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Abstract—We propose a framework for Twitter events detec-
tion, differentiation and quantification of their significance for
predicting spikes in sales. In previous approaches, the differenti-
ation between Twitter events has mainly been done based on spa-
tial, temporal or topic information. We suggest a novel approach
that performs clustering of Twitter events based on their shapes
(taking into account growth and relaxation signatures). Our study
provides empirical evidence that through events differentiation
based on their shape one can clearly identify clusters of Twitter
events that contain more information about future sales than
the non-clustered Twitter signal. We also propose a method for
automatic identification of the optimum event window, solving
a task of window selection, which is a common problem in the
event study field. The framework described in this paper was
tested on a large-scale dataset of 150 million Tweets and sales
data of 75 brands, and can be applied to the analysis of time
series from other domains.
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event study; spikes; social media; Twitter

I. INTRODUCTION

In the last decade social media have extended their appli-
cation beyond their original domain changing the way people
communicate, share ideas and opinions. Due to the large
amount of information posted online it has become possible to
track how people react to different world events in real time. In
this context, detection of events in social-media has become an
attractive problem in data mining. Event detection approaches
have been proposed in the last few years [1]–[5]. For example,
[2] suggested a multiscale event detection method, which takes
into account temporal and spatial scales of events in social-
media and [3] proposed to extract events from social data
by representing textual data in form of sequences of numeric
values.

As was highlighted by [6], the problem of event detection is
closely related to the problem of event clustering. For example,
identification of different types of news events can shed light
on the problem of detecting the most predictive events [7]–
[9]. The distinction between the different types of events in
these studies was performed based on the temporal information

and the topic that was discussed: initial public offerings,
or earnings announcements, or stock splits. In the context
of hugely popular social media networks, it is important to
distinguish different types of events not only based on their
content, spatial and temporal information, but to take into
account the dynamic of how information spreads through
social networks. For example, a discussion on Twitter would
evolve differently through time depending on whether it was
initiated by the brand through a marketing campaign or came
as a result of a word-of-mouth information sharing. A post-
event effect on sales might also be different for the two
scenarios. Studying these internal dynamics is a challenging
task and requires understanding the rules of human collective
behaviour. Progress in this direction was achieved by [10]–
[13] who were able to get insights into the nature of events
in blogosphere activities [10], views of Youtube videos [11],
Amazon books sales [12], [13] by studying the growth and
relaxation signatures of those events.

In this paper we incorporate the knowledge about the
internal dynamics of social-media events by introducing a
framework that allows to automatically detect events and
cluster them based on their growth and relaxation signatures.
We used this framework for the analysis of a large-scale dataset
that contained daily sales figures for 75 brands from the retail
sector (supplied by Certona Inc.) and daily Twitter sentiment
time series for the same brands. The objective of the analysis
is to detect events in sales and in Twitter sentiment, and
measure whether Twitter sentiment events could be used to
predict events in sales. To the best of our knowledge, there
are no extensive studies that measure the impact of a specific
social-media event on sales of a company. The only study that
mentions evaluation of Twitter events in relation to sales is the
study by Dijkman et al. [14], however their analysis is limited
to just one company and 12,780 tweets.

We demonstrate that clustering of events based on their
shapes serves as a filter of Twitter signal by applying our
clustering algorithm to Twitter sentiment events and revealing
classes of Twitter events that contain more information about
future sales than the non-clustered Twitter signal.
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In order to measure the significance of a Twitter event it is
necessary to identify the event date and set the event window
within which the analysis is performed ( [15]), however, the
necessary step of defining an event window is challenging
[16]–[18]. To solve this problem, in our framework we pro-
posed not to specify event window explicitly, but to analyse
the predictive power of Twitter along a wide range of win-
dows using cumulative probabilities. Our statistical approach
allowed us to automatically identify the windows during which
Twitter events had significant power to predict spikes in sales.

