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Abstract: Being able to predict software quality is essential, but also it pose significant 

challenges in software engineering. Historical software project datasets are often being utilized 

together with various machine learning algorithms for fault-proneness classification. 

Unfortunately, the missing values in datasets have negative impacts on the estimation accuracy 

and therefore, could lead to inconsistent results. As a method handling missing data, K nearest 

neighbor (KNN) imputation gradually gains acceptance in empirical studies by its exemplary 

performance and simplicity. To date, researchers still call for optimized parameter setting for 

KNN imputation to further improve its performance. In the work, we develop a novel 

incomplete-instance based KNN imputation technique, which utilizes a cross-validation scheme 

to optimize the parameters for each missing value. An experimental assessment is conducted on 

eight quality datasets under various missingness scenarios. The study also compared the 

proposed imputation approach with mean imputation and other three KNN imputation 

approaches. The results show that our proposed approach is superior to others in general. The 

relatively optimal fixed parameter settings for KNN imputation for software quality data is also 



2 
 

determined. It is observed that the classification accuracy is improved or at least maintained by 

using our approach for missing data imputation. 

Keywords: empirical software engineering estimation, KNN, imputation, cross-validation, 

missing data 
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BMI Bayes Multiple Imputation 
CA Classification Accuracy 
CCkNNI Complete-case based KNN Imputation 
CK Chidamber and Kemerer object-oriented metric 
CVBkNNI Cross-validation based KNN Imputation 
DkNNI Default KNN Imputation 
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GRC Grey Relational Coefficient 
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IDWM Inverse Distance Weighted Mean 
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KNN K Nearest Neighbor 
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MAR Missing At Random 
MCAR Missing Completely At Random 
MDT Missing Data Treatment 
MEI Mean Imputation 
MI Mutual Information 
MM Missingness Mechanism 
MP Missingness Pattern 
MR Missingness Ratio 
NI Non-ignorable 
PROMISE PRedictOr Models In Software Engineering  
RMSE Root Mean Square Error 
RQ Research Question 
SEE Software Engineering Estimation 
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1. Introduction 

In the domain of empirical software engineering and its related software quality estimation, 

researchers have devoted to predicting important quality-related variables, such as the fault count 

or if the fault-proneness exists, etc. Most empirical software engineering estimation builds 

statistical or machine learning models on historical data (Sentas and Angelis, 2006). Meanwhile, 

the software community has accumulated a myriad of software project quality related data for 

academic research, such as the PROMISE data repositories. Unfortunately, due to scarcity of 

software engineering data (Myrtveit et al., 2001), the significant occurrence of missing values in 

software datasets or known as “missingness” gradually becomes an unavoidable issue 

(Khoshgoftaar and Van Hulse, 2008). In addition, many properties in software engineering 

datasets are often indirectly measured, which leads to more frequent and complex missingness 

pattern to occur (Mockus, 2008).  

Many estimation models cannot directly handle the missing data values; therefore, it leaves the 

data-preprocessing step very necessary for modern estimation process in software engineering. 

For example, a well-known technique called listwise deletion, had been widely adopted for 

handling missing values during data-preprocessing, but it potentially impairs the completeness of 

data and introduces undesirable biases in estimation (Huang et al., 2015). By contrast, missing 

data imputation methods replace missing variables by artificial estimates (Song et al., 2008); at 

the same time maintain the data completeness. Nowadays, more complex imputation approaches, 

such as random forest (Stekhoven and Bühlmann, 2012), neural network (Rey-del-Castillo and 

Cardeñosa, 2012), decision trees (Deb and Liew, 2016), and low-rank matrix factorization (Jing 

et al., 2016), have been proposed to handle the missingness issue in the applications of 

bioinformatics, education, ecology, energy, traffic and software engineering, etc.  

When compared to mean imputation (MEI), novel approaches are still lacking popularity in 

software engineering estimation (SEE) (Khatibi Bardsiri et al., 2013; Kocaguneli et al., 2013a), 

one of which is the K nearest neighbor (KNN) imputation. The main advantage of KNN 

imputation is that it is simple and free of parametric assumptions required otherwise. It could 

adapt to distinct types of variables or features known to be important in estimation. KNN 

imputation had been specially applied in real-world application as a data-preprocessing step in 

governmental or national surveys, such as reported in Chen and Shao (2000). Its performance has 
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also been widely analyzed in the domain of SEE (Strike et al., 2001; Twala et al., 2005). Since 

most of the empirical software engineering datasets are relatively small or medium-sized, the 

newer robust approaches, like random forest, neural network, and low-rank matrix factorization 

as less than relevant. The cost of applying these sophistical approaches in practice is also 

unpredictable. The majority of the previous SEE studies only applied KNN imputation with fixed 

parameters when dealing with incomplete software measurement data. 

Song and Shepperd (2007) once evaluated a KNN imputation approach with several key features 

classification in small-sized software effort datasets. More recently, Van Hulse and Khoshgoftaar 

(2014) extended the flexibility of KNN imputation for the software quality datasets, using 

incomplete-instance for missing data imputation instead of complete-instance to provide a 

relatively superior performance. Unfortunately, the parameter setting of the former KNN 

imputation approaches was generally predetermined for each imputation, regardless of its 

features or the types of missingness being imputed. While in the specialized KNN imputation 

studies, numerous efforts have been made to improve the imputation performance. The major 

improvement drives from two research directions (Zhang, 2012): 

- Searching for the most similar K nearest neighbors for a given missing value; 

- Final adaptation from the selected neighbors. 

Both two directions are about the parameter setting in KNN estimator, including the distance 

measure, the choice of K, and the adaptation method. The 1st direction is the KNN algorithm 

kernel. Literature review shows that the current rule of searching the neighbors in SEE is mostly 

based on Minkowski distance measure. Some specialized studies of KNN imputation show that 

the grey relational analysis (GRA) based distance, is more appropriate to capture the ‘nearness’ 

(Huang and Lee, 2004). Caruana (2001) has pointed out that the KNN imputation could not 

always be superior with any possible distance measures. The choice of the K is subject to 

controversy recently. The related studies often prepopulate that the K from limited experience 

and empirical studies, other researchers argues the potential choices of K to be , 100N N >  

(Lall and Sharma, 1996). Where N is the sample size of the dataset being investigated. 

The 2nd direction is computation using the selected neighbors. Missing data imputation using 

median/mean is a naive and effective adaptation in some cases. Using rank or distance as weight 
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is also popular in literature (Kocaguneli et al., 2012b). Unfortunately, there is no such a 

guarantee that one of these adaptations results the best option. Therefore, researchers turned to 

build ensembles of multi-adaptation methods to empirically find the best one under certain 

circumstance (Kocaguneli et al., 2012b; Kocaguneli et al., 2013b).  

In this study, we focus and present a novel approach named as cross-validation based KNN 

imputation (CVBkNNI) to conquer the major drawback of existing KNN imputation approaches: 

an inability of adapting the parameter setting to the data. CVBkNNI utilizes a cross-validation 

scheme to search for the optimal parameter setting for estimating each missing value. CVBkNNI 

is also compared with three other KNN imputation approaches in the presence of artificial 

missingness scenarios. This empirical study: 

- Introduce CVBkNNI, a novel approach with an adaptive parameter setting, applicable to 

software quality prediction and modeling. The internal design of CVBkNNI includes both 

imputation ordering and various parameters of KNN imputation estimator. Based on the 

estimators returned from the CVBkNN algorithm, a fixed parameter setting is discovered to 

be recommendable for KNN imputation in software quality datasets. 

- Validate that the missingness scenario could be a critical factor that significantly impacts the 

imputation performance under certain circumstance. A thorough statistical analysis is 

presented to compare with the different KNN imputation approaches under different 

missingness scenarios. 

In the remaining parts of the work, background and review are presented in Section 2. Section 3 

introduces the CVBkNNI, the novel missing data imputation technique proposed in this study. 

The experimental design is described in Section 4. Section 5 further presents the experimental 

results. Section 6 discusses the known threats to validity in this empirical study. At last, the work 

is concluded with future work in Section 7. 

 

2. Background 

In this section, we define the terminology and provide a simple review. This section covers three 

aspects: an introduction to the missingness mechanisms and patterns, the review of recent 
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specialized K nearest neighbor (KNN) imputation studies and the missing data treatments 

(MDTs) research in software engineering estimation (SEE). 

The missingness mechanisms (MM) and patterns (MP) explain how the missingness is 

summarized and classified in literature. Selecting the proper approach to deal with missing 

values is related to the assumption of the mechanism and pattern (Song et al., 2005). The 

introduction of MM, MP and ratio helps build different missingness scenarios. The performance 

of different MDTs could be further validated under these scenarios then. In the section of 

experiment design, the incomplete datasets are synthetized according to the various missingness 

scenarios.  

The KNN imputation, free of data distribution assumption, is an important single hot-deck 

imputation technique. Popular single imputation approaches also contain mean imputation (MEI), 

median imputation and the ones based on stochastic regression methods, etc. Single imputation 

cannot tolerate the variability of characterization of the imputed values. Concisely, it is unable to 

provide valid confidence intervals of the imputed values. Therefore, its simultaneous accuracy as 

well as robustness become a concern but difficult to address adequately. As an alternative of 

single data imputation, multiple imputation generates many different imputed datasets and then 

computes the final estimation result of the complete dataset by applying appropriate adaptation 

strategy, which is considered more complex in its application. Novel techniques, for example, 

iterative imputation, gain increasing popularity in recent years, and they improve the estimation 

accuracy by iteratively searching for the optimal estimates until convergence.   

As the specialized KNN imputation research has been evolved in years, yet it has been applied in 

contemporary SEE studies. Huang et al. (2015) has found that MEI monopolizes the imputation 

approaches in recent software effort estimation studies. A review of the other MDTs in SEE 

studies is presented at last. 

 

2.1 Missingness mechanisms and patterns 

Missingness mechanisms (MMs) and patterns (MP) make assumptions about the distribution and 

types of missing values (Song et al., 2008). The judgment of MM helps assess what imputation 

approach may be adopted (Song et al., 2005). The MM concerns if the missingness is related to 
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the key variable or not. It is critical as it determines how difficult handling missing values is 

(Song and Shepperd, 2007). There are three mechanisms (Little and Rubin, 2002): missing 

completely at random (MCAR), missing at random (MAR) and non-ignorable (NI). To present 

the MM with formal notations, assume the real-valued software data we intend to collect as 

{ },  1iX x i N= ≤ ≤ , and X  has observed and missing parts. Consider the missing parts in X  

have the values that are unobserved, we use the missing data indicator { }iM m= , where 

0 if  is unobserved
1 if  is observed

i
i

i

x
m

x
⎧

= ⎨
⎩

, to denote the observation outcome. The missingness mechanism is 

characterized by the conditional probability distribution of M given X, i.e. ( )| ,p M X ψ , where 

ψ  refers to the unknown parameters.  

MCAR means there is no difference between the distribution of observed and missing values 

(Song et al., 2008). In other words, missingness does not depend on either observed values or 

missing values of X , thus ( ) ( )| , ,p M X p Mψ ψ= .  

MAR means that missingness only depends on the observed values of other variable(s), not the 

missing ones. It does not fulfil the condition of MCAR (it must depend on at least one variable). 

Assuming that m  is a potential value (vector) for M , then { }1,0m Ν
∀ ∈  and ,x y Ν∀ ∈° with 

( ) ( ) ( ), :H x y m p M m x p M m y= = = = , where ( ),H x y  denotes the Hamming difference 

vector of variables x  and y , that has 0 in the positions where x  and y  differ and 1 in the 

positions where they coincide. 

NI represents the situation that neither MCAR nor MAR holds (Valdiviezo and Van Aelst, 2015). 

Missingness only depends on the unobserved values, i.e. their real values. Even accounting for all 

the available observed information, the reason for observations being missing still depends on the 

unseen missingness.  

Generally, there are two types of multivariate missingness patterns (MPs): monotone and general 

(non-monotone) (Song and Shepperd, 2007; Van Buuren, 2012). An MP is said to be monotone if 

an instance ix , could be ordered such that if ,i px  is missing then all values in ix  with p pʹ >  are 

missing simultaneously. It could occur in longitudinal studies. In software quality datasets, if a 
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major basic measure is missing, all the following derived ones will not exist. In the general 

pattern, missing data can occur anywhere and no special structure appears regardless of how the 

variables are arranged. The type of MP may affect the selection of MDTs. Strike et al. (2001) 

found the MDTs tend to perform worse with monotone pattern. This issue will be discussed in the 

experiment analysis. 

Some imputation approaches cannot handle specific MMs or MPs appropriately (Song and 

Shepperd, 2007). MCAR could be tested by Little and Rubin (2002)’s multivariate test under 

certain strict conditions. Unfortunately, it is hardly applicable to validate the exact MM and MP 

before adopting an MDT (Song et al., 2005). Identifying MM is difficult since the prior 

distribution is in general unknown. Hardly it is possible to guarantee that none of MCAR, NI or 

MAR could exist in software quality data. Generally, the MM in real datasets is often to be either 

NI or MAR, while the MP often consists both general and monotone, but not always tenable 

(Song et al., 2005; Song et al., 2008; Strike et al., 2001). Song et al. (2008) illustrated how NI and 

MAR may happen in software practice. Suppose under the politic pressure, software engineers 

prefer not to report many high fault rates and then intend to make the values missing. While some 

software metrics are too difficult and time-consuming to collect, which, therefore, may cause the 

values missing as well. They explain how NI could happen when missingness depends on its real 

values. MAR could occur if only the small-sized projects were less likely to report fault rates than 

the large well-organized projects. It exemplifies MAR that missingness depends on the non-

missing project feature: size. Therefore, this study simulates the MPs (monotone and general) and 

MMs (MCAR, MAR, and NI) simultaneously to conduct the experiments. 

