with local linear regression in the context of forest science. The new technique

presented improved correlation between imputation and its real value. Sahri et al. (2014) proposed

FINNIM in the context of dissolved gas analysis, in which they clearly addressed two important

components of imputation: ordering and estimator. Silva-Ramírez et al. (2015) combined

multiplayer perceptron and KNN algorithms in missing data imputation and conducted their

experiment on simulated datasets with different missingness patterns. Ma and Zhong (2016)

proposed a correlated degree model to extract K nearest neighbors for imputation in the context of

natural disaster science. Zhang et al. (2017) further incorporated correlation matrix in KNN

imputation design and found its efficiency compared with the traditional KNN imputation.

Regarding to imputation ordering, one important component in MDT, 10 out of the 12 studies did

not consider using it in KNN imputation. As for the KNN parameter: distance measure, besides

the classic Euclidean distance and Manhattan distance measures, 4 out of 12 studies preferred the

grey relational analysis (GRA) based similarity measure to capture the ‘nearness’ of neighbors. In

terms of the choice of K, half of the studies predefined the value of K and the other half preferred

to use overall available neighbors for adaptation. As for the adaptation methods, instead of using

the mean, various methods are adopted, such as regression-based, cluster-based and Dudani

weighted mean, etc. Meanwhile, less than half of the studies considered the issue of feature

relevance in searching of the nearest neighbors.

As for the experiment design, the experiment data and data simulation methods are quite

consistent among the studies. The UCI data, a famous machine learning data repository, has been

10

experimented on by half of them. The rest datasets belong to diverse professional domains, such

as biology, energy, and software. Only Song and Shepperd (2007) and Van Hulse and

Khoshgoftaar (2014) evaluate their new proposed KNN imputation approaches in the domain of

empirical SEE. The missingness injection criteria for data simulation majorly consider the

missingness mechanism (MM) and ratio (MR), and only Song and Shepperd (2007)’s research

took into account of the missingness pattern (MP). However, only Pan et al. (2015) and Song and

Shepperd (2007) empirically analyzed the impact of missingness injection on imputation

performance.

To sum, for current KNN based missing data imputation research, it is common to see the overall

methodology design is fragmented. Researchers turn to prefer different experiment evaluation

criteria in studies, which, therefore, causes the corresponding technical contribution hardly

justified. As for the improvement on KNN imputation, none of the studies systematically analyze

the impacts imputation ordering in KNN imputation performance. There is still no common

solution to select the optimized KNN parameters for imputation. Although researchers prefer to

use various missingness scenarios to test their techniques, the significance of the impacts of the

missingness scenarios are often neglected.

Two of the recent imputation approaches in Table 1, FWGkNN imputation (FWGkNNI) and

ICkNNI, that could be repeated according to corresponding experiment design, are utilized in our

experimental design as competitors to CVBkNNI. Pan et al. (2015) proposed a feature weighted

grey based KNN iterative imputation (FWGkNNI) approach, in which they combined feature

relevance and grey relational analysis (GRA) based distance measure in the estimator. MEI is

used to have a preliminary estimate of the missing values. The nearest neighbors are extracted

from the dataset which contains all the available instances, except the one that is to be imputed.

The data is updated after each imputation iteration, and the iteration repeats until all the missing

values are imputed. The capacity of FWGkNNI is improved compared with the 4 other

competitors used in their study, including FkMI (Li et al., 2004), IkNNI (Brás and Menezes,

2007), GBNN (Huang and Lee, 2004) and GkNN (Zhang, 2012). Missing data injection with

various MMs is also considered in their data simulation.

Van Hulse and Khoshgoftaar (2014) proposed an incomplete-case (instance) based KNN

imputation (ICkNNI) in the context of software quality data, and raised the issue of missing data

11

in empirical SEE research once again. Instead of using all available complete instances, ICkNNI

searches the nearest neighbor of each instance from the incomplete data. Their results showed that

the complete-case based KNN imputation (CCkNNI) is far less superior than the imputation

approach based on both incomplete and complete instances, i.e. the ICkNNI. The parameters of

ICkNNI is predominated as well: Euclidean distance, K = 5, with mean adaptation. This paper did

not consider comparing the ICkNNI with more imputation approaches, even the MEI.

Table 1
Major improvements of KNN imputation in selected studies

Imputation approach and the
reference

Imputation
ordering

Imputation approach Experiment data and the simulation The 3 parameters in KNN estimator Feature
relevance Distance

measure K Adaptation Data Data simulation

CM-kNN (Zhang et al.,
2017) N Euclidean Various Mean N/A UCI and

Libsvm N/A

Novel KNN (Ma and
Zhong, 2016) N GRA By distance

threshold IDWM N/A A drought case MCAR, NI, MAR

FWGkNN (Pan et al., 2015) Y GRA* All possible
neighbors

Dudani-
weighted

mean

Mutual
information 5 UCI datasets

MCAR, NI, MAR
and missingness

ratio
MIMLP (Silva-Ramírez et

al., 2015) N A similarity
function

All possible
neighbors Nearest N/A 18 datasets MCAR, NI, MAR

ICkNNI (Van Hulse and
Khoshgoftaar, 2014) N Euclidean 5 Mean N/A 4 Software

quality datasets

MCAR, NI, MAR
and missingness

ratio

FINNIM (Sahri et al., 2014) Y Manhattan 1 ~ 10 Mean Fisher
score 3 DGA datasets N/A

KNN with local linear
regression (Magnussen and

Tomppo, 2014)
N Euclidean All possible

neighbors Regression N/A

3 artificial
datasets and 2

inventory
datasets

Multiple sampling

GkNN (Zhang, 2012) N GRA N
Mean,
mode N/A 3 UCI datasets MAR

NIIA (Zhang et al., 2011) N GRA All possible
neighbors

Mean,
mode

Mutual
information 3 UCI datasets Missingness ratio

SNI (Zhang, 2011) N Euclidean All possible
neighbors

Cluster
mean N/A 6 UCI datasets Missingness ratio

Iterative KNN (Hron et al.,
2010) N Euclidean Unknown Geometric

mean N/A Simulated data Outlier ratio

MI-based KNN (García-
Laencina et al., 2009) N Euclidean 2, 5

Dudani-
weighted

mean

Mutual
information 5 UCI datasets Missingness ratio

*GRA: grey relational analysis, which could be used to measure distance.

2.3 Studies of missing data treatment in software engineering estimation context

Missing data treatment (MDT) has been mostly discussed in the data-driven studies of social

science, biology, psychology, transportation, and behavioral science (Poloczek et al., 2014; Sahri

et al., 2014; Suyundikov et al., 2015). MDT is considered as an evolving area in software

engineering estimation (SEE) research for less than 15 years. Less attention has been focused on

12

MDT methods themselves. In a more recent study, Huang et al. (2015) found that only some of

the former software effort estimation studies have considered the significance of the MDTs, of

which only Minku and Yao (2011) used KNN imputation in data-reprocessing during the

estimation modeling. By contrast, Troyanskaya et al. (2001) applied KNN imputation in the

estimation of missing DNA microarrays, and Finley et al. (2006) even explored its utility in the

domain of forest science.

Empirical analysis about missingness characteristics in software quality data are even rare. Song

et al. (2008) emphasized that for large-sized samples with MCAR mechanism, listwise deletion is

considered appropriate, but the assumption of MCAR is ideal and less applicable in real software

datasets. Additionally, if either NI or MAR exists, which is more probable, missing data

imputation is relatively a better option then. However, imputation needs more thorough

computational analysis (Myrtveit et al., 2001; Strike et al., 2001), and the prediction error may be

introduced (Mittas and Angelis, 2010). MEI is efficient and has been involved in SEE as the most

popular imputation approach; however, it will cause bias to data. MEI simply replaces the missing

values with the mean of other values in the same feature.

KNN imputation is then used as an advanced imputation technique in SEE (Minku and Yao,

2011). Strike et al. (2001) compared and tested various parameter settings in KNN imputation.

The settings took account of Euclidean and Manhattan distance measures. The MM is simulated

from 206 real-world software datasets. The results indicated that listwise deletion is reasonable

but may not provide the best performance. They called for validating more advanced imputation

techniques on software engineering datasets. Myrtveit et al. (2001) evaluated the closest neighbor

imputation on a real-world incomplete dataset and showed that compared to listwise deletion,

KNN imputation is the right option only when the dataset has too much missingness. Cartwright

et al. (2003) then examined MEI and KNN imputation for two real industrial incomplete datasets

and found that KNN imputation provides better prediction than MEI does. Twala et al. (2005), on

the other hand, recommended adopting MEI when massive missingness exists and using KNN

imputation when sparse missingness exists. Song et al. (2005) argued that the impact of MM on

imputation performance is not always that obvious. Jönsson and Wohlin (2006) examined that

KNN imputation performs better in high dimensional incomplete datasets.

13

Li et al. (2007) found that more missingness in data could worsen the accuracy of KNN

imputation. They appealed to future investigation of the impact of missingness scenarios with

more distance and adaptation in KNN imputation. Continuously, Song et al. (2008) further

confirmed that KNN imputation provides high accuracy. Khoshgoftaar and Van Hulse (2008)

analyzed the effectiveness of various imputation approaches, including MEI, KNN imputation and

Bayes multiple imputation (BMI), on two real software datasets. Their results indicate BMI is

better than KNN imputation and MEI. Overall, most researchers did not consider improving KNN

imputation in the context of SEE. Even the performance of KNN imputation against MEI is not

consistent. As for the impact of MM or MP on imputation in software measurement datasets, few

conclusions have ever reached the topic.

Based on the above discussion, the research questions (RQs) are presented as follows:

RQ1: Is KNN imputation on software quality data improved by using optimized and adaptive

parameters?

RQ2: Does the MM or the MP have an impact on the imputation accuracy?

RQ3: Is there a fixed parameter setting of KNN imputation recommended for incomplete

software quality data?

RQ4: Is the classification performance maintained with the imputed dataset?

The above RQs are answered in Section 5.

3. Imputation Strategy Design

This section presents the overall background used for the design of the new imputation strategy,

CVBkNNI, including imputation ordering, estimator, and the complete algorithm. The

parameters used in the study will be described in detail in Section 3.2.

3.1 Imputation ordering

Imputation ordering assigns missing values different priority levels (Sahri et al., 2014). The

ordering is potentially influential to the final imputation results since each imputed value shall be

included in the complete dataset iteratively for estimating the rest missing values. The criterion

in this study requires the data matrix is arranged based on the missingness ratio (MR) in both

14

instance-row and feature-column in ascending order (Conversano and Siciliano, 2009). The

missingness ratio (MR) in feature-column of one feature is defined as the number of missingness

in the corresponding feature divided by the number of overall instances, N. While the MR in

instance-row of one instance is defined as the number of missingness in the corresponding

instance divided by the number of overall features, M. The prior ordering sequence of imputation

in this work is from left to right, i.e. feature by feature (Van Buuren, 2012). Then the instances

are re-ordered from top to bottom, according to the ascending MR in instance (row). In practice,

there are small imputation sequence effects of some imputation algorithms. Evidence shows that

the effects would not significantly matter (Van Buuren, 2012). Imputation ordering would

maximize the information availability during each missing value imputation. The impact of

imputation ordering on imputation accuracy shall be presented in the section of the experimental

analysis.

3.2 Imputation estimator

The quality of K nearest neighbor (KNN) algorithm is largely dependent on the parameter tuning.

There are three necessary parameters in KNN imputation estimator: the distance measure, the

choice of K, and the adaptation method.

3.2.1 Distance measure

The distance measure is also referred as dissimilarity measure. Given two different instances of

numeric measurements ix and jx , the lower distance between them, the higher similarity the

represent. The distance measure used in the design of the CVBkNNI includes both the traditional

Minkowski distance measure and transformed grey relational based measure.

- Minkowski distance

The most commonly used distance measures in former empirical software engineering estimation

(SEE) studies generally belong to Minkowski distance, in which Euclidean distance and

Manhattan distance gain the most popularity (Azzeh, 2012; Kocaguneli et al., 2012a; Li et al.,

2009b). The Minkowski distance between ix and jx could be generalized as:

15

 () ()
1/

,1 ,1 ,2 ,2 , , , ,,
qq q q q

i j i j i j i p j p i M j Md x x x x x x x x x x= − + − + ⋅⋅⋅+ − + ⋅⋅⋅+ − (1)

where q is the Minkowski coefficient. Euclidean and Manhattan distance are the special cases of

Minkowski distance when q = 2 or 1, respectively. Consider one historical project (instance) ix

and one rest project jx in the same data, the weighted Euclidean/Manhattan distance between

numeric features is defined as

()2euclidean , ,1
(,) M
i j p i p j pp

d x x w x x
=

= −∑ , (2)

 manhattan , ,1
(,) M
i j p i p j pp

d x x w x x
=

= −∑ (3),

where M denotes the total number of features in the data, and pw is the normalized weight of p-

th feature. In addition to Minkowski distance, researchers have also proposed other

similarity/dissimilarity measures, in which grey relational analysis (GRA) based ones obtain a lot

of attention in the recent literature (see Section 2.3).