The main contributions of this paper are as follows:

• Defined a framework for automatic events detection,
events differentiation and evaluation of their impor-
tance;

• Proposed a novel method for events clustering based
on their growth and relaxation signatures;

• Extended the event study field by proposing a method
for automatic identification of the optimal event win-
dow;

• Performed a large-scale application of proposed
framework to retail brands;

II. PROPOSED FRAMEWORK

In this study, we propose a framework for events detection,
differentiation and evaluation of whether events in one time
series can be used to predict events in the other time series.
The framework consists of three steps: (A) events detection;
(B) events clustering; (C) quantification of events significance.
The suggested framework can be used for analysis of any kind
of time series with the following necessary conditions: 1) time
series should correspond to the same time period; 2) time series
should have the same aggregation window.

In this paper we demonstrate the application of the frame-
work to retail brands using the following datasets:

1) Daily Sales time series provided by Certona company,
related to 75 brands over the period of one year,
from November 1, 2013, to October 31, 2014. Data
was normalised using a z-score [19] to make it
comparable across different brands.

2) Daily Twitter Sentiment time series that cover the
same time period. The dataset includes sentiments of
more than 150 million tweets that mention the names
of selected brands. Sentiment analysis of Twitter
messages was performed using our own tool [20],
which has shown improved performance compared to
known benchmarks as well as has been successfully
applied in other works [21]. The outcome of the
algorithm is a label assigned to each Twitter message:
positive, negative or neutral. Daily Twitter Sentiment
time series were calculated as a ratio of number of
positive messages to a number of negative messages
in a day.

A. Events Detection

Definition: An event is a quantitatively significant change
of behaviour of a dynamic phenomenon over time. In this

Fig. 1. Signatures of a sales event. The green color represents the growth
signature of the event, the red color represents the relaxation signature and
the red circle is the peak of the event.

paper, a Twitter event is an anomalous uplift of sentiment on
Twitter and sales event is an extreme increase in volume of
sales.

Each event can be characterised by its duration (from
few hours to few days), the growth signature, peak and the
relaxation signature. In Figure 1, Pstart denotes the start of the
event, Ppeak denotes the peak of the event, Pend represents the
end date of the event; the subset of data points between Pstart

and Ppeak is a growth signature, the subset between Ppeak

and Pend defines the relaxation signature. In our framework
the process of identifying the event and its corresponding sig-
natures consists of two steps: 1) peak detection; 2) extraction
of growth and relaxation signatures.

1) Peak Detection: As the first step of the events detection
process we identify peaks in data that indicate anomalous
behaviour. For this purpose we compare the performance of
three outlier detection methods:

1) Extreme Studentized Deviate Test (ESD identifier)
[22]. For a sample xN = {xi}Ni=1 it classifies any
point more than t standard deviations away from the
mean to be an outlier, where the threshold value t is
most commonly taken to be 3. In other words, x is
identified as an outlier if:

|x−X| ≥ tσ (1)

where X is the mean and σ is estimated standard
deviation of the data sequence.

2) Hampel identifier [23], [24]. For this outlier de-
tection method, the mean is replaced with median
of the residuals and the standard deviation with the
median absolute deviation estimate (MAD). MAD is
a robust measure of the variability of univariate data.
To compute MAD, one calculates the median of the
absolute deviations of each historical value from the
data’s median.

MAD(xN ) = X(|x1 −XN |, ..., |xN −XN |) (2)

where X is the median. x is identified as an outlier
if:

|x−XN | ≥ g(N,αN )MAD(xN ) (3)
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Where g is a function related to the number of data
points and a specified type I error (see [25], [26]).

3) Median and InterQuartile Range (IQR) [27]. For
this outlier detection method, one calculates the 25th
percentile and the 75th percentile of the data. The
difference between the 25th and 75th percentile is the
interquartile deviation IQR. The historical value x is
classified as an outlier if it is outside of the closed
range:

[Q1 −K ∗ IQR;Q3 +K ∗ IQR] (4)

where IQR = Q3 − Q1, Q1 and Q3 are the 25th
and the 75th percentiles respectively, and K is often
selected equal to 1.5.