 

2.2 KNN imputation improvement 

In this section, 12 former studies about specific improvements on KNN imputation are 

chronologically selected and summarized in Table 1 in terms of the imputation estimator design 

and the experimental data simulation (missingness injection) approaches. Note that this is not an 

exhaustive search on recent studies. We use the keywords combination:  

(knn OR k-nn OR knni OR “nearest neighbo*”) AND (imput*) AND (missing) 

to search the related recent papers. Only the qualified works that concentrates on kNN imputation 

improvement for numeric variables are kept. The studies in Table 1 are simply summarized 
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according to the KNN imputation technique design and experiment design. In specific, García-

Laencina et al. (2009) proposed a feature weighted distance measure based on mutual information 

(MI) in KNN imputation. Their experiment validated that both missing data imputation and 

classification task were improved by their technique. Hron et al. (2010) adopted the Aitchison 

distance in KNN imputation and found that it is not robust against outliers. Zhang et al. (2011) 

proposed a nonparametric iterative imputation algorithm (NIIA) to impute missing value and 

found it outperforms the other methods in general. Zhang (2011) proposed shell neighbors 

imputation (SNI) which fills in an incomplete instance in a given dataset by only using its left and 

right nearest neighbors with respect to each other. SNI was found to be better than a traditional 

KNN imputation. Zhang (2012) changed the distance measure to grey distance and found its 

advantage in capturing the proximity relationship. Magnussen and Tomppo (2014) calibrated 

KNN imputation with local linear regression in the context of forest science. The new technique 

presented improved correlation between imputation and its real value. Sahri et al. (2014) proposed 

FINNIM in the context of dissolved gas analysis, in which they clearly addressed two important 

components of imputation: ordering and estimator. Silva-Ramírez et al. (2015) combined 

multiplayer perceptron and KNN algorithms in missing data imputation and conducted their 

experiment on simulated datasets with different missingness patterns. Ma and Zhong (2016) 

proposed a correlated degree model to extract K nearest neighbors for imputation in the context of 

natural disaster science. Zhang et al. (2017) further incorporated correlation matrix in KNN 

imputation design and found its efficiency compared with the traditional KNN imputation. 

Regarding to imputation ordering, one important component in MDT, 10 out of the 12 studies did 

not consider using it in KNN imputation. As for the KNN parameter: distance measure, besides 

the classic Euclidean distance and Manhattan distance measures, 4 out of 12 studies preferred the 

grey relational analysis (GRA) based similarity measure to capture the ‘nearness’ of neighbors. In 

terms of the choice of K, half of the studies predefined the value of K and the other half preferred 

to use overall available neighbors for adaptation. As for the adaptation methods, instead of using 

the mean, various methods are adopted, such as regression-based, cluster-based and Dudani 

weighted mean, etc. Meanwhile, less than half of the studies considered the issue of feature 

relevance in searching of the nearest neighbors. 

As for the experiment design, the experiment data and data simulation methods are quite 

consistent among the studies. The UCI data, a famous machine learning data repository, has been 
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experimented on by half of them. The rest datasets belong to diverse professional domains, such 

as biology, energy, and software. Only Song and Shepperd (2007) and Van Hulse and 

Khoshgoftaar (2014) evaluate their new proposed KNN imputation approaches in the domain of 

empirical SEE. The missingness injection criteria for data simulation majorly consider the 

missingness mechanism (MM) and ratio (MR), and only Song and Shepperd (2007)’s research 

took into account of the missingness pattern (MP). However, only Pan et al. (2015) and Song and 

Shepperd (2007) empirically analyzed the impact of missingness injection on imputation 

performance.  

To sum, for current KNN based missing data imputation research, it is common to see the overall 

methodology design is fragmented. Researchers turn to prefer different experiment evaluation 

criteria in studies, which, therefore, causes the corresponding technical contribution hardly 

justified. As for the improvement on KNN imputation, none of the studies systematically analyze 

the impacts imputation ordering in KNN imputation performance. There is still no common 

solution to select the optimized KNN parameters for imputation. Although researchers prefer to 

use various missingness scenarios to test their techniques, the significance of the impacts of the 

missingness scenarios are often neglected. 

Two of the recent imputation approaches in Table 1, FWGkNN imputation (FWGkNNI) and 

ICkNNI, that could be repeated according to corresponding experiment design, are utilized in our 

experimental design as competitors to CVBkNNI. Pan et al. (2015) proposed a feature weighted 

grey based KNN iterative imputation (FWGkNNI) approach, in which they combined feature 

relevance and grey relational analysis (GRA) based distance measure in the estimator. MEI is 

used to have a preliminary estimate of the missing values. The nearest neighbors are extracted 

from the dataset which contains all the available instances, except the one that is to be imputed. 

The data is updated after each imputation iteration, and the iteration repeats until all the missing 

values are imputed. The capacity of FWGkNNI is improved compared with the 4 other 

competitors used in their study, including FkMI (Li et al., 2004), IkNNI (Brás and Menezes, 

2007), GBNN (Huang and Lee, 2004) and GkNN (Zhang, 2012). Missing data injection with 

various MMs is also considered in their data simulation. 

Van Hulse and Khoshgoftaar (2014) proposed an incomplete-case (instance) based KNN 

imputation (ICkNNI) in the context of software quality data, and raised the issue of missing data 
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in empirical SEE research once again. Instead of using all available complete instances, ICkNNI 

searches the nearest neighbor of each instance from the incomplete data. Their results showed that 

the complete-case based KNN imputation (CCkNNI) is far less superior than the imputation 

approach based on both incomplete and complete instances, i.e. the ICkNNI. The parameters of 

ICkNNI is predominated as well: Euclidean distance, K = 5, with mean adaptation. This paper did 

not consider comparing the ICkNNI with more imputation approaches, even the MEI. 

 

Table 1 
Major improvements of KNN imputation in selected studies 

Imputation approach and the 
reference 

Imputation 
ordering 

Imputation approach Experiment data and the simulation The 3 parameters in KNN estimator Feature 
relevance Distance 

measure K Adaptation Data Data simulation 

CM-kNN (Zhang et al., 
2017) N Euclidean Various Mean N/A UCI and 

Libsvm N/A 

Novel KNN (Ma and 
Zhong, 2016) N GRA By distance 

threshold IDWM N/A A drought case MCAR, NI, MAR 

FWGkNN (Pan et al., 2015) Y GRA* All possible 
neighbors 

Dudani-
weighted 

mean 

Mutual 
information 5 UCI datasets 

MCAR, NI, MAR 
and missingness 

ratio 
MIMLP (Silva-Ramírez et 

al., 2015) N A similarity 
function 

All possible 
neighbors Nearest N/A 18 datasets MCAR, NI, MAR 

ICkNNI (Van Hulse and 
Khoshgoftaar, 2014) N Euclidean 5 Mean N/A 4 Software 

quality datasets 

MCAR, NI, MAR 
and missingness 

ratio 

FINNIM (Sahri et al., 2014) Y Manhattan 1 ~ 10 Mean Fisher 
score 3 DGA datasets N/A 

KNN with local linear 
regression (Magnussen and 

Tomppo, 2014) 
N Euclidean All possible 

neighbors Regression N/A 

3 artificial 
datasets and 2 

inventory 
datasets 

Multiple sampling 

GkNN (Zhang, 2012) N GRA N  
Mean, 
mode N/A 3 UCI datasets MAR 

NIIA (Zhang et al., 2011) N GRA All possible 
neighbors 

Mean, 
mode 

Mutual 
information 3 UCI datasets Missingness ratio 

SNI (Zhang, 2011) N Euclidean All possible 
neighbors 

Cluster 
mean N/A 6 UCI datasets Missingness ratio 

Iterative KNN (Hron et al., 
2010) N Euclidean Unknown Geometric 

mean N/A Simulated data Outlier ratio 

MI-based KNN (García-
Laencina et al., 2009) N Euclidean 2, 5 

Dudani-
weighted 

mean 

Mutual 
information 5 UCI datasets Missingness ratio 

*GRA: grey relational analysis, which could be used to measure distance.  

 

2.3 Studies of missing data treatment in software engineering estimation context 

Missing data treatment (MDT) has been mostly discussed in the data-driven studies of social 

science, biology, psychology, transportation, and behavioral science (Poloczek et al., 2014; Sahri 

et al., 2014; Suyundikov et al., 2015). MDT is considered as an evolving area in software 

engineering estimation (SEE) research for less than 15 years. Less attention has been focused on 
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MDT methods themselves. In a more recent study, Huang et al. (2015) found that only some of 

the former software effort estimation studies have considered the significance of the MDTs, of 

which only Minku and Yao (2011) used KNN imputation in data-reprocessing during the 

estimation modeling. By contrast, Troyanskaya et al. (2001) applied KNN imputation in the 

estimation of missing DNA microarrays, and Finley et al. (2006) even explored its utility in the 

domain of forest science.  

Empirical analysis about missingness characteristics in software quality data are even rare. Song 

et al. (2008) emphasized that for large-sized samples with MCAR mechanism, listwise deletion is 

considered appropriate, but the assumption of MCAR is ideal and less applicable in real software 

datasets. Additionally, if either NI or MAR exists, which is more probable, missing data 

imputation is relatively a better option then. However, imputation needs more thorough 

computational analysis (Myrtveit et al., 2001; Strike et al., 2001), and the prediction error may be 

introduced (Mittas and Angelis, 2010). MEI is efficient and has been involved in SEE as the most 

popular imputation approach; however, it will cause bias to data. MEI simply replaces the missing 

values with the mean of other values in the same feature.  

KNN imputation is then used as an advanced imputation technique in SEE (Minku and Yao, 

2011). Strike et al. (2001) compared and tested various parameter settings in KNN imputation. 

The settings took account of Euclidean and Manhattan distance measures. The MM is simulated 

from 206 real-world software datasets. The results indicated that listwise deletion is reasonable 

but may not provide the best performance. They called for validating more advanced imputation 

techniques on software engineering datasets. Myrtveit et al. (2001) evaluated the closest neighbor 

imputation on a real-world incomplete dataset and showed that compared to listwise deletion, 

KNN imputation is the right option only when the dataset has too much missingness. Cartwright 

et al. (2003) then examined MEI and KNN imputation for two real industrial incomplete datasets 

and found that KNN imputation provides better prediction than MEI does. Twala et al. (2005), on 

the other hand, recommended adopting MEI when massive missingness exists and using KNN 

imputation when sparse missingness exists. Song et al. (2005) argued that the impact of MM on 

imputation performance is not always that obvious. Jönsson and Wohlin (2006) examined that 

KNN imputation performs better in high dimensional incomplete datasets.  
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Li et al. (2007) found that more missingness in data could worsen the accuracy of KNN 

imputation. They appealed to future investigation of the impact of missingness scenarios with 

more distance and adaptation in KNN imputation. Continuously, Song et al. (2008) further 

confirmed that KNN imputation provides high accuracy. Khoshgoftaar and Van Hulse (2008) 

analyzed the effectiveness of various imputation approaches, including MEI, KNN imputation and 

Bayes multiple imputation (BMI), on two real software datasets. Their results indicate BMI is 

better than KNN imputation and MEI. Overall, most researchers did not consider improving KNN 

imputation in the context of SEE. Even the performance of KNN imputation against MEI is not 

consistent. As for the impact of MM or MP on imputation in software measurement datasets, few 

conclusions have ever reached the topic. 

Based on the above discussion, the research questions (RQs) are presented as follows: 

RQ1: Is KNN imputation on software quality data improved by using optimized and adaptive 

parameters? 

RQ2: Does the MM or the MP have an impact on the imputation accuracy? 

RQ3: Is there a fixed parameter setting of KNN imputation recommended for incomplete 

software quality data? 

RQ4: Is the classification performance maintained with the imputed dataset? 

The above RQs are answered in Section 5. 

 

3. Imputation Strategy Design 

This section presents the overall background used for the design of the new imputation strategy, 

CVBkNNI, including imputation ordering, estimator, and the complete algorithm. The 

parameters used in the study will be described in detail in Section 3.2.  

3.1 Imputation ordering 

Imputation ordering assigns missing values different priority levels (Sahri et al., 2014). The 

ordering is potentially influential to the final imputation results since each imputed value shall be 

included in the complete dataset iteratively for estimating the rest missing values. The criterion 

in this study requires the data matrix is arranged based on the missingness ratio (MR) in both 
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instance-row and feature-column in ascending order (Conversano and Siciliano, 2009). The 

missingness ratio (MR) in feature-column of one feature is defined as the number of missingness 

in the corresponding feature divided by the number of overall instances, N. While the MR in 

instance-row of one instance is defined as the number of missingness in the corresponding 

instance divided by the number of overall features, M. The prior ordering sequence of imputation 

in this work is from left to right, i.e. feature by feature (Van Buuren, 2012). Then the instances 

are re-ordered from top to bottom, according to the ascending MR in instance (row). In practice, 

there are small imputation sequence effects of some imputation algorithms. Evidence shows that 

the effects would not significantly matter (Van Buuren, 2012). Imputation ordering would 

maximize the information availability during each missing value imputation. The impact of 

imputation ordering on imputation accuracy shall be presented in the section of the experimental 

analysis. 

 

3.2 Imputation estimator 

The quality of K nearest neighbor (KNN) algorithm is largely dependent on the parameter tuning. 