- Grey relational analysis

Grey relational analysis (GRA) quantifies the impacts of different factors and the relationship

among data instances. It has two fundamental measures: grey relational coefficient (GRC) and

grey relational grade (GRG) (Zhang, 2012). Given instance lx as an example,

,1 ,2 ,3 ,{ , , ,..., }l l l l l Mx x x x x= , and ix as a random one of the rest N � 1 instances, the GRC in p-th

feature between lx and ix is defined as follows:

min max
, ,

, , max

(,)l p i p
l p i p

GRC x x
x x

ρ
ρ

Δ + Δ
=

− + Δ
 (4),

where []0,1ρ∈ (ρ is a distinguishing coefficient, normally, set 0.5ρ = (Huang and Lee, 2004)),

min [1,] [1,] , ,min minj N j l r M l r j rx x∀∈ ∩ ≠ ∀ ∈Δ = − , and max [1,] [1,] , ,max maxj N j l r M l r j rx x∀∈ ∩ ≠ ∀ ∈Δ = − (The

smallest and largest value in matrix , ,l r j rx x−). And the weighted GRG is defined as:

 (), ,1
(,) ,M
i j p i p j pp

GRG x x w GRC x x
=

=∑ (5).

16

GRG is a similarity measure, which means that if ()1 2,GRG x x is larger than ()1 3,GRG x x , the

difference between 1x and 2x is smaller than that of 1x and 3x . Clearly, the GRG takes a value

between 0 and 1. Therefore, the weighted distance between ix and jx could be transformed to

() (), 1 ,i j i jd x x GRG x x= − (Pan et al., 2015). GRA is advantageous since it measure the

similarities among observations by analyzing the relational structure. Compared with Minkowski

distance, the degree of ‘nearness’ that GRA captures will be more stable and consistent as the

number of features increases. Meanwhile, each feature always has different relevance or weight in

terms of calculating distance. In order to have the above-mentioned pw during each missingness

imputation, mutual information (MI) based feature relevance is considered in the process of

estimating missing values in this study.

3.2.2 K

The option of K is highly dependent on the selected dataset, which is also critical to KNN

imputation. Most researchers only consider K = 1 (Walkerden and Jeffery, 1999), some take into

account of K = 1, 2, or 3 (Mendes et al., 2003). Li et al. (2009b) and Khatibi Bardsiri et al. (2013)

recommended locating the best K from 1 to 5. Instead of having the same number of nearest

neighbors, it is worthy to automatically find the best K (Kocaguneli et al., 2012a). Duda and Hart

(1973) and Maier et al. (2009) suggested the upper limit of K being the square root of the number

of instances, which limits the choices of K. In this study, the optimal choice of K is determined by

10-fold cross-validation. The upper limit of K is rounded to the nearest odd neighbor of N for

the ease of computing. The range of K is in 12 1 ,0
2
Nq q q

⎧ ⎫−⎪ ⎪
+ ∈ ≤ ≤⎨ ⎬

⎪ ⎪⎩ ⎭
• , which contains all

possible odd numbers.

3.2.3 Adaptation technique

Adaptation is the last procedure to obtain the estimate given the retrieved instances. In this study,

there are five common ways of adaptations for estimating numerical values: mean, median

17

(Shepperd and Schofield, 1997), inverse distance weighted mean (IDWM) (Mair et al., 2000),

inverse rank weighted mean (IRWM) (Kocaguneli et al., 2012b; Mendes et al., 2003) and Dudani

measure (Dudani, 1976; Pan et al., 2015).

The classic measure of central tendency, mean, treats all analogies equally influential. Median is

more robust to outliers than mean. IDWM makes closer neighbors have stronger influence, which

is defined as:

()()
()()

1

1

1/ ,
ˆ

1/ ,

K

k kk
K

kk

d x x y
y

d x x

δ

δ
=

=

ʹ+
ʹ =

ʹ+

∑
∑

 (6),

where ŷʹ is the value being estimated, (),kd x xʹ is the weighted distance between xʹ and kx , the

k-th nearest instance of xʹ , and δ is a small constant (δ is set to 10-6 in the study). Note that xʹ

is the instance with the missing value, ky is the corresponding feature value to kx . IRWM, like

IDWM, allows higher ranking analogies to have more influence than lower ranking ones. ky is

ranked based on the corresponding (),kd x xʹ in an ascending order. The top and bottom-ranked

neighbors have weights of
1

/ K

k
K k

=∑ and
1

1/ K

k
k

=∑ , respectively. The final IRWM estimate is

defined as:

()1

1

1
ˆ

K
kk

K

k

K k y
y

k
=

=

− +
ʹ =
∑

∑
 (7).

On the contrary, the Dudani measure is less used in SEE; however, it was proved to be efficiency

in studies (García-Laencina et al., 2009; Pan et al., 2015). It was proposed to weigh evidence of a

neighbor in KNN classification problems (Dudani, 1976). The weight of k-th nearest neighbor is

defined in Eq. (8):

[] () ()

[] () [] () [] () [] ()

[] () [] ()

1,
1, 1,

1, 1,

1, 1,

max , ,
,max , min ,

max , min ,

 1 ,max , min ,

k kk K
k kk K k K

k kk K k Kk

k kk K k K

d x x d x x
d x x d x x

d x x d x x

d x x d x x

ω

∀ ∈

∀ ∈ ∀ ∈
∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

ʹ ʹ⎧ −
ʹ ʹ≠⎪⎪ ʹ ʹ−= ⎨

⎪ ʹ ʹ=⎪⎩

 (8)

The final Dudani estimate based on the calculated weights is:

18

 1

1

ˆ
K

k kk
K

kk

y
y

ω

ω
=

=

ʹ =
∑
∑

 (9).

3.3 CVBkNN algorithm

In this subsection, the detailed algorithm presents how the introduced components work in

CVBkNNI in software quality data. CVBkNNI uses incomplete-instances for imputation.

Imputing missing values from incomplete-instances could cause the results have lower bias and

higher variance. Using feature relevance in distance calculation in KNN imputation could

balance the bias-variance trade-off. This work adopts mutual information (MI) to calculate the

feature relevance pw (Li et al., 2009a). MI calculates the dependency among variables to

indicate the relevance.

The entropy, ()H X , of a random variable X, measures the uncertainty of the variable. If a discrete

random variable X has χ alphabet and the pdf is () { }Pr ,p x X x x χ= = ∈ , then the entropy

() ()() log
x

H X p x p x
χ∈

= −∑ (Kullback, 1997; Pan et al., 2015). Given two random variables X

and Y (Y has ζ alphabet and y ζ∈), their joint entropy H is defined in terms of the joint pdf

(,)p x y , expressed as Eq. (10):

 (,) (,) log (,)
x y

H X Y p x y p x y
χ ζ∈ ∈

= −∑∑ (10)

.

The conditional entropy calculates the resulted uncertainty on Z (Z has γ alphabet and z γ∈)

given Y, which is:

 (|) (,) log (|)
y z

H Z Y p y z p z y
ζ γ∈ ∈

= −∑∑ (11),

where (|)p z y is the conditional pdf of Z given Y. Furthermore, the definition of MI I between

two variables X and Y is defined as:

(,)

(;) (,) log
() ()x y

p x y
I X Y p x y

p x p yχ ζ∈ ∈

=∑∑ (12).

19

For continuous random variables, Eq. (12) is transformed into

(,)

(;) (,) log
() ()X Y

p x y
I X Y p x y dxdy

p x p y
= ∫ ∫ (13).

To apply MI in continuous variables, this study adopts the mRMR package (Peng et al., 2005).

The parameter of pw is defined as:

()
()

target

target1

;

;
p

p P
pp

I f f
w

I f f
=

=
∑

 (14),

where , 1,P P M≤ − is the number of features in Xtrain, pf , therefore, is one feature in Xtrain

and targetf is Ytrain.

Assume that the features and instances in Table 2 are going to be rearranged by imputation

ordering process. The 7,2x , i.e. 2f in 7x , is going to be imputed firstly (the MR of 2f is the

minimum among 2 3 4, , f f f 5and f , and 7,2x is the only missing value in 2f). Then, the

corresponding sub-data matrix (all available incomplete-instances) for cross-validation is filled

with light and medium gray in Table 2. The sub-matrix in light gray is corresponding to Xtrain,

and the column values in medium grey is to Ytrain. The cross-validation scheme searches all the

possible parameter combinations to find the optimal one with the minimum validation error.

Using the optimal estimator on the test instance Dtest (filled with dark black in Table 2), together

with Dtrain, obtains the estimated 7,2x
) . After 7,2x is imputed, 3,3x is going to be imputed next (the

MR of 3f is the minimum among 3 4, f f and 5f , and the MR of 3x is the minimum between 3x

and 5x). This process continues until all the missing values are imputed.

Table 2
Sample data-matrix after imputation ordering (N = 7, M = 6)

ID 1f 2f 3f 4f 5f Fault-proneness (non-
missingness)

1x 2 2 4 5 8 0

2x 4 3 4 8 1 1

3x 5 3 N/A 8 1 1

4x 1 1 5 8 N/A 0

20

5x 3 2 N/A N/A 6 0

6x 4 1 7 N/A N/A 1

7x 5 N/A 9 N/A N/A 1

The detailed algorithm pseudocode is presented in Algorithm 1, including two parts: ordering

(Line 1-5) and estimating (Line 6-20):

21

Steps 2-4 fulfil imputation ordering. Steps 7-13 fulfil building specific sub-data trainD in order to

cross-validate the optimal KNN parameters for estimating missing value ,i px . Steps 14-16 fulfil

finding the optimal KNN parameters using 10-fold cross-validation. Note that in the part of

22

estimating, to estimate each missing value, the corresponding sub-data matrix (available-

instances) is built to cross-validate the optimal KNN parameters. Each time the unique sub-data

matrix is split into Xtrain and Ytrain, in which Ytrain and the target missing value(s) belong to

the same feature. MI is used to measure the feature relevance between the Xtrain and Ytrain each

time to automatically obtain each feature weight in Xtrain, i.e. pw in the distance measure. As

for the time complexity of the proposed CVBkNNI, the complexity of distance calculation in

KNN is ()O MN . The total processing time in terms of sorting the distance is greater than

()logO N N in general. For each KNN estimator combination, the complexity of cross-

validation scheme is ()O N . Therefore, the time complexity of imputing the whole data is

()3 logO MN Nα , where α is the number of KNN estimator combinations.

4. Experiment design

4.1 Software quality datasets

Appropriate datasets should be used to evaluate the imputation techniques. We consider the

renowned tera-PROMISE Repository in the study (Menzies et al., 2016). 8 software quality

datasets are selected from the repository, which are ant, arc, camel, ivy, PC5, MC2, KC3 and

MW1.

The former 4 datasets, ant, arc, camel and ivy, are parts of latest Apache open source projects

(Jureczko and Madeyski, 2010). The features of these four datasets are collected through

Chidamber and Kemerer (CK) object-oriented code metric (Chidamber and Kemerer, 1994), one

specially designed to analyze object-oriented programming languages. It groups three stages of

object-oriented design: identification of classes (WMC, DIT, NOC, etc.), semantics of classes

(WMC, RFC, LCOM, etc.) and relationship between classes (RFC, CBO, etc.). Similarly, all the

derived measures are excluded from original data; the remaining ones of each dataset are

presented in Table 4 in detail.

The last 4 datasets, MC2, PC5, KC3, and MW1, are generated from NASA C-written projects, the

features of which are calculated by McCabe and Halstead’s procedural metric (Halstead, 1977;

23

McCabe, 1976), which takes into account of program complexity and number of

operators/operands. Their original data size in terms of instance count varies from around 500 to

10000. The McCabe metrics have 4 basic elements: cyclomatic complexity, design complexity,

essential complexity, and Lines of Code (LOC). And the Halstead’s metrics have 3 elements: base

measure, derived measure and LOC. In this work, all the synthetic or derived features in the

original datasets are excluded if they could be computed directly from the basic ones. The

remaining features of data PC5, KC3, MC2, and MW1 are described in Table 3 in details.

In order to keep the scientific basis of empirical validation and replication of SEE studies,

necessary data integrity checks require urgent intention (Shepperd et al., 2013). Besides excluding

the derived measures, the following procedures are also used to select the proper instances:

1) Exclude duplicate instances.

2) Exclude the instance with implausible values, such as the values in Halstead and McCabe’s

metric or CK metric equal to 0 ubiquitously.