When performing peaks detection it is important to con-
sider that Sales and Twitter time series are non-stationary. We
observe weekly patterns in data, for example, tweets volume
on Fridays and weekends is much higher than during the other
days of the week. If the volume of Friday’s tweets was com-
pared to the volume of Thursday’s tweets, the peak detection
method would show a spike on Friday, however we want to
detect only special events and not regular bursts. To account for
non-stationarity, the three outlier detection measures described
above (ESD/Hampel/IQR) are computed from the observations
within a moving window that is comprised of data points from
the same day of the week. For example, if the data point of
primary interest is Friday, a moving window will include the
data point of primary interest and the K prior Friday values.
In this way, Friday values will only be compared to the K
previous Fridays, Saturdays will be compared to K previous
Saturdays and so on.

2) Extraction of Growth and Relaxation Signatures: For
each peak Ppeaki

that was detected during the first step, the
goal is to identify the data point at which the event starts
Pstarti and the data point at which the event finishes Pendi

.

Let us define the points at which the time series change
its direction as change-points, and the time intervals between
consecutive change-points as time segments. In Figure 2 points
C = C1, C2, ..., C9 represent change-points. To extract the
growth signature, the immediate left neighbouring point of
Ppeaki

is analysed to determine whether the point is a change-
point. The procedure is repeated with consecutive left neigh-
bours until the stopping criterion is met. The first change-point
on the left side from Ppeaki

that meets the stopping criterion is
considered to be the start point of the event Pstarti . To extract
the relaxation signature, an identical procedure is performed
with right neighbours of Ppeaki . The first change-point on
the right side from Ppeaki that meets the stopping criterion
is considered to be the end point of the event Pendi .

The stopping criterion is considered to be met if any one
of the following three conditions is fulfilled:

1) The first condition is fulfilled if the distance between
the current change-point Ck and the peak Ppeaki

exceeds the maximum distance Dmax, predefined by
the user. This condition alows to limit the duration
of the event. Formally,

(Ck − Ppeaki) > Dmax (5)

Fig. 2. An example of a sales event. C = C1, C2, ..., C9 denote change-
points. Dmax and dist are two measures used in the first and second stopping
conditions.

2) The second condition is fulfilled if the distance
between the current change-point Ck and the next
change-point Ck+1 exceeds the distance dist, prede-
fined by the user. This rule allows to include noisy
points, that do not effect the overall trend, as part of
the signature. For example, points C2, C4 and C7 in
Figure 2. Formally,

(Ck − Ck+1) > dist (6)

3) The third condition is fulfilled if the y value of the
current change-point Ck (a sales figure or a sentiment
value that corresponds to Ck) became lower than the
local median (the median calculated over a moving
window). This rule is important in order to avoid
including non-peaking points as part of the event.

To illustrate, the change-point C5 in Figure 2 became a
starting event point Pstart, since it fulfilled the first condition
(C5 − Ppeak) > Dmax; the change-point C8 became the end
point Pend, since it satisfied the second condition (C8−C9) >
dist.

All time segments between Pstarti and Ppeaki denote a
growth signature, while all time segments between Ppeaki and
Pendi represent a relaxation signature.

The algorithm for extracting the growth signature:
c u r r e n t P o i n t = Xpeak − 1
s t o p p i n g C r i t e r i o n = FALSE
whi le ( s t o p p i n g C r i t e r i o n != TRUE){

i s C h a n g e P o i n t = C h e c k I f C h a n g e P o i n t ( c u r r e n t P o i n t ) ;
i f ( i s C h a n g e P o i n t ){

n e x t C h a n g e P o i n t = F indNex tChangePo in t ( c u r r e n t C h a n g e P o i n t )
s t o p p i n g C r i t e r i o n = A n a l y s e S t o p p i n g C r i t e r i o n ( )
i f ( s t o p p i n g C r i t e r i o n != TRUE)

c u r r e n t P o i n t = n e x t C h a n g e P o i n t − 1
}
e l s e

c u r r e n t P o i n t = c u r r e n t P o i n t − 1
}
Xstart = c u r r e n t P o i n t

To extract the relaxation signature of the event, one should
replace ”-1” with ”+1” in the above code, and Xstart with
Xend.