There are three necessary parameters in KNN imputation estimator: the distance measure, the 

choice of K, and the adaptation method.  

3.2.1 Distance measure 

The distance measure is also referred as dissimilarity measure. Given two different instances of 

numeric measurements ix  and jx , the lower distance between them, the higher similarity the 

represent. The distance measure used in the design of the CVBkNNI includes both the traditional 

Minkowski distance measure and transformed grey relational based measure. 

- Minkowski distance 

The most commonly used distance measures in former empirical software engineering estimation 

(SEE) studies generally belong to Minkowski distance, in which Euclidean distance and 

Manhattan distance gain the most popularity (Azzeh, 2012; Kocaguneli et al., 2012a; Li et al., 

2009b). The Minkowski distance between ix  and jx  could be generalized as: 
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 ( ) ( )
1/

,1 ,1 ,2 ,2 , , , ,,
qq q q q

i j i j i j i p j p i M j Md x x x x x x x x x x= − + − + ⋅⋅⋅+ − + ⋅⋅⋅+ −                 (1) 

where q is the Minkowski coefficient. Euclidean and Manhattan distance are the special cases of 

Minkowski distance when q = 2 or 1, respectively. Consider one historical project (instance) ix  

and one rest project jx  in the same data, the weighted Euclidean/Manhattan distance between 

numeric features is defined as 

( )2euclidean , ,1
( , ) M
i j p i p j pp

d x x w x x
=

= −∑ ,                                            (2) 

                                            manhattan , ,1
( , ) M
i j p i p j pp

d x x w x x
=

= −∑                                                  (3), 

where M denotes the total number of features in the data, and pw  is the normalized weight of p-

th feature. In addition to Minkowski distance, researchers have also proposed other 

similarity/dissimilarity measures, in which grey relational analysis (GRA) based ones obtain a lot 

of attention in the recent literature (see Section 2.3). 

- Grey relational analysis  

Grey relational analysis (GRA) quantifies the impacts of different factors and the relationship 

among data instances. It has two fundamental measures: grey relational coefficient (GRC) and 

grey relational grade (GRG) (Zhang, 2012). Given instance lx  as an example, 

,1 ,2 ,3 ,{ , , ,..., }l l l l l Mx x x x x= , and ix  as a random one of the rest N � 1 instances, the GRC in p-th 

feature between lx  and ix  is defined as follows: 

min max
, ,

, , max

( , )l p i p
l p i p

GRC x x
x x

ρ
ρ

Δ + Δ
=

− + Δ
                                           (4), 

where [ ]0,1ρ∈  ( ρ  is a distinguishing coefficient, normally, set 0.5ρ =  (Huang and Lee, 2004)), 

min [1, ] [1, ] , ,min minj N j l r M l r j rx x∀∈ ∩ ≠ ∀ ∈Δ = − , and max [1, ] [1, ] , ,max maxj N j l r M l r j rx x∀∈ ∩ ≠ ∀ ∈Δ = −  (The 

smallest and largest value in matrix , ,l r j rx x− ). And the weighted GRG is defined as: 

                                           ( ), ,1
( , ) ,M
i j p i p j pp

GRG x x w GRC x x
=

=∑                                              (5). 
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GRG is a similarity measure, which means that if ( )1 2,GRG x x  is larger than ( )1 3,GRG x x , the 

difference between 1x  and 2x  is smaller than that of 1x  and 3x . Clearly, the GRG takes a value 

between 0 and 1. Therefore, the weighted distance between ix  and jx  could be transformed to 

( ) ( ), 1 ,i j i jd x x GRG x x= − (Pan et al., 2015). GRA is advantageous since it measure the 

similarities among observations by analyzing the relational structure. Compared with Minkowski 

distance, the degree of ‘nearness’ that GRA captures will be more stable and consistent as the 

number of features increases. Meanwhile, each feature always has different relevance or weight in 

terms of calculating distance. In order to have the above-mentioned pw  during each missingness 

imputation, mutual information (MI) based feature relevance is considered in the process of 

estimating missing values in this study.  

 

3.2.2 K 

The option of K is highly dependent on the selected dataset, which is also critical to KNN 

imputation. Most researchers only consider K = 1 (Walkerden and Jeffery, 1999), some take into 

account of K = 1, 2, or 3 (Mendes et al., 2003). Li et al. (2009b) and Khatibi Bardsiri et al. (2013) 

recommended locating the best K from 1 to 5. Instead of having the same number of nearest 

neighbors, it is worthy to automatically find the best K (Kocaguneli et al., 2012a). Duda and Hart 

(1973) and Maier et al. (2009) suggested the upper limit of K being the square root of the number 

of instances, which limits the choices of K. In this study, the optimal choice of K is determined by 

10-fold cross-validation. The upper limit of K is rounded to the nearest odd neighbor of N  for 

the ease of computing. The range of K is in 12 1 ,0
2
Nq q q

⎧ ⎫−⎪ ⎪
+ ∈ ≤ ≤⎨ ⎬

⎪ ⎪⎩ ⎭
• , which contains all 

possible odd numbers.  

 

3.2.3 Adaptation technique 

Adaptation is the last procedure to obtain the estimate given the retrieved instances. In this study, 

there are five common ways of adaptations for estimating numerical values: mean, median 
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(Shepperd and Schofield, 1997), inverse distance weighted mean (IDWM) (Mair et al., 2000),  

inverse rank weighted mean (IRWM) (Kocaguneli et al., 2012b; Mendes et al., 2003) and Dudani 

measure (Dudani, 1976; Pan et al., 2015).  

The classic measure of central tendency, mean, treats all analogies equally influential. Median is 

more robust to outliers than mean. IDWM makes closer neighbors have stronger influence, which 

is defined as:  

                                               
( )( )
( )( )

1

1

1/ ,
ˆ

1/ ,

K

k kk
K

kk

d x x y
y

d x x

δ

δ
=

=

ʹ+
ʹ =

ʹ+

∑
∑

                                                   (6), 

where ŷʹ  is the value being estimated, ( ),kd x xʹ  is the weighted distance between xʹ  and kx , the 

k-th nearest instance of xʹ , and δ  is a small constant (δ  is set to 10-6 in the study). Note that xʹ  

is the instance with the missing value, ky  is the corresponding feature value to kx . IRWM, like 

IDWM, allows higher ranking analogies to have more influence than lower ranking ones. ky  is 

ranked based on the corresponding ( ),kd x xʹ  in an ascending order. The top and bottom-ranked 

neighbors have weights of 
1

/ K

k
K k

=∑ and 
1

1/ K

k
k

=∑ , respectively. The final IRWM estimate is 

defined as: 

                                                         
( )1

1

1
ˆ

K
kk

K

k

K k y
y

k
=

=

− +
ʹ =
∑

∑
                                                    (7).  

On the contrary, the Dudani measure is less used in SEE; however, it was proved to be efficiency 

in studies (García-Laencina et al., 2009; Pan et al., 2015). It was proposed to weigh evidence of a 

neighbor in KNN classification problems (Dudani, 1976). The weight of k-th nearest neighbor is 

defined in Eq. (8): 

[ ] ( ) ( )

[ ] ( ) [ ] ( ) [ ] ( ) [ ] ( )

[ ] ( ) [ ] ( )

1,
1, 1,

1, 1,

1, 1,

max , ,
,max , min ,

max , min ,

                            1                                  ,max , min ,

k kk K
k kk K k K

k kk K k Kk

k kk K k K

d x x d x x
d x x d x x

d x x d x x

d x x d x x

ω

∀ ∈

∀ ∈ ∀ ∈
∀ ∈ ∀ ∈

∀ ∈ ∀ ∈

ʹ ʹ⎧ −
ʹ ʹ≠⎪⎪ ʹ ʹ−= ⎨

⎪ ʹ ʹ=⎪⎩

  (8) 

The final Dudani estimate based on the calculated weights is:  
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                                                             1
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ˆ
K

k kk
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y
y

ω

ω
=

=

ʹ =
∑
∑

                                                              (9). 

 

3.3 CVBkNN algorithm 

In this subsection, the detailed algorithm presents how the introduced components work in 

CVBkNNI in software quality data. CVBkNNI uses incomplete-instances for imputation. 

Imputing missing values from incomplete-instances could cause the results have lower bias and 

higher variance. Using feature relevance in distance calculation in KNN imputation could 

balance the bias-variance trade-off. This work adopts mutual information (MI) to calculate the 

feature relevance pw  (Li et al., 2009a). MI calculates the dependency among variables to 

indicate the relevance. 

The entropy, ( )H X , of a random variable X, measures the uncertainty of the variable. If a discrete 

random variable X has χ  alphabet and the pdf is ( ) { }Pr ,p x X x x χ= = ∈ , then the entropy 

( ) ( )( ) log
x

H X p x p x
χ∈

= −∑  (Kullback, 1997; Pan et al., 2015). Given two random variables X 

and Y (Y has ζ  alphabet and y ζ∈ ), their joint entropy H is defined in terms of the joint pdf 

( , )p x y , expressed as Eq. (10): 

                                                ( , ) ( , ) log ( , )
x y

H X Y p x y p x y
χ ζ∈ ∈

= −∑∑                                           (10)

. 

The conditional entropy calculates the resulted uncertainty on Z (Z has γ  alphabet and z γ∈ ) 

given Y, which is: 

                                             ( | ) ( , ) log ( | )
y z

H Z Y p y z p z y
ζ γ∈ ∈

= −∑∑                                           (11), 

where ( | )p z y  is the conditional pdf of Z given Y. Furthermore, the definition of MI I between 

two variables X and Y is defined as:  

                                         
( , )

( ; ) ( , ) log
( ) ( )x y

p x y
I X Y p x y

p x p yχ ζ∈ ∈

=∑∑                                                (12). 
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For continuous random variables, Eq. (12) is transformed into 

                                          
( , )

( ; ) ( , ) log
( ) ( )X Y

p x y
I X Y p x y dxdy

p x p y
= ∫ ∫                                            (13). 

To apply MI in continuous variables, this study adopts the mRMR package (Peng et al., 2005). 

The parameter of pw  is defined as: 

                                                      
( )
( )

target

target1

;

;
p

p P
pp

I f f
w

I f f
=

=
∑

                                                       (14), 

where ,  1,P P M≤ −  is the number of features in Xtrain, pf , therefore, is one feature in Xtrain 

and targetf  is Ytrain.  

Assume that the features and instances in Table 2 are going to be rearranged by imputation 

ordering process. The 7,2x , i.e. 2f  in 7x , is going to be imputed firstly (the MR of 2f  is the 

minimum among 2 3 4,  ,  f f f  5and f , and 7,2x  is the only missing value in 2f ). Then, the 

corresponding sub-data matrix (all available incomplete-instances) for cross-validation is filled 

with light and medium gray in Table 2. The sub-matrix in light gray is corresponding to Xtrain, 

and the column values in medium grey is to Ytrain. The cross-validation scheme searches all the 

possible parameter combinations to find the optimal one with the minimum validation error. 

Using the optimal estimator on the test instance Dtest (filled with dark black in Table 2), together 

with Dtrain, obtains the estimated 7,2x
) . After 7,2x  is imputed, 3,3x  is going to be imputed next (the 

MR of 3f  is the minimum among 3 4,  f f  and 5f , and the MR of 3x  is the minimum between 3x  

and 5x ). This process continues until all the missing values are imputed.  

Table 2 
Sample data-matrix after imputation ordering (N = 7, M = 6)  

ID 1f  2f  3f  4f  5f  Fault-proneness (non-
missingness) 

1x  2 2 4 5 8 0 

2x  4 3 4 8 1 1 

3x  5 3 N/A 8 1 1 

4x  1 1 5 8 N/A 0 
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5x  3 2 N/A N/A 6 0 

6x  4 1 7 N/A N/A 1 

7x  5 N/A 9 N/A N/A 1 
 

The detailed algorithm pseudocode is presented in Algorithm 1, including two parts: ordering 

(Line 1-5) and estimating (Line 6-20): 
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Steps 2-4 fulfil imputation ordering. Steps 7-13 fulfil building specific sub-data trainD  in order to 

cross-validate the optimal KNN parameters for estimating missing value ,i px . Steps 14-16 fulfil 

finding the optimal KNN parameters using 10-fold cross-validation. Note that in the part of 
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estimating, to estimate each missing value, the corresponding sub-data matrix (available-

instances) is built to cross-validate the optimal KNN parameters. Each time the unique sub-data 

matrix is split into Xtrain and Ytrain, in which Ytrain and the target missing value(s) belong to 

the same feature. MI is used to measure the feature relevance between the Xtrain and Ytrain each 

time to automatically obtain each feature weight in Xtrain, i.e. pw  in the distance measure. As 

for the time complexity of the proposed CVBkNNI, the complexity of distance calculation in 

KNN is ( )O MN . The total processing time in terms of sorting the distance is greater than 

( )logO N N  in general. For each KNN estimator combination, the complexity of cross-

validation scheme is ( )O N . Therefore, the time complexity of imputing the whole data is 

( )3 logO MN Nα , where α  is the number of KNN estimator combinations.  

 

4. Experiment design 

4.1 Software quality datasets 

Appropriate datasets should be used to evaluate the imputation techniques. We consider the 

renowned tera-PROMISE Repository in the study (Menzies et al., 2016). 8 software quality 

datasets are selected from the repository, which are ant, arc, camel, ivy, PC5, MC2, KC3 and 

MW1.  