3) Exclude the instances in datasets of PC5, KC3, MC2 and MW1 that violate the referential

integrity checks (Shepperd et al., 2013) on NASA software quality data.

In the end, the simple description of all the cleansed datasets are presented in Table 5.

Table 3
Feature definition for quality datasets using McCabe and Halstead’s procedural metric

Metric Features Full name Description

McCabe

LOC_TOTAL Lines of code (LOC)

Measured according to McCabe's line
counting conventions, equals to the sum of
LOC_Code_and_Comment and
LOC_Executables

EDGE_COUNT Control flow graph edge
count The number of edges of the graph

v(G) Cyclomatic complexity Number of linearly independent paths

ev(G) Essential complexity
The extent to which a flow graph can be
"reduced" by decomposing all the sub-flow
graphs

iv(G) Design complexity The v(G) of a module's reduced flow graph
CALL_PAIRS Call pairs Executable calls between modules

CONDITION_COUNT Condition decision
count Correlates to threshold for v(G)

DECISION_COUNT Decision count Correlates to threshold for v(G)
LOC_COMMENT lines of comment Count of lines of comment

LOC_BLANK blank lines Count of blank lines
LOC_CODE_AND_COMMENT Code and comment Count of source code and comment

PARAMETER_COUNT Formal parameter
count Number of formal parameters

24

BRANCH_COUNT Logical branches Branch count of the flow graph

Halstead

UNIQ_OP Unique operators Number of distinct operators
UNIQ_OPND Unique operand Number of distinct operands
TOTAL_OP Total operator Total number of operators

TOTAL_OPND Total operand Total number of operands
NUMBER_OF_LINES Number of lines End line minus the start line in the listing

 Fault-proneness
Module has/has not

one or more reported
defects

Fault-prone (FP), regarded as ‘1’ in data,
or non-fault-prone (NFP), regarded as ‘0’

Table 4
Feature definition for quality datasets using CK object-oriented metric

Metric Features Full name Description

CK and its
derivatives

WMC Weighted methods per class Sum of the complexities of each method in a class

DIT Depth of inheritance tree Number of classes that a particular class inherits
from

NOC Number of children Count of immediate subclasses of a class
CBO Coupling between objects Number of classes that are coupled to a class
RFC Response for class Number of elements in the response set of a class

LCOM Lack of cohesion of methods

Number of method pairs in a class that have no
common references to instance variables minus
the number of method pairs that share references
to instance variables

LCOM3 Lack of cohesion in methods
Different version of LCOM suggested by
Henderson-Sellers (1996), which overcomes the
drawback of LCOM

IC Inheritance coupling This metric provides the number of parent classes
to which a given class is coupled.

CBM Coupling between methods A total number of new/redefined methods to
which all the inherited methods are coupled.

AMC Average method complexity
Average method size for each class. The size of a
method is equal to the number of Java bytecodes
in the method

Martin
(1994)

Ca Afferent couplings Number of classes that depend upon the
measured class

Ce Efferent couplings Number of classes that the measured class
depends upon

Bansiya and
Davis
(2002)

NPM Number of public methods Count of all the methods in a class that is
declared as public

DAM Data access metric
The ratio of the number of private (protected)
attributes to the total number of attributes
declared in the class.

MOA Measure of aggregation The extent of the part-whole relationship, realized
by using attributes.

MFA Measure of functional
abstraction

The ratio of the number of methods inherited by a
class to the total number of methods accessible by
the member methods of the class.

CAM Cohesion among methods of
class

Relatedness among methods of a class based on
the parameter list of the methods.

McCabe
LOC Lines of code Number of lines of code in the Java binary code

of the class under investigation
MAX_CC Max/Avg v(G) Number of different paths in a method plus one AVG_CC

 Fault-
proneness

Module has/has not reported
defects

Fault-prone (FP), regarded as ‘1’ in data, or non-
fault-prone (NFP), regarded as ‘0’

25

Table 5
Data description after cleaning process (Code metric, data name, number of features and instances, and FP/NFP

ratio)

Metric Dataset
Name

Number of
Features FP/NFP* Number of

Instances

Procedural

PC5 19 258/919 1177
KC3 19 25/111 136
MW1 19 21/186 207
MC2 19 20/49 69

Object-
oriented

camel 21 171/625 796
ant 21 165/504 669
ivy 21 37/256 293
arc 21 20/149 169

*The ratio of FP/NFP: ratio between the number of instances with Fault-proneness = 1 and that with Fault-
proneness = 0

4.2 Missingness simulation

Missingness simulation is often used to generate various missingness scenarios to test the

performance of missing data imputation techniques. In this study, three missingness mechanisms

(MMs), two missingness patterns (MPs), and four missingness ratios (MRs) shall be simulated to

generate 24 incomplete dataset versions. There is no missingness injected into the feature of

Fault-proneness. MR is set to be 2.5%, 5%, 10%, and 20%, respectively. The above-mentioned

three MMs (introduced in Section 2.1) are simulated after cleansing the original data. The

procedures simulating each MM are presented as follows (Van Hulse and Khoshgoftaar, 2014):

- Missing Completely At Random (MCAR): Missing values are overall selected completely at

random (exclude the ones from the response feature: Fault-proneness). Assume we have N

instances and M features if we inject MR = 5% random missingness inside the data, there will

be around ()0.05 1N M× × − missing values in total.

- Non-ignorable (NI): A threshold set of t is chosen for each feature such that 75% of the

instances had a value of ,i px less than t. After determining the threshold values for each

feature, 40% missingness is injected into the instances with feature value(s) ,i px t< and the

rest 60% missingness is injected into the instances with ,i px t≥ .

26

- Missing At Random (MAR): It is generated by making the distribution of missing values

depends on the feature of Fault-proneness. We implement a biased selection process where

25% missingness is injected into the FP instances, i.e. Fault-proneness equals to 1. And

another 75% missingness is injected into the instances who are NFP, i.e. Fault-proneness

equals to 0.

Secondly, during MM simulation on dataset instances, we use the SPSS Missing Values Analysis

module to simultaneously meet the requirements of MP (Song and Shepperd, 2007). Therefore,

under each MM, there shall be two scenarios corresponding to the two MPs. For the general

pattern, the missingness is randomly injected into each instance. As for the monotone pattern, the

missingness in each instance is mostly continuously injected. To sum, for one specific dataset,

there are 24 simulated scenarios, or versions, as shown in Table 6.

Table 6
Simulated data scenarios for each dataset during experiment

MR (%) MP MM
MCAR MAR NI

2.5 Monotone #1 #2 #3
General #4 #5 #6

5 Monotone #7 #8 #9
General #10 #11 #12

10 Monotone #13 #14 #15
General #16 #17 #18

20 Monotone #19 #20 #21
General #22 #23 #24

4.3 Performance measure and evaluation

Error measures are fundamental to justify the prediction performance. RMSE (root mean square

error) is adopted in the cross-validation scheme in CVBkNNI. For each true value
ie that is

simulated to be missing in D, the corresponding imputed value is
îe , then the RMSE is defined in

Eq. (15):

 ()2
1

1 ˆ
T

i i
i
e eRMSE

T =

−= ∑ (15),

where T denotes the total number of missing values in D. The relative error metrics are not

considered in the study due to they are unbalanced, for example, MRE (mean of relative error)

27

(Foss et al., 2003). Instead, RMSE is a balanced metric and widely used in recent studies (Pan et

al., 2015; Zhang, 2012; Zhang et al., 2011).

The incomplete dataset becomes a complete one after missing data imputation. The machine

learning classifiers are then conducted to evaluate the impact of imputation on the performance

of Fault-proneness classification. Four widely used classification algorithms, Discriminant

analysis, KNN, Naive Bayes and SVM, are chosen in the study. The classification accuracy (CA)

is computed via Eq. (16):

1

1 (,)
N

i i
i

CA l FP FP
N =

ʹ= ∑ (16),

where N is the number of instances, iFPʹ and iFP are the classification results of the i-th

instance and the corresponding real class label. (,) 1i il FP FPʹ = if i iFP FPʹ= , and (,) 0i il FP FPʹ =

otherwise.

After measuring the performance, we test if the estimations of one method are significantly

better than the estimations of others. To check for statistical significance, we use Wilcoxon

signed-rank test. It is a non-parametric statistical hypothesis test used when comparing two

related samples to assess whether their population median ranks differ (i.e. it is a paired

difference test). Meanwhile, it is inadequate to merely show statistical significance alone; we

also need to know whether the effect size is worthy of interest (Sarro et al., 2016). To assess it,

we employ non-parametric Vargha-Delaney’s 12Â statistic (Arcuri and Briand, 2014). Given a

performance measure X, the 12Â statistic measures the probability that algorithm A yields better

X than another algorithm B, based on the formula of ()()2 11 / 1 / 2 /ˆ RA Μ− Μ += Ν , where 1R

denotes the rank sum of the first data group we are comparing, and Μ and Ν are the number of

observations in the first and second data sample, respectively. If the 2 algorithms are equivalent,

then 12
ˆ 0.5A = . If the first algorithm performs better than the second one, 12Â is considered small

for 12
ˆ0.6 0.7A≤ < , medium for 12

ˆ0.7 0.8A≤ < , and large for 12
ˆ0.8 1A≤ ≤ . The detailed

experiment is provided in Section 5.1.

28

4.4 Experiment procedures

The experiment of the work includes 3 main tasks: simulating missingness, missing data

imputation using different techniques, and the final performance evaluation. Missingness

simulation is conducted on the cleansed datasets, in which the process has been discussed in

Section 4.1. The simulation consists of 3 MMs (MCAR, MAR, NI), 2 MPs (Monotone, General)

and 4 MRs (2.5%, 5%, 10%, 20%), 24 scenarios in total as discussed in Section 4.2. Each

scenario of one dataset is replicated 30 times to reduce bias and obtain a suitable sample size.

The overall experiment process is described in Fig. 1.

Fig. 1. The overall experiment procedures

To have the same unit for distinctive data features, it is necessary to transform the attribute

values in the same range. In this work, all of the data is normalized into the interval of [0, 1]

feature by feature. The [0, 1] normalization is defined as in Eq. (17):

 () , ,
[0,1] ,

, ,

min
norm

max min
j p i i p

i j
i i p i i p

x x
x

x x
∀

∀ ∀

−
=

−
 (17),

where ,i px is the p-th feature value of instance ix , , 1,2,....,i j N= , and 1,2,....,p M= .

After normalizing all the simulated datasets, the different KNN imputation approaches are then

used for preprocessing. The first task is the verification of the effectiveness of CVBkNNI.

Start Data
Cleaning

Missing Data
Simulation

Simulated
Incomplete

datasets
versions

End
Calculating Average

Imputation
Performance: RMSE

Clean
Datasets

Applying 5 Various MDTs Data
Normalization

Estimated
Completed
Versions

Calculating Average
CA of Various

Classifiers

29

Moreover, this study also implements three other KNN based imputation approaches, including

FWGkNN (Pan et al., 2015), ICkNNI (Van Hulse and Khoshgoftaar, 2014), as introduced in

Section 2.3, and the default version of KNN imputation (DkNNI) approach implemented by

Matlab R2016b. DkNNI is implemented using Matlab knnimpute, which is capable of replacing

missing data with the corresponding value from the incomplete nearest neighbor instance.

According to the documentation of Matlab, DkNNI is based on incomplete-instance and it

imputes each missing value using the closest neighbor calculated from Euclidean distance. In the

meantime, MEI is also used as a benchmark imputation technique.

The imputed datasets are compared with the corresponding original complete ones to validate

imputation performance. Wilcoxon signed-rank test tests whether the overall prediction

performance of CVBkNNI is significantly better than the rest four ones. Meanwhile, this work

also uses Wilcoxon signed-rank test to find if there exists a significant difference in terms of

imputation among diverse scenarios.

For the adopted quality data, the target class for classification is Fault-proneness. Researchers

argue that the imputed complete datasets should also be reliable and workable to be used for

other purpose (Sahri et al., 2014). In empirical software quality research, data imputation may

also serve the further Fault-proneness classification; therefore, the classification performance

from imputed data should not be worse than that from the original data. At this stage, the four

commonly used ML classifiers (Discriminant analysis, KNN, Naive Bayes and SVM) are

implemented on the estimated complete datasets to test the performance of used imputation

approaches, as a necessary data-preprocessing step, on classification tasks.

5. Experiment results and analysis

In this section, the empirical results of various imputation approaches are fully presented. The

comparison between CVBkNNI and other imputation approaches is discussed then via statistical

tests. Later, a detailed discussion about CVBkNNI and its inner adaptive parameter setting is

presented as well.