B. Events Clustering

One of the objectives of this study is to identify different
types of Twitter Sentiment and Sales events based on their
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shape. Solving events clustering problem is equivalent to
solving a similarity matching problem for the collection of
time series representing events. In this study, we used KMeans
clustering [28] and compare three approaches for calculating
the distance between data points, two known methods and one
novel method that we propose. K-means was chosen because
it is simple, widely used and computationally efficient.

1) Euclidean Distance (ED) is the most used distance
function that calculates the similarity between two
sequences of the same length by summing the ordered
point-to-point distance between them.

d(T, S) =

√√√√ N∑
i=1

(Ti − Si)2 (7)

Where T and S are time series of length n.
2) Dynamic Time Warping Distance (DTW). While

Euclidean distance is a linear map between points,
DWT [29] allows non-linear mapping. Given two
time series T = {T1, T2, ..., Tn} and S =
{S1, S2, ..., Sm} of length n and m respectively, a
distance matrix n ∗ m is constructed where each
element represents a pairwise Euclidean distance be-
tween points in the two sequences:

distMatrix =

[
d(T1, S1) ... d(T1, Sm)

... ... ...
d(Tn, Sn) ... d(Tn, Sm)

]
(8)

The objective of DTW is to find the warping path
W = {w1, w2, ..., wK} of continuous elements on
distMatrix that minimizes the following function:

DTW (T, S) = min


√√√√ K∑

k=1

wk

 (9)

3) First Derivative Based Distance (FDD). We pro-
pose a new way of calculating the distance measure
based on the first derivatives of the time series. Our
algorithm works as follows:
• Each time series Xi = {(t1i , y1i ), ..., (tni , y

n
i )}

is divided into L number of sequential stripes
of equal length along the time-axis [30],
where ti is time and yi is a corresponding
value;

• The first derivative dli for each stripe is cal-
culated as

dli =
(yl+1

i − yli)
∆t

(10)

where (tli, y
l
i) and (tl+1

i , yl+1
i ) are the start

end end coordinates for the lth stripe of the
ith time sequence;

• The Euclidean distance is computed between
the corresponding first derivatives of both
time series.

• Parameter L is chosen to be equal to one third
of the average length of the time series.

Fig. 3. Schematic representation of successful Twitter events for the time
window of 7 days. Red bars represent sales events, blue bars represent Twitter
events, pink circles highlight successful Twitter events.

C. Quantification of Events Significance

The objective of this study is to measure the ability of
events in one time series to predict events in the other time
series. Using Twitter sentiment time series and sales time series
as a case-study, the null hypothesis, H0, can be defined as
follows: sales events follow Twitter events in a random manner.
To test the hypothesis we propose two significance tests.

1) Statistical Test One: This test evaluates how significant
the number of successful Twitter events is. A Twitter event is
considered to be successful if within a specified event window
(7, 14, 21 days, etc.) there is a sales event following it (see
Figure 3). By defining the event window within which the
analysis is performed, we follow a traditional approach of the
event study (as proposed by [15]).

To measure the significance of the observed number of
successful events we randomise the positions of sales events
1000 times, calculate the number of successful events for each
randomised scenario, and then compare the empirical results to
the results after randomisation. The null hypothesis is rejected
for a p-value of less than 0.05. If the number of observed
successful Twitter events is outside of 95% confidence interval
for the randomised case, we can conclude that occurrence of
Twitter events before sales events is not random.

2) Statistical Test Two: Selection of the event window, as
performed in the first test, is a challenging task. In the second
test, we propose an algorithm that allows to simultaneously
measure the importance of events for all possible event win-
dows and then automatically determine which event window
is the best choice.

In this test, we consider that a Twitter event has a power
to predict sales if at least one sales event appears after the
beginning of that Twitter event. A sales event Si might happen
after a Twitter event Ti at different distances. For each Twitter
event we store the distance di at which the first sales event
happened. In the situations when multiple Twitter events are
followed by one sales event we consider that all these Twitter
events contributed to the appearance of a single sale event. We
assign a weight wi to each Twitter event, which is inversely
proportional to the distance between the Twitter event and the
following sales event: the longer the distance between a sale
and a Twitter event, the smaller the weight, and vice versa. The
weights of Twitter events that have one sale following them
should sum up to one. This is the most conservative approach,
which prevents us from over-counting the number of predictive
events, although it may result in in under-counting them.