The former 4 datasets, ant, arc, camel and ivy, are parts of latest Apache open source projects 

(Jureczko and Madeyski, 2010). The features of these four datasets are collected through 

Chidamber and Kemerer (CK) object-oriented code metric (Chidamber and Kemerer, 1994), one 

specially designed to analyze object-oriented programming languages. It groups three stages of 

object-oriented design: identification of classes (WMC, DIT, NOC, etc.), semantics of classes 

(WMC, RFC, LCOM, etc.) and relationship between classes (RFC, CBO, etc.). Similarly, all the 

derived measures are excluded from original data; the remaining ones of each dataset are 

presented in Table 4 in detail. 

The last 4 datasets, MC2, PC5, KC3, and MW1, are generated from NASA C-written projects, the 

features of which are calculated by McCabe and Halstead’s procedural metric (Halstead, 1977; 
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McCabe, 1976), which takes into account of program complexity and number of 

operators/operands. Their original data size in terms of instance count varies from around 500 to 

10000. The McCabe metrics have 4 basic elements: cyclomatic complexity, design complexity, 

essential complexity, and Lines of Code (LOC). And the Halstead’s metrics have 3 elements: base 

measure, derived measure and LOC. In this work, all the synthetic or derived features in the 

original datasets are excluded if they could be computed directly from the basic ones. The 

remaining features of data PC5, KC3, MC2, and MW1 are described in Table 3 in details. 

In order to keep the scientific basis of empirical validation and replication of SEE studies, 

necessary data integrity checks require urgent intention (Shepperd et al., 2013). Besides excluding 

the derived measures, the following procedures are also used to select the proper instances: 

1) Exclude duplicate instances.  

2) Exclude the instance with implausible values, such as the values in Halstead and McCabe’s 

metric or CK metric equal to 0 ubiquitously.  

3) Exclude the instances in datasets of PC5, KC3, MC2 and MW1 that violate the referential 

integrity checks (Shepperd et al., 2013) on NASA software quality data. 

In the end, the simple description of all the cleansed datasets are presented in Table 5. 

 
Table 3  
Feature definition for quality datasets using McCabe and Halstead’s procedural metric 

Metric Features Full name Description 

McCabe 

LOC_TOTAL Lines of code (LOC) 

Measured according to McCabe's line 
counting conventions, equals to the sum of 
LOC_Code_and_Comment and 
LOC_Executables 

EDGE_COUNT Control flow graph edge 
count The number of edges of the graph 

v(G) Cyclomatic complexity Number of linearly independent paths 

ev(G) Essential complexity 
The extent to which a flow graph can be 
"reduced" by decomposing all the sub-flow 
graphs 

iv(G) Design complexity The v(G) of a module's reduced flow graph 
CALL_PAIRS Call pairs Executable calls between modules 

CONDITION_COUNT Condition decision 
count Correlates to threshold for v(G) 

DECISION_COUNT Decision count Correlates to threshold for v(G) 
LOC_COMMENT lines of comment Count of lines of comment 

LOC_BLANK blank lines Count of blank lines 
LOC_CODE_AND_COMMENT Code and comment Count of source code and comment 

PARAMETER_COUNT Formal parameter 
count Number of formal parameters 
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BRANCH_COUNT Logical branches  Branch count of the flow graph 

Halstead 

UNIQ_OP Unique operators Number of distinct operators 
UNIQ_OPND Unique operand Number of distinct operands 
TOTAL_OP Total operator Total number of operators 

TOTAL_OPND Total operand Total number of operands 
NUMBER_OF_LINES Number of lines End line minus the start line in the listing 

 Fault-proneness 
Module has/has not 

one or more reported 
defects 

Fault-prone (FP), regarded as ‘1’ in data, 
or non-fault-prone (NFP), regarded as ‘0’ 

 
Table 4 
Feature definition for quality datasets using CK object-oriented metric 

Metric Features Full name Description 

CK and its 
derivatives 

WMC Weighted methods per class Sum of the complexities of each method in a class 

DIT Depth of inheritance tree Number of classes that a particular class inherits 
from 

NOC Number of children Count of immediate subclasses of a class 
CBO Coupling between objects Number of classes that are coupled to a class 
RFC Response for class Number of elements in the response set of a class 

LCOM Lack of cohesion of methods 

Number of method pairs in a class that have no 
common references to instance variables minus 
the number of method pairs that share references 
to instance variables 

LCOM3 Lack of cohesion in methods  
Different version of LCOM suggested by 
Henderson-Sellers (1996), which overcomes the 
drawback of LCOM 

IC Inheritance coupling This metric provides the number of parent classes 
to which a given class is coupled. 

CBM Coupling between methods A total number of new/redefined methods to 
which all the inherited methods are coupled. 

AMC Average method complexity 
Average method size for each class. The size of a 
method is equal to the number of Java bytecodes 
in the method 

Martin 
(1994) 

Ca Afferent couplings Number of classes that depend upon the 
measured class 

Ce Efferent couplings Number of classes that the measured class 
depends upon 

Bansiya and 
Davis 
(2002) 

NPM Number of public methods Count of all the methods in a class that is 
declared as public 

DAM Data access metric 
The ratio of the number of private (protected) 
attributes to the total number of attributes 
declared in the class. 

MOA Measure of aggregation The extent of the part-whole relationship, realized 
by using attributes. 

MFA Measure of functional 
abstraction 

The ratio of the number of methods inherited by a 
class to the total number of methods accessible by 
the member methods of the class. 

CAM Cohesion among methods of 
class 

Relatedness among methods of a class based on 
the parameter list of the methods. 

McCabe 
LOC Lines of code Number of lines of code in the Java binary code 

of the class under investigation 
MAX_CC Max/Avg v(G) Number of different paths in a method plus one AVG_CC 

 Fault-
proneness 

Module has/has not reported 
defects 

Fault-prone (FP), regarded as ‘1’ in data, or non-
fault-prone (NFP), regarded as ‘0’ 
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Table 5 
Data description after cleaning process (Code metric, data name, number of features and instances, and FP/NFP 

ratio) 

Metric Dataset 
Name 

Number of 
Features FP/NFP* Number of 

Instances 

Procedural 

PC5 19 258/919 1177 
KC3 19 25/111 136 
MW1 19 21/186 207 
MC2 19 20/49 69 

Object-
oriented 

camel 21 171/625 796 
ant 21 165/504 669 
ivy 21 37/256 293 
arc 21 20/149 169 

*The ratio of FP/NFP: ratio between the number of instances with Fault-proneness = 1 and that with Fault-
proneness = 0 
 

4.2 Missingness simulation 

Missingness simulation is often used to generate various missingness scenarios to test the 

performance of missing data imputation techniques. In this study, three missingness mechanisms 

(MMs), two missingness patterns (MPs), and four missingness ratios (MRs) shall be simulated to 

generate 24 incomplete dataset versions. There is no missingness injected into the feature of 

Fault-proneness. MR is set to be 2.5%, 5%, 10%, and 20%, respectively. The above-mentioned 

three MMs (introduced in Section 2.1) are simulated after cleansing the original data. The 

procedures simulating each MM are presented as follows (Van Hulse and Khoshgoftaar, 2014): 

- Missing Completely At Random (MCAR): Missing values are overall selected completely at 

random (exclude the ones from the response feature: Fault-proneness). Assume we have N 

instances and M features if we inject MR = 5% random missingness inside the data, there will 

be around ( )0.05 1N M× × −  missing values in total. 

- Non-ignorable (NI): A threshold set of t is chosen for each feature such that 75% of the 

instances had a value of ,i px  less than t. After determining the threshold values for each 

feature, 40% missingness is injected into the instances with feature value(s) ,i px t<  and the 

rest 60% missingness is injected into the instances with ,i px t≥ . 
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- Missing At Random (MAR): It is generated by making the distribution of missing values 

depends on the feature of Fault-proneness. We implement a biased selection process where 

25% missingness is injected into the FP instances, i.e. Fault-proneness equals to 1. And 

another 75% missingness is injected into the instances who are NFP, i.e. Fault-proneness 

equals to 0. 

Secondly, during MM simulation on dataset instances, we use the SPSS Missing Values Analysis 

module to simultaneously meet the requirements of  MP (Song and Shepperd, 2007). Therefore, 

under each MM, there shall be two scenarios corresponding to the two MPs. For the general 

pattern, the missingness is randomly injected into each instance. As for the monotone pattern, the 

missingness in each instance is mostly continuously injected. To sum, for one specific dataset, 

there are 24 simulated scenarios, or versions, as shown in Table 6.   

 
Table 6 
Simulated data scenarios for each dataset during experiment 

MR (%) MP MM 
MCAR MAR NI 

2.5 Monotone #1 #2 #3 
General #4 #5 #6 

5 Monotone #7 #8 #9 
General #10 #11 #12 

10 Monotone #13 #14 #15 
General #16 #17 #18 

20 Monotone #19 #20 #21 
General #22 #23 #24 

 

4.3 Performance measure and evaluation 

Error measures are fundamental to justify the prediction performance. RMSE (root mean square 

error) is adopted in the cross-validation scheme in CVBkNNI. For each true value 
ie  that is 

simulated to be missing in D, the corresponding imputed value is 
îe , then the RMSE is defined in 

Eq. (15): 

                                                  ( )2
1

1 ˆ
T

i i
i
e eRMSE

T =

−= ∑                                                                  (15), 

where T denotes the total number of missing values in D. The relative error metrics are not 

considered in the study due to they are unbalanced, for example, MRE (mean of relative error) 
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(Foss et al., 2003). Instead, RMSE is a balanced metric and widely used in recent studies (Pan et 

al., 2015; Zhang, 2012; Zhang et al., 2011).  

The incomplete dataset becomes a complete one after missing data imputation. The machine 

learning classifiers are then conducted to evaluate the impact of imputation on the performance 

of Fault-proneness classification. Four widely used classification algorithms, Discriminant 

analysis, KNN, Naive Bayes and SVM, are chosen in the study. The classification accuracy (CA) 

is computed via Eq. (16): 

                                                           
1

1 ( , )
N

i i
i

CA l FP FP
N =

ʹ= ∑                                                     (16), 

where N is the number of instances, iFPʹ  and iFP  are the classification results of the i-th 

instance and the corresponding real class label. ( , ) 1i il FP FPʹ =  if i iFP FPʹ= , and ( , ) 0i il FP FPʹ =  

otherwise. 

After measuring the performance, we test if the estimations of one method are significantly 

better than the estimations of others. To check for statistical significance, we use Wilcoxon 

signed-rank test. It is a non-parametric statistical hypothesis test used when comparing two 

related samples to assess whether their population median ranks differ (i.e. it is a paired 

difference test). Meanwhile, it is inadequate to merely show statistical significance alone; we 

also need to know whether the effect size is worthy of interest (Sarro et al., 2016). To assess it, 

we employ non-parametric Vargha-Delaney’s 12Â  statistic (Arcuri and Briand, 2014). Given a 

performance measure X, the 12Â  statistic measures the probability that algorithm A yields better 

X than another algorithm B, based on the formula of ( )( )2 11 / 1 / 2 /ˆ RA Μ− Μ += Ν , where 1R  

denotes the rank sum of the first data group we are comparing, and Μ  and Ν  are the number of 

observations in the first and second data sample, respectively. If the 2 algorithms are equivalent, 

then 12
ˆ 0.5A = . If the first algorithm performs better than the second one, 12Â  is considered small 

for 12
ˆ0.6 0.7A≤ < , medium for 12

ˆ0.7 0.8A≤ < , and large for 12
ˆ0.8 1A≤ ≤ . The detailed 

experiment is provided in Section 5.1. 
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4.4 Experiment procedures 

The experiment of the work includes 3 main tasks: simulating missingness, missing data 

imputation using different techniques, and the final performance evaluation. Missingness 

simulation is conducted on the cleansed datasets, in which the process has been discussed in 

Section 4.1. The simulation consists of 3 MMs (MCAR, MAR, NI), 2 MPs (Monotone, General) 

and 4 MRs (2.5%, 5%, 10%, 20%), 24 scenarios in total as discussed in Section 4.2. Each 

scenario of one dataset is replicated 30 times to reduce bias and obtain a suitable sample size. 

The overall experiment process is described in Fig. 1. 

 
Fig. 1. The overall experiment procedures 

To have the same unit for distinctive data features, it is necessary to transform the attribute 

values in the same range. In this work, all of the data is normalized into the interval of [0, 1] 

feature by feature. The [0, 1] normalization is defined as in Eq. (17): 
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                                              (17), 

where ,i px  is the p-th feature value of instance ix , , 1,2,....,i j N= , and 1,2,....,p M= . 

After normalizing all the simulated datasets, the different KNN imputation approaches are then 

used for preprocessing. The first task is the verification of the effectiveness of CVBkNNI. 
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Moreover, this study also implements three other KNN based imputation approaches, including 

FWGkNN (Pan et al., 2015), ICkNNI (Van Hulse and Khoshgoftaar, 2014), as introduced in 

Section 2.3, and the default version of KNN imputation (DkNNI) approach implemented by 

Matlab R2016b. DkNNI is implemented using Matlab knnimpute, which is capable of replacing 

missing data with the corresponding value from the incomplete nearest neighbor instance. 

According to the documentation of Matlab, DkNNI is based on incomplete-instance and it 

imputes each missing value using the closest neighbor calculated from Euclidean distance. In the 

meantime, MEI is also used as a benchmark imputation technique. 

The imputed datasets are compared with the corresponding original complete ones to validate 

imputation performance. Wilcoxon signed-rank test tests whether the overall prediction 

performance of CVBkNNI is significantly better than the rest four ones. Meanwhile, this work 

also uses Wilcoxon signed-rank test to find if there exists a significant difference in terms of 

imputation among diverse scenarios.  