30

5.1 Overall imputation performance

Table 7 presents the overall RMSEs for each dataset under different missingness scenarios. The

datasets are ordered by nature and size. All the best estimation results are marked in green, the

second-best ones are marked in blue, while the worst results are in red. It is obvious that

CVBkNNI surpasses the other four imputation approaches under each scenario regardless of the

missingness mechanism (MM), pattern (MP) or ratio (MR), especially when the size of the

dataset is relatively large (See Table 5). The second-best imputation approach then strongly

depends on the MP. FWGkNNI performs better when the MP is general; while ICkNNI performs

relatively better when the MP is monotone. However, FWGkNNI, compared with ICkNNI, is

relatively more robust since when MP is general, ICkNNI mostly performs the worst, even worse

than the benchmark approach mean imputation (MEI). Some exceptions happen when the

percentage of missing values is relatively small, such as dataset KC3 and MC2. The ICkNNI was

established to be better than complete-instance K nearest neighbor (KNN) imputation; however,

its performance in the software quality datasets shows that it could be even worse in imputation

capacity than the benchmark imputation approaches, the default DkNNI and MEI. Meanwhile, in

dataset camel and ant, the performance of ICkNNI under monotone pattern is not strictly

negatively correlated with MR. It may due to the impacts of outliers in the dataset.

Table 7 also presents the Wilcoxon signed-rank test results together with the corresponding 12Â

effect size (see Table 7 footnote) to compare the statistical significance and effect size of the

improvements over the other imputation approaches due to CVBkNNI. For example, the dataset

camel, as shown in Table 7, under general pattern, MCAR mechanism and 2.5% missingness

ratio, the 30 RMSEs of CVBkNNI (Avg: 0.088) are significantly less than the 30 RMSEs of

FWGkNNI (Avg: 0.113), at the significance level of 0.01. Similarly, under monotone pattern, all

else are equal, the 30 RMSEs of CVBkNNI (Avg: 0.093) are significantly less than the 30

RMSEs of ICkNNI (Avg: 0.111). The test results further confirm the imputation excellency of

CVBkNNI since, in most cases, the RMSEs of CVBkNNI are significantly less than those of

FWGkNNI, ICkNNI, DkNNI and MEI. Some reasonable exceptions exist in the small-sized

datasets or under monotone pattern. As for 12Â effect size shown in Table 7 (presented in

different brackets), large effect size 12
ˆ0.8 1A≤ ≤ dominates the results mostly, especially in the

31

4 object-oriented datasets, which means CVBkNNI overall yields better performance. Table 8

further organizes all the results of effect size in detailed counts and ratios. For each dataset, we

count the number of large, medium, small and rest effect size of CVBkNNI vs. the other

imputation approaches under all missingness scenarios. All the effect size calculated is at least

0.5. For dataset MC2, a relatively smaller one, the corresponding effect size is generally small.

But this phenomenon does not happen in small-sized dataset arc. For large-sized dataset PC5, the

effect size is merely medium in general.

To further intuitively present the imputation accuracy, Fig. 2 to 9 present the boxplots of the

corresponding RMSE results. For example, in Fig. 2, the first sub-boxplot presents the RMSE

results of the 5 imputation approaches on the 30 simulated versions of dataset camel under

general MP and MCAR mechanism at MR = 5%. To save space, only the boxplots of RMSEs of

the large-sized datasets: camel, ant, PC5 and MW1, at MR = 5% and 20% are presented. The

results shown in the boxplots are consistent with the findings in Table 7. The overall

performance of CVBkNNI basically answers to the RQ1, that setting adaptive parameters for

estimating each missing value could largely improve KNN imputation performance.

Another important issue of performance, time, is also tested in the experiment. The complicated

strategy of CVBkNNI causes the algorithm to be time-consuming, but it also provides better

accuracy. Use datasets of camel, ivy, PC5 and MW1 as examples, the imputation algorithm

running time is summarized in Table 9. We run the algorithms on an Intel Core i7-4770 3.40GHz

CPU with 8GB memory, Windows 7 64-bit system and Matlab R2016b software. Since the

algorithm running time under different MMs and MPs is relatively unchanged given a specific

MR, Table 9 provides the average running time of the 5 imputation algorithms under 3 MMs and

2 MPs. Compared to the other four algorithms, CVBkNNI indeed cost lots of time to proceed,

but it is still acceptable. The datasets of camel and PC5 are the largest ones in the experiment.

Consider under the worst-case MR = 20%, there are in total 3184 missing values for camel data

and 4237 ones for PC5 data, the imputation time of CVBkNNI is still within 3mins

32

Table 7
Overall average RMSE results of all datasets under various scenarios1

Data MP MR (%)
Imputation Approaches and MMs

MCAR MAR NI
CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI

camel

General

2.5 0.088 0.113** 0.209** 0.197** 0.197** 0.080 0.115** 0.203** 0.194** 0.194** 0.114 0.149** 0.247** 0.230** 0.231**
5 0.094 0.122** 0.213** 0.199** 0.199** 0.088 0.118** 0.209** 0.194** 0.195** 0.118 0.157** 0.251** 0.235** 0.236**

10 0.105 0.128** 0.213** 0.197** 0.197** 0.107 0.130** 0.215** 0.198** 0.198** 0.134 0.171** 0.255** 0.241** 0.242**
20 0.124 0.138** 0.215** 0.197** 0.198** 0.125 0.140** 0.216** 0.198** 0.199** 0.169 0.195** 0.260** 0.250** 0.251**

Monotone

2.5 0.093 0.124** [0.111**] 0.133** 0.223** 0.107 0.139** [0.120**] 0.137** 0.232** 0.118 0.164** [0.144**] 0.163** 0.256**
5 0.109 0.135** 0.171** 0.205** 0.226** 0.118 0.146** 0.173** 0.206** 0.233** 0.121 0.162** [0.142**] 0.164** 0.254**

10 0.112 0.144** 0.176** 0.214** 0.231** 0.114 0.145** [0.127**] 0.149** 0.230** 0.149 0.183** 0.192** 0.226** 0.270**
20 0.120 0.148** [0.135**] 0.154** 0.230** 0.122 0.149** 0.183** 0.212** 0.230** 0.194 0.233** 0.236** 0.258** 0.292**

ant

General

2.5 0.095 0.120** 0.203** 0.190** 0.195** 0.099 [0.120**] 0.194** 0.176** 0.180** 0.123 0.160** 0.230** 0.221** 0.227**
5 0.100 0.124** 0.204** 0.190** 0.195** 0.098 0.123** 0.200** 0.182** 0.187** 0.127 0.164** 0.234** 0.225** 0.230**

10 0.110 0.129** 0.204** 0.188** 0.192** 0.107 0.127** 0.201** 0.184** 0.187** 0.139 0.170** 0.232** 0.227** 0.233**
20 0.129 0.139** 0.206** 0.188** 0.192** 0.129 0.138** 0.204** 0.187** 0.191** 0.171 0.185** 0.235** 0.235** 0.241**

Monotone

2.5 0.115 0.145** [0.129**] 0.155** 0.214** 0.123 0.155 (0.131**) 0.165** 0.228** 0.140 0.175** [0.166**] 0.189** 0.250**
5 0.126 0.158** 0.165** 0.198** 0.222** 0.126 0.160** 0.164** 0.193** 0.226** 0.135 0.170** [0.162**] 0.184** 0.247**

10 0.125 0.157** 0.161** 0.190** 0.223** 0.123 0.158** 0.135** 0.162** 0.225** 0.155 0.186** 0.191** 0.218** 0.260**
20 0.129 0.159** 0.144** 0.164** 0.223** 0.125 0.160** 0.176** 0.202** 0.223** 0.192 0.222** 0.235** 0.251** 0.280**

ivy

General

2.5 0.090 0.125** 0.205** 0.196** 0.198** 0.088 0.114** 0.190** 0.181** 0.187** 0.107 0.171** 0.241** 0.237** 0.241**
5 0.090 0.126** 0.200** 0.191** 0.194** 0.094 0.120** 0.197** 0.184** 0.189** 0.121 0.176** 0.252** 0.242** 0.245**

10 0.109 0.134** 0.205** 0.192** 0.195** 0.107 0.134** 0.203** 0.189** 0.194** 0.147 0.186** 0.255** 0.245** 0.249**
20 0.131 0.143** 0.204** 0.192** 0.195** 0.135 0.148** 0.208** 0.193** 0.199** 0.186 0.208** 0.260** 0.255** 0.259**

Monotone

2.5 0.131 0.165** [0.156**] 0.187** 0.224** 0.113 0.163** [0.130**] 0.157** 0.228** 0.131 0.198** 0.162** 0.194** 0.277**
5 0.118 0.156** (0.126) 0.155** 0.225** 0.118 0.164** 0.163** 0.199** 0.231** 0.136 0.201** 0.190** 0.233** 0.279**

10 0.121 0.164** 0.164** 0.198** 0.229** 0.127 0.170** 0.165** 0.198** 0.233** 0.156 0.207** [0.170**] 0.189** 0.284**
20 0.122 0.164** 0.136** 0.156** 0.228** 0.128 0.177** 0.184** 0.209** 0.233** 0.213 0.249** 0.241** 0.259** 0.306**

arc

General

2.5 0.096 [0.136**] 0.216** 0.208** 0.216** 0.104 [0.136**] 0.209** 0.205** 0.212** 0.112 0.196** 0.269** 0.270** 0.273**
5 0.086 0.131** 0.220** 0.208** 0.211** 0.100 0.143** 0.226** 0.211** 0.216** 0.138 0.198** 0.273** 0.269** 0.272**

10 0.108 0.145** 0.228** 0.213** 0.215** 0.122 0.155** 0.234** 0.217** 0.221** 0.152 0.207** 0.281** 0.277** 0.281**
20 0.148 [0.156*] 0.231** 0.216** 0.218** 0.154 [0.163**] 0.234** 0.216** 0.220** 0.214 0.243** 0.292** 0.292** 0.297**

Monotone

2.5 0.123 0.195** 0.168* 0.209** 0.243** 0.133 0.192** [0.169*] 0.203** 0.239** 0.117 0.194** 0.180** 0.212** 0.298**
5 0.128 0.200** (0.148**) [0.164**] 0.244** 0.129 0.196** 0.169** 0.197** 0.243** 0.135 0.204** 0.166** 0.175** 0.307**

10 0.135 0.200** 0.170** 0.201** 0.250** 0.125 0.199** 0.175** 0.212** 0.253** 0.173 0.246** 0.209** 0.229** 0.328**
20 0.132 0.195** 0.179** 0.204** 0.251** 0.138 0.213** 0.177** 0.190** 0.253** 0.240 0.283** (0.249) (0.259*) 0.332**

PC5

General

2.5 0.063 [0.080**] 0.093** [0.088**] [0.089**] 0.062 (0.076**) [0.087**] [0.083**] [0.085**] 0.089 [0.121**] 0.128** 0.128** 0.130**
5 0.064 [0.082**] 0.094** 0.088** 0.089** 0.065 [0.081**] 0.092** [0.086**] 0.087** 0.096 [0.123**] 0.134** 0.131** 0.133**

10 0.065 0.080** 0.092** 0.086** 0.087** 0.069 0.082** 0.093** 0.088** 0.089** 0.103 [0.125**] 0.132** 0.129** 0.131**
20 0.071 [0.079**] 0.090** 0.084** 0.085** 0.073 [0.080**] 0.093** 0.086** 0.087** 0.118 (0.127**) [0.132**] [0.130**] [0.132**]

Monotone

2.5 0.057 {0.061} {0.057} {0.057} (0.070**) 0.054 {0.058} {0.053} [0.069*] (0.063*) 0.087 (0.112**) {0.091} (0.097) (0.118*)
5 0.062 {0.071*} (0.071**) [0.083**] (0.076**) 0.065 (0.078**) {0.068} [0.080**] [0.081**] 0.082 (0.108**) (0.089**) (0.095**) [0.117**]

10 0.060 (0.071**) {0.065**} [0.075**] [0.078**] 0.061 (0.075**) (0.067**) 0.079** [0.080**] 0.089 [0.109**] {0.091} {0.097**} [0.115**]
20 0.063 [0.075**] (0.066) 0.075** 0.079** 0.064 [0.078**] (0.074**) [0.079**] [0.079**] 0.116 (0.128**) (0.130**) (0.130**) [0.132**]

MW1 General 2.5 0.083 0.132** 0.183** 0.170** 0.179** 0.092 0.139** 0.205** 0.185** 0.200** 0.117 0.176** 0.207** 0.207** 0.228**
5 0.092 0.132** 0.188** 0.171** 0.180** 0.104 0.139** 0.204** 0.185** 0.194** 0.126 0.186** 0.234** 0.221** 0.233**