For example, in Figure 4, we observe that a sale event
S3 has three Twitter events, T2, T3 and T4, preceding it.
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Fig. 4. Schematic representation of sales events together with Twitter events
and their weights. Red bars represent sales events, blue bars represent Twitter
events.

We consider that all three Twitter events contributed to the
appearance of the sales event S3. Each of the Twitter events
is being assigned a weight w2, w3, w4, respectively, with the
sum of the weights being equal to one: w2 + w3 + w4 = 1. The
weights w2, w3, w4 are inversely proportional to the distances
d2, d3 and d4 at which Twitter events occurred. For example,
the longest distance is between the Twitter event T2 and the
sale event S3, thus, T2 event should have the smallest weight
assigned to it. Conversely, the shortest distance is between
event T4 and the sales event, thus, it should be assigned the
highest weight, assuming that Twitter event T4 has the highest
probability of contributing to the occurrence of the sale event
S3.

In this test, we are interested in analysing the probability
of observing at least one sales event after a Twitter event for
each event window. For this purpose we calculate a cumulative
probability for each distance using the following steps:

• Calculate the time interval di between each Twitter
event T and the first following it sales event S.

• Calculate the corresponding weight for each Twitter
event wi.

• Sort Twitter events in the incremental order of dis-
tances.

• For each Twitter event calculate the probability to have
at least one sales event following it, by dividing the
total number of events for each distance by the sum
of their weights.

• Compute the cumulative probability for every distance
by summing up the probabilities of the previous dis-
tances.

To identify the event windows at which Twitter events
have significant power to predict sales events we perform
a randomisation test. We randomise positions of all sales
events, preserving their number and duration. The randomi-
sation is made in a way that events do not overlap. The
randomisation process is repeated 1000 times, and for each
run the cumulative probability is calculated. To quantify the
significance we compute the difference between the observed
and randomised cumulative probabilities for each of 1000
runs. We then calculate the average difference, standard errors
and confidence intervals. We reject the null hypothesis if the
2.5 percentile of the differences is higher than zero, which
means that 97.5% of all differences are higher than zero. This
allows us to conclude that that the observed system has a

Fig. 5. Results of peak detection for sales data using three different methods:
(a) ESD identifier; (b) Hampel filter; (c) IQR. Red dots denote peaks in time
series.

statistically significant advantage over the randomised system,
and, therefore, sales are likely to follow Twitter events in a
non-random manner.

III. APPLICATION OF THE FRAMEWORK TO RETAIL
BRANDS

Today, consumers leave feedback about their customer
experiences and express views about products on social media
websites. This information can be relevant for retail brands to
predict sales, achieve more insight on inventory management,
plan marketing campaigns and adjust the offer in real time.
The ultimate goal of any brand would be the ability to predict
spikes or abnormal events in sales using the information from
social-media.

In this study, we use the proposed framework for events
detection and differentiation in order to meet two business
objectives:

1) Quantifying the significance of all Twitter events in
predicting sales events. This objective allows us to
understand whether non-filtered Twitter signal con-
tains useful information about sales.

2) Quantifying the significance of specific types of Twit-
ter events in predicting sales events. The goal of this
objective is to understand whether different dynamics
of Twitter behaviour (events with different types of
growth and relaxation signatures) have different effect
on future sales, and to identify the dynamics that have
significant predictive power.

A. Events Detection Results

The first step of the events detection process is identifica-
tion of individual peaks in time series. In our analysis we used
a moving window equal to 7 days for calculating the mean and
the median.

Comparing the results of three peaks detection methods, we
observed that the ESD identifier missed some relevant peaks.
The problem with this method is that both the mean and the
standard deviation are often extremely sensitive to the presence
of outliers. In fact, if the level of outliers is higher than
10%, ESD detects no outliers at all. On the contrary, Hampel
filter identified even small increases in sales as anomalous
peaks. Hampel filter is much more resistant to the influence of
outliers, however, it can be too aggressive in classifying values
that are not really extreme. It can be shown that if more than
5% of the data points have the same value, MAD is computed
to be 0, so any value different from the residual median is
classified as an outlier. Compared to ESD and Hampel filter,
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Fig. 6. Different types of Twitter sentiment events obtained using K-means with (a) ED, (b) DTW and (c) FDD.

the IQR method showed superior performance. It captured the
big spikes in data and did not suffer from identifying small
increases in sales as outliers. We therefore used IQR as the
method in our final analysis, since it provided a good balance
between the amount of false-positives and false-negatives.