For the adopted quality data, the target class for classification is Fault-proneness. Researchers 

argue that the imputed complete datasets should also be reliable and workable to be used for 

other purpose (Sahri et al., 2014). In empirical software quality research, data imputation may 

also serve the further Fault-proneness classification; therefore, the classification performance 

from imputed data should not be worse than that from the original data. At this stage, the four 

commonly used ML classifiers (Discriminant analysis, KNN, Naive Bayes and SVM) are 

implemented on the estimated complete datasets to test the performance of used imputation 

approaches, as a necessary data-preprocessing step, on classification tasks.  

 

5. Experiment results and analysis 

In this section, the empirical results of various imputation approaches are fully presented. The 

comparison between CVBkNNI and other imputation approaches is discussed then via statistical 

tests. Later, a detailed discussion about CVBkNNI and its inner adaptive parameter setting is 

presented as well. 
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5.1 Overall imputation performance 

Table 7 presents the overall RMSEs for each dataset under different missingness scenarios. The 

datasets are ordered by nature and size. All the best estimation results are marked in green, the 

second-best ones are marked in blue, while the worst results are in red. It is obvious that 

CVBkNNI surpasses the other four imputation approaches under each scenario regardless of the 

missingness mechanism (MM), pattern (MP) or ratio (MR), especially when the size of the 

dataset is relatively large (See Table 5). The second-best imputation approach then strongly 

depends on the MP. FWGkNNI performs better when the MP is general; while ICkNNI performs 

relatively better when the MP is monotone. However, FWGkNNI, compared with ICkNNI, is 

relatively more robust since when MP is general, ICkNNI mostly performs the worst, even worse 

than the benchmark approach mean imputation (MEI). Some exceptions happen when the 

percentage of missing values is relatively small, such as dataset KC3 and MC2. The ICkNNI was 

established to be better than complete-instance K nearest neighbor (KNN) imputation; however, 

its performance in the software quality datasets shows that it could be even worse in imputation 

capacity than the benchmark imputation approaches, the default DkNNI and MEI. Meanwhile, in 

dataset camel and ant, the performance of ICkNNI under monotone pattern is not strictly 

negatively correlated with MR. It may due to the impacts of outliers in the dataset. 

Table 7 also presents the Wilcoxon signed-rank test results together with the corresponding 12Â  

effect size (see Table 7 footnote) to compare the statistical significance and effect size of the 

improvements over the other imputation approaches due to CVBkNNI. For example, the dataset 

camel, as shown in Table 7, under general pattern, MCAR mechanism and 2.5% missingness 

ratio, the 30 RMSEs of CVBkNNI (Avg: 0.088) are significantly less than the 30 RMSEs of 

FWGkNNI (Avg: 0.113), at the significance level of 0.01. Similarly, under monotone pattern, all 

else are equal, the 30 RMSEs of CVBkNNI (Avg: 0.093) are significantly less than the 30 

RMSEs of ICkNNI (Avg: 0.111). The test results further confirm the imputation excellency of 

CVBkNNI since, in most cases, the RMSEs of CVBkNNI are significantly less than those of 

FWGkNNI, ICkNNI, DkNNI and MEI. Some reasonable exceptions exist in the small-sized 

datasets or under monotone pattern. As for 12Â  effect size shown in Table 7 (presented in 

different brackets), large effect size 12
ˆ0.8 1A≤ ≤  dominates the results mostly, especially in the 
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4 object-oriented datasets, which means CVBkNNI overall yields better performance. Table 8 

further organizes all the results of effect size in detailed counts and ratios. For each dataset, we 

count the number of large, medium, small and rest effect size of CVBkNNI vs. the other 

imputation approaches under all missingness scenarios. All the effect size calculated is at least 

0.5. For dataset MC2, a relatively smaller one, the corresponding effect size is generally small. 

But this phenomenon does not happen in small-sized dataset arc. For large-sized dataset PC5, the 

effect size is merely medium in general.  

To further intuitively present the imputation accuracy, Fig. 2 to 9 present the boxplots of the 

corresponding RMSE results. For example, in Fig. 2, the first sub-boxplot presents the RMSE 

results of the 5 imputation approaches on the 30 simulated versions of dataset camel under 

general MP and MCAR mechanism at MR = 5%. To save space, only the boxplots of RMSEs of 

the large-sized datasets: camel, ant, PC5 and MW1, at MR = 5% and 20% are presented. The 

results shown in the boxplots are consistent with the findings in Table 7. The overall 

performance of CVBkNNI basically answers to the RQ1, that setting adaptive parameters for 

estimating each missing value could largely improve KNN imputation performance. 

Another important issue of performance, time, is also tested in the experiment. The complicated 

strategy of CVBkNNI causes the algorithm to be time-consuming, but it also provides better 

accuracy. Use datasets of camel, ivy, PC5 and MW1 as examples, the imputation algorithm 

running time is summarized in Table 9. We run the algorithms on an Intel Core i7-4770 3.40GHz 

CPU with 8GB memory, Windows 7 64-bit system and Matlab R2016b software. Since the 

algorithm running time under different MMs and MPs is relatively unchanged given a specific 

MR, Table 9 provides the average running time of the 5 imputation algorithms under 3 MMs and 

2 MPs. Compared to the other four algorithms, CVBkNNI indeed cost lots of time to proceed, 

but it is still acceptable. The datasets of camel and PC5 are the largest ones in the experiment. 

Consider under the worst-case MR = 20%, there are in total 3184 missing values for camel data 

and 4237 ones for PC5 data, the imputation time of CVBkNNI is still within 3mins  
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Table 7 
Overall average RMSE results of all datasets under various scenarios1 

Data MP MR (%) 
Imputation Approaches and MMs 

MCAR MAR NI 
CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI CVBkNNI FWGkNNI ICkNNI DkNNI MEI 

camel 

General 

2.5 0.088 0.113** 0.209** 0.197** 0.197** 0.080 0.115** 0.203** 0.194** 0.194** 0.114 0.149** 0.247** 0.230** 0.231** 
5 0.094 0.122** 0.213** 0.199** 0.199** 0.088 0.118** 0.209** 0.194** 0.195** 0.118 0.157** 0.251** 0.235** 0.236** 

10 0.105 0.128** 0.213** 0.197** 0.197** 0.107 0.130** 0.215** 0.198** 0.198** 0.134 0.171** 0.255** 0.241** 0.242** 
20 0.124 0.138** 0.215** 0.197** 0.198** 0.125 0.140** 0.216** 0.198** 0.199** 0.169 0.195** 0.260** 0.250** 0.251** 

Monotone 

2.5 0.093 0.124** [0.111**] 0.133** 0.223** 0.107 0.139** [0.120**] 0.137** 0.232** 0.118 0.164** [0.144**] 0.163** 0.256** 
5 0.109 0.135** 0.171** 0.205** 0.226** 0.118 0.146** 0.173** 0.206** 0.233** 0.121 0.162** [0.142**] 0.164** 0.254** 

10 0.112 0.144** 0.176** 0.214** 0.231** 0.114 0.145** [0.127**] 0.149** 0.230** 0.149 0.183** 0.192** 0.226** 0.270** 
20 0.120 0.148** [0.135**] 0.154** 0.230** 0.122 0.149** 0.183** 0.212** 0.230** 0.194 0.233** 0.236** 0.258** 0.292** 

ant 

General 

2.5 0.095 0.120** 0.203** 0.190** 0.195** 0.099 [0.120**] 0.194** 0.176** 0.180** 0.123 0.160** 0.230** 0.221** 0.227** 
5 0.100 0.124** 0.204** 0.190** 0.195** 0.098 0.123** 0.200** 0.182** 0.187** 0.127 0.164** 0.234** 0.225** 0.230** 

10 0.110 0.129** 0.204** 0.188** 0.192** 0.107 0.127** 0.201** 0.184** 0.187** 0.139 0.170** 0.232** 0.227** 0.233** 
20 0.129 0.139** 0.206** 0.188** 0.192** 0.129 0.138** 0.204** 0.187** 0.191** 0.171 0.185** 0.235** 0.235** 0.241** 

Monotone 

2.5 0.115 0.145** [0.129**] 0.155** 0.214** 0.123 0.155 (0.131**) 0.165** 0.228** 0.140 0.175** [0.166**] 0.189** 0.250** 
5 0.126 0.158** 0.165** 0.198** 0.222** 0.126 0.160** 0.164** 0.193** 0.226** 0.135 0.170** [0.162**] 0.184** 0.247** 

10 0.125 0.157** 0.161** 0.190** 0.223** 0.123 0.158** 0.135** 0.162** 0.225** 0.155 0.186** 0.191** 0.218** 0.260** 
20 0.129 0.159** 0.144** 0.164** 0.223** 0.125 0.160** 0.176** 0.202** 0.223** 0.192 0.222** 0.235** 0.251** 0.280** 

ivy 

General 

2.5 0.090 0.125** 0.205** 0.196** 0.198** 0.088 0.114** 0.190** 0.181** 0.187** 0.107 0.171** 0.241** 0.237** 0.241** 
5 0.090 0.126** 0.200** 0.191** 0.194** 0.094 0.120** 0.197** 0.184** 0.189** 0.121 0.176** 0.252** 0.242** 0.245** 

10 0.109 0.134** 0.205** 0.192** 0.195** 0.107 0.134** 0.203** 0.189** 0.194** 0.147 0.186** 0.255** 0.245** 0.249** 
20 0.131 0.143** 0.204** 0.192** 0.195** 0.135 0.148** 0.208** 0.193** 0.199** 0.186 0.208** 0.260** 0.255** 0.259** 

Monotone 

2.5 0.131 0.165** [0.156**] 0.187** 0.224** 0.113 0.163** [0.130**] 0.157** 0.228** 0.131 0.198** 0.162** 0.194** 0.277** 
5 0.118 0.156** (0.126) 0.155** 0.225** 0.118 0.164** 0.163** 0.199** 0.231** 0.136 0.201** 0.190** 0.233** 0.279** 

10 0.121 0.164** 0.164** 0.198** 0.229** 0.127 0.170** 0.165** 0.198** 0.233** 0.156 0.207** [0.170**] 0.189** 0.284** 
20 0.122 0.164** 0.136** 0.156** 0.228** 0.128 0.177** 0.184** 0.209** 0.233** 0.213 0.249** 0.241** 0.259** 0.306** 

arc 

General 

2.5 0.096 [0.136**] 0.216** 0.208** 0.216** 0.104 [0.136**] 0.209** 0.205** 0.212** 0.112 0.196** 0.269** 0.270** 0.273** 
5 0.086 0.131** 0.220** 0.208** 0.211** 0.100 0.143** 0.226** 0.211** 0.216** 0.138 0.198** 0.273** 0.269** 0.272** 

10 0.108 0.145** 0.228** 0.213** 0.215** 0.122 0.155** 0.234** 0.217** 0.221** 0.152 0.207** 0.281** 0.277** 0.281** 
20 0.148 [0.156*] 0.231** 0.216** 0.218** 0.154 [0.163**] 0.234** 0.216** 0.220** 0.214 0.243** 0.292** 0.292** 0.297** 

Monotone 

2.5 0.123 0.195** 0.168* 0.209** 0.243** 0.133 0.192** [0.169*] 0.203** 0.239** 0.117 0.194** 0.180** 0.212** 0.298** 
5 0.128 0.200** (0.148**) [0.164**] 0.244** 0.129 0.196** 0.169** 0.197** 0.243** 0.135 0.204** 0.166** 0.175** 0.307** 

10 0.135 0.200** 0.170** 0.201** 0.250** 0.125 0.199** 0.175** 0.212** 0.253** 0.173 0.246** 0.209** 0.229** 0.328** 
20 0.132 0.195** 0.179** 0.204** 0.251** 0.138 0.213** 0.177** 0.190** 0.253** 0.240 0.283** (0.249) (0.259*) 0.332** 

PC5 

General 

2.5 0.063 [0.080**] 0.093** [0.088**] [0.089**] 0.062 (0.076**) [0.087**] [0.083**] [0.085**] 0.089 [0.121**] 0.128** 0.128** 0.130** 
5 0.064 [0.082**] 0.094** 0.088** 0.089** 0.065 [0.081**] 0.092** [0.086**] 0.087** 0.096 [0.123**] 0.134** 0.131** 0.133** 

10 0.065 0.080** 0.092** 0.086** 0.087** 0.069 0.082** 0.093** 0.088** 0.089** 0.103 [0.125**] 0.132** 0.129** 0.131** 
20 0.071 [0.079**] 0.090** 0.084** 0.085** 0.073 [0.080**] 0.093** 0.086** 0.087** 0.118 (0.127**) [0.132**] [0.130**] [0.132**] 

Monotone 

2.5 0.057 {0.061} {0.057} {0.057} (0.070**) 0.054 {0.058} {0.053} [0.069*] (0.063*) 0.087 (0.112**) {0.091} (0.097) (0.118*) 
5 0.062 {0.071*} (0.071**) [0.083**] (0.076**) 0.065 (0.078**) {0.068} [0.080**] [0.081**] 0.082 (0.108**) (0.089**) (0.095**) [0.117**] 

10 0.060 (0.071**) {0.065**} [0.075**] [0.078**] 0.061 (0.075**) (0.067**) 0.079** [0.080**] 0.089 [0.109**] {0.091} {0.097**} [0.115**] 
20 0.063 [0.075**] (0.066) 0.075** 0.079** 0.064 [0.078**] (0.074**) [0.079**] [0.079**] 0.116 (0.128**) (0.130**) (0.130**) [0.132**] 