33

10 0.106 0.130** 0.179** 0.165** 0.172** 0.119 0.146** 0.206** 0.187** 0.197** 0.153 0.198** 0.237** 0.226** 0.237**
20 0.119 0.136** 0.180** 0.165** 0.171** 0.129 0.150** 0.211** 0.188** 0.194** 0.194 0.214** 0.241** 0.235** 0.246**

Monotone

2.5 0.105 0.140** (0.115**) 0.138** 0.164** 0.122 [0.162**] {0.130*} [0.153**] 0.197** 0.133 [0.186**] (0.151**) (0.164**) 0.222**
5 0.114 0.148** (0.125*) 0.144** 0.170** 0.130 0.167** [0.145**] 0.165* 0.205** 0.142 0.192** (0.154**) [0.175**] 0.231**

10 0.122 0.161** 0.141** 0.158** 0.182** 0.124 0.168** [0.139**] 0.158** 0.201** 0.168 0.205** {0.173} [0.195**] 0.239**
20 0.124 0.159** (0.130*) 0.150** 0.180** 0.129 0.193** 0.161** 0.175** 0.196** 0.202 0.238** {0.205} (0.213**) 0.262**

KC3

General

2.5 0.113 0.165** 0.183** 0.176** 0.195** 0.111 0.159** 0.185** 0.182** 0.192** 0.141 0.221** 0.216** 0.229** 0.258**
5 0.113 0.162** 0.212** 0.194** 0.194** 0.118 0.170** 0.218** 0.203** 0.202** 0.166 0.239** 0.271** 0.262** 0.269**

10 0.115 0.160** 0.209** 0.188** 0.189** 0.121 0.165** 0.215** 0.194** 0.195** 0.187 0.248** 0.270** 0.266** 0.270**
20 0.134 0.161** 0.216** 0.186** 0.188** 0.131 0.166** 0.217** 0.191** 0.193** 0.227 0.264** 0.278** 0.274** 0.278**

Monotone

2.5 0.114 (0.153) {0.117*} (0.146*) 0.171** 0.135 (0.171**) {0.138} (0.151) 0.194** 0.154 (0.201**) {0.161**} [0.202**] 0.236**
5 0.133 [0.184**] {0.142**} [0.171**] 0.197** 0.140 0.197** (0.149**) 0.181** 0.212** 0.167 0.224** {0.169} [0.205**] 0.253**

10 0.136 0.183** (0.142**) 0.167** 0.198** 0.137 0.175** {0.141} 0.168** 0.192** 0.192 0.260** {0.195} (0.217**) 0.280**
20 0.140 0.206** 0.154** 0.175** 0.217** 0.139 0.196** [0.149**] 0.176** 0.209** 0.205 0.273** {0.208*} (0.218**) 0.288**

MC2

General

2.5 0.103 {0.114*} (0.123*) (0.140**) [0.136**] 0.092 {0.105*} (0.111**) [0.126**] [0.140**] 0.184 (0.221**) (0.200*) {0.199} [0.243**]
5 0.107 (0.124**) 0.150** 0.145** 0.148** 0.100 (0.115*) [0.128**] [0.142**] [0.146**] 0.205 0.232** [0.227*] (0.224) 0.252**

10 0.123 [0.138*] 0.171** 0.160** 0.161** 0.126 (0.135*) 0.168** 0.159** 0.158** 0.220 (0.236**) [0.255**] [0.249**] 0.253**
20 0.145 (0.149) 0.179** 0.168** 0.170** 0.145 {0.146} 0.180** 0.166** 0.167** 0.246 {0.248} [0.264**] (0.257*) [0.262**]

Monotone

2.5 0.144 {0.192} {0.163} {0.150} (0.221**) 0.132 {0.155**} {0.142} (0.143) (0.170**) 0.168 (0.195*) {0.177} {0.175} [0.220**]
5 0.138 {0.164*} {0.144} (0.162) (0.183**) 0.148 {0.168*} {0.150} {0.151} (0.180**) 0.171 (0.196**) (0.178) [0.185] [0.217**]

10 0.125 (0.149**) {0.131} [0.145**] [0.167**] 0.131 {0.147*} {0.132} [0.165*] [0.163**] 0.185 (0.205**) {0.185} [0.198] [0.220**]
20 0.134 (0.150**) (0.139*) [0.150**] [0.164**] 0.127 (0.143**) {0.131*} 0.159** [0.155**] 0.221 (0.232**) (0.227) {0.231*} [0.244**]

1The minimum RMSEs in each condition are in green; the maximum RMSEs are in red; while the 2nd smallest RMSEs are marked in blue.
{}/()/[]: Curly brackets for effect size 12

ˆ0.5 0.6A≤ < , parentheses for small effect size 12
ˆ0.6 0.7A≤ < , square brackets for medium effect size 12

ˆ0.7 0.8A≤ < ,
and no brackets for large effect size 12

ˆ0.8 1A≤ ≤ .
**Left-tail Wilcoxon signed-rank test, significant at the level of 0.01; *Significant at the level of 0.05.

34

Table 8
Counts and ratios of Vargha-Delaney’s 12Â statistic from the overall RMSE results

Data Imputation Approaches

Counts and Ratios of Vargha-Delaney’s 12Â Effect Size

12
ˆ0.5 0.6A≤ <

12
ˆ0.6 0.7A≤ <

12
ˆ0.7 0.8A≤ <

12
ˆ0.8 1A≤ ≤

camel

CVBkNNI vs. FWGkNNI 0/241 0/24 0/24 24/24
CVBkNNI vs. ICkNNI 0/24 0/24 6/24 18/24
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

ant

CVBkNNI vs. FWGkNNI 0/24 0/24 1/24 23/24
CVBkNNI vs. ICkNNI 0/24 1/24 3/24 20/24
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

ivy

CVBkNNI vs. FWGkNNI 0/24 0/24 0/24 24/24
CVBkNNI vs. ICkNNI 0/24 1/24 3/24 20/24
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

arc

CVBkNNI vs. FWGkNNI 0/24 0/24 4/24 20/24
CVBkNNI vs. ICkNNI 0/24 2/24 1/24 21/24
CVBkNNI vs. DkNNI 0/24 1/24 1/24 22/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

PC5

CVBkNNI vs. FWGkNNI 3/24 8/24 11/24 2/24
CVBkNNI vs. ICkNNI 6/24 6/24 2/24 10/24
CVBkNNI vs. DkNNI 2/24 3/24 9/24 10/24

CVBkNNI vs. MEI 0/24 4/24 10/24 10/24

MW1

CVBkNNI vs. FWGkNNI 0/24 0/24 2/24 22/24
CVBkNNI vs. ICkNNI 3/24 5/24 2/24 14/24
CVBkNNI vs. DkNNI 0/24 2/24 3/24 19/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

KC3

CVBkNNI vs. FWGkNNI 0/24 3/24 1/24 20/24
CVBkNNI vs. ICkNNI 8/24 2/24 1/24 13/24
CVBkNNI vs. DkNNI 0/24 4/24 3/24 17/24

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24

MC2

CVBkNNI vs. FWGkNNI 9/24 13/24 1/24 1/24
CVBkNNI vs. ICkNNI 9/24 6/24 4/24 5/24
CVBkNNI vs. DkNNI 5/24 5/24 8/24 6/24

CVBkNNI vs. MEI 0/24 4/24 13/24 7/24
1There are 2 MPs, 3 MMs and 4 MRs, in total, 24 scenarios

Table 9
Average algorithm running time in seconds on 4 selected datasets

Data MR (%)
Avg. Algorithm Running Time (in seconds)

CVBkNNI FWGkNNI ICkNNI DkNNI MEI

camel

2.5 50.8839 0.7549 0.0082 0.0091 0.0004
5 86.1633 0.9416 0.0110 0.0143 0.0004

10 129.7130 1.3375 0.0165 0.0224 0.0004
20 167.8360 1.8559 0.0282 0.0385 0.0004

ivy

2.5 37.0678 0.8673 0.0141 0.0094 0.0002
5 48.9862 0.7437 0.0137 0.0076 0.0002

10 88.9723 1.0780 0.0112 0.0138 0.0002
20 111.3102 1.3277 0.0170 0.0194 0.0002

PC5

2.5 45.1913 0.6650 0.0087 0.0107 0.0004
5 74.1314 0.8746 0.0126 0.0186 0.0004

10 103.4838 1.1381 0.0172 0.0223 0.0004
20 147.9999 1.5946 0.0290 0.0409 0.0004

35

KC3

2.5 11.7655 0.3755 0.0027 0.0023 0.0002
5 21.0672 0.4802 0.0036 0.0040 0.0002

10 33.9020 0.7103 0.0066 0.0093 0.0002
20 51.5934 0.8911 0.0101 0.0127 0.0002

From the results showing in boxplots, the median values under NI mechanism are always slightly

larger than that under MCAR or MAR mechanism. In Table 7, the average RMSEs under

monotone pattern are generally large than that under general pattern within the same dataset.

This section also uses Wilcoxon signed-rank test to answer RQ2: if the MM, or MP indeed has a

significant impact on the imputation results. Table 10 and Table 11 summarize the comparison

results. The comparison between each pair of MMs is presented in Table 10. The five imputation

approaches used in the study (CVBkNNI, FWGkNNI, ICkNNI, DkNNI and MEI) are denoted as

1, 2, 3, 4 and 5 accordingly. As shown in Table 10, in dataset camel, under general pattern and

2.5% missingness ratio, all the five imputation approaches perform significantly different

between MCAR and NI, as well as between MAR and NI; however, none of which performs

significantly different between MCAR and MAR. Table 10 shows various imputation approaches

perform similarly under MCAR or MAR; while the significant difference exists when

mechanism is NI. The significance may increase as the MR increases as well.

The comparison in terms of the MP is presented in Table 11. The difference in object-oriented

datasets is more significant than that in procedural datasets. When MR increases in small-sized

datasets, the difference is even more clear. Therefore, the impact of MP may depend on the data.

The performance of ICkNNI is highly influenced by the MP, which is consistent with the

findings in Table 7.

Table 10
The comparison between each pair of MMs at the significance level of 0.051

Data MP MM MR = 2.5% MR = 5% MR = 10% MR = 20%
MAR NI MAR NI MAR NI MAR NI

camel
General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone MCAR 2 12345 2 12345 34 12345 34 12345
MAR - 245 - 345 - 12345 - 12345

ant
General MCAR 45 12345 45 12345 N/A 12345 N/A 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone MCAR N/A 12345 N/A 5 34 12345 34 12345
MAR - 3 - 5 - 12345 - 12345

ivy General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345
MAR - 12345 - 12345 - 12345 - 12345

Monotone MCAR 34 25 34 12345 N/A 125 234 12345

36

MAR - 2345 - 12345 - 125 - 12345

arc
General MCAR N/A 2345 N/A 12345 1 12345 N/A 12345

MAR - 2345 - 12345 - 12345 - 12345

Monotone MCAR N/A 5 4 5 N/A 12345 N/A 12345
MAR - 5 - 5 - 12345 - 12345

PC5
General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345

MAR - 2345 - 12345 - 12345 - 12345

Monotone MCAR N/A 4 N/A N/A N/A 1235 N/A 12345
MAR - N/A - N/A - 12 - 12345

MW1
General MCAR N/A 1245 N/A 12345 12345 12345 12345 12345

MAR - 1245 - 12345 - 12345 - 12345

Monotone MCAR N/A N/A 145 1235 N/A 12345 12345 12345
MAR - N/A - 2 - 12345 - 12345

KC3
General MCAR N/A 1245 N/A 12345 N/A 12345 5 12345

MAR - 12345 - 12345 - 12345 - 12345

Monotone MCAR N/A N/A N/A N/A N/A 12345 N/A 12345
MAR - N/A - N/A - 12345 - 12345

MC2
General MCAR 1 1235 3 12345 N/A 12345 N/A 12345

MAR - 1235 - 12345 - 12345 - 12345

Monotone MCAR N/A N/A N/A N/A N/A 1234 N/A 12345
MAR - N/A - N/A - 1235 - 12345

11 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI

Table 11
The comparison between general pattern and monotone pattern at the significance level of 0.051

Data MM General and Monotone
MR = 2.5% MR = 5% MR = 10% MR = 20%

camel
MCAR 345 235 2345 2345
MAR 1245 125 345 345
NI 345 345 12345 1235

ant
MCAR 2345 1235 1235 2345
MAR 1235 1235 12345 2345
NI 345 345 1235 125

ivy
MCAR 1235 12345 1235 12345
MAR 12345 1235 12345 2345
NI 1345 1235 2345 1235

arc
MCAR 23 12345 1235 1235
MAR 1235 1235 235 12345
NI 34 345 12345 2345

PC5
MCAR 34 3 2345 1345
MAR 235 N/A 3 13
NI N/A 34 34 N/A

MW1
MCAR 13 13 123 234
MAR 13 123 234 234
NI 34 34 34 234

KC3
MCAR 3 3 134 235
MAR 3 13 134 2345
NI N/A 34 34 34

MC2 MCAR N/A N/A 3 3
MAR N/A 1 N/A 3

37

NI N/A 4 12345 N/A
11 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI

Fig. 2 The RMSEs of data camel at MR = 5%, range in [0.05, 0.35]

38

Fig. 3. The imputation RMSEs of data camel at MR = 20%, range in [0.05, 0.35]

39

Fig. 4 The imputation RMSEs of data ant at MR = 5%, range in [0.07, 0.32]

40

Fig. 5 The imputation RMSEs of data ant at MR = 20%, range in [0.07, 0.32]

41

Fig. 6. The imputation RMSEs of data PC5 at MR = 5%, range in [0.02, 0.22]

42

Fig. 7. The imputation RMSEs of data PC5 at MR = 20%, range in [0.02, 0.22]

43

Fig. 8 The imputation RMSEs of data MW1 at MR = 5%, range in [0.05, 0.3]

44

Fig. 9 The imputation RMSEs of data MW1 at MR = 20%, range in [0.05, 0.3]

5.2 The impact of feature relevance and imputation ordering

This section and the following one focus on empirically analyzing the estimator of CVBkNNI.