In the next step, we performed extraction of events signa-
tures as described in section II-A2. As a result, we identified
810 events in Twitter sentiment and 760 sales events across
75 brands.

B. Events Clustering Results

K-Means clustering of Twitter sentiment events revealed
interesting results: three distinct clusters of shapes persisted
across all methods (Fig. 6): a cluster with symmetric growth
and relaxation dynamics; a cluster with a long growth signature
and a short relaxation signature; a cluster with a short growth
signature and a long relaxation signature. Using the elbow
method [31] we identified that the optimum number of clusters
for Twitter sentiment is six. This number of clusters allowed to
capture the three main dynamics of events as well as variations
in the slopes of growth/relaxation for each method.

Clustering based on all three types of distance measures
(ED, DTW, FFD) allowed to capture the three main dynamics
of Twitter sentiment events, however, the measure of spread
between cluster objects was different for the three measures:

• Euclidean distance results. Extracted Twitter sen-
timent events have a duration in the range between
7 and 42 days. Events of different lengths might
have similar shapes and should be clustered into one
group. Clustering based on ED failed to produce this
outcome. Since ED performs linear mapping, in most
cases the ED between the time series of similar lengths
is smaller than the distance between the time series
of varying length, independently of the growth and
relaxation shapes. As a result, ED grouped the time
series primarily based on their length (Fig. 6(a)). Apart
from that, Euclidean distance doesn’t handle outliers,
and it is very sensitive to signal transformations:
shifting, amplitude and time scaling. These drawbacks
make Euclidean inappropriate for our application.

• DTW results. DTW was designed to handle time
sequences of varying length, solving the problem of
ED. However, matching the shapes that do not line up
in X-axis introduced a different kind of problem for
our study: DTW often grouped together time series
that have a non-matching location of the peak. This
resulted in noisy clusters (Fig. 6(b)). Additionally, a
non-linear mapping is computationally very expensive.

• First Derivative based distance results. Our new
FDD approach, based on the first derivatives of the
strips, produced the most clean results. Figure 6(c)
shows that the distance between time series within
each class is smaller than for the other two clustering
methods. Our approach resolved the problems faced
with the other two methods:

1) FDD is able to cluster time series of dif-
ferent lengths by automatically normalising
them to a number of data points equal to
the number of stripes. The clustering con-
siders the growth/relaxation signatures of the
events, since the higher level feature of the
first derivative allows to extract information
about the shape. This solves the problem
experienced with the Euclidean distance.

2) FDD approach uses linear mapping between
points which allows to capture the location of
the peak in time and solves the problem of
DTW.

3) By taking into consideration only high-level
features of the time series we reduce dimen-
sionality and thus, reduce noise. This also
significantly reduces the computation time.

Since results based on the FDD approach were better than
the results for the other two methods, further analysis was
performed using only the outcomes of FDD clustering.

C. Quantifying the significance of all Twitter events in pre-
dicting sales events

In this scenario, we performed analysis of the predictive
power of Twitter events before clustering them into different
groups.

1) Statistical Test One: In the first significance test, we
calculated the number of successful Twitter events for both
observed and randomised scenarios, as described in section
II-C1. The analysis was performed for two event windows: 7
days and 21 days.

Table I summarises the results. For both event windows the
number of empirically observed successful events appeared to
be significantly larger than the number of successful events
after randomisation of sales. For example, we empirically
observed that 161 Twitter sentiment events had at least one sale
event following them within 7 days. Conversely, in cases when
the positions of sales events were randomised, the average
number of Twitter events that had a sales event following them
within 7 days was 136.93 with the 95% CI [134.9; 138.96].
Therefore, the empirical result of 161 was outside of the 95%
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TABLE I. NUMBER OF SUCCESSFUL TWITTER EVENTS FOR TWO EVENT WINDOWS, 7 DAYS AND 21 DAYS.