MW1 General 2.5 0.083 0.132** 0.183** 0.170** 0.179** 0.092 0.139** 0.205** 0.185** 0.200** 0.117 0.176** 0.207** 0.207** 0.228** 
5 0.092 0.132** 0.188** 0.171** 0.180** 0.104 0.139** 0.204** 0.185** 0.194** 0.126 0.186** 0.234** 0.221** 0.233** 
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10 0.106 0.130** 0.179** 0.165** 0.172** 0.119 0.146** 0.206** 0.187** 0.197** 0.153 0.198** 0.237** 0.226** 0.237** 
20 0.119 0.136** 0.180** 0.165** 0.171** 0.129 0.150** 0.211** 0.188** 0.194** 0.194 0.214** 0.241** 0.235** 0.246** 

Monotone 

2.5 0.105 0.140** (0.115**) 0.138** 0.164** 0.122 [0.162**] {0.130*} [0.153**] 0.197** 0.133 [0.186**] (0.151**) (0.164**) 0.222** 
5 0.114 0.148** (0.125*) 0.144** 0.170** 0.130 0.167** [0.145**] 0.165* 0.205** 0.142 0.192** (0.154**) [0.175**] 0.231** 

10 0.122 0.161** 0.141** 0.158** 0.182** 0.124 0.168** [0.139**] 0.158** 0.201** 0.168 0.205** {0.173} [0.195**] 0.239** 
20 0.124 0.159** (0.130*) 0.150** 0.180** 0.129 0.193** 0.161** 0.175** 0.196** 0.202 0.238** {0.205} (0.213**) 0.262** 

KC3 

General 

2.5 0.113 0.165** 0.183** 0.176** 0.195** 0.111 0.159** 0.185** 0.182** 0.192** 0.141 0.221** 0.216** 0.229** 0.258** 
5 0.113 0.162** 0.212** 0.194** 0.194** 0.118 0.170** 0.218** 0.203** 0.202** 0.166 0.239** 0.271** 0.262** 0.269** 

10 0.115 0.160** 0.209** 0.188** 0.189** 0.121 0.165** 0.215** 0.194** 0.195** 0.187 0.248** 0.270** 0.266** 0.270** 
20 0.134 0.161** 0.216** 0.186** 0.188** 0.131 0.166** 0.217** 0.191** 0.193** 0.227 0.264** 0.278** 0.274** 0.278** 

Monotone 

2.5 0.114 (0.153) {0.117*} (0.146*) 0.171** 0.135 (0.171**) {0.138} (0.151) 0.194** 0.154 (0.201**) {0.161**} [0.202**] 0.236** 
5 0.133 [0.184**] {0.142**} [0.171**] 0.197** 0.140 0.197** (0.149**) 0.181** 0.212** 0.167 0.224** {0.169} [0.205**] 0.253** 

10 0.136 0.183** (0.142**) 0.167** 0.198** 0.137 0.175** {0.141} 0.168** 0.192** 0.192 0.260** {0.195} (0.217**) 0.280** 
20 0.140 0.206** 0.154** 0.175** 0.217** 0.139 0.196** [0.149**] 0.176** 0.209** 0.205 0.273** {0.208*} (0.218**) 0.288** 

MC2 

General 

2.5 0.103 {0.114*} (0.123*) (0.140**) [0.136**] 0.092 {0.105*} (0.111**) [0.126**] [0.140**] 0.184 (0.221**) (0.200*) {0.199} [0.243**] 
5 0.107 (0.124**) 0.150** 0.145** 0.148** 0.100 (0.115*) [0.128**] [0.142**] [0.146**] 0.205 0.232** [0.227*] (0.224) 0.252** 

10 0.123 [0.138*] 0.171** 0.160** 0.161** 0.126 (0.135*) 0.168** 0.159** 0.158** 0.220 (0.236**) [0.255**] [0.249**] 0.253** 
20 0.145 (0.149) 0.179** 0.168** 0.170** 0.145 {0.146} 0.180** 0.166** 0.167** 0.246 {0.248} [0.264**] (0.257*) [0.262**] 

Monotone 

2.5 0.144 {0.192} {0.163} {0.150} (0.221**) 0.132 {0.155**} {0.142} (0.143) (0.170**) 0.168 (0.195*) {0.177} {0.175} [0.220**] 
5 0.138 {0.164*}  {0.144} (0.162) (0.183**) 0.148 {0.168*} {0.150} {0.151} (0.180**) 0.171 (0.196**) (0.178) [0.185] [0.217**] 

10 0.125 (0.149**) {0.131} [0.145**] [0.167**] 0.131 {0.147*} {0.132} [0.165*] [0.163**] 0.185 (0.205**) {0.185} [0.198] [0.220**] 
20 0.134 (0.150**) (0.139*) [0.150**] [0.164**] 0.127 (0.143**) {0.131*} 0.159** [0.155**] 0.221 (0.232**) (0.227) {0.231*} [0.244**] 

1The minimum RMSEs in each condition are in green; the maximum RMSEs are in red; while the 2nd smallest RMSEs are marked in blue. 
{}/()/[]: Curly brackets for effect size 12

ˆ0.5 0.6A≤ < , parentheses for small effect size 12
ˆ0.6 0.7A≤ < , square brackets for medium effect size 12

ˆ0.7 0.8A≤ < , 
and no brackets for large effect size 12

ˆ0.8 1A≤ ≤ . 
**Left-tail Wilcoxon signed-rank test, significant at the level of 0.01; *Significant at the level of 0.05.
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Table 8 
Counts and ratios of Vargha-Delaney’s 12Â  statistic from the overall RMSE results 

Data Imputation Approaches 

Counts and Ratios of Vargha-Delaney’s 12Â  Effect Size 

12
ˆ0.5 0.6A≤ <
 

12
ˆ0.6 0.7A≤ <
 

12
ˆ0.7 0.8A≤ <
 

12
ˆ0.8 1A≤ ≤  

camel 

CVBkNNI vs. FWGkNNI 0/241 0/24 0/24 24/24 
CVBkNNI vs. ICkNNI 0/24 0/24 6/24 18/24 
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

ant 

CVBkNNI vs. FWGkNNI 0/24 0/24 1/24 23/24 
CVBkNNI vs. ICkNNI 0/24 1/24 3/24 20/24 
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

ivy 

CVBkNNI vs. FWGkNNI 0/24 0/24 0/24 24/24 
CVBkNNI vs. ICkNNI 0/24 1/24 3/24 20/24 
CVBkNNI vs. DkNNI 0/24 0/24 0/24 24/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

arc 

CVBkNNI vs. FWGkNNI 0/24 0/24 4/24 20/24 
CVBkNNI vs. ICkNNI 0/24 2/24 1/24 21/24 
CVBkNNI vs. DkNNI 0/24 1/24 1/24 22/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

PC5 

CVBkNNI vs. FWGkNNI 3/24 8/24 11/24 2/24 
CVBkNNI vs. ICkNNI 6/24 6/24 2/24 10/24 
CVBkNNI vs. DkNNI 2/24 3/24 9/24 10/24 

CVBkNNI vs. MEI 0/24 4/24 10/24 10/24 

MW1 

CVBkNNI vs. FWGkNNI 0/24 0/24 2/24 22/24 
CVBkNNI vs. ICkNNI 3/24 5/24 2/24 14/24 
CVBkNNI vs. DkNNI 0/24 2/24 3/24 19/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

KC3 

CVBkNNI vs. FWGkNNI 0/24 3/24 1/24 20/24 
CVBkNNI vs. ICkNNI 8/24 2/24 1/24 13/24 
CVBkNNI vs. DkNNI 0/24 4/24 3/24 17/24 

CVBkNNI vs. MEI 0/24 0/24 0/24 24/24 

MC2 

CVBkNNI vs. FWGkNNI 9/24 13/24 1/24 1/24 
CVBkNNI vs. ICkNNI 9/24 6/24 4/24 5/24 
CVBkNNI vs. DkNNI 5/24 5/24 8/24 6/24 

CVBkNNI vs. MEI 0/24 4/24 13/24 7/24 
1There are 2 MPs, 3 MMs and 4 MRs, in total, 24 scenarios 

 
Table 9 
Average algorithm running time in seconds on 4 selected datasets 

Data MR (%) 
Avg. Algorithm Running Time (in seconds) 

CVBkNNI FWGkNNI ICkNNI DkNNI MEI 

camel 

2.5 50.8839 0.7549 0.0082 0.0091 0.0004 
5 86.1633 0.9416 0.0110 0.0143 0.0004 

10 129.7130 1.3375 0.0165 0.0224 0.0004 
20 167.8360 1.8559 0.0282 0.0385 0.0004 

ivy 

2.5 37.0678 0.8673 0.0141 0.0094 0.0002 
5 48.9862 0.7437 0.0137 0.0076 0.0002 

10 88.9723 1.0780 0.0112 0.0138 0.0002 
20 111.3102 1.3277 0.0170 0.0194 0.0002 

PC5 

2.5 45.1913 0.6650 0.0087 0.0107 0.0004 
5 74.1314 0.8746 0.0126 0.0186 0.0004 

10 103.4838 1.1381 0.0172 0.0223 0.0004 
20 147.9999 1.5946 0.0290 0.0409 0.0004 
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KC3 

2.5 11.7655 0.3755 0.0027 0.0023 0.0002 
5 21.0672 0.4802 0.0036 0.0040 0.0002 

10 33.9020 0.7103 0.0066 0.0093 0.0002 
20 51.5934 0.8911 0.0101 0.0127 0.0002 

From the results showing in boxplots, the median values under NI mechanism are always slightly 

larger than that under MCAR or MAR mechanism. In Table 7, the average RMSEs under 

monotone pattern are generally large than that under general pattern within the same dataset. 

This section also uses Wilcoxon signed-rank test to answer RQ2: if the MM, or MP indeed has a 

significant impact on the imputation results. Table 10 and Table 11 summarize the comparison 

results. The comparison between each pair of MMs is presented in Table 10. The five imputation 

approaches used in the study (CVBkNNI, FWGkNNI, ICkNNI, DkNNI and MEI) are denoted as 

1, 2, 3, 4 and 5 accordingly. As shown in Table 10, in dataset camel, under general pattern and 

2.5% missingness ratio, all the five imputation approaches perform significantly different 

between MCAR and NI, as well as between MAR and NI; however, none of which performs 

significantly different between MCAR and MAR. Table 10 shows various imputation approaches 

perform similarly under MCAR or MAR; while the significant difference exists when 

mechanism is NI. The significance may increase as the MR increases as well.  

The comparison in terms of the MP is presented in Table 11. The difference in object-oriented 

datasets is more significant than that in procedural datasets. When MR increases in small-sized 

datasets, the difference is even more clear. Therefore, the impact of MP may depend on the data. 

The performance of ICkNNI is highly influenced by the MP, which is consistent with the 

findings in Table 7. 

Table 10 
The comparison between each pair of MMs at the significance level of 0.051 

Data MP MM MR = 2.5% MR = 5% MR = 10% MR = 20% 
MAR NI MAR NI MAR NI MAR NI 

camel 
General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345 

MAR - 12345 - 12345 - 12345 - 12345 

Monotone MCAR 2 12345 2 12345 34 12345 34 12345 
MAR - 245 - 345 - 12345 - 12345 

ant 
General MCAR 45 12345 45 12345 N/A 12345 N/A 12345 

MAR - 12345 - 12345 - 12345 - 12345 

Monotone MCAR N/A 12345 N/A 5 34 12345 34 12345 
MAR - 3 - 5 - 12345 - 12345 

ivy General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345 
MAR - 12345 - 12345 - 12345 - 12345 

Monotone MCAR 34 25 34 12345 N/A 125 234 12345 
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MAR - 2345 - 12345 - 125 - 12345 

arc 
General MCAR N/A 2345 N/A 12345 1 12345 N/A 12345 

MAR - 2345 - 12345 - 12345 - 12345 

Monotone MCAR N/A 5 4 5 N/A 12345 N/A 12345 
MAR - 5 - 5 - 12345 - 12345 

PC5 
General MCAR N/A 12345 N/A 12345 N/A 12345 N/A 12345 

MAR - 2345 - 12345 - 12345 - 12345 

Monotone MCAR N/A 4 N/A N/A N/A 1235 N/A 12345 
MAR - N/A - N/A - 12 - 12345 

MW1 
General MCAR N/A 1245 N/A 12345 12345 12345 12345 12345 

MAR - 1245 - 12345 - 12345 - 12345 

Monotone MCAR N/A N/A 145 1235 N/A 12345 12345 12345 
MAR - N/A - 2 - 12345 - 12345 

KC3 
General MCAR N/A 1245 N/A 12345 N/A 12345 5 12345 

MAR - 12345 - 12345 - 12345 - 12345 

Monotone MCAR N/A N/A N/A N/A N/A 12345 N/A 12345 
MAR - N/A - N/A - 12345 - 12345 

MC2 
General MCAR 1 1235 3 12345 N/A 12345 N/A 12345 

MAR - 1235 - 12345 - 12345 - 12345 

Monotone MCAR N/A N/A N/A N/A N/A 1234 N/A 12345 
MAR - N/A - N/A - 1235 - 12345 

11 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI 

 
Table 11 
The comparison between general pattern and monotone pattern at the significance level of 0.051 

Data MM General and Monotone 
MR = 2.5% MR = 5% MR = 10% MR = 20% 

camel 
MCAR 345 235 2345 2345 
MAR 1245 125 345 345 
NI 345 345 12345 1235 

ant 
MCAR 2345 1235 1235 2345 
MAR 1235 1235 12345 2345 
NI 345 345 1235 125 

ivy 
MCAR 1235 12345 1235 12345 
MAR 12345 1235 12345 2345 
NI 1345 1235 2345 1235 

arc 
MCAR 23 12345 1235 1235 
MAR 1235 1235 235 12345 
NI 34 345 12345 2345 

PC5 
MCAR 34 3 2345 1345 
MAR 235 N/A 3 13 
NI N/A 34 34 N/A 

MW1 
MCAR 13 13 123 234 
MAR 13 123 234 234 
NI 34 34 34 234 

KC3 
MCAR 3 3 134 235 
MAR 3 13 134 2345 
NI N/A 34 34 34 

MC2 MCAR N/A N/A 3 3 
MAR N/A 1 N/A 3 
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NI N/A 4 12345 N/A 
11 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI 

 
Fig. 2 The RMSEs of data camel at MR = 5%, range in [0.05, 0.35] 
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Fig. 3. The imputation RMSEs of data camel at MR = 20%, range in [0.05, 0.35] 
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Fig. 4 The imputation RMSEs of data ant at MR = 5%, range in [0.07, 0.32] 
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Fig. 5 The imputation RMSEs of data ant at MR = 20%, range in [0.07, 0.32] 
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Fig. 6. The imputation RMSEs of data PC5 at MR = 5%, range in [0.02, 0.22] 
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Fig. 7. The imputation RMSEs of data PC5 at MR = 20%, range in [0.02, 0.22] 
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Fig. 8 The imputation RMSEs of data MW1 at MR = 5%, range in [0.05, 0.3] 
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Fig. 9 The imputation RMSEs of data MW1 at MR = 20%, range in [0.05, 0.3] 

5.2 The impact of feature relevance and imputation ordering  

This section and the following one focus on empirically analyzing the estimator of CVBkNNI. 