The two components used in CVBkNNI, MI-based feature relevance, and MR-based imputation

ordering, are both inherited from former empirical research evidence. This section aims at

verifying the impact of the two components on imputation accuracy. Table 12 gives an example

of a comparison in terms of various configurations of CVBkNNI, i.e. with (w/) or without (w/o)

MI-based feature relevance, and w/ or w/o MR-based imputation ordering, at MR = 10%. To

save space, Table 12 only lists the results of four datasets with MR = 10%. When MR = 2.5%, or

5% or 20%, the results are like those in Table 12. The configuration with both MI-based feature

relevance and imputation ordering is the CVBkNNI used in this study (Marked in bold in Table

12).

45

Left-tail Wilcoxon signed-rank test is also used to test if the RMSEs are reduced with imputation

ordering, as well as if the RMSEs are reduced with feature relevance considered in measuring

distance. For example, in dataset camel, under the general MP and MCAR, the average RMSEs

of the CVBkNNI is measured as 0.105 (Also shown in Table 7), which is significantly less than

that without feature relevance (0.112) at the significant level of 0.05. Similarly, if imputation

ordering is excluded in the CVBkNNI, the corresponding RMSEs (Avg: 0.106) after the

CVBkNNI with feature relevance are significantly less than those (Avg: 0.113) without feature

relevance. Therefore, from the results, if the component of feature relevance is excluded, the

imputation accuracy of the CVBkNNI is reduced in most cases. However, if feature relevance is

included, the average imputation performance of the CVBkNNI with ordering is slightly better

than that without ordering, especially when the MM is NI. Imputation ordering may not have an

overall significant impact on the performance of the CVBkNNI, but at least, it reduces the

average RMSE in general.

Table 12
A comparison in terms of different configurations of CVBkNNI at MR = 10%

Data MP MM
w/ MI-based feature relevance w/o MI-based feature relevance

w/ imputation
ordering1

w/o imputation
ordering

w/ imputation
ordering

w/o imputation
ordering

camel

General
MCAR 0.1052 0.106 0.112* 0.113*
MAR 0.107 0.107 0.120* 0.120*

NI 0.134 0.154* 0.134 0.154*

Monotone
MCAR 0.112 0.113 0.114 0.115
MAR 0.114 0.116 0.121* 0.127*

NI 0.149 0.151* 0.149 0.151*

ant

General
MCAR 0.110 0.109 0.115* 0.116*
MAR 0.107 0.107 0.118* 0.118*

NI 0.139 0.141* 0.150* 0.153*

Monotone
MCAR 0.125 0.125 0.138* 0.135*
MAR 0.123 0.125 0.138* 0.132*

NI 0.155 0.157 0.161* 0.164*

PC5

General
MCAR 0.065 0.068* 0.082* 0.080*
MAR 0.069 0.069 0.069 0.069

NI 0.103 0.104 0.104 0.107

Monotone
MCAR 0.060 0.061 0.067* 0.069*
MAR 0.061 0.061 0.078* 0.075*

NI 0.089 0.098* 0.090 0.099*

MW1

General
MCAR 0.106 0.106 0.106 0.108
MAR 0.119 0.120 0.125* 0.123

NI 0.153 0.159* 0.153 0.159*

Monotone
MCAR 0.122 0.124 0.122 0.122
MAR 0.124 0.126 0.129* 0.129*

NI 0.168 0.182* 0.183* 0.184*
1CVBkNNI configuration.

46

2The results in terms of RMSEs are consistent with those in Table 7.
*Left-tail Wilcoxon signed-rank test at the significant level of 0.05

5.3 Parameter setting in CVBkNNI

Moreover, the selected parameter combinations in CVBkNNI for estimating missing values in a

dataset are summarized as well. Table 13 lists the mostly selected distance measure, K and

adaptation method under each missingness scenario in the 30-time replicated camel, ant, PC5

and MW1 datasets.

The results in Table 13 show that GRA-based distance measure obviously takes the majority. For

relatively small-sized MW1 data, the use of GRA-based distance measure is slightly

overwhelmed by Manhattan distance. For the choice of K, most of the imputation parameters

prefer K = 3. As for the adaptation method, Dudani measure is more popular than both mean and

IDWM. Neither IRWM nor median is selected. Fig. 10 and Fig. 11 further present the histograms

of the distribution of each utilized parameter. The results on figures are consistent with Table 13.

A combination of parameter setting (GRA-based distance measure, K = 3, with Dudani

adaptation measure) is overall the most frequent for the imputation. However, there is still no

guarantee that any combination is overall the best solution.

Table 13
The mostly selected parameter setting under each scenario

Data
examples MP MR

(%)

MM
MCAR MAR NI

Distance K Adaptation Distance K Adaptation Distance K Adaptation

camel

General

2.5 GRA1 3 Dudani GRA 3 Dudani GRA 3 Dudani
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani

Monotone

2.5 GRA 5 IDWM GRA 7 IDWM GRA 5 Dudani
5 GRA 5 IDWM GRA 5 IDWM GRA 3 Dudani

10 GRA 7 IDWM GRA 5 IDWM GRA 3 Dudani
20 GRA 5 IDWM GRA 3 Dudani GRA 3 Dudani

ant

General

2.5 GRA 5 Dudani GRA 5 Dudani GRA 5 Dudani
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani

Monotone

2.5 GRA 19 IDWM GRA 11 IDWM GRA 5 Dudani
5 GRA 19 Dudani GRA 17 IDWM GRA 5 Dudani

10 GRA 17 Dudani GRA 7 IDWM GRA 5 IDWM
20 GRA 7 IDWM GRA 15 Dudani GRA 3 Dudani

47

PC5

General

2.5 GRA 3 Dudani GRA 3 Dudani GRA 3 Mean
5 GRA 3 Mean GRA 3 Dudani GRA 3 Mean

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani
20 GRA 3 Mean GRA 3 Mean GRA 3 Mean

Monotone

2.5 GRA 3 Mean GRA 3 Dudani GRA 3 Dudani
5 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani

10 GRA 3 Mean GRA 3 Mean GRA 3 Mean
20 GRA 3 Dudani GRA 1 Mean GRA 3 Mean

MW1

General

2.5 Manhattan 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
5 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani

10 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani
20 GRA 3 Dudani Euclidean 3 Dudani GRA 3 Dudani

Monotone

2.5 Manhattan 5 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
5 Manhattan 5 Dudani Manhattan 5 Dudani Manhattan 3 Dudani

10 GRA 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani
20 Manhattan 3 IDWM Manhattan 3 IDWM GRA 3 Dudani

1GRA denotes the distance measure of () (), 1 ,i j i jd x x GRG x x= − , as introduced in Section 3.2.1

48

Fig. 10 The parameter distribution of CVBkNNI on data ivy at MR = 10%

49

Fig. 11 The parameter distribution of CVBkNNI on data KC3 at MR = 10%

Since the estimator of GRA-based distance measure, K = 3 with Dudani adaptation method is the

most widely selected setting in most cases, this work also evaluates the imputation approach with

this selected estimator predefined. This new approach is named as G3D, representing the three

predefined parameters. Like Section 5.1, the imputation performance of G3D on each dataset is

summarized in terms of various missingness scenarios. The results are shown in Table 14. The

50

performance is also compared with CVBkNNI, FWGkNNI, ICkNNI, DkNNI and MEI. As shown

in Table 14, the imputation accuracy of G3D is consistent in general, especially in object-

oriented datasets. It is less superior than CVBkNNI but superior to FWGkNNI, ICkNNI, DkNNI

and MEI in most cases. Although G3D is not the optimal solution by all means, it is

recommended being applied in the incomplete software quality datasets as an alternative to the

traditional KNN imputation strategies. It answers to RQ3.

Left-tail Wilcoxon signed-rank tests are also used to verify if the performance of G3D. For

example, in camel data, under the missingness scenario of general MP, MCAR mechanism and

2.5% MR, the average RMSE of 30 replications is 0.098, the ‘2,3,4,5’ in the top-right position

denotes that the corresponding 30 RMSE values from G3D imputation are significantly less than

that from FWGkNNI, ICkNNI, DkNNI and MEI (See the footnote of Table 14). Therefore, in

general, the performance of G3D is better than that of FWGkNNI, ICkNNI, DkNNI and MEI,

especially in object-oriented datasets. In arc dataset, some of the average RMSE values are even

smaller than that of CVBkNNI; however, this relationship is not significant. In the procedural

datasets, the size of which is relatively smaller than that of object-oriented datasets. G3D is more

frequently not the overall suboptimal imputation. All in all, there is no straightforward evidence

that G3D would perform differently under different MMs. It performs worse than ICkNNI in

procedural datasets if the MP is monotone. But in general, G3D, a KNN imputation approach

based on MI-based GRA distance measure, K = 3 with Dudani adaptation, is better than

FWGkNNI, ICkNNI, DkNNI and MEI in most cases in terms of imputation accuracy.

Table 14
The imputation performance of G3D compared with others1,2

Data MP MR
(%)

G3D Data MP MR
(%)

G3D
MCAR MAR NI MCAR MAR NI

camel

General

2.5 0.0982,3,4,5 0.0912,3,4,5 0.1152,3,4,5

PC5

General

2.5 0.0652,3,4,5 0.0693,4,5 0.0862,3,4,5
5 0.1032,3,4,5 0.0972,3,4,5 0.1242,3,4,5 5 0.0692,3,4,5 0.0682,3,4,5 0.0972,3,4,5

10 0.1112,3,4,5 0.1172,3,4,5 0.1392,3,4,5 10 0.0662,3,4,5 0.0702,3,4,5 0.1042,3,4,5
20 0.1373,4,5 0.1363,4,5 0.1712,3,4,5 20 0.0722,3,4,5 0.0742,3,4,5 0.1191,2,3,4,5

Monotone

2.5 0.1102,4,5 0.1272,4,5 0.1302,3,4,5

Monotone

2.5 0.0585 0.061 0.0912
5 0.1232,3,4,5 0.1352,3,4,5 0.1322,4,5 5 0.0634,5 0.0705 0.0902,4,5

10 0.1282,3,4,5 0.1312,4,5 0.1532,3,4,5 10 0.0664,5 0.0672,4,5 0.0932,4,5
20 0.1322,4,5 0.1352,3,4,5 0.1762,3,4,5 20 0.0672,4,5 0.0672,3,4,5 0.1181,2,3,4,5

ant

General

2.5 0.1042,3,4,5 0.1133,4,5 0.1232,3,4,5

MW1

General

2.5 0.0882,3,4,5 0.0942,3,4,5 0.1122,3,4,5
5 0.1122,3,4,5 0.1162,3,4,5 0.1372,3,4,5 5 0.0992,3,4,5 0.1112,3,4,5 0.1302,3,4,5

10 0.1222,3,4,5 0.1192,3,4,5 0.1502,3,4,5 10 0.1112,3,4,5 0.1272,3,4,5 0.1612,3,4,5
20 0.1393,4,5 0.1363,4,5 0.1722,3,4,5 20 0.1312,3,4,5 0.1372,3,4,5 0.1962,3,4,5

Monotone
2.5 0.1332,4,5 0.1414,5 0.1482,3,4,5

Monotone
2.5 0.1202,4,5 0.1332,4,5 0.1455

5 0.1432,3,4,5 0.1514,5 0.1472,3,4,5 5 0.1274,5 0.1402,4,5 0.1542,4,5
10 0.1412,3,4,5 0.1412,4,5 0.1662,3,4,5 10 0.1322,4,5 0.1372,4,5 0.1732,4,5