Sentiment events Predictive within 7 days Predictive within 21 days
Empirical Results 161 434

Randomised Results 95% CI 136.93 [134.9; 138.96] 417.52 [415.09; 419.96]

Fig. 7. (a) Cumulative probability of having a sale event within a specified time interval after a Twitter Sentiment event, (b) Difference between cumulative
probabilities of observed and randomised data for Twitter Sentiment. The green line represents empirical results, the black lines represent randomised results
and the blue lines represent 2.5 and 97.5 percentiles.

CI. Similar dynamic was observed for the event window of 21
days, suggesting that the cases when Twitter events precede
sales events do not occur by chance.

2) Statistical Test Two: In this test, we calculated a cu-
mulative probability of having at least one sales event after a
Twitter event for both, observed and randomised scenarios, as
described in section II-C2.

In Figure 7(a), the green line is the empirical cumulative
probability and the black lines are cumulative probabilities for
the randomised scenarios. We also calculated the differences
between the observed cumulative probability and each of
the randomised probabilities (Figure 7(b)). If there was no
underlying relationship between Twitter and sales events, the
median of the differences between the observed cumulative
probability and probabilities obtained after randomisation of
sales events, would be close to zero. However, Figure 7(b)
shows that the median is above zero along with 2.5 percentile
of differences for the first 21 days. According to these results,
we can reject the null hypothesis with the confidence of 97.5%,
and conclude that sales events follow Twitter events in a non-
random manner. The period during which the 2.5 percentile
line is above zero defines the optimum event window which
corresponds to an interval of 21 days between the sales event
and the Twitter event. In this scenario, there is a significant
probability that the observed sale event did not happen after
the Twitter event by chance.

D. Quantifying the significance of specific types of Twitter
events in predicting sales events

In this section we clustered Twitter events into six classes
using the FDD method as described in section II-B (Fig. 6(c)).
We then analysed the predictive power of each Twitter event
class independently. The null hypothesis, H0, was reformulated
for the case of multiple Twitter events types as follows: Twitter
sentiment events of different types appear before sales events
in a random manner.

1) Statistical Test One: To test the null hypothesis we
calculated the occurrence of each event type as a percentage
of total number of successful events.

The results for a 7-days horizon are shown in table II,
where the first line presents observed proportions of successful
events of each type, and the second line presents proportions
of each event type after randomisation. From 161 observed
Twitter sentiment events that were classified as successful
within 7-days the majority of events (26.09%) were classi-
fied as events of class 4, whereas the event class that had
the smallest representation appeared to be class 6 (9.32%).
Comparing the empirical proportions (the first row in table II)
with the proportions after randomisation (the second row in
table II), we observe that the results for event types 2, 3, 4 and
5 are significantly different from random results. Specifically,
event types 3 and 5 are significantly under-represented while
event types 2 and 4 are significantly over-represented. Very
similar results can be observed for the 434 events that were
successful within 21 day (table III). We observe that the
relative frequencies of types 3, 4, 5 and 6 are significantly
different from random.

Comparing the results for different distances, 7 and 21
days, we observe that relative frequencies of events types
change depending on the time interval. For example, the event
of type 4 is over-represented for the 7 days distance and under-
represented for the 21 days distance.

Since we observed significant deviations from random in
the proportions of different types of events, we can reject the
null hypothesis and conclude that the occurrence of different
types of Twitter events before sales events is not random. These
means that different Twitter clusters have significantly different
power to predict events in sales.

2) Statistical Test Two: As in III-C1, we calculated the
cumulative probabilities of having at least one sales event after
any Twitter event, however, in this test the probabilities were
computed individually for every Twitter event type. To measure
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TABLE II. RELATIVE FREQUENCIES OF SUCCESSFUL TWITTER EVENTS FOR SUCCESS TIME HORIZON OF 7 DAYS.