The two components used in CVBkNNI, MI-based feature relevance, and MR-based imputation 

ordering, are both inherited from former empirical research evidence. This section aims at 

verifying the impact of the two components on imputation accuracy. Table 12 gives an example 

of a comparison in terms of various configurations of CVBkNNI, i.e. with (w/) or without (w/o) 

MI-based feature relevance, and w/ or w/o MR-based imputation ordering, at MR = 10%. To 

save space, Table 12 only lists the results of four datasets with MR = 10%. When MR = 2.5%, or 

5% or 20%, the results are like those in Table 12. The configuration with both MI-based feature 

relevance and imputation ordering is the CVBkNNI used in this study (Marked in bold in Table 

12).  
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Left-tail Wilcoxon signed-rank test is also used to test if the RMSEs are reduced with imputation 

ordering, as well as if the RMSEs are reduced with feature relevance considered in measuring 

distance. For example, in dataset camel, under the general MP and MCAR, the average RMSEs 

of the CVBkNNI is measured as 0.105 (Also shown in Table 7), which is significantly less than 

that without feature relevance (0.112) at the significant level of 0.05. Similarly, if imputation 

ordering is excluded in the CVBkNNI, the corresponding RMSEs (Avg: 0.106) after the 

CVBkNNI with feature relevance are significantly less than those (Avg: 0.113) without feature 

relevance. Therefore, from the results, if the component of feature relevance is excluded, the 

imputation accuracy of the CVBkNNI is reduced in most cases. However, if feature relevance is 

included, the average imputation performance of the CVBkNNI with ordering is slightly better 

than that without ordering, especially when the MM is NI. Imputation ordering may not have an 

overall significant impact on the performance of the CVBkNNI, but at least, it reduces the 

average RMSE in general. 

Table 12 
A comparison in terms of different configurations of CVBkNNI at MR = 10% 

Data MP MM 
w/ MI-based feature relevance w/o MI-based feature relevance 

w/ imputation 
ordering1 

w/o imputation 
ordering 

w/ imputation 
ordering 

w/o imputation 
ordering 

camel 

General 
MCAR 0.1052 0.106 0.112* 0.113* 
MAR 0.107 0.107 0.120* 0.120* 

NI 0.134 0.154* 0.134 0.154* 

Monotone 
MCAR 0.112 0.113 0.114 0.115 
MAR 0.114 0.116 0.121* 0.127* 

NI 0.149 0.151* 0.149 0.151* 

ant 

General 
MCAR 0.110 0.109 0.115* 0.116* 
MAR 0.107 0.107 0.118* 0.118* 

NI 0.139 0.141* 0.150* 0.153* 

Monotone 
MCAR 0.125 0.125 0.138* 0.135* 
MAR 0.123 0.125 0.138* 0.132* 

NI 0.155 0.157 0.161* 0.164* 

PC5 

General 
MCAR 0.065 0.068* 0.082* 0.080* 
MAR 0.069 0.069 0.069 0.069 

NI 0.103 0.104 0.104 0.107 

Monotone 
MCAR 0.060 0.061 0.067* 0.069* 
MAR 0.061 0.061 0.078* 0.075* 

NI 0.089 0.098* 0.090 0.099* 

MW1 

General 
MCAR 0.106 0.106 0.106 0.108 
MAR 0.119 0.120 0.125* 0.123 

NI 0.153 0.159* 0.153 0.159* 

Monotone 
MCAR 0.122 0.124 0.122 0.122 
MAR 0.124 0.126 0.129* 0.129* 

NI 0.168 0.182* 0.183* 0.184* 
1CVBkNNI configuration.  



46 
 

2The results in terms of RMSEs are consistent with those in Table 7. 
*Left-tail Wilcoxon signed-rank test at the significant level of 0.05 
 

5.3 Parameter setting in CVBkNNI 

Moreover, the selected parameter combinations in CVBkNNI for estimating missing values in a 

dataset are summarized as well. Table 13 lists the mostly selected distance measure, K and 

adaptation method under each missingness scenario in the 30-time replicated camel, ant, PC5 

and MW1 datasets.  

The results in Table 13 show that GRA-based distance measure obviously takes the majority. For 

relatively small-sized MW1 data, the use of GRA-based distance measure is slightly 

overwhelmed by Manhattan distance. For the choice of K, most of the imputation parameters 

prefer K = 3. As for the adaptation method, Dudani measure is more popular than both mean and 

IDWM. Neither IRWM nor median is selected. Fig. 10 and Fig. 11 further present the histograms 

of the distribution of each utilized parameter. The results on figures are consistent with Table 13. 

A combination of parameter setting (GRA-based distance measure, K = 3, with Dudani 

adaptation measure) is overall the most frequent for the imputation. However, there is still no 

guarantee that any combination is overall the best solution. 

 
Table 13 
The mostly selected parameter setting under each scenario 

Data 
examples MP MR 

(%) 

MM 
MCAR MAR NI 

Distance K Adaptation Distance K Adaptation Distance K Adaptation 

camel 

General 

2.5 GRA1 3 Dudani GRA 3 Dudani GRA 3 Dudani 
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 
20 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 

Monotone 

2.5 GRA 5 IDWM GRA 7 IDWM GRA 5 Dudani 
5 GRA 5 IDWM GRA 5 IDWM GRA 3 Dudani 

10 GRA 7 IDWM GRA 5 IDWM GRA 3 Dudani 
20 GRA 5 IDWM GRA 3 Dudani GRA 3 Dudani 

ant 

General 

2.5 GRA 5 Dudani GRA 5 Dudani GRA 5 Dudani 
5 GRA 3 Dudani GRA 3 Dudani GRA 5 Dudani 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 
20 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani 

Monotone 

2.5 GRA 19 IDWM GRA 11 IDWM GRA 5 Dudani 
5 GRA 19 Dudani GRA 17 IDWM GRA 5 Dudani 

10 GRA 17 Dudani GRA 7 IDWM GRA 5 IDWM 
20 GRA 7 IDWM GRA 15 Dudani GRA 3 Dudani 



47 
 

PC5 

General 

2.5 GRA 3 Dudani GRA 3 Dudani GRA 3 Mean 
5 GRA 3 Mean GRA 3 Dudani GRA 3 Mean 

10 GRA 3 Dudani GRA 3 Dudani GRA 3 Dudani 
20 GRA 3 Mean GRA 3 Mean GRA 3 Mean 

Monotone 

2.5 GRA 3 Mean GRA 3 Dudani GRA 3 Dudani 
5 GRA 3 Dudani GRA 3 Mean GRA 3 Dudani 

10 GRA 3 Mean GRA 3 Mean GRA 3 Mean 
20 GRA 3 Dudani GRA 1 Mean GRA 3 Mean 

MW1 

General 

2.5 Manhattan 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 
5 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani 

10 Manhattan 3 Dudani GRA 3 Dudani Manhattan 3 Dudani 
20 GRA 3 Dudani Euclidean 3 Dudani GRA 3 Dudani 

Monotone 

2.5 Manhattan 5 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 
5 Manhattan 5 Dudani Manhattan 5 Dudani Manhattan 3 Dudani 

10 GRA 3 Dudani Manhattan 3 Dudani Manhattan 3 Dudani 
20 Manhattan 3 IDWM Manhattan 3 IDWM GRA 3 Dudani 

1GRA denotes the distance measure of ( ) ( ), 1 ,i j i jd x x GRG x x= − , as introduced in Section 3.2.1 
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Fig. 10 The parameter distribution of CVBkNNI on data ivy at MR = 10% 
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Fig. 11 The parameter distribution of CVBkNNI on data KC3 at MR = 10% 

Since the estimator of GRA-based distance measure, K = 3 with Dudani adaptation method is the 

most widely selected setting in most cases, this work also evaluates the imputation approach with 

this selected estimator predefined. This new approach is named as G3D, representing the three 

predefined parameters. Like Section 5.1, the imputation performance of G3D on each dataset is 

summarized in terms of various missingness scenarios. The results are shown in Table 14. The 
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performance is also compared with CVBkNNI, FWGkNNI, ICkNNI, DkNNI and MEI. As shown 

in Table 14, the imputation accuracy of G3D is consistent in general, especially in object-

oriented datasets. It is less superior than CVBkNNI but superior to FWGkNNI, ICkNNI, DkNNI 

and MEI in most cases. Although G3D is not the optimal solution by all means, it is 

recommended being applied in the incomplete software quality datasets as an alternative to the 

traditional KNN imputation strategies. It answers to RQ3. 

Left-tail Wilcoxon signed-rank tests are also used to verify if the performance of G3D. For 

example, in camel data, under the missingness scenario of general MP, MCAR mechanism and 

2.5% MR, the average RMSE of 30 replications is 0.098, the ‘2,3,4,5’ in the top-right position 

denotes that the corresponding 30 RMSE values from G3D imputation are significantly less than 

that from FWGkNNI, ICkNNI, DkNNI and MEI (See the footnote of Table 14). Therefore, in 

general, the performance of G3D is better than that of FWGkNNI, ICkNNI, DkNNI and MEI, 

especially in object-oriented datasets. In arc dataset, some of the average RMSE values are even 

smaller than that of CVBkNNI; however, this relationship is not significant. In the procedural 

datasets, the size of which is relatively smaller than that of object-oriented datasets. G3D is more 

frequently not the overall suboptimal imputation. All in all, there is no straightforward evidence 

that G3D would perform differently under different MMs. It performs worse than ICkNNI in 

procedural datasets if the MP is monotone. But in general, G3D, a KNN imputation approach 

based on MI-based GRA distance measure, K = 3 with Dudani adaptation, is better than 

FWGkNNI, ICkNNI, DkNNI and MEI in most cases in terms of imputation accuracy. 

 
Table 14 
The imputation performance of G3D compared with others1,2 

Data MP MR 
(%) 

G3D Data MP MR 
(%) 

G3D 
MCAR MAR NI MCAR MAR NI 

camel 

General 

2.5 0.0982,3,4,5 0.0912,3,4,5 0.1152,3,4,5 

PC5 

General 

2.5 0.0652,3,4,5 0.0693,4,5 0.0862,3,4,5 
5 0.1032,3,4,5 0.0972,3,4,5 0.1242,3,4,5 5 0.0692,3,4,5 0.0682,3,4,5 0.0972,3,4,5 

10 0.1112,3,4,5 0.1172,3,4,5 0.1392,3,4,5 10 0.0662,3,4,5 0.0702,3,4,5 0.1042,3,4,5 
20 0.1373,4,5 0.1363,4,5 0.1712,3,4,5 20 0.0722,3,4,5 0.0742,3,4,5 0.1191,2,3,4,5 

Monotone 

2.5 0.1102,4,5 0.1272,4,5 0.1302,3,4,5 

Monotone 

2.5 0.0585 0.061 0.0912 
5 0.1232,3,4,5 0.1352,3,4,5 0.1322,4,5 5 0.0634,5 0.0705 0.0902,4,5 

10 0.1282,3,4,5 0.1312,4,5 0.1532,3,4,5 10 0.0664,5 0.0672,4,5 0.0932,4,5 
20 0.1322,4,5 0.1352,3,4,5 0.1762,3,4,5 20 0.0672,4,5 0.0672,3,4,5 0.1181,2,3,4,5 

ant 

General 

2.5 0.1042,3,4,5 0.1133,4,5 0.1232,3,4,5 

MW1 

General 

2.5 0.0882,3,4,5 0.0942,3,4,5 0.1122,3,4,5 
5 0.1122,3,4,5 0.1162,3,4,5 0.1372,3,4,5 5 0.0992,3,4,5 0.1112,3,4,5 0.1302,3,4,5 