51

20 0.1442,4,5 0.1432,3,4,5 0.1802,3,4,5 20 0.1292,4,5 0.1392,3,4,5 0.2062,4,5

ivy

General

2.5 0.0912,3,4,5 0.0992,3,4,5 0.1142,3,4,5

KC3

General

2.5 0.1272,3,4,5 0.1102,3,4,5 0.1412,3,4,5
5 0.0952,3,4,5 0.0992,3,4,5 0.1282,3,4,5 5 0.1252,3,4,5 0.1232,3,4,5 0.1672,3,4,5

10 0.1122,3,4,5 0.1142,3,4,5 0.1512,3,4,5 10 0.1252,3,4,5 0.1272,3,4,5 0.1882,3,4,5
20 0.1403,4,5 0.1423,4,5 0.1892,3,4,5 20 0.1382,3,4,5 0.1412,3,4,5 0.2202,3,4,5

Monotone

2.5 0.1342,3,4,5 0.1262,4,5 0.1422,3,4,5

Monotone

2.5 0.1275 0.1364,5 0.1594,5
5 0.1192,3,4.5 0.1322,3,4,5 0.1472,3,4,5 5 0.1472,4,5 0.1442,4,5 0.1682,4,5

10 0.1292,3,4,5 0.1342,3,4,5 0.1602,3,4,5 10 0.1462,4,5 0.1402,4,5 0.2042,5
20 0.1312,4,5 0.1362,3,4,5 0.1941,2,3,4,5 20 0.1472,4,5 0.1492,4,5 0.2052,5

arc

General

2.5 0.0992,3,4,5 0.1002,3,4,5 0.1162,3,4,5

MC2

General

2.5 0.110 0.0995 0.1922,5
5 0.0892,3,4,5 0.0942,3,4,5 0.1432,3,4,5 5 0.1323 0.126 0.2112,3,5

10 0.1062,3,4,5 0.1161,2,3,4,5 0.1492,3,4,5 10 0.1513 0.1463 0.2172,3,4,5
20 0.1462,3,4,5 0.1472,3,4,5 0.2122,3,4,5 20 0.1553,5 0.1553,5 0.2371,3,4,5

Monotone

2.5 0.1041,2,3,4,5 0.1302,3,4,5 0.1222,3,4,5

Monotone

2.5 0.1605 0.1233 0.1852,5
5 0.1292,3,4,5 0.1312,3,4,5 0.1402,3,4,5 5 0.1385 0.1365 0.2022

10 0.1352,3,4,5 0.1302,3,4,5 0.1742,3,4,5 10 0.1254,5 0.1315 0.2002
20 0.1362,3,4,5 0.1442,3,4,5 0.2152,3,4,5 20 0.1462,5 0.1342,4,5 0.2312

1Filled in green: G3D performs better than CVBkNNI; Filled in blue: G3D performs better than FWGkNNI
(Compare with Table 8).
21 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI

5.4 Classification accuracy

This part assesses the imputation effectiveness from another perspective, which compares

different ML classifiers (KNN, Discriminant analysis, Naive Bayes and SVM) built on the

complete data constructed after the imputation. It answers to RQ4 to compare and verify CA.

Since the classification models cannot be exhaustively applied, most studies regarded this

procedure as an auxiliary step evaluating the imputation performance.

To present the impact of imputation on fault-proneness classification accuracy, four ML

classifiers on the two relatively large imputed datasets: PC5 and camel, are conducted. To save

space, only the data versions with MR = 10% are analyzed for comparison. The other

missingness scenarios are kept as well. For each classifier, CA is computed after a 10-fold cross-

validation. G3D is also included in the experiment.

Table 15 presents the results of CA. Note that ‘No imputation’ means we use the original data

(w/o missingness simulation) for classification. ‘No imputation’, therefore, is a benchmark in the

comparison. The imputed data is less distorted if the classification performance on which is as

usual as that on the corresponding original one. The results clearly show that the classifiers based

on either the original dataset or the incomplete one with MEI used generally present relatively

worse classification performance. In terms of the CA after imputation, CVBkNNI and G3D are

generally superior to others in most cases. And the ICkNNI has a suboptimal performance. In

52

terms of the classifiers, KNN, Discriminant analysis, and Naïve Bayes are more sensitive to

imputation approaches than SVM. The performance of SVM is even not sensitive to MM or MP.

In general, the results show that appropriate imputation approach could be beneficial to the CA

of specific classifier. To sum, when using CVBkNNI and G3D as the imputation approach on the

incomplete data, the classification bias could also be maintained or even reduced in commonly

used classification tasks.

Table 15
The comparison of CA using different ML classifiers on data camel and PC5 with MR = 10%

Data MM Imputation
Approaches

Classifiers and MP
General Monotone

KNN
(K = 5)

Discriminant
Analysis

Naive
Bayes SVM KNN

(K = 5)
Discriminant

Analysis
Naive
Bayes SVM

camel

MCAR

No imputation 0.7701 0.785 0.775 0.792 0.776 0.786 0.770 0.792
CVBkNNI 0.794 0.798 0.776 0.794 0.795 0.796 0.774 0.794

G3D 0.793 0.792 0.768 0.793 0.792 0.794 0.771 0.793
FWGkNNI 0.773 0.791 0.776 0.792 0.790 0.785 0.769 0.793

ICkNNI 0.780 0.795 0.777 0.794 0.789 0.794 0.773 0.793
DkNNI 0.779 0.793 0.771 0.793 0.779 0.795 0.769 0.793

MEI 0.771 0.792 0.771 0.793 0.770 0.791 0.770 0.791

MAR

No imputation 0.770 0.786 0.771 0.792 0.776 0.783 0.771 0.793
CVBkNNI 0.794 0.797 0.772 0.794 0.795 0.796 0.777 0.794

G3D 0.794 0.793 0.772 0.794 0.795 0.795 0.768 0.794
FWGkNNI 0.784 0.792 0.770 0.793 0.790 0.785 0.770 0.793

ICkNNI 0.785 0.797 0.783 0.797 0.789 0.788 0.773 0.793
DkNNI 0.787 0.792 0.770 0.794 0.779 0.792 0.768 0.793

MEI 0.782 0.785 0.769 0.792 0.770 0.784 0.771 0.792

NI

No imputation 0.776 0.783 0.775 0.793 0.774 0.791 0.773 0.792
CVBkNNI 0.795 0.794 0.775 0.794 0.792 0.796 0.774 0.794

G3D 0.794 0.798 0.774 0.794 0.794 0.797 0.771 0.793
FWGkNNI 0.785 0.789 0.775 0.794 0.783 0.792 0.770 0.793

ICkNNI 0.789 0.793 0.780 0.795 0.784 0.792 0.771 0.793
DkNNI 0.780 0.794 0.772 0.792 0.783 0.790 0.765 0.794

MEI 0.776 0.788 0.768 0.792 0.772 0.786 0.768 0.794

PC5

MCAR

No imputation 0.768 0.776 0.705 0.779 0.771 0.774 0.705 0.779
CVBkNNI 0.781 0.783 0.709 0.780 0.790 0.781 0.708 0.780

G3D 0.778 0.779 0.707 0.780 0.782 0.782 0.712 0.781
FWGkNNI 0.772 0.772 0.706 0.780 0.781 0.775 0.702 0.780

ICkNNI 0.787 0.783 0.713 0.781 0.782 0.779 0.706 0.780
DkNNI 0.785 0.776 0.702 0.780 0.779 0.777 0.703 0.780

MEI 0.766 0.774 0.709 0.780 0.760 0.779 0.706 0.780

MAR

No imputation 0.775 0.768 0.699 0.780 0.775 0.776 0.701 0.779
CVBkNNI 0.776 0.786 0.704 0.781 0.786 0.789 0.707 0.780

G3D 0.785 0.779 0.705 0.781 0.777 0.776 0.710 0.781
FWGkNNI 0.765 0.773 0.699 0.779 0.782 0.776 0.706 0.779

ICkNNI 0.786 0.786 0.704 0.780 0.776 0.775 0.710 0.779
DkNNI 0.785 0.778 0.700 0.779 0.773 0.781 0.698 0.779

MEI 0.763 0.773 0.700 0.779 0.758 0.778 0.703 0.779

NI

No imputation 0.776 0.775 0.706 0.779 0.768 0.774 0.694 0.779
CVBkNNI 0.783 0.780 0.711 0.781 0.776 0.788 0.700 0.781

G3D 0.779 0.786 0.704 0.780 0.772 0.777 0.697 0.779
FWGkNNI 0.759 0.775 0.709 0.780 0.768 0.777 0.695 0.780

ICkNNI 0.787 0.784 0.717 0.784 0.776 0.776 0.700 0.779
DkNNI 0.773 0.777 0.708 0.780 0.774 0.775 0.698 0.780

MEI 0.756 0.775 0.703 0.780 0.754 0.772 0.693 0.779

53

1The maximum CAs in each condition are in green; the minimum CAs are in red; while the 2nd largest CAs are
marked in blue.

6. Threats to validity

The threats to validity are generally distributed into four groups: conclusion, internal, construct,

and external validity. The conclusion validity is related to the ability to draw significant correct

conclusions; regarding which, we carefully applied the statistical tests, showing statistical

significance for the obtained results. Moreover, we have used two relatively large datasets (camel

and PC5) to mitigate the threats related to the number of observations composing the datasets.

The construct validity refers to the agreement between a theoretical concept and a specific

measure. As to the evaluation of different K nearest neighbor (KNN) imputation approaches, we

made use of one balanced performance measure and 8 public software quality datasets. The data

repository used in the work has been previously used in numerous empirical quality studies.

As the study concentrates on a structural investigation of a novel KNN imputation approach, the

internal validity on experiment design is presented in one aspect: CVBkNNI is a computation-

consuming way to improve imputation accuracy. However, if the imputation accuracy is the top

priority, the value of CVBkNNI is then obvious. The proposal of G3D stands as an alternative to

mitigate this issue as well.

The threats to external validity are controlled well in this study. Eight object-oriented and

procedural software quality datasets are examined in the study. Meanwhile, 3 missingness

mechanisms (MMs), 2 missingness patterns (MPs), and 4 missingness ratios (MRs) are also

considered during missingness simulation for testing the performance of the proposed imputation

approach under various conditions. One issue is that we did not consider adopting more different

kinds of imputation approaches, for example, the Bayes multiple imputation (BMI), as the

competitor to CVBkNNI. This study only focuses on the improvement and comparison of KNN

related imputation approaches. In the future work, more comparison studies shall be explored.

54

7. Conclusions and future work

This empirical study proposes a novel K Nearest Neighbor (KNN) based imputation approach:

called CVBkNNI, and its improved performance has been validated in the software quality

prediction domain. CVBkNNI is different to other approaches since it does not have

predetermined fixed estimator, and instead it adaptively selects the optimal estimator for each

missing value in the dataset. The estimator of CVBkNNI includes a pool of three distance

measures, multiple choices of K values together with five adaptation methods. Our result shows

that CVBkNNI outperforms other competing approaches in overall imputation accuracy. From

the returned estimator of the CVBkNNI, the optimal parameter combination of KNN imputation

for software quality dataset is then correctly determined, which is named as G3D. Further

evaluations on the CVBkNNI have been performed, specifically on incomplete datasets and

compared several other competing approaches.

In particular, 4 findings are noteworthy from the study:

(1) Our proposed cross-validation based KNN imputation could further improve the imputation

performance on software quality datasets, in which calculating the feature relevance during

measuring the pair distance is very necessary.

(2) The impact of missingness mechanisms and patterns on imputation performance exists. Non-

ignorable missingness mechanism could significantly impact the imputation accuracy. The

impact of missingness pattern is related to the dataset.

(3) The performance of fault-proneness classification is acceptable when CVBkNNI was used as

the preprocessing method.

(4) For KNN imputation using K = 3 and Dudani adaptation, together with the distance measure

based on mutual information weighted grey relational analysis, is considered ideal and

recommended for incomplete software quality datasets.

CVBkNNI could be easily applicable to other domains in software engineering, which are

subject to further investigations in our future work. Theoretically it would further improve

imputation accuracy when dealing with incomplete datasets, but also helps to find the optimal

KNN imputation algorithm under different circumstance. Besides, determining more meaningful

parameter configurations or components to further improve the accuracy of CVBkNNI is also

being investigated.

55

Acknowledgement

The authors would like to thank the anonymous reviewers for their invaluable feedback. This

work is supported in part by the General Research Fund of the Research Grants Council of Hong

Kong (No. 125113, 11200015 and 11214116), and the research funds of City University of Hong

Kong (No. 7004683 and 7004474).