Event Types Event Type 1 Event Type 2 Event Type 3 Event Type 4 Event Type 5 Event Type 6
Observed, % 10.55 23.6 13.66 26.09 16.77 9.32

Random 95% CI 10.88 [10.43; 11.32] 20.22 [19.56; 20.86] 16.91 [16.28; 17.54] 22.21 [21.6; 23.12] 20.18 [19.31; 20.71] 9.62 [9.18; 10.05]

TABLE III. RELATIVE FREQUENCIES OF SUCCESSFUL TWITTER EVENTS FOR SUCCESS TIME HORIZON OF 21 DAYS.

Event Types Event Type 1 Event Type 2 Event Type 3 Event Type 4 Event Type 5 Event Type 6
Observed, % 11.06 20.51 17.74 22.35 19.35 8.99

Random 95% CI 10.91 [10.61; 11.08] 20.30 [20.07; 20.53] 16.43 [16.23; 17.14] 22.63 [22.38; 23.13] 19.90 [19.38; 20.13] 9.83 [9.61; 10.00]

Fig. 8. Difference between cumulative probabilities of observed and randomised data for Twitter Sentiment events of different types. The red lines correspond
to the difference for the specific Twitter type, the green lines correspond to the difference for the non-clustered Twitter signal, the blue lines represent the 2.5
and 97.5 percentiles.

the significance of predictive power of each individual Twitter
cluster we calculated the differences between the empirical and
randomised results (Fig. 8).

For events types 2, 4, 5 and 6 we observe that: 1) in the first
few days/weeks, the 2.5 percentile of the differences between
observed and randomised results is above zero, which indicates
that sales events follow Twitter sentiment events of type 2, 4,
5 and 6 in a non-random manner; 2) the difference between
observed cumulative probability for a specific Twitter type
and the randomised sequences (red graph) is greater than the
difference between the observed cumulative probability for the
non-clustered Twitter signal and the randomised data (green
graph), which means that signals of the event types 2, 4, 5 and
6 have better predictive power than the non-clustered Twitter
signal. This is a very important finding which means that by
using the signals solely of event types 2, 4, 5 and 6 we filter
Twitter signal from noise, and can achieve higher accuracy of
predicting sales events. It is interesting to notice that event type
2 has a consistent significant predictive power during the first 3
weeks after the event (the 2.5 percentile is continuously above
zero), while event type 4 shows significant predictive power
only during the first two weeks; event type 5 is predictive
between 12 and 22 days; event type 6 is only predictive for a
short period of time during the third week after the event.

This information can be incorporated into a forecasting
model that considers the predictive power of different Twitter
events at different distances. For example, the Twitter Senti-
ment events of type 2 can be used to predict sales events within
the first 3 weeks after the twitter event, whereas Twitter events
of type 4 can be used to predict sales events only within the

first 2 weeks after a Twitter event.

IV. CONCLUSIONS

In the era of social-media networks, brands closely follow
online discussions about their products and services in order
to understand their consumers. In this context, detection of
spikes in social-media could be of key importance for many
retail brands.

To address these needs, we proposed a framework that
allows automatic events detection, clustering and quantification
of events’ significance. The framework was tested on a large-
scale dataset of 150 million Tweets and sales data of 75 brands.

Our research presents a contribution to the field of the event
study by proposing a novel approach for filtering Twitter signal
from noise by clustering it into different event types based on
the growth and relaxation signatures. The predictive power of
Twitter events in this study was evaluated using two scenarios:
in the first scenario we performed the analysis for the non-
clustered Twitter signal; in the second scenario we clustered
Twitter sentiment events based on their growth and relaxation
signatures and calculated the statistics of successful predictions
separately for every event type. The main contribution of our
research is identification of specific event types that have the
power to predict events in sales.

The results can be summarised as follows:

• Twitter sentiment events can significantly improve
prediction of events in sales.
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• Events can be clustered into categories based on their
shapes (position of the peak, growth and relaxation
signatures).

• Different event shapes are differently associated with
sales.

• Some sentiment event types have significantly higher
predictive power than the non-clustered Twitter signal.

As the future direction of our research we aim to under-
stand what different events’ shapes represent in terms of Twit-
ter dynamics and content (persistence of news, importance) and
plan to incorporate the extracted knowledge into a forecasting
model for consumer sales.
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