10 0.1222,3,4,5 0.1192,3,4,5 0.1502,3,4,5 10 0.1112,3,4,5 0.1272,3,4,5 0.1612,3,4,5 
20 0.1393,4,5 0.1363,4,5 0.1722,3,4,5 20 0.1312,3,4,5 0.1372,3,4,5 0.1962,3,4,5 

Monotone 
2.5 0.1332,4,5 0.1414,5 0.1482,3,4,5 

Monotone 
2.5 0.1202,4,5 0.1332,4,5 0.1455 

5 0.1432,3,4,5 0.1514,5 0.1472,3,4,5 5 0.1274,5 0.1402,4,5 0.1542,4,5 
10 0.1412,3,4,5 0.1412,4,5 0.1662,3,4,5 10 0.1322,4,5 0.1372,4,5 0.1732,4,5 
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20 0.1442,4,5 0.1432,3,4,5 0.1802,3,4,5 20 0.1292,4,5 0.1392,3,4,5 0.2062,4,5 

ivy 

General 

2.5 0.0912,3,4,5 0.0992,3,4,5 0.1142,3,4,5 

KC3 

General 

2.5 0.1272,3,4,5 0.1102,3,4,5 0.1412,3,4,5 
5 0.0952,3,4,5 0.0992,3,4,5 0.1282,3,4,5 5 0.1252,3,4,5 0.1232,3,4,5 0.1672,3,4,5 

10 0.1122,3,4,5 0.1142,3,4,5 0.1512,3,4,5 10 0.1252,3,4,5 0.1272,3,4,5 0.1882,3,4,5 
20 0.1403,4,5 0.1423,4,5 0.1892,3,4,5 20 0.1382,3,4,5 0.1412,3,4,5 0.2202,3,4,5 

Monotone 

2.5 0.1342,3,4,5 0.1262,4,5 0.1422,3,4,5 

Monotone 

2.5 0.1275 0.1364,5 0.1594,5 
5 0.1192,3,4.5 0.1322,3,4,5 0.1472,3,4,5 5 0.1472,4,5 0.1442,4,5 0.1682,4,5 

10 0.1292,3,4,5 0.1342,3,4,5 0.1602,3,4,5 10 0.1462,4,5 0.1402,4,5 0.2042,5 
20 0.1312,4,5 0.1362,3,4,5 0.1941,2,3,4,5 20 0.1472,4,5 0.1492,4,5 0.2052,5 

arc 

General 

2.5 0.0992,3,4,5 0.1002,3,4,5 0.1162,3,4,5 

MC2 

General 

2.5 0.110 0.0995 0.1922,5 
5 0.0892,3,4,5 0.0942,3,4,5 0.1432,3,4,5 5 0.1323 0.126 0.2112,3,5 

10 0.1062,3,4,5 0.1161,2,3,4,5 0.1492,3,4,5 10 0.1513 0.1463 0.2172,3,4,5 
20 0.1462,3,4,5 0.1472,3,4,5 0.2122,3,4,5 20 0.1553,5 0.1553,5 0.2371,3,4,5 

Monotone 

2.5 0.1041,2,3,4,5 0.1302,3,4,5 0.1222,3,4,5 

Monotone 

2.5 0.1605 0.1233 0.1852,5 
5 0.1292,3,4,5 0.1312,3,4,5 0.1402,3,4,5 5 0.1385 0.1365 0.2022 

10 0.1352,3,4,5 0.1302,3,4,5 0.1742,3,4,5 10 0.1254,5 0.1315 0.2002 
20 0.1362,3,4,5 0.1442,3,4,5 0.2152,3,4,5 20 0.1462,5 0.1342,4,5 0.2312 

1Filled in green: G3D performs better than CVBkNNI; Filled in blue: G3D performs better than FWGkNNI 
(Compare with Table 8). 
21 = CVBkNNI, 2 = FWGkNNI, 3 = ICkNNI, 4 = DkNNI, 5 = MEI 

 

5.4 Classification accuracy 

This part assesses the imputation effectiveness from another perspective, which compares 

different ML classifiers (KNN, Discriminant analysis, Naive Bayes and SVM) built on the 

complete data constructed after the imputation. It answers to RQ4 to compare and verify CA. 

Since the classification models cannot be exhaustively applied, most studies regarded this 

procedure as an auxiliary step evaluating the imputation performance.  

To present the impact of imputation on fault-proneness classification accuracy, four ML 

classifiers on the two relatively large imputed datasets: PC5 and camel, are conducted. To save 

space, only the data versions with MR = 10% are analyzed for comparison. The other 

missingness scenarios are kept as well. For each classifier, CA is computed after a 10-fold cross-

validation. G3D is also included in the experiment.  

Table 15 presents the results of CA. Note that ‘No imputation’ means we use the original data 

(w/o missingness simulation) for classification. ‘No imputation’, therefore, is a benchmark in the 

comparison. The imputed data is less distorted if the classification performance on which is as 

usual as that on the corresponding original one. The results clearly show that the classifiers based 

on either the original dataset or the incomplete one with MEI used generally present relatively 

worse classification performance. In terms of the CA after imputation, CVBkNNI and G3D are 

generally superior to others in most cases. And the ICkNNI has a suboptimal performance. In 
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terms of the classifiers, KNN, Discriminant analysis, and Naïve Bayes are more sensitive to 

imputation approaches than SVM. The performance of SVM is even not sensitive to MM or MP. 

In general, the results show that appropriate imputation approach could be beneficial to the CA 

of specific classifier. To sum, when using CVBkNNI and G3D as the imputation approach on the 

incomplete data, the classification bias could also be maintained or even reduced in commonly 

used classification tasks.  

 
Table 15 
The comparison of CA using different ML classifiers on data camel and PC5 with MR = 10% 

Data MM Imputation 
Approaches 

Classifiers and MP 
General Monotone 

KNN 
(K = 5) 

Discriminant 
Analysis 

Naive 
Bayes SVM KNN 

(K = 5) 
Discriminant 

Analysis 
Naive 
Bayes SVM 

camel 

MCAR 

No imputation 0.7701 0.785 0.775 0.792 0.776 0.786 0.770 0.792 
CVBkNNI 0.794 0.798 0.776 0.794 0.795 0.796 0.774 0.794 

G3D 0.793 0.792 0.768 0.793 0.792 0.794 0.771 0.793 
FWGkNNI 0.773 0.791 0.776 0.792 0.790 0.785 0.769 0.793 

ICkNNI 0.780 0.795 0.777 0.794 0.789 0.794 0.773 0.793 
DkNNI 0.779 0.793 0.771 0.793 0.779 0.795 0.769 0.793 

MEI 0.771 0.792 0.771 0.793 0.770 0.791 0.770 0.791 

MAR 

No imputation 0.770 0.786 0.771 0.792 0.776 0.783 0.771 0.793 
CVBkNNI 0.794 0.797 0.772 0.794 0.795 0.796 0.777 0.794 

G3D 0.794 0.793 0.772 0.794 0.795 0.795 0.768 0.794 
FWGkNNI 0.784 0.792 0.770 0.793 0.790 0.785 0.770 0.793 

ICkNNI 0.785 0.797 0.783 0.797 0.789 0.788 0.773 0.793 
DkNNI 0.787 0.792 0.770 0.794 0.779 0.792 0.768 0.793 

MEI 0.782 0.785 0.769 0.792 0.770 0.784 0.771 0.792 

NI 

No imputation 0.776 0.783 0.775 0.793 0.774 0.791 0.773 0.792 
CVBkNNI 0.795 0.794 0.775 0.794 0.792 0.796 0.774 0.794 

G3D 0.794 0.798 0.774 0.794 0.794 0.797 0.771 0.793 
FWGkNNI 0.785 0.789 0.775 0.794 0.783 0.792 0.770 0.793 

ICkNNI 0.789 0.793 0.780 0.795 0.784 0.792 0.771 0.793 
DkNNI 0.780 0.794 0.772 0.792 0.783 0.790 0.765 0.794 

MEI 0.776 0.788 0.768 0.792 0.772 0.786 0.768 0.794 

PC5 

MCAR 

No imputation 0.768 0.776 0.705 0.779 0.771 0.774 0.705 0.779 
CVBkNNI 0.781 0.783 0.709 0.780 0.790 0.781 0.708 0.780 

G3D 0.778 0.779 0.707 0.780 0.782 0.782 0.712 0.781 
FWGkNNI 0.772 0.772 0.706 0.780 0.781 0.775 0.702 0.780 

ICkNNI 0.787 0.783 0.713 0.781 0.782 0.779 0.706 0.780 
DkNNI 0.785 0.776 0.702 0.780 0.779 0.777 0.703 0.780 

MEI 0.766 0.774 0.709 0.780 0.760 0.779 0.706 0.780 

MAR 

No imputation 0.775 0.768 0.699 0.780 0.775 0.776 0.701 0.779 
CVBkNNI 0.776 0.786 0.704 0.781 0.786 0.789 0.707 0.780 

G3D 0.785 0.779 0.705 0.781 0.777 0.776 0.710 0.781 
FWGkNNI 0.765 0.773 0.699 0.779 0.782 0.776 0.706 0.779 

ICkNNI 0.786 0.786 0.704 0.780 0.776 0.775 0.710 0.779 
DkNNI 0.785 0.778 0.700 0.779 0.773 0.781 0.698 0.779 

MEI 0.763 0.773 0.700 0.779 0.758 0.778 0.703 0.779 

NI 

No imputation 0.776 0.775 0.706 0.779 0.768 0.774 0.694 0.779 
CVBkNNI 0.783 0.780 0.711 0.781 0.776 0.788 0.700 0.781 

G3D 0.779 0.786 0.704 0.780 0.772 0.777 0.697 0.779 
FWGkNNI 0.759 0.775 0.709 0.780 0.768 0.777 0.695 0.780 

ICkNNI 0.787 0.784 0.717 0.784 0.776 0.776 0.700 0.779 
DkNNI 0.773 0.777 0.708 0.780 0.774 0.775 0.698 0.780 

MEI 0.756 0.775 0.703 0.780 0.754 0.772 0.693 0.779 
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1The maximum CAs in each condition are in green; the minimum CAs are in red; while the 2nd largest CAs are 
marked in blue. 

6. Threats to validity 

The threats to validity are generally distributed into four groups: conclusion, internal, construct, 

and external validity. The conclusion validity is related to the ability to draw significant correct 

conclusions; regarding which, we carefully applied the statistical tests, showing statistical 

significance for the obtained results. Moreover, we have used two relatively large datasets (camel 

and PC5) to mitigate the threats related to the number of observations composing the datasets. 

The construct validity refers to the agreement between a theoretical concept and a specific 

measure. As to the evaluation of different K nearest neighbor (KNN) imputation approaches, we 

made use of one balanced performance measure and 8 public software quality datasets. The data 

repository used in the work has been previously used in numerous empirical quality studies. 

As the study concentrates on a structural investigation of a novel KNN imputation approach, the 

internal validity on experiment design is presented in one aspect: CVBkNNI is a computation-

consuming way to improve imputation accuracy. However, if the imputation accuracy is the top 

priority, the value of CVBkNNI is then obvious. The proposal of G3D stands as an alternative to 

mitigate this issue as well.  

The threats to external validity are controlled well in this study. Eight object-oriented and 

procedural software quality datasets are examined in the study. Meanwhile, 3 missingness 

mechanisms (MMs), 2 missingness patterns (MPs), and 4 missingness ratios (MRs) are also 

considered during missingness simulation for testing the performance of the proposed imputation 

approach under various conditions. One issue is that we did not consider adopting more different 

kinds of imputation approaches, for example, the Bayes multiple imputation (BMI), as the 

competitor to CVBkNNI. This study only focuses on the improvement and comparison of KNN 

related imputation approaches. In the future work, more comparison studies shall be explored. 
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7. Conclusions and future work 

This empirical study proposes a novel K Nearest Neighbor (KNN) based imputation approach: 

called CVBkNNI, and its improved performance has been validated in the software quality 

prediction domain. CVBkNNI is different to other approaches since it does not have 

predetermined fixed estimator, and instead it adaptively selects the optimal estimator for each 

missing value in the dataset. The estimator of CVBkNNI includes a pool of three distance 

measures, multiple choices of K values together with five adaptation methods. Our result shows 

that CVBkNNI outperforms other competing approaches in overall imputation accuracy. From 

the returned estimator of the CVBkNNI, the optimal parameter combination of KNN imputation 

for software quality dataset is then correctly determined, which is named as G3D. Further 

evaluations on the CVBkNNI have been performed, specifically on incomplete datasets and 

compared several other competing approaches. 

In particular, 4 findings are noteworthy from the study:  

(1) Our proposed cross-validation based KNN imputation could further improve the imputation 

performance on software quality datasets, in which calculating the feature relevance during 

measuring the pair distance is very necessary. 

(2) The impact of missingness mechanisms and patterns on imputation performance exists. Non-

ignorable missingness mechanism could significantly impact the imputation accuracy. The 

impact of missingness pattern is related to the dataset.  

(3) The performance of fault-proneness classification is acceptable when CVBkNNI was used as 

the preprocessing method. 

(4) For KNN imputation using K = 3 and Dudani adaptation, together with the distance measure 

based on mutual information weighted grey relational analysis, is considered ideal and 

recommended for incomplete software quality datasets. 

CVBkNNI could be easily applicable to other domains in software engineering, which are 

subject to further investigations in our future work. Theoretically it would further improve 

imputation accuracy when dealing with incomplete datasets, but also helps to find the optimal 

KNN imputation algorithm under different circumstance. Besides, determining more meaningful 

parameter configurations or components to further improve the accuracy of CVBkNNI is also 

being investigated. 
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