References

Arcuri, A., Briand, L., 2014. A hitchhiker's guide to statistical tests for assessing randomized
algorithms in software engineering. Journal of Software: Testing, Verification and Reliability 24,
219-250.
Azzeh, M., 2012. A replicated assessment and comparison of adaptation techniques for analogy-
based effort estimation. Empirical Softw Eng 17, 90-127.
Bansiya, J., Davis, C.G., 2002. A hierarchical model for object-oriented design quality
assessment. IEEE Trans Softw Eng 28, 4-17.
Brás, L.P., Menezes, J.C., 2007. Improving cluster-based missing value estimation of DNA
microarray data. Biomol Eng 24, 273-282.
Cartwright, M., Shepperd, M.J., Song, Q., 2003. Dealing with missing software project data, 9th
International Software Metrics Symposium (METRIC'03) Sydney, Australia, pp. 154-165.
Caruana, R., 2001. A non-parametric EM-style algorithm for imputing missing values, the 4th
International Conference of Artificial Intelligence and Statistics (AISTATS'01), Key West,
Florida, USA.
Chen, J., Shao, J., 2000. Nearest neighbor imputation for survey data. Journal of Official
Statistics 16, 113-132.
Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design. IEEE Trans
Softw Eng 20, 476-493.
Conversano, C., Siciliano, R., 2009. Incremental tree-based missing data imputation with
lexicographic ordering. J Classif 26, 361-379.
Deb, R., Liew, A.W.-C., 2016. Missing value imputation for the analysis of incomplete traffic
accident data. Inform Sciences 339, 274-289.
Duda, R.O., Hart, P.E., 1973. Pattern classification and scene analysis. Wiley New York.
Dudani, S.A., 1976. The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man and Cybernetics, 325-327.
Finley, A.O., McRoberts, R.E., Ek, A.R., 2006. Applying an efficient k-nearest neighbor search
to forest attribute imputation. Forest Sci 52, 130-135.
Foss, T., Stensrud, E., Kitchenham, B., Myrtveit, I., 2003. A simulation study of the model
evaluation criterion MMRE. IEEE Trans Softw Eng 29, 985-995.
García-Laencina, P.J., Sancho-Gómez, J.-L., Figueiras-Vidal, A.R., Verleysen, M., 2009. K
nearest neighbours with mutual information for simultaneous classification and missing data
imputation. Neurocomputing 72, 1483-1493.
Halstead, M.H., 1977. Elements of software science (Operating and programming systems
series). Elsevier Science Inc.
Henderson-Sellers, B., 1996. Object-oriented metrics: Measures of complexity. Prentice-Hall,
Inc.

56

Hron, K., Templ, M., Filzmoser, P., 2010. Imputation of missing values for compositional data
using classical and robust methods. Comput Stat Data An 54, 3095-3107.
Huang, C.-C., Lee, H.-M., 2004. A grey-based nearest neighbor approach for missing attribute
value prediction. Appl Intell 20, 239-252.
Huang, J., Li, Y.F., Xie, M., 2015. An empirical analysis of data preprocessing for machine
learning-based software cost estimation. Inf Softw Technol 67, 108-127.
Jing, X.-Y., Qi, F., Wu, F., Xu, B., 2016. Missing data imputation based on low-rank recovery
and semi-supervised regression for software effort estimation, the 38th International Conference
on Software Engineering (ICSE'16). ACM, Austin, TX, USA, pp. 607-618.
Jönsson, P., Wohlin, C., 2006. Benchmarking k-nearest neighbour imputation with homogeneous
Likert data. Empirical Softw Eng 11, 463-489.
Jureczko, M., Madeyski, L., 2010. Towards identifying software project clusters with regard to
defect prediction, the 6th International Conference on Predictive Models in Software
Engineering (PROMISE'10). ACM, Timisoara, Romania, p. 9.
Khatibi Bardsiri, V., Jawawi, D.N.A., Hashim, S.Z.M., Khatibi, E., 2013. A PSO-based model to
increase the accuracy of software development effort estimation. Softw Qual J 21, 501-526.
Khoshgoftaar, T.M., Van Hulse, J., 2008. Imputation techniques for multivariate missingness in
software measurement data. Softw Qual J 16, 563-600.
Kocaguneli, E., Member, S., Menzies, T., 2012a. Exploiting the essential assumptions of
analogy-based effort estimation. IEEE Trans Softw Eng 38, 425-439.
Kocaguneli, E., Member, S., Menzies, T., 2012b. On the value of ensemble effort estimation.
IEEE Trans Softw Eng 38, 1403-1416.
Kocaguneli, E., Menzies, T., Keung, J., Cok, D., Madachy, R., 2013a. Active learning and effort
estimation: Finding the essential content of software effort estimation data. IEEE Trans Softw
Eng 39, 1040-1053.
Kocaguneli, E., Menzies, T., Keung, J.W., 2013b. Kernel methods for software effort estimation:
Effects of different kernel functions and bandwidths on estimation accuracy. Empirical Softw
Eng 18, 1-24.
Kullback, S., 1997. Information theory and statistics. Courier Corporation.
Lall, U., Sharma, A., 1996. A nearest neighbor bootstrap for resampling hydrologic time series.
Water Resour Res 32, 679-693.
Li, D., Deogun, J., Spaulding, W., Shuart, B., 2004. Towards missing data imputation: A study
of fuzzy k-means clustering method, the 4th International Conference of Rough Sets and Current
Trends in Computing (RSCTC'04), Uppsala, Sweden, pp. 573-579.
Li, J., Al-Emran, A., Ruhe, G., 2007. Impact analysis of missing values on the prediction
accuracy of analogy-based software effort estimation method AQUA, the 1st International
Symposium on Empirical Software Engineering and Measurement (ESEM'07), Madrid, Spain,
pp. 126-135.
Li, Y.F., Xie, M., Goh, T.N., 2009a. A study of mutual information based feature selection for
case based reasoning in software cost estimation. Expert Syst Appl 36, 5921-5931.
Li, Y.F., Xie, M., Goh, T.N., 2009b. A study of project selection and feature weighting for
analogy based software cost estimation. J Syst Softw 82, 241-252.
Little, R.J., Rubin, D.B., 2002. Statistical analysis with missing data. John Wiley & Sons, Inc.
Ma, X., Zhong, Q., 2016. Missing value imputation method for disaster decision-making using K
nearest neighbor. J Appl Stat 43, 767-781.

57

Magnussen, S., Tomppo, E., 2014. The k-nearest neighbor technique with local linear regression.
Scand J Forest Res 29, 120-131.
Maier, M., Hein, M., von Luxburg, U., 2009. Optimal construction of k-nearest-neighbor graphs
for identifying noisy clusters. Theor Comput Sci 410, 1749-1764.
Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., Webster, S., 2000.
Investigation of machine learning based prediction systems. J Syst Softw 53, 23-29.
Martin, R., 1994. OO design quality metrics - An analysis of dependencies, the 9th Annual
Conference on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA'94), Portland, Oregon, USA, pp. 151-170.
McCabe, T.J., 1976. A complexity measure. IEEE Trans Softw Eng 2, 308-320.
Mendes, E., Watson, I., Triggs, C., Mosley, N., Counsell, S., 2003. A comparative study of cost
estimation models for web hypermedia applications. Empirical Softw Eng 8, 163-196.
Menzies, T., Krishna, R., Pryor, D., 2016. The PROMISE Repository of empirical software
engineering data. North Carolina State University, Department of Computer Science,
http://openscience.us/repo.
Minku, L.L., Yao, X., 2011. A principled evaluation of ensembles of learning machines for
software effort estimation, the 7th International Conference on Predictive Models in Software
Engineering (PROMISE'11), Banff, Canada, pp. 1-10.
Mittas, N., Angelis, L., 2010. LSEbA: least squares regression and estimation by analogy in a
semi-parametric model for software cost estimation. Empirical Softw Eng 15, 523-555.
Mockus, A., 2008. Missing data in software engineering, Guide to advanced empirical software
engineering. Springer, pp. 185-200.
Myrtveit, I., Stensrud, E., Olsson, U.H., 2001. Analyzing data sets with missing data: An
empirical evaluation of imputation methods and likelihood-based methods. IEEE Trans Softw
Eng 27, 999-1013.
Pan, R., Yang, T., Cao, J., Lu, K., Zhang, Z., 2015. Missing data imputation by K nearest
neighbours based on grey relational structure and mutual information. Appl Intell, 1-19.
Peng, H., Long, F., Ding, C., 2005. Feature selection based on mutual information: Criteria of
max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 27,
1226-1238.
Poloczek, J., Treiber, N.A., Kramer, O., 2014. KNN regression as geo-imputation method for
spatio-temporal wind data, International Joint Conference SOCO’14-CISIS’14-ICEUTE’14.
Springer, pp. 185-193.
Rey-del-Castillo, P., Cardeñosa, J., 2012. Fuzzy min–max neural networks for categorical data:
application to missing data imputation. Neural Computing and Applications 21, 1349-1362.
Sahri, Z., Yusof, R., Watada, J., 2014. FINNIM: Iterative imputation of missing values in
dissolved gas analysis dataset. IEEE Transactions on Industrial Informatics 10, 2093-2102.
Sarro, F., Petrozziello, A., Harman, M., 2016. Multi-objective software effort estimation, the
38th International Conference on Software Engineering (ICSE'16). ACM, Austin, TX, USA, pp.
619-630.
Sentas, P., Angelis, L., 2006. Categorical missing data imputation for software cost estimation by
multinomial logistic regression. J Syst Softw 79, 404-414.
Shepperd, M., Schofield, C., 1997. Estimating software project effort using analogies. IEEE
Trans Softw Eng 23, 736-743.
Shepperd, M., Song, Q., Sun, Z., Mair, C., 2013. Data quality: Some comments on the nasa
software defect datasets. IEEE Trans Softw Eng 39, 1208-1215.

58

Silva-Ramírez, E.-L., Pino-Mejías, R., López-Coello, M., 2015. Single imputation with
multilayer perceptron and multiple imputation combining multilayer perceptron and k-nearest
neighbours for monotone patterns. Applied Soft Computing 29, 65-74.
Song, Q., Shepperd, M., 2007. A new imputation method for small software project data sets. J
Syst Softw 80, 51-62.
Song, Q., Shepperd, M., Cartwright, M., 2005. A short note on safest default missingness
mechanism assumptions. Empirical Softw Eng 10, 235-243.
Song, Q., Shepperd, M., Chen, X., Liu, J., 2008. Can k-NN imputation improve the performance
of C4. 5 with small software project data sets? A comparative evaluation. J Syst Softw 81, 2361-
2370.
Stekhoven, D.J., Bühlmann, P., 2012. MissForest - Non-parametric missing value imputation for
mixed-type data. Bioinformatics 28, 112-118.
Strike, K., Emam, K.E., Madhavji, N., 2001. Software cost estimation with incomplete data.
IEEE Trans Softw Eng 27, 890-908.
Suyundikov, A., Stevens, J.R., Corcoran, C., Herrick, J., Wolff, R.K., Slattery, M.L., 2015.
Accounting for dependence induced by weighted KNN imputation in paired samples, motivated
by a colorectal cancer study. PLoS ONE 10, e0119876.
Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D.,
Altman, R.B., 2001. Missing value estimation methods for DNA microarrays. Bioinformatics 17,
520-525.
Twala, B., Cartwright, M., Shepperd, M., 2005. Comparison of various methods for handling
incomplete data in software engineering databases, the 2005 International Symposium on
Empirical Software Engineering (ISESE'05), Noosa Heads, Australia, pp. 105-114.
Valdiviezo, H.C., Van Aelst, S., 2015. Tree-based prediction on incomplete data using
imputation or surrogate decisions. Inform Sciences 311, 163-181.
Van Buuren, S., 2012. Flexible imputation of missing data. CRC press.
Van Hulse, J., Khoshgoftaar, T.M., 2014. Incomplete-case nearest neighbor imputation in
software measurement data. Inform Sciences 259, 596-610.
Walkerden, F., Jeffery, R., 1999. Empirical study of analogy-based software effort estimation.
Empirical Softw Eng 4, 135-158.
Zhang, S., 2011. Shell-neighbor method and its application in missing data imputation. Appl
Intell 35, 123-133.
Zhang, S., 2012. Nearest neighbor selection for iteratively kNN imputation. J Syst Softw 85,
2541-2552.
Zhang, S., Jin, Z., Zhu, X., 2011. Missing data imputation by utilizing information within
incomplete instances. J Syst Softw 84, 452-459.
Zhang, S., Li, X., Zong, M., Zhu, X., Cheng, D., 2017. Learning <i>k</i> for kNN
Classification. ACM Trans. Intell. Syst. Technol. 8, 1-19